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Introduction



Optimal Control Problem

Find a control u(·) with u(t) ∈ Rm that solves

min
u

J(z,u) =

∫∞
0

ℓ(z(s),u(s)) ds

subject to

ż(t) = f(z(t),u(t)), z(0) = z0 ∈ Rn.

Assume the optimal control is given by u∗(t) = K(z∗(t)), and define the value function as

v(z0) = J(z∗(·; z0),u∗(·)).

For f, ℓ, and v smooth enough, the feedback relation satisfies the Hamilton-Jacobi-Bellman

partial differential equations

0 =
∂v

∂z
(z)f(z,K(z)) + ℓ(z,K(z))

0 =
∂v

∂z
(z)

∂f

∂u
(z,K(z)) +

∂ℓ

∂u
(z,K(z)).
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Optimal Control Problem

This can be derived using the dynamic programming principle. If u∗ is used, then

v(z0) =

∫∞
0

ℓ(z∗(s),u∗(s)) ds

=

∫ t
0

ℓ(z∗(s),u∗(s)) ds +

∫∞
t

ℓ(z∗(s),u∗(s)) ds︸ ︷︷ ︸
v(z∗(t;z0))

.

Our smoothness assumptions allow us to differentiate with respect to t. The result is

0 = ℓ(z∗(t),u∗(t)) +
∂v

∂z
(z∗(t))ż∗(t),

which is

0 = ℓ(z∗(t),u∗(t)) +
∂v

∂z
(z∗(t))f(z∗(t),u∗(t))

or

0 =
∂v

∂z
(z)f(z,K(z)) + ℓ(z,K(z)).
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Optimal Control Problem

Ideally, one could solve the HJB equations simultaneously for v and K.

The feedback law u(t) = K(z(t)) is the quantity of interest.

The value function v(z) can serve as a Lyapunov function, providing information about the

stability region around the steady-state solution z = 0.

However, these are notoriously difficult to solve as the HJB equations are nonlinear PDEs to be

solved in Rn (or after model reduction Rr ).

Instead, polynomial approximations are constructed of the form:

v(z) ≈ v [2](z) + v [3](z) + · · ·+ v [d+1](z)

and

K(z) ≈ k[1](z) + k[2](z) + · · ·+ k[d](z).
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HJB PDEs

The Nonlinear Systems Toolbox (Krener, 2015) has a routine hjb.m to approximate the

feedback relation based on an algorithm by Al’brekht (PMM-Journal of Applied Mathematics

and Mechanics, 25:1254-1266, 1961).

0 =
∂v

∂z
(z)f(z,K(z)) + ℓ(z,K(z)) (1)

0 =
∂v

∂z
(z)

∂f

∂u
(z,K(z)) +

∂ℓ

∂u
(z,K(z)). (2)
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QQR/PQR Software

• Specializes Al’Brekht’s method to polynomial systems with control affine inputs.

• The running cost has a quadratic form: ℓ(z,u) = z⊤Qz+ u⊤Ru.

• Structured linear systems were obtained by using polynomial approximations in Kronecker

product form (as we’ll detail below).

• This has been used to perform feedback control approximations for systems with hundreds

of states.

• A Matlab implementation is available on github (we’ll install and test this later).
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Using Kronecker products also has a long history in systems theory
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Writing polynomials in Kronecker product form

The Kronecker product of two matrices X ∈ Rix×jx and Y ∈ Riy×jy , with entries xij and yij , is

defined as the block matrix X⊗ Y ∈ Rix iy×jx jy with entries

X⊗ Y ≡


x11Y x12Y · · · x1jxY

x21Y x22Y · · · x2jxY
...

...

xix1Y xix2Y · · · xix jxY

 z⊗ z =


z1z

z2z
...

znz

 .

The following properties are useful:

• (C⊗D)(E⊗ F) = (CE)⊗ (DF)

• (C⊗D)⊤ = C⊤ ⊗D⊤

• (a⊗ b)⊗ c = a⊗ (b⊗ c)

• K = XVY⊤ ↔ vec(K) = (Y ⊗ X)vec(V)

and the derivative of c(z) ≡ c⊤2 (z⊗ z) in the direction f is

∂c

∂z
f = c⊤2 (f ⊗ z+ z⊗ f).
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Writing polynomials in Kronecker product form

There are many representations of the same monomial terms when written in Kronecker

product form, e.g. for the quadratic monomials

[1 0 2 1] (z⊗ z) = [1 1 1 1] (z⊗ z) = z21 + 2z1z2 + z22 .

To simplify expressions, we will impose the symmetric form of the coefficients.

