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Problem formulation

Nonlinear systems

The general form of nonlinear dynamical system:

Eẋ(t) = f (x(t)) + Bu(t), y(t) = Cx(t),

with x ∈ Rn, u ∈ Rn, y ∈ Rp, f : Rn → Rn, B ∈ Rn×m, C ∈ Rp×n,
and E ∈ Rn×n.

One particular case of non-linearity is the quadratic one given by:

f (x) = Ax(t) + N2x
2 (t),

where N2 ∈ Rn×n2 and x 2 (t) is a 2-times Kronecker product of x(t).
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Problem formulation

Energy functions (J. M. Scherpen, 1996) [2]

The H∞ energy functions related to nonlinear dynamical systems are:

The H∞ past energy function:

E−
γ (x0) := min

u∈L2(−∞,0]

1

2

∫ 0

−∞
(1− γ−2)||y(t)||2 + ||u(t)||2dt

where x(−∞) = 0, x(0) = x0, and 0 < γ ̸= 1.

The H∞ future energy function:

E+
γ (x0) := min

u∈L2[0,∞)

1

2

∫ ∞

0

||y(t)||2 +
||u(t)||2

1− γ−2
dt,

where x(−∞) = 0, x(0) = x0, and γ > 1 and min is replaced by
max if 0 < γ < 1.
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Problem formulation

Hamilton-Jacobi-Bellman equations (J. M. Scherpen and A. Van der
Schaft, 1994) [3]

The H∞ energy functions are solutions to the following PDEs:

0 =
∂E−

γ

∂x
(x)f (x) +

1

2

∂E−
γ

∂x
(x)BBT

∂TE−
γ

∂x
−

1

2
(1− γ−2)xTCCT x

0 =
∂E+

γ

∂x
(x)f (x)−

1

2
(1− γ−2)

∂E+
γ

∂x
(x)BBT

∂TE+
γ

∂x
+

1

2
xTCCT x

where E−
γ (0) = E+

γ (0) = 0.
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Problem formulation

Energy function as an optimal control [2]

E−
γ (x) being a solution to the HJB gives rise an to optimal control u∗(x)

given by:

u∗(x) = −R−1BT
∂E−

γ (x)

∂x
,

with the following quadratic cost function

Ê(x0, u) =
1

2

∫ ∞

0

xT (t)Qx(t) + uT (t)Ru(t)dt

that drives the following system to stability:

ẋ(t) = −f (x(t)) + Bu(x(t)).
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Motivation

Polynomial Approximation (B. Kramer et al., 2022) [4]

The H∞ Energy functions can be approximated by :

E−
γ (x) =

1

2

(
wT
2 x 2 + wT

3 x 3 + · · ·+ wT
d x d

)

E+
γ (x) =

1

2

(
vT
2 x 2 + vT

3 x 3 + · · ·+ vT
d x d

)
where E−

γ (0) = E+
γ (0) = 0.
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Motivation

Polynomial approximations are very good around the origin. The
main issue with these approximations is NEGATIVITY away from
the origin. However, energy functions must be positive by definition.

One way to overcome this issue is to propose function
approximations that impose positivity.
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Motivation

One alternative can be a Sum-of-Squares, formulated as follows:

fsos(x) =
N∑
i=1

f 2i (x),

where fi (x) can be any generic function and N any finite number.

In this work, we are more interested in the sum-of-squares using
polynomials

fsos(x) =
N∑
i=1

p2i (x),

where each pi (x) is a polynomial.
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History

The case of sum-of-squares of polynomials is a well analyzed
problem, first studied by David Hilbert in 1900.

Sum-of-squares, as a tractable way to perform positive semi-definite
programming for dynamical systems, was first proposed by Pablo
A.Parrilo in his thesis in 2000. [5]

It allowed the control community to tackle different problems such
as, optimization problems, Lyapunov stability analysis, or
computation of tight upper bounds.
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Formulation of SOS polynomials

Proposition: [5]

A polynomial p(x) of degree 2d is a SOS if and only if there exists a
positive semidefinite matrix Q and vector of monomials Z (x) containing
monomials in x of degree ≤ d such that:

p(x) = Z (x)TQZ (x)
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Formulation of SOS polynomials

Example:[5]

Suppose we want to know in the following polynomial

p(x1, x2) = 2x41 + 2x31 x2 − x21 x
2
2 + 5x42

is a sum-of-squares. We let Z (x) = [x21 x1x2 x22 ]
T and we put

p(x1, x2) = Z (x)TQZ (x)

where Q ∈ Rn×n, and we look for a PSD matrix Q.
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Formulation of SOS polynomials

Example:[5]

In fact by expanding Z (x)TQZ (x) and matching the coefficients, a PSD
matrix Q can be formed as

Q =

 2 1 −3
1 5 0
−3 0 5

 = LLT with L =
1
√
2

 2 0
1 3
−3 1

 ,

hence

p(x1, x2) =
1

2
(2x21 + x1x2 − 3x22 )

2 +
1

2
(x22 + 3x1x2)

2

is, in fact, a SOS.
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Formulation of SOS polynomials

The use of SOS programming in HJB problems have been addressed in
prior works, e.g. [6]. In our work, we approach the problem in three
different SOS formulations:

Completing the square: Adding higher degree terms to a given
polynomial approximation to make it SOS.

