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Motivating application: soft robotics

“Even if different results exist in the literature
for linear model reduction, like balanced
truncation or iterative tangential interpolation,
the only method suitable for non-linear system
is the Proper Orthogonal Decomposition
(POD)." - [Thieffry et al., 2018]

[Zhang et al., 2016]



Challenges with soft robot control

Material and geometric i
nonlinearities x = f(x) + g(x)u
= h(x)

Large state dimension due
to PDE discretization




Challenges with soft robot control

x=0 x=L

Control-affine dynamical system

Material and geometric . K_\
nonlinearities x = f(x) + g(x)u {Geometric nonlinearities, }

y = h(x) e.g. cable angles

Large state dimension due
to PDE discretization




Background on nonlinear balancing and computation
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H~ energy function definitions

Definition ([Scherpen, 1996])

Let v be a positive constant v > 0,7 # 1, and define p := 1 — y~2. The H, past energy of
the nonlinear system is defined as

0

. 1 2 2
= t t)||°dt. 1
A 5 /nlly( T+ [lu(e)l (1)
x(—00)=0, x(0)=xq —o0

&5 (xo0) =
If v <1, the Hoo future energy of the nonlinear system is defined as

u
Efx)i= | max / Iytey? + O @
x(0)=xg, x(c0)=0 0

whereas if v > 1, the H, future energy is defined as
g+ . )||2 3
5 (x0) = || t)|? i 3)

UELQ[O o)
x(0)=xg, x(c0)=0 0



Energy functions solve Hamilton-Jacobi-Bellman PDEs

Theorem ([Scherpen, 1996])
Assume that the HJB equation

0= 20 1 225 ) ggo0 2B “

has a solution with £ (0) = 0 such that —f(x) — g(x)g(x) "0 £, (x)/dx is asymptotically
stable. Then this solution is the past energy function £ (x). Furthermore, assume that the
HJB equation

_ogs (x)f

o 0 0Ef(x) LOTEF(X) 1

2 26(x) — 21 Zg(x)g(x)| - + Sh(x) Th(x) ©)

has a solution with £(0) = 0 such that f(x) — ng(x)g(x) " 9" EF(x)/dx is asymptotically
stable. Then this solution is the future energy function E,j (x).



Analytic dynamics — analytic energy function

If the dynamics are analytic (polynomial):

¢ ¢
x = f(x) + g(x)u — X:AX+ZF5X©+ZG5(X©®U)+BU
¢=2 ¢=1
¢
y = h(x) — y:Cx+ZH§x@
¢=2

then the energy functions are also analytic (polynomial) [Al'brekht, 1961, Lukes, 1969]:

1

£7(x) =777 = 5;(x):§(v;x®+v§x®+...)
1

£X(x) =777 - ) =5 (w{x@ +wix® +)

HJB PDEs become a set of algebraic equations for the coefficients v;, w;.
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Some notes on the Kronecker product!

The Kronecker product of A € RP*9 and ID. 1. (A®B)(D®G)=AD® BG
SXt ; HON
B € R**! is the ps x gt block matrix: ID. 2. A®B =S, ,(B®A)Sex:

1
2
ID. 3. (I, ®x)A = (A®x)
ID. 4. (x®1,)A = (x®A)
5
6

auB e aqu
A®B= : ) :

aB - apB
. vec(ADB) = (BT ® A)vec(D)
. vec(AD) =

where aj; denotes the (i, j)th entry of A. We
write repeated Kronecker products as ID.

Is ® A)vec(D)
D' ®1,)vec(A)
D" ® A)vec(l,)
2)" (x )
ID. 8. vec (x" ® ) = (x ® vec(ly))
ID. 9. vec(A®B) =
(lg ® Spxt ® Is) (vec (A) ® vec (B))

LIDs from various sources, including [Brewer, 1978, Magnus and Neudecker, 2019], etc.
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x®::x®-~~®x€R"k.
—_——

—_ T~ o~

k times
We adopt the following notation to define the ID. 7. u' Zx = vec
k-way Lyapunov matrix

Li(A)=A® @1+ +1®---0A

k times k times




Nonlinear balancing for quadratic systems [Kramer et al., 2022]