If the coefficients are symmetric, then the following properties hold

• c⊤ (a⊗ b) = c⊤ (b⊗ a)

• c⊤ (I⊗ z) = c⊤ (z⊗ I)

(note c⊤ (M⊗N) ̸= c⊤ (N⊗M))
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Quadratic-Quadratic Regulator



Quadratic-Quadratic Regulator (QQR) Problem

Find a control u(·) with u(t) ∈ Rm that solves

min
u

J(z,u) =

∫∞
0

ℓ(z,u) ds

=

∫∞
0

z(s)⊤Q2z(s) + u(s)⊤R2u(s) ds

=

∫∞
0

q⊤2 (z(s)⊗ z(s)) + r⊤2 (u(s)⊗ u(s)) ds

with q2 = vec(Q2), Q2 = Q⊤
2 ⩾ 0 and r2 = vec(R2), R2 = R⊤

2 > 0, subject to

ż(t) = f(z,u)

= Az(t) + Bu(t) +N2(z(t)⊗ z(t)), z(0) = z0 ∈ Rn.
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Quadratic-Quadratic Regulator (QQR) Problem

Recall the Hamilton-Jacobi-Bellman partial differential equations

0 =
∂v

∂z
(z)f(z,K(z)) + ℓ(z,K(z))

0 =
∂v

∂z
(z)

∂f

∂u
(z,K(z)) +

∂ℓ

∂u
(z,K(z)).

We now introduce Kronecker product expansions for v and K

v(z) = v⊤2 (z⊗ z)︸ ︷︷ ︸
v[2](z)

+ v⊤3 (z⊗ z⊗ z)︸ ︷︷ ︸
v[3](z)

+ · · · and K(z) = k1z︸︷︷︸
k[1](z)

+ k2(z⊗ z)︸ ︷︷ ︸
k[2](z)

+ · · ·

Substitute these expansions into the HJB PDEs and match terms of equal degree.
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QQR: Matching Degree 2 and Degree 1 Terms

v(z) = v⊤2 (z⊗ z)︸ ︷︷ ︸
v[2](z)

+ v⊤3 (z⊗ z⊗ z)︸ ︷︷ ︸
v[3](z)

+ · · · and K(z) = k1z︸︷︷︸
k[1](z)

+ k2(z⊗ z)︸ ︷︷ ︸
k[2](z)

+ · · ·

f(z,u) = Az+ Bu+N2(z⊗ z) ℓ(z,u) = q⊤2 (z⊗ z) + r⊤2 (u⊗ u)

For example, collecting the degree two from the value function and degree one terms from the

feedback equation, leads to

v⊤2 ((A+ Bk1)⊗ In+In ⊗ (A+ Bk1)) + q⊤2 (In ⊗ In) + r⊤2 (k1 ⊗ k1) = 0.

and

v⊤2 (B⊗ In + In ⊗ B) + r⊤2 (k1 ⊗ Im + Im ⊗ k1) = 0.
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QQR: Matching Degree 2 and Degree 1 Terms

v⊤2 ((A+ Bk1)⊗ In+In ⊗ (A+ Bk1)) + q⊤2 (In ⊗ In) + r⊤2 (k1 ⊗ k1) = 0.

and

v⊤2 (B⊗ In + In ⊗ B) + r⊤2 (k1 ⊗ Im + Im ⊗ k1) = 0.

can be rearranged as

(A+ Bk1)
⊤V2 + V2(A+ Bk1) + k⊤1 R2k1 +Q2 = 0

V2B+ k⊤1 R2 = 0

}
coupled eqns. for V2 and k1

and upon substitution of k1 into the first equation,

A⊤V2 + V2A− V2BR
−1
2 B⊤V2 +Q2 = 0

k1 = −R−1
2 B⊤V2.

Thus V2 solves the algebraic Riccati equation and k1 is the familiar solution to the

linear-quadratic regulator problem.
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QQR: Matching Degree 3 and Degree 2 Terms

Let Ac = A+ Bk1. Collecting degree three terms from the value function equation

v⊤3 (Ac ⊗ In ⊗ In + In ⊗ Ac ⊗ In + In ⊗ In ⊗ Ac)

= −v⊤2 ((N2 + Bk2)⊗ In + In ⊗ (N2 + Bk2)) − r⊤2 (k1 ⊗ k2 + k2 ⊗ k1) .

and the degree two terms from the feedback equation

v⊤3 (B⊗ In2 + In ⊗ B⊗ In + In2 ⊗ B) + r⊤2 (k2 ⊗ Im + Im ⊗ k2) = 0.

To solve the equations above: identify all of the k2 terms in the top equation

−v⊤2 (Bk2 ⊗ In + In ⊗ Bk2) − r⊤2 (k1 ⊗ k2 + k2 ⊗ k1)

= −
(
v⊤2 (B⊗ In) + r⊤2 (Im ⊗ k1)

)
(k2 ⊗ In) −

(
v⊤2 (In ⊗ B) + r⊤2 (k1 ⊗ In)

)
(In ⊗ k2).

Now, recall the degree one terms from the previous page:

v⊤2 (B⊗ In) + r⊤2 (Im ⊗ k1) = 0 = v⊤2 (In ⊗ B) + r⊤2 (k1 ⊗ Im).