Completing the square and collocation method: Lower degree
terms match a given polynomial approximation, collocation used to
determine highest degree terms.

Collocation method: Use Parrilo’s formulation of SOS within a
least-squares collocation method.

Here, the approaches are applied to the the past energy function E−
γ (x).

The same procedure can be applied to the future energy function E+
γ (x).
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Completing the square

Given a degree d approximation to E−
γ (x)

v(x) =
1

2

(
v⊤
2 x 2 + · · · v⊤

d x d
)
.

We propose a sum-of-squares approximation E−
sos(x) as:

E−
sos(x) =

(
ṽT
1 x + ṽT

2 x 2 + · · ·+ ṽT
d−1x

d-1
)2

The d − 1 coefficients of E−
sos are found by matching the lowest

degree terms in v(x).

This is done without the involvement of the HJB equation. The
HJB information is implicitly embedded in the approximation v(x).
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Completing the square

Example with n = 2:

Given a degree d = 3 approximation v(x). Let the degree of the SOS
approximation be 2(d − 1) = 4. Then

E−
sos(x) =

(
ṽT
1 x + ṽT

2 x 2
)2

where ṽT
1 ∈ R2×2 and ṽT

2 ∈ R2×4. Expanding this,

E−
sos(x) = xT ṽ1ṽ

T
1 x + 2xT ṽ1ṽ

T
2 x 2 + (x 2 )T ṽ2ṽ

T
2 x 2

E−
sos(x) = vec(ṽ1ṽ

T
1 )T x 2 + 2vec(ṽ1ṽ

T
2 )T x 3 + vec(ṽ2ṽ

T
2 )T x 4
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Completing the square

Example (continued):

Matching the O(x 2 ) and O(x 3 ) terms leads to the following systems of
equations:

ṽ1ṽ
T
1 =

1

2
V2 (solve by Cholesky)

2ṽ1ṽ
T
2 =

1

2
V3 (solve by backsubstitution)

where V2 = reshape(vT
2 , 2, 2) and V3 = reshape(vT

3 , 2, 4).
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Adding collocation

In this approach, we write E−
sos,c(x) in the same polynomial squared

form:

E−
sos,c(x) ≡

(
ṽT
1 x + ṽT

2 x 2 + · · ·+ ṽT
d−1x

d-1 + ṽT
d x d

)2
and we solve for the first d − 1 coefficients by matching a degree
2d − 1 polynomial approximation.
Finally, optimizing the residual function given by:

J(ṽT
d ) =

N∑
k=1

(HJB(xk))
2,

where N is the number of sample points in a domain Ω ⊂ Rn and
HJB(x) is the residual of the HJB equation, we get:

ṽT
d = argmin

ṽT
d ∈Rnd

J(ṽT
d ).
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d−1x

d-1 + ṽT
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Collocation method

These two complete the square approaches resolve the negativity
issue, but relies on having a good polynomial approximation. These
are typically accurate locally, but have no guarantee away from the
origin.

Using Parrilo’s formulation, we write E−
p (x) as:

E−
p (x) = Z (x)TQZ (x)

where Z (x) ∈ Rν is a vector of all monomials of degree ≤ d and
Q ∈ Rν×ν is a positive definite matrix. [1]
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Collocation method

The number of monomial terms, ν, in Z (x) is defined as follows:

ν =
d∑

i=1

degi (n),

where degi (n) is the number of monomial terms of degree i in
dimension n defined as follows:

degi (n) =
n∑

j=1

degi−1(j) for i ≥ 2

with deg1(n) = n
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Collocation method

Q has a Cholesky factorization:

E−
p (x) = psos(x) = Z (x)TLLTZ (x)

where L ∈ Rν×ν is the Cholesky factor of Q

The optimization problem arguments are the entries of L, and the
residual function in this case is:

J(L) =
N∑

k=1

(HJB(xk))
2

where N is the number of sample points in a region Ω ∈ Rn,
HJB(x) is the residual of the HJB equation and

L∗ = argmin
L∈Rν×ν

J(L)

is the optimal solution.
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Collocation method
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where L ∈ Rν×ν is the Cholesky factor of Q
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residual function in this case is:

J(L) =
N∑

k=1

(HJB(xk))
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where N is the number of sample points in a region Ω ∈ Rn,
HJB(x) is the residual of the HJB equation and

L∗ = argmin
L∈Rν×ν
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is the optimal solution.
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Issues for larger domains in Rn

Optimization for small regions around the origin is a convex
optimization problem. For example, a degree 4 approximation in
Ω = [−1; 1] ⊂ R has a graph (fixing L11 at L∗11) [4]
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Issues for large regions Ω in Rn

Considering larger domains, e.g. Ω = [−20; 20] ⊂ R, the problem
becomes non-convex even for low dimensions:
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Windowing procedure

Windowing can overcome this issue. Windowing procedure can be
seen as an iterative way of solving the optimization problem.