9/37

[y

x = Ax + Fx@ + Bu,

. (v;x@ Fuix®@ 4 Vde@)
y = Cx,

2
Theorem

vy = vec (V3) is the symmetric positive definite solution to the H., Riccati equation

0=A"V,+V,A-7C"C+V,BB"V,. (6)

For3 < k <d, let v, € R"k solve the linear system

1
Li(AT +VoBBT )iy = —Ly_1(F) Tvi_y — i > ij vec(V/BB'V)).
ij>2
i+j=k+2
Then the coefficient vector vy = vec (V) is obtained by the symmetrization of V.
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Roadmap

Control-affine dynamical system

Stage 1: Stage 2: Stage 3:
Develop algorithms ge & Output-feedback
State-feedback

to compute controllers and
. controllers .
energy functions model reduction

Task 1: Task 3:
Polynomial Polynomial
input g(x) Task 2: output h(x)

Polynomial
drift £(x)



Extension to polynomial inputs
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Quadratic-Polynomial System

Consider the quadratic-polynomial system

L
x = Ax+ Fx®+ > " G¢ (x® @ u) + Bu, (7)
£=1
y = Cx. (8)

Now we wish to solve the HIB PDE

0E7 (x) 10E7(x) 8T5 ( ) 1
_ [t 0 S0V T n T
= 2 P + 5 Zg(e(x) ~ Zh(x) " h(x) (9)
with the quadratic-polynomial dynamics given by
¢
f(x) = Ax + Fx@, gx)=> G (xOx1,) +B, h(x) =Cx.  (10)
£=1
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What do the additional G¢ terms change?

¢
k:Ax—&—Fx@—&—ZGg (x©®u)+Bu,

=1 v

(v;x®+v;—x®+---+v;x@)
y = Cx

Lemma

The additional G¢ terms only add terms to the right-hand side of the linear systems for v for
3<k<d.

So vy = vec (V2) still solves the H ., Riccati equation
0=A"V,+V,A—7C'C+V,BB"V,.

For3< k<d, v, € R™ solves the linear system

1
Li(AT +VoBB )iy = —Ly 1(F)Tvyeq — 7 § ij vec(V/BB'V;) + 777
ij>2
i+j=k+2



Main result: additional terms in the linear system for v,

Theorem
For3< k <d, let v, € R™ solve the linear system

y 1.
Li(AT +VoBB )i, = —Ly 1(F) v g — a > " ij vec(V{ BB V;)

i,j>2
itj=k+2
1 2L T
-7 3 i vec (I,,p ®vec[|m]T> (vec [ij,-] ® (GPTV,- ® |m)) x (1)
o=1\ p,q>0 ij>2

ptg=o0 \i+j=k—o+2

(l,,j71 ® Snf—lx,,qm ® |m) (Ink—p ® vec [|m]):|
Then the coefficient vector v = vec (V) is obtained by the symmetrization of \iy.



Main result proof sketch

The gradient of the energy function £ (x) ~ 3 (v x@ + v x® + - +v]x@) is

=3 (v2 (lh®x)+v, (x21,)

+v3 (I, @x®@x)+v; (x@1,@x) +vs (x@x@1,)
+v, (1LexRx®x)+v) (x@ 1, ®x® x)
v (x@x@ 1, ®x) + v, (x@x@x@1,) + ). (12)

According to the Lemma, the terms we consider only appear on the right-hand side, so we may
assume symmetry of the already computed v; and write

0E7 (x 1
5)(( ) :5(2v2T(I,,®x)+3v3T(I,,®x®x)+4vI(In®x®x®x)+~-~)
=
=5 v (1, ® xED). (13)
i=2
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Main result proof sketch

9E=(x) 196 (x) ITES(x)
: _ 9% 104 7O Sy X)) me NT
HJB PDE: 0= o f(x) + > ox g(x)g(x) x 2h(x) h(x).
o =
Gradient of the energy function: gx(x) % v/ (1, ®xED),
i=2
¢ ¢
Input vector field: Z (X®@1pn) +B =Y G (x@@1,).
-1 £=0