So all of the k2 terms in the top equation vanish, and eqns decouple.

The first equation can be solved for v3, then inserted into the second equation to compute k2.

This pattern continues. . .

14



QQR: Matching Degree 3 and Degree 2 Terms

Let Ac = A+ Bk1. Collecting degree three terms from the value function equation

v⊤3 (Ac ⊗ In ⊗ In + In ⊗ Ac ⊗ In + In ⊗ In ⊗ Ac)

= −v⊤2 ((N2 + Bk2)⊗ In + In ⊗ (N2 + Bk2)) − r⊤2 (k1 ⊗ k2 + k2 ⊗ k1) .

and the degree two terms from the feedback equation

v⊤3 (B⊗ In2 + In ⊗ B⊗ In + In2 ⊗ B) + r⊤2 (k2 ⊗ Im + Im ⊗ k2) = 0.

To solve the equations above: identify all of the k2 terms in the top equation

−v⊤2 (Bk2 ⊗ In + In ⊗ Bk2) − r⊤2 (k1 ⊗ k2 + k2 ⊗ k1)

= −
(
v⊤2 (B⊗ In) + r⊤2 (Im ⊗ k1)

)
(k2 ⊗ In) −

(
v⊤2 (In ⊗ B) + r⊤2 (k1 ⊗ In)

)
(In ⊗ k2).

Now, recall the degree one terms from the previous page:

v⊤2 (B⊗ In) + r⊤2 (Im ⊗ k1) = 0 = v⊤2 (In ⊗ B) + r⊤2 (k1 ⊗ Im).

So all of the k2 terms in the top equation vanish, and eqns decouple.

The first equation can be solved for v3, then inserted into the second equation to compute k2.

This pattern continues. . .

14



QQR: Matching Degree 3 and Degree 2 Terms

Let Ac = A+ Bk1. Collecting degree three terms from the value function equation

v⊤3 (Ac ⊗ In ⊗ In + In ⊗ Ac ⊗ In + In ⊗ In ⊗ Ac)

= −v⊤2 ((N2 + Bk2)⊗ In + In ⊗ (N2 + Bk2)) − r⊤2 (k1 ⊗ k2 + k2 ⊗ k1) .

and the degree two terms from the feedback equation

v⊤3 (B⊗ In2 + In ⊗ B⊗ In + In2 ⊗ B) + r⊤2 (k2 ⊗ Im + Im ⊗ k2) = 0.

To solve the equations above: identify all of the k2 terms in the top equation

−v⊤2 (Bk2 ⊗ In + In ⊗ Bk2) − r⊤2 (k1 ⊗ k2 + k2 ⊗ k1)

= −
(
v⊤2 (B⊗ In) + r⊤2 (Im ⊗ k1)

)
(k2 ⊗ In) −

(
v⊤2 (In ⊗ B) + r⊤2 (k1 ⊗ In)

)
(In ⊗ k2).

Now, recall the degree one terms from the previous page:

v⊤2 (B⊗ In) + r⊤2 (Im ⊗ k1) = 0 = v⊤2 (In ⊗ B) + r⊤2 (k1 ⊗ Im).

So all of the k2 terms in the top equation vanish, and eqns decouple.

The first equation can be solved for v3, then inserted into the second equation to compute k2.

This pattern continues. . .

14



QQR: Simplification of the v3 Equation

v⊤3 (Ac ⊗ In ⊗ In + In ⊗ Ac ⊗ In + In ⊗ In ⊗ Ac) = −v⊤2 (N2 ⊗ In + In ⊗N2) .

Taking the transpose of this equation:(
A⊤

c ⊗ In ⊗ In + In ⊗ A⊤
c ⊗ In + In ⊗ In ⊗ A⊤

c

)
v3 = −

(
N⊤

2 ⊗ In + In ⊗N⊤
2

)
v2.

We define the special Kronecker sum as

Ld(X) ≡ X⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸
d terms

+ · · ·+ In ⊗ · · · ⊗ In ⊗ X︸ ︷︷ ︸
d terms

.

Then we can write equation for v3 compactly as

L3(A
⊤
c )v3 = −L2(N

⊤
2 )v2.
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Simplified Description of the Al’brekht Algorithm

Using this special Kronecker sum,

Ld(X) ≡ X⊗ In ⊗ · · · ⊗ In︸ ︷︷ ︸
d terms

+ · · ·+ In ⊗ · · · ⊗ In ⊗ X︸ ︷︷ ︸
d terms

.

we can write the higher degree terms in the same way, for example

L3(A
⊤
c )v3 = −L2(N

⊤
2 )v2

L4(A
⊤
c )v4 = −L3((Bk2 +N2)

⊤)v3 − (k⊤2 ⊗ k⊤2 )r2,

L5(A
⊤
c )v5 = −L4((Bk2 +N2)

⊤)v4 − L3((Bk3)
⊤)v3

−(k2 ⊗ k3 + k3 ⊗ k2)
⊤r2.

and for all of these...

kd = −
1

2
R−1

2

(
Ld+1(B

⊤)vd+1

)⊤
.