We start with an optimization in small region around the origin,
where the SOS approximation will mimic the behaviour of the lower
order terms of the polynomial approximation.

Then, the optimization results are set as starting values for problems
with larger domains and increasing numbers of sample points.

L
∗(N1)
[−1;1] → L

∗(N2)
[−10;10] → L

∗(N3)
[−20;20] → · · ·
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Windowing procedure

Windowing can overcome this issue. Windowing procedure can be
seen as an iterative way of solving the optimization problem.

We start with an optimization in small region around the origin,
where the SOS approximation will mimic the behaviour of the lower
order terms of the polynomial approximation.

Then, the optimization results are set as starting values for problems
with larger domains and increasing numbers of sample points.
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Numerical results in 1D

We simulate the collocation method on the example from [4], in
Ω = [−1; 1], with a degree 4 approximation:
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Numerical results in 1D

Optimization for Ω = [−10; 10] with and without windowing:
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Numerical results in 1D

Optimization for Ω = [−20; 20] with and without windowing:
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Numerical results in 1D

We compare the quality of the approximations based on the relative
error with respect to the analytical solution:

Error =
||E−

approx(x)− E−
exact(x)||2

||E−
exact(x)||2

Ω Poly Approximation SOS Approximation

[−1; 1] 8.15× 10−4 7.16× 10−4

[−10; 10] 1.52× 10−1 5.67× 10−2

[−20; 20] 4.02× 10−1 6.65× 10−2
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Numerical results in 2D

In the 2D and higher dimensions settings, we don’t generally have
the exact solution, so we will measure the quality of the
approximation by using it as control for the system:

ẋ(t) = −f (x(t)) + Bu(x(t))

where

u∗(x) = −BT
∂E−

γ (x)

∂x

and compare its value at x = x0 with:

E−
integral(x0) =

1

2

∫ ∞

0

(1− γ−2)||y(t)||2 + ||u(t)∗||2dt

such that x(−∞) = 0 and x(0) = x0
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Numerical results in 2D

We apply the collocation method with windowing to the following
system, which is analogous to the 1D case system: [4]

A = −2I B = 2I C = 3I N = [I I ] and γ =
√
2

where I is the identity matrix in R2×2

We start from the square domain Ω1 = [−0.1; 0.1]× [−0.1; 0.1],
using the optimal coefficients as initial points for
Ω2 = [−1; 1]× [−1; 1], and continuing to Ω3 = [−5; 5]× [−5; 5] and
finally to Ω4 = [−7; 7]× [−7; 7].
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Numerical results in 2D

We apply the collocation method with windowing to the following
system, which is analogous to the 1D case system: [4]

A = −2I B = 2I C = 3I N = [I I ] and γ =
√
2

where I is the identity matrix in R2×2
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Numerical results in 2D

The relative error, defined as:

Error =
||E−

approx(x0)− E−
integral(x0)||2

||E−
integral(x0)||2

at 4 different initial conditions x0 is summarized as follows:

x0 = (x01, x02) Poly Approximation SOS Approximation

(−7, −7) 1.4875× 10−1 9.4801× 10−3

(−7, 7) 8.875× 10−1 7.3976× 10−2

(7, −7) 8.875× 10−1 5.5123× 10−2

(7, 7) 2.4754× 10−1 3.0498× 10−1
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Numerical results in 2D

We also observed that the SOS approximation is also behaving as a
good control outside the optimization region. The following results
illustrate the observation:

x0 = (x01, x02) Poly Approximation SOS Approximation

(−10, −10) 2.1308× 10−1 3.145× 10−2

(−10, 10) Divergence 5.8141× 10−2

(10, −10) Divergence 1.0187× 10−1

(10, 10) 6.757× 10−1 3.0512× 10−1
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Summary

We developed a collocation approach on how to build polynomial
SOS approximations of the past energy function, with a possibility of
enlarging the domain with the windowing procedure.

We have shown the effectiveness of the proposed approach on both
the 1D and 2D settings.
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Future work

Applying the proposed method on higher dimensional settings.

Exploring more sampling strategies.

Using more general SOS (bases different than monomials or
polynomials in general).

Explore the convergence theory of the proposed method.
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Thank you
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