Then we can write an arbitrary kth-order HJB term containing G¢ generally as

1 . T _ — T, .
gV (1 @xED)G,(x0 @ 1,) (X0 @ 1,)Gy (I ©xT2 vy (14)
1,2
iy {peloel. oc2d, 15)
g=o0—p, i+j+o0o=k+2.
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Algebraic manipulations using Kronecker product identities

1 . .
7 (1 2 XE2)Go (0 @ 1) (x| @1,)G g (1 © X7 ),

Table: Dimensions of matrices used in identities ID. 4. (W 1,)A = (w e A)
A(pxq) D(gxs) wu(sx1l) ID. 5. vec(ADB) = (BT @ A)vec(D)
Bsxt) G(txu) witx1) ID. 6. u' Bw = vec(B)" (w ® u)

ID. 1. (A®B)(D®G) = AD ® BG ID. 7. vec (W' ® In) = (w @ vec(ln))

ID. 2. A®B =S, ,(B®A)Syx; ID. 8. vec(A®B) =

ID. 3. (I, @ w)A = (A®w) (I3 ® Spxt @ 15) (vec (A) ® vec (B))
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Algebraic manipulations using Kronecker product identities

L v/ (1, ©x2) G,(x®@®1,)(x@" ©1,)G] (I, ®xCD " )y, j,
%,_/ N———

8
XD VT by ID. 5 =VxX{- Dby ID. 5
Table: Dimensions of matrices used in identities ID. 4. (w®1,)A = (w® A)
A(pxq) D(gxs) wu(sx1) ID. 5. vec(ADB) = (BT ® A)vec(D)
B(sxt) G(txu) w(txl) ID. 6. uTBw = vec(B) T (w ® u)
ID. 1. (A®B)(D® G) = AD ® BG ID. 7. vec (W' ® ) = (w @ vec(Im))
ID. 2. AR B=S,,,(B®A)S;x: ID. 8. vec(A®B) =

ID. 3. (I, @ w)A = (A ®w) (I3 ® Spx¢ @ 15) (vec (A) ® vec (B))
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Algebraic manipulations using Kronecker product identities

1. T
. gl_/ vec (I,,p ® vec [Im]T) (vec [GIVJ-] ® (G;V,- ® Im)) X
(Inj—l ® Spi-1xnim ® Im) (lnk—p ® vec [lm]T) x®
Table: Dimensions of matrices used in identities ID. 4. (w ® |p)A _ (W ® A)

A(pxq) D(gxs) u(sxl

) ID. 5. vec(ADB) = (BT ® A)vec(D)
B(sxt) G(txu) w(tx1l)

ID. 6. u'Bw = vec(B) " (w ® u)

ID. 1. (A@B)(D® G) = AD @ BG ID. 7. vec (W' @ In) = (w® vec(lm))

ID. 2. A®B =S, ,(B®A)S,x: ID. 8. vec(A® B) =
lg ®Spxe ® s A)® B
ID. 3. (I, ow)A = (A®@w) (Ig pxt ) (vec (A) ® vec (B))
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Recap before numerical results

Interested in soft robot control with control-affine nonlinear models
Use Taylor expansions to get polynomial models

Polynomial model yields polynomial energy functions

Contribution: Kronecker product form of the algebraic equations for the energy
coefficients when you have polynomial g(x)

Solve Riccati equation and then a series of linear systems instead of a PDE
Resulting energy function can be used for

m control,
m model reduction,
m etc.
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Numerical results
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1D Example: exact solution

Consider the 1D quadratic-polynomial model

X = ax + nx? + bu + gixu + gxu,
y =cx.

The HJB PDE is actually an ODE for this 1D model:

_ 9 g 4 : (d‘%— (X)> g(x)? = Th(x)%.

dx dx

Let g(x) = d&; (x)/dx, a(x) = g(x)?/2, b(x) = f(x), and c(x) = —nh(x)?/2. The HIB PDE
takes the form of a standard quadratic equation in g(x)

0 = a(x)q(x)* + b(x)q(x) + c(x)

whose roots are given by

) £ /b(x)?2 — 4a(x)c(x) v [ —b(x) £ /b(x)? — 4a(x)c(x)
2a( ] = & (x)= / 2a(x) dx.

Nonlinear Balancing for Quadratic-Polynomial Systems

q(x) =



1D Example: energy function plots

Results fora= -2, n=1,b=2, g =-02, g =02, c=2, and n = 0.5.