This is consistent with the linear-quadratic regulator problem.
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Polynomial-Quadratic Regulator



The Polynomial-Quadratic Regulator Problem

min
u

J(z,u) =

∫∞
0

ℓ(z(t),u(t)) dt,

subject to the system dynamics

ż(t) = f(z(t),u(t)), z(0) = z0,

where now

f(z,u) ≡ Az(t) + Bu(t) +N2(z⊗ z) + · · ·+Np(z⊗ · · · ⊗ z),

with Nd ∈ Rn×nd for d = 2, . . . , p.

The running cost is still quadratic in z and u:

ℓ(z,u) = q⊤2 (z⊗ z) + r⊤2 (u⊗ u) .
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Equations for vd+1 in the PQR Problem

Following the same process, we see that the systems are similar:

L3(A
⊤
c )v3 = −L2(N

⊤
2 )v2,

L4(A
⊤
c )v4 = −L3((Bk2 +N2)

⊤)v3 − (k⊤2 ⊗ k⊤2 )r2,

L5(A
⊤
c )v5 = −L4((Bk2 +N2)

⊤)v4 − L3((Bk3 +N3)
⊤)v3

−(k⊤2 ⊗ k⊤3 + k⊤3 ⊗ k⊤2 )r2.

We have the same decoupling of the vd+1 and kd equations as in the QQR problem.

Furthermore,

kd = −
1

2
R−1

(
Ld+1(B

⊤)vd+1

)⊤
. (3)
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Simplified Description of the Al’brekht Algorithm

Generally,

Ld+1(A
⊤
c )vd+1 = −L2(N

⊤
d )v2

−

d∑
i=3

Li (Bkd+2−i +Nd+2−i )
⊤vi

−
∑
i ,j>1

i+j=d+1

(
k⊤i ⊗ k⊤j

)
r2
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Quadratic Bilinear-Quadratic

Regulator



The Quadratic Bilinear-Quadratic Regulator Problem

min
u

J(z,u) =

∫∞
0

ℓ(z(t),u(t)) dt,

subject to the system dynamics

ż(t) = f(z(t),u(t)), z(0) = z0,

where now

f(z,u) ≡ Az(t) + Bu(t) +N2(z⊗ z) +Nzu(z⊗ u) +Nuu(u⊗ u),

with N2 ∈ Rn×n2 , Nzu ∈ Rn×nm and Nuu ∈ Rn×m2
.

The running cost is still quadratic in z and u:

ℓ(z,u) = q⊤2 (z⊗ z) + r⊤2 (u⊗ u) .
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Equations for vd+1 in the QBQR Problem

Following the same process, we see that the systems are similar:

L3(A
⊤
c )v3 = −L2 (N2 +Nzu(In ⊗ k1) +Nuu(k1 ⊗ k1))

⊤ v2,

L4(A
⊤
c )v4 = −L3(Bk2 +N2 +Nzu(In ⊗ k1) +Nuu(k1 ⊗ k1))

⊤v3

−L2(Nzu(In ⊗ k2) +Nuu(k1 ⊗ k2 + k2 ⊗ k1))
⊤v2

−(k⊤2 ⊗ k⊤2 )r2,

We have the same decoupling of the vd+1 and kd equations as in the above problems.

However, the equations for kd are more complex to extract. For example, gathering O(z2)

terms has the form

v⊤3 [(B⊗ In ⊗ In)(Im ⊗ z⊗ z) + (In ⊗ B⊗ In)(z⊗ Im ⊗ z)

(In ⊗ In ⊗ B)(z⊗ z⊗ Im)] +many similar terms.
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Perfect Shuffle Matrices

Let Spq be the perfect shuffle matrix:

Split a deck (vector) into p piles of q cards each, then recombine the deck (vector) by

cyclically taking the first card from each pile.

Interesting properties:

• if A ∈ Rm×n then vec(A⊤) = Snmvec(A).

• if B ∈ Rmb×nb and C ∈ Rmc×nc , then

C⊗ B = Smbmc
(B⊗ C)Snbnc .

Thus,

• z⊗ Im ⊗ z = (Smn ⊗ In)(Im ⊗ z⊗ z)

• z⊗ z⊗ Im = Smn2(Im ⊗ z⊗ z)

These are used to write equations for the feedback coefficients kd (omitting the details here).
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Software Implementation



Software to Download

If you want to follow along in the software, download the following:

• KroneckerTools: https://github.com/jborggaard/KroneckerTools

• NLbalancing: https://github.com/jborggaard/NLbalancing

• PolynomialSystems: https://github.com/jborggaard/PolynomialSystems

• QQR: https://github.com/jborggaard/QQR

We’ll need this software for the hands-on experiments after the break.
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Elements (under the hood)

Ld+1(A
⊤
c )vd+1 = −L2(N

⊤
d )v2 −

d∑
i=3

Li (Bkd+2−i +Nd+2−i )
⊤vi

−
∑
i ,j>1

i+j=d+1

(
k⊤i ⊗ k⊤j

)
r2

• Linear System Solver: KroneckerTools/src/KroneckerSumSolver.m

Solves systems of the form: Ld+1(A⊤
c )vd+1 = b.

[v] = KroneckerSumSolver(Ac.’,b,d+1);

• Forming the RHS: KroneckerTools/src/LyapProduct.m

Performs the products: Li (M⊤)vi .

[b] = LyapProduct(M.’,v,i);

• and (k⊤i ⊗ k⊤j )r2 = vec(k⊤j R2ki ) (= vec((k⊤i R2kj)⊤))

24



KroneckerSumSolver.m

Note that Ac = A+ Bk1 is a stable matrix by construction.

We use an N-way variation of the Bartels-Stewart algorithm.

We perform a Schur decomposition on the matrix A⊤
c = UTU∗.

Ld+1(A
⊤
c ) = (U⊗ · · · ⊗U)Ld+1(T)(U⊗ · · · ⊗U)∗.

Therefore, using a change of variable U, we can transform our problem to one of the form

Ld+1(T)ṽd+1 = b̃,

where b̃ = (U∗ ⊗U∗ ⊗ · · · ⊗U∗)b.

A special Kronecker sum system with triangular T is an nd+1 × nd+1 triangular system.

After solving for ṽd+1, we compute vd+1 = (U⊗U⊗ · · · ⊗U)ṽd+1.
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Comments

• If we perform a Schur factorization of Ac , we can make Ld(Ac) upper triangular. (but a

direct solve would be ≈ O(n2d) work)

• Ac is a stable matrix, by the above, the eigenvalues of Ld(Ac) are sums of the eigenvalues

of Ac . (these systems are solvable for vd)

• An n-Way version of the Bartels and Stewart algorithm has been implemented to solve

these special Kronecker sum systems of equations.

• A block recursive algorithm by Chen and Kressner, which is suitable for more general

Kronecker sum systems, is more efficient. (the complexity is just ≈ O(nd+1) work)

• The assembly of the RHS can also be performed efficiently (products of Ldvd)
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KroneckerSumSolver.m

For the change of variable:

[U,T] = schur(A.’,’complex’);

b = kroneckerLeft(U’,b);

To simplify the n × n block-backsubstitution steps:

X = zeros(n,n^(degree-1));

B = reshape(b,n,n^(degree-1));

The diagonal blocks of Ld(T) have the form (using T for convenience):

diagT = 0;

for i=2:degree

diagT = diagT + T(jIndex(i),jIndex(i));

end

Tt = T + diagT*eye(n);
27



KroneckerSumSolver.m

For the current block, we extract the portion of the vector b:

rhs = B(:,colIdx);

The block-backsubstitution steps have the form:

rhs = rhs - X(:,jIdx)*T(jIndex(i),jRange{i}).’;

Finally, the next n values of x are solved for

X(:,colIdx) = At\rhs;

When we are done, we reshape and apply the change of variables:

x = X(:);

x = real(kroneckerLeft(U,x));
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Numerical Examples



A Scalar Example

Minimize

J(u) =
1

2

∫∞
0

z2(t) + u2(t) dt

subject to

ż = z − z3 + u,

From z(0) = z0 = 1

d vd+1](z0)
∫2
0 ℓ(z , u)dt

1 1.207110 0.912902

3 0.780330 0.828734

5 0.809793 0.824724

7 0.820841 0.824338

From z(0) = z0 = 1.25

d vd+1](z0)
∫2
0 ℓ(z , u)dt

1 1.88610 1.27062

3 0.844169 1.15039

5 0.956561 1.05377

7 1.02242 1.04152
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Scalar Example Continued
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A Scalable Cubic Polynomial System

An example of a polynomial system is the ring of van der Pol oscillators

1
234

5

g

u1(t)

u2(t)

Specify controls u(·) ∈ L2(0,∞;Rm) that stabilize

ÿi + (y2
i − 1)ẏi + yi = yi−1 − 2yi + yi+1 + biui (t),

for i = 1, . . . , g with yi (0) = y0 and ẏi (0) = 0.

We identify yg+1 = y1 and yg = y0 to close the ring.