7
&} (x) ~ 1.3660x> — 1.1925 x 10™'x>
— 1.2475 x 107 1x* + 1.0509 x 1072x°
+1.4282 x 1072x® — 1.5279 x 10~*x7
— 1.6133 x 10738
,/'/ / m The energy functions are
;s + .
+ ground-truth A accurate locally, and adding
” T // ) {,j;{i degrees aids accuracy locally
‘%x — :egreeg /; gf\ \ m As is often the case with
L ’\\ g e N polynomial approximation,
. ‘ ‘ NMH‘M ‘ ‘ n h!gher—order approximations also
-3 -2 -1 0 1 2 3 diverge more severely beyond the
x

region of convergence

Nonlinear Balancing for Quadratic-Polynomial Systems



1D Example: energy function L, error

10°

106

m Adding higher-order terms
increases accuracy locally.

Lo error

degree 2

—12
10 degree 4 m |t does not necessarily increase
degree 6 the radius of convergence!
degree 8
10-18 | | |
0 1 2 3 4

Region radius around origin
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1D Example: is it better to discard G; terms?

Nonlinear Balancing for Quadratic-Polynomial Systems

e degree 4

—_— degree 8
degree 8
dropping g2
______ degree 8
dropping g2 & g1
| | !

1 2 3
Region radius around origin

X:ax+nx2+bu+gkxn'+ggxzf,
Y = cx.

m Probably not.

m Better to approximate the right
energy function to lower order
than the wrong energy function
to higher order.



2D Example: energy functions and residuals

%1010

OE7 (x)
— 2 0
RES = o f(x)
1 (00T () X

5 oy BXeg(x) —5 —

~ 7h(x)"h(x)

1

Figure: Left: nonlinear balancing energy functions. Right: HJB residuals.
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Nonlinear beam

Consider a cable-actuated cantilever beam. We
model this as a nonlinear Euler-Bernoulli beam
subject to Von Karman strains but linear elastic
material response [Reddy, 2004].

Pw  ONg
S T
oo APV D (0N o ow
TP T ax \"ax ) T Paraxe T Taxe
where
ow 1 [0v d%v
NXX EA [8){ + - (ax) ] and MXX = Elﬁ
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Nonlinear beam: finite element discretization

The semi-discretized truncated system can be
written in state-space form as

x = Ax + Fx@ + g(x)u,
y = Cx

x=0 x=L
The input matrix g(x) depends on the cable angle 0(x), which changes with the state. We can
model the angular dependence using simple geometry and Taylor series expansion as

B L+ w(L,t) (L) w(L t)v(L, t)?
cos (B(v,w)) = N T O - = (1 TE E ) ;
: B v(L,t) _(v(Lt)  w(Lt)v(L 1)
sin (0(v, w)) = JLrwLOR tvLo? ~ ( L 2
(2w(L, t)?v(L, t) — v(L, t)*)
+ B .

Nonlinear Balancing for Quadratic-Polynomial Systems



With the degree 3 Taylor approximation to
g(x) and discarding the cubic drift term, the

model is
3
x=Ax+Fx® 4+ > " G¢ (x® @ u) + Bu,
e=1
y = Cx
1077 6N :
1.2 1 T — T where x € R®Y and N is the number of
@ Degree 3 elements.
—~ L15F —— Degree 4 | .
R By varying the number of elements, we can
T L1} 8 investigate convergence and scaling
w 1.05 - | performance.
[ LI |
10! 102
n

Figure: Convergence with respect to mesh size
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Energy function convergence for the beam

. 107 1073
Table: n = 18, scaling and convergence w.r.t. d 1.04 — T
—11.3
d CPU sec S;(xa) Ej(xb)
2 2181072 1.012561.1077 1.012561.107° 112 g
3 9.041073 1.034814.10~7  1.235090-10~° T+
4 1.89-107! 1.035239:10~7  1.277524.107° “w
5 4.19:10°  1.035240-10~7  1.278660-10° 111 *
6 9.82-10! 1.035240-10~7  1.276495.10°
1

Figure: Energy function convergence as d
increases for initial conditions x,, Xp
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Algorithm scaling for beam example

The solution implementation in [Kramer et al., 2022] for these types of linear systems scales as
roughly O(n*1), though their results perform more like O(n9).