Find a control u(·) with u(t) ∈ Rm that solves

min
u

J(z,u) =

∫∞
0

z(s)⊤Q2z(s) + u(s)⊤R2u(s) ds (Q2 = Q⊤
2 ⩾ 0,R2 = R⊤

2 > 0)

subject to

ż(t) = f(z(t),u(t)), z(0) = z0 ∈ Rn (n = 2g ,m < n).
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A Scalable Cubic Polynomial System

An example of a polynomial system is the ring of van der Pol oscillators
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Cubic-Quadratic Regulator Problems

• The second-order model

ÿi + (y2
i − 1)ẏi + yi = yi−1 − 2yi + yi+1 + biui (t),

for i = 1, . . . , g can be written as

ż = Az+ Bu+N3z
3

with initial conditions set using yi (0) = 0.3 and ẏi (0) = 0.

• We identify yg+1 = y1 and yg = y0 to close the ring.

• The stability of this system was studied in Nana and Woafo 2006 and a related control

problem considered in Barron 2016.

• Choosing different values of g and rewriting as a first-order system of differential equations

allows us to study the cubic-quadratic regulator problem for problems of size n = 2g .

• We set bi as 0 or 1 with m = ∥b∥1.
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Convergence of the Value Function with Increasing Degree

Experiment: g = 4, b1 = b2 = 1.

Table 1: van der Pol: Value Function Approx.

d
∑d+1

i=2 v [i](z0)
∫50
0 ℓ(z(t),u(t))dt

1 4.6380 4.4253

2 4.6380 4.4253

3 4.4125 4.4208

4 4.4125 4.4208

5 4.4246 4.4208

6 4.4246 4.4208

7 4.4242 4.4208
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Nonlinear Feedback for the Chafee-Infante Equation

Find u(·) that minimizes

J(z , u) =

∫∞
0

(∫1
0

z2(x , t) dx + ∥u(t)∥2
)

dt

subject to

ż(x , t) = νzxx + αz − z3 +
m∑

k=1

χ[(k−1)/m,k/m)(x)uk(t)

z(x , 0) = 1.25 cos(3πx) ∈ H1(0, 1), zx(0, t) = 0 = zx(1, t),

The zero solution is unstable when α > 4π2ν.

Discretize with 20 linear FE (n = 21), m = 10, and consider a range of values of α and ν.

Approximate the cubic-quadratic regulator to compute the control.
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Source Control, m = 10

Table 2: Chafee-Infante Value Function: Source Control

d + 1
∑d+1

i=2 v [i](z0)
∫T
0 ℓ(z(t),u(t))dt

ν = 1, α = 100

2 160.3403039 167.6456054

4 167.1904854 167.2009756

6 167.2013401 167.2009701

ν = 0.1, α = 10

2 16.4303086 36.6666702

4 23.1192400 23.2573375

6 23.3103412 23.2549197

ν = 0.01, α = 1

2 3.4886482 diverged

4 7.9363494 10.0721129

6 11.0884438 9.7386884 35



Closed-loop Simulations, ν = 0.1,α = 10 Case

Figure 3: Linear Feedback Figure 4: Cubic Feedback
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Closed-loop Simulations, ν = 0.1,α = 10 Case

Figure 5: Cubic Feedback, n = 20 Figure 6: Cubic Feedback, n = 200
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Neumann Control, m = 10

Table 3: Chafee-Infante Value Function: Neumann Control

d + 1
∑d+1

i=2 v [i](z0)
∫T
0 ℓ(z(t),u(t))dt

ν = 1, α = 100

2 5.5621284 6.2714968

4 6.1631359 6.2076474

6 6.2054292 6.2073693

ν = 0.1, α = 10

2 1.1756343 diverges

4 1.8783304 2.9177025

6 2.2771905 2.5498542
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Closed-loop Simulations, ν = 0.1,α = 10 Case

Figure 7: Linear Feedback Figure 8: Cubic Feedback
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Closed-loop Simulations, ν = 0.1,α = 10 Case

Figure 9: Cubic Feedback Figure 10: Quintic Feedback
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Future Work

• Test on a flow control problem

• DAEs

• Look at other polynomial representations (SoS, tensor).

• Show convergence in PDE setting.
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Hands-on Experiments



Software Installation

At https://github.com/jborggaard
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Software Installation (continued)

1. Download KroneckerTools, NLbalancing, QQR, and PolynomialSystems

2. Open Matlab

• Navigate to NLbalancing

• Edit setKroneckerToolsPath.m

• Navigate to PolynomialSystems

• Edit setPaths.m

• Navigate to QQR

• Edit setKroneckerToolsPath.m

• Edit setPolynomialSystemsPath.m
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Convenience Functions in KroneckerTools

• [Y] = kroneckerLeft(M,B)

Applies Y = (M ⊗M ⊗ · · · ⊗M)B and was used to perform the change of variables.

• [zd] = KroneckerPower(z,d)

Computes z d .

• [c] = kronMonomialSymmetrize(c,n,d);

Symmetrizes monomial coefficients that multiply z d (z ∈ Rn).

• [Ns] = kronMatrixSymmetrize(N,n,d);

Same as above, but for N2, N3, etc.

• [Ns] = kronNxuSymmetrize(Nxu,n,d);

Same as above, but when multiplying z d ⊗ u.

• [u] = kronPolyEval(k,z,d);

evaluates a polynomial in Kronecker form with coefficients k .

u = k{1}*z + k{2}*kron(z,z) + ... + k{d}*kron(kron(...z),z),z)
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Convenience Functions in KroneckerTools

• [S] = perfectShuffle(p,q)

Calculates the (sparse) perfect shuffle matrix.

A = rand(m1,n1); B = rand(m2,n2);

Smm = perfectShuffle(m1,m2); Snn = perfectShuffle(n1,n2);

norm(kron(A,B) - Smm.’*kron(B,A)*Snn) % should be zero

vec = @(x) x(:); % create a convenience function

S = perfectShuffle(m1,n1);

norm(S.’*vec(A) - vec(A.’)) % should be zero
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Convenience Functions in KroneckerTools

• [A,B,Nzz,Nzu] = kronPolyApprox(f,g,n,m,d);

Given a (nice) system of the form ż = f(z) + g(z)u, where f : Rn → Rn and g : Rn → Rn×m

then kronPolyApprox uses the symbolic toolbox to provide a polynomial approximation in the

desired Kronecker product form.

E.g.

f = @(z) [z(1)^2; z(1)*z(2)]; g = @(z) [1+z(1) 2+z(2);3+z(2) 4+z(1)];

then [A,B,Nzz,Nzu] = kronPolyApprox(f,g,2,2,2) gives matrices A and B and the

expected cell arrays, e.g.

>> Nzz{2}

ans =

1.0000 0 0 0

0 0.5000 0.5000 0
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QQR Functions

The QQR repository has two primary functions: pqr and pqrBilinear.

The pqr function has the following function call.

[k,v] = pqr(A,B,Q,R,N,degree)

where N is a cell array from N{2} through N{d} of sizes n × n2 through n × nd , respectively.

The outputs are cell arrays of the feedback coefficients k and coefficients of the value function

approximation v.
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QQR Functions

The pqrBilinear function has the following function call.

[k,v] = pqrBilinear(A,B,Q,R,Nzz,Nzu,Nuu,degree)

where Nzz is a cell array from Nzz{2} through Nzz{d} of sizes n × n2 through n × nd , Nzu

contains a cell array from Nzu{1} through Nzu{q-1} of sizes n × nm through n × nq−1m, and

Nuu is a single matrix of size n ×m2.

The outputs are cell arrays of the feedback coefficients k and coefficients of the value function

approximation v.

Currently, we require degree<6

49



Feedback Control of a Bilinear Chemical Reaction Model

This model is described in An iterative method for the finite-time bilinear-quadratic control

problem, by Hofer and Tibken, J Optimization Theory and Applications, 57(3), 1988.

Their model, on p. 423 includes temperature (z1) and concentration (z2) and is

ż =

[
13/6 5/12

−50/3 −8/3

]
z+

[
−1/8

0

]
u +

[
−1 0

0 0

]
z⊗ u.

They perform design to minimize the LQR cost for Q = 10I2 and R = 1. Simulations from

z0 = [0.15, 0]⊤ are reported in their paper.

Let’s reproduce this for the infinite horizon case here.
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Feedback Control of a Bilinear Chemical Reaction Model

Define the problem

>> A = [13/6 5/12;-50/3 -8/3]; B = [-1/8; 0];

>> Nzz{2} = zeros(2,4); Nzu{1} = [-1 0;0 0];

>> Nuu = zeros(2,1);

>> Q = 10*eye(2);

>> R = 1;

Solve the problem

>> setPaths

>> [k,v] = pqrBilinear(A,B,Q,R,Nzz,Nzu,Nuu,3);

>> u = @(z) kronPolyEval(k,z);

>> rhs = @(t,z) A*z + B*u(z) + Nzu{1}*kron(z,u(z));

>> [T,Z] = ode23(rhs,[0 3],[.15;0]);

>> plot(T,Z(:,1))
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Feedback Control of a Bilinear Chemical Reaction Model

Compare your solution to the final iteration reported in the Hofer and Tibken paper (they are

solving the finite horizon problem with large final cost at t = 3 and we are solving the infinite

horizon problem).
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Feedback Control for Cart-Pole System

This is a classic problem in control (see Barto, Sutton, and Anderson, 1983).

ℓ

m

M

θ

u(t)
x

modified from latexdraw.com

Assuming no friction, the equations of motion can be written

as

ż =


z2

rℓz24 sin(z3) −
r cos(z3)(g sin(z3)−ℓrz24 sin(2z3)/2)

((4/3)−r cos2(z3))

z4
g sin(z3)−ℓrz24 sin(2z3)/2

ℓ(4/3−r cos2(z3))


︸ ︷︷ ︸

f(z)

+g(z)u

where z1 = x , z3 = θ, and r = m
m+M .
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Feedback Control for Cart-Pole System

We first create an approximate polynomial model for the system

[A,B,Nzz,Nzu] = cartpolePolynomial(m,M,L,g);

This function has been setup to provide a degree 5 approximation for f(z) and a degree 2

approximation for g(z).