Table: d = 3, scaling and convergence w.r.t. n

No. of
Elements n n? CPU sec &S (xa)
1 6 2.1600-102 1.37:10~3  1.189137-10~7
2 12 1.7280-10® 2.80-10—2 1.054830-10~7
4 24  1.3824-10* 1.30-10~2  1.028107-10~7
8 48  1.1059-10° 9.57.10~2  1.021709-10~7
16 96  8.8474-10° 9.34.10~! 1.020124.10~7
32 192 7.0779-10° 1.05-10! 1.019728-10~7
64 384 5.6623-107  3.89-102 1.019625.107

=l

~@— Deg. 3 (x n>%)

10!

102
n

Figure: Scaling of CPU time as n

increases
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Algorithm scaling for beam example

The solution implementation in [Kramer et al., 2022] for these types of linear systems scales as
roughly O(n*1), though their results perform more like O(n9).

TTTT] T T JTTrT] T L1
Table: d = 4, scaling and convergence w.r.t. n 102 | d
No. of §
Elements n n* CPU sec & (xa) S
-1 N
1 6 1.2960-10° 2.00-10~2  1.191000-10~7 =] 10
2 12 2.0736-10* 3.94.1072 1.055358.10~7 —@— Deg. 3 (o n*%)
4 24 3.3178:10° 5.08:10° '  1.028498-107 Deg. 4 (o n*)
8 48 5.3084-10% 8.32-10° 1.022069-10~7 Tt R T TR
16 96 8.4935.10"7  1.83-10° 1.021582-107 10! 102

n

Figure: Scaling of CPU time as n
increases

Nonlinear Balancing for Quadratic-Polynomial Systems



Conclusions

m Presented generalization of [Kramer et al., 2022] to polynomial inputs g(x)

m Linear systems remain similar, only different right-hand sides (allows to inherit solvability,
solution algorithms, scaling, etc. )

Future work:
m Extend to polynomial f(x) and h(x) for full polynomial systems
m State feedback control (using these energy functions and others)
m Soft robot examples, model reduction, and output feedback control

m Optimize implementation (current speed OK but also RAM usage), maybe tensor_toolbox
2

Z[B
ader et al., 2023]
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1D Example: HJB residual as a metric

m Maybe a better measure of a
‘good’ energy function, since it
involves a) the HJB equation
and b) gradients of the energy

103

10~4

HJB residual

10—11 degree 2
degree 4
degree 6
degree 8
—18 L
10 0 1 2 3 4 5 6

Region radius around origin
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2D Example: nonlinear balancing vs. differential balancing

Next we take the 2D
quadratic-bilinear system from
[Kawano and Scherpen, 2017]:

80

60
S 2
X1 = —X1 +tX2— X
+ u—+ 2xu
).(2:—X2+U

y=x1

w Leish

20

We use a degree 4 approximation
with 17 = 0 for open-loop

balancing.
Loish

0.5

1
Le = Eéxa—Q(xo)éxo

1
Lcish = EXOTQ(XO)XO
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Nonlinear balancing for polynomial systems

Theorem (Past energy polynomial coefficients)

For3 < k <d, let v, € R™ solve the linear system

fa (A + BBTVQ)T e=—> Li(Fe)Tvi— 1 S j vec [V,-TBBTVJ-] 0> vec [H;Hq]

i,§2>2 4i»j>2 p,q>1
E4i=k+1 i+j=k+2 pt+aq=k
1 2 T
- T T T
IS S| S| (e @veettl") (see[6v] @ (GTVion) ) x g
o=1\ p,g>0 ij>2

pt+q=o0 \i+j=k—o+2

(Inffl ® Sn"*lanm ® lm) (Inkf” ® vec [Im]):|

Then the v, = vec (Vi) € R"™ for 3 < k < d is obtained by symmetrization of V.



2D Example: approximate input normal transformations

80
0.04
60
8 40 0.02
20
0 -0.2 0 0.2 -0.2 0 0.2
21 Z1
(a) Original coordinates (b) Degree 1 transformation (c) Degree 3 transformation

Figure: Past energy function under approximate input normal transformation
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