We then define the state and control weights Q and R.

The feedback laws are defined using either

[K,V] = lqr(A,B,Q,R);

or

[k,v] = pqrBilinear(A,B,Q,R,Nzz,Nzu,zeros(4,1),3);
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Feedback Control for Cart-Pole System

We first create an approximate polynomial model for the system

[A,B,Nzz,Nzu] = cartpolePolynomial(m,M,L,g);

This function has been setup to provide a degree 5 approximation for f(z) and a degree 2

approximation for g(z).

We then define the state and control weights Q and R.

The feedback laws are defined using either

[K,V] = lqr(A,B,Q,R);

or

[k,v] = pqrBilinear(A,B,Q,R,Nzz,Nzu,zeros(4,1),3);
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Feedback Control for Cart-Pole System

We can evaluate the effectiveness of different feedback controls from various initial conditions

by defining the control and using one of the built-in Matlab adaptive ODE solvers.

For instance, if functions f = @(z) ... and g = @(z) ... for the state equation and

u = @(z) ... for the feedback law are defined, then we could define

rhs = @(t,z) f(z) + g(z)*u(z) and use

[T,Z] = ode45(rhs,[0 tFinal],z0);

The ODE solver can be leveraged to estimate the quadratic control cost by adding an

additional state:

rhs = @(t,z) [f(z(1:n)) + g(z(1:n))*u(z(1:n)); ...

z(1:n).’*Q*z(1:n) + u(z(1:n)).’*R*u(z(1:n))];

Then using [T,Z] = ode45(rhs,[0 tFinal],[z0;0]); results in Z(end,end) being our

approximation to the value function.
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Feedback Control for Cart-Pole System

Try different feedback laws and different starting points in the script cartpoleScript.m

located in the PolynomialSystems folder.
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Another Example: The Acrobot

θ1

ℓ1

θ2ℓ2

modified from texample.net

This model is from Underactuated robotics, Russ Tedrake,

2023 and has the form

M(q)q̈ + C (q, q̇)q̇ = τg (q) + Bu

where

M(q) =

[
I1 + I2 +m2ℓ

2
1 +m2ℓ1ℓ2 cos(θ2) I2 +m2ℓ1ℓ2 cos(θ2)/2

I2 +m2ℓ1ℓ2 cos(θ2)/2 I2

]
,

C(q, q̇) =

[
−m2ℓ1ℓ2 sin(θ2)θ̇2 −m2ℓ1ℓ2 sin(θ2)θ̇2/2

m2ℓ1ℓ2 sin(θ2)θ̇1/2 0

]
,

τg (q) =

[
−m1gℓ1 sin(θ1)/2−m2g(ℓ1 sin(θ1)+ ℓ2 sin(θ1 +θ2)/2)

−m2gℓ2 sin(θ1 +θ2)/2

]
, B =

[
0

1

]
.

The actuation is a torque applied at the joint between links 1

and 2.

The system has 4 equilibrium points (3 are unstable).
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The Acrobot

Similarly, there is a script that builds the polynomial system for this model of the form

ż = Az+ Bu+Nzz {3}z
3 +Nzu{2}

(
z 2 ⊗ u(t)

)
where the polynomial system can be linearized about any of the equilibrium points:

[A,B,Nzz,Nzu] = acrobotPolynomial(ze,parameters);

Since the equilibrium point is not necessarily 0, when we apply feedback on the full model, the

control has the form u = @(z) kronPolyEval(k,z(1:4)-ze);

The script acrobotScript has suggestions for the initial conditions that are within the

stability region for the closed-loop equations.

Test this out for several initial conditions and equilibrium points.
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Conclusions of QQR software

• In a number of examples, higher degree feedback expanded the radius of convergence for

the closed-loop system. Sometime, it only improves the quality of the feedback law very

locally.

• This enables higher degree feedback computation in many mathematical models of

interest, including flow control problems using ROMs.
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Overview of NLbalancing

Functions in the NLbalancing repository are available for polynomial approximations to past

and future energy functions, respectively

E−
γ (z) ≈ v⊤2 z

2 + · · ·+ v⊤d z
d

and

E+
γ (z) ≈ w⊤

2 z
2 + · · ·+w⊤

d z
d .

These are used as follows

[v] = approxPastEnergy(A,N,B,C,eta,d);

and

[w] = approxFutureEnergy(A,N,B,C,eta,d);
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Overview of NLbalancing

A polynomial approximation to the input-normal transformation is computed using

[sigma,T] = inputNormalTransformation(v,w,degree);

and finally, the approximation to the singular value functions is

[c] = approximateSingularValueFunctions(T,w,sigma,maxDegree-1);
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