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Abstract. As simulation continues to replace experimentation in the design cycle, the need to quan-
tify uncertainty in model parameters and its effect on simulation results becomes critical. While intel-
ligent sampling methods, such as sparse grid collocation, have expanded the class of random systems
that can be simulated with uncertainty quantification, the statistical characterization of the model pa-
rameters are rarely known. In previous works, we have proposed an optimization-based framework for
estimating distributed parameters as well as a number of methods for identifying the most significant
parametric variations. In this work, we consider the combination of these methods. We propose the
use of Fréchet sensitivity analysis to determine the most significant parametric variations (MSPVs).
These MSPVs inform the generation of low order Karhunen-Loève expansions of the unknown pa-
rameter. These expansions can be used to build smooth, finite noise approximations of the parameter
identification problem based on the theory of infinite dimensional constrained optimization in the
space of functions with bounded mixed derivatives. Alternatively, we can interrogate the identified
parametric distributions to determine the tendency of the MSPVs. We illustrate our methods with a
numerical example of identifying the distributed stochastic parameter in an elliptic boundary value
problem.

1 Introduction

Quantifying the uncertainty in distributed parameter systems is important for making design deci-
sions and for managing uncertainty under operation. When the stochastic representation of model
parameters is known, a number of approaches can be used to approximate the stochastic output of a
model. These range from sampling methods such as Monte Carlo [1] and centriodal Voronoi tessella-
tions [2,3] to Galerkin approaches based on parametric expansions such as polynomial chaos [4] and
Karhunen-Loève expansions [5] to sparse grid stochastic collocation approaches [6–8].
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In [9,10], the authors proposed an optimization-based methodology for computing stochastic rep-
resentations of random distributed parameters in partial differential equations. One outcome of this
approach is an algorithm for computing statistical moments of the parameters. However, for making
design decisions, one would also like to take advantage of the spatial distribution of this information.
For example, one may want to address questions such as: what is the “worst” distributed perturbation
of this parameter? [11], and how likely is that perturbation? To partially answer the first question,
we have developed a methodology based on Fréchet sensitivity analysis [12, 13] that simultaneously
computes those parametric variations that give the most dominant (in the L2-sense) changes to the
solution to a PDE, as well as the sensitivity of the solution to that parametric change. In this paper, we
develop a strategy to begin addressing the second question. In other words, we use Fréchet sensitivity
analysis to interrogate stochastic descriptions of distributed parameters.

2 Fréchet Sensitivity Analysis of a Diffusion Coefficient

To provide a concrete illustration of our methodology we consider the effect of the diffusion coeffi-
cient q ∈ H2(D) on the solution z ∈ H1

0 (D)∩H2(D) of the elliptic partial differential equation

−∇ · (q(x)∇z(x)) = f (x) on D

z(x) = 0 on ∂D,
(2.1)

where D ⊂ Rd is a bounded domain with C0 boundary and f ∈ L2(D) is a fixed forcing term. We
write z = z(q) to emphasize the dependence of the model output z on the input parameter q. A local
measure of the sensitivity of the model output z(q) to perturbations in the underlying model parameter
q is given by its Fréchet derivative. For any given parameter value q0, the Fréchet derivative of z with
respect to q is the unique bounded linear operator Dq[z(q0)] : H2(D)→ H1

0 (D)∩H2(D) satisfying

z(q0 +h) = z(q0)+Dq[z(q0)]h+o(‖h‖2), for h ∈ H2(D). (2.2)

The Fréchet derivative thus defines a local linear approximation of the model response z(q0 + h)−
z(q0) to small perturbations of q0 in the direction h. It can be shown that the derivative sh :=Dq[z(q0)]h
exists in all directions h and that it can be computed as the solution of the sensitivity equation

−∇ · (q∇sh) = ∇ · (h∇z(q0)) in D

sh = 0 on ∂D.
(2.3)

In [12] it was further shown that the Fréchet operator Dq[z(q0)] itself is in fact a Hilbert-Schmidt
operator and therefore has a singular value decomposition of the form

Dq[z(q0)]h =
∞

∑
n=1

σn〈h,vn〉un, (2.4)

where {vn}∞
n=1 and {un}∞

n=1 are orthonormal sets in H2(D) and H1
0 (D) respectively and the sequence

{σn}∞
n=1 is a positive, non-increasing sequence in `2. This spectral decomposition provides a hierar-

chical ordering of the local variations of q0 to which the model output is most sensitive, namely the
directions vn corresponding to the dominant singular values σn. The decomposition simultaneously
gives the directions un in which the model responds when q0 is perturbated in direction vn. The ex-
tent to which an arbitrary local variation h of q0 affects the solution z can also be quantified by its
components σn|〈h,vn〉| in the span of {un}∞

n=1.
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Of the numerical methods presented in [12] used to estimate the singular value decomposition of
Dq[z(q0)], the most intuitive, though also the most expensive, relies on approximating both the param-
eter space H2(D) and the solution space H1

0 (D) by finite dimensional spaces HN = {φi,1 ≤ i ≤ N}
and SM = {ψi,1 ≤ i ≤M} respectively. A matrix representation DM,N of Dq[z(q0)], for which a ma-
trix singular value decomposition can readily be computed, is then obtained by solving the sensitivity
equation (2.3) in each direction h = φi. It was shown [12] that the approximate singular value de-
composition of DM,N tends towards the exact decomposition as M,N→∞. A truncated singular value
decomposition that requires only the first 1 ≤ r < min{M,N} singular values and singular vectors
can mitigate the computational cost, while still remaining within an acceptable error tolerance, since
the approximation error in the Frobenius (Hilbert-Schmidt) norm is controlled by the sum of the ne-
glected singular values. A more efficient implementation, which amounts to application of the power
method to the operator Dq[z(q0)]Dq[z(q0)]

∗, is discussed in [12].
The linearization (2.2), together with a truncated form of (2.4) allows us to define a local reduced

order model for the input-to-output mapping, defined for values of q close to q0 by

z(q)≈ z(q0)+
r

∑
n=1

σn〈q−q0,vn〉un (2.5)

The following example illustrates the uses of the singular value decomposition in a deterministic
setting.

Example 1. Lets consider the following 1D elliptic equation :{
−∇ · (q∇z) = x(1− x), x ∈ [0,1];
z ∈ H1

0 ([0,1]).
(2.6)

Evaluating the solution operator z(q) at q0(x) = e−10x we obtain the most sensitive directions and the
associated unit responses shown in Fig. 1.
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The most sensitive directions are almost zero in the interval I1 = [0,0.5] and they oscillate away
from zero in the interval I2 = [0.5,1]. This information can be translated as: z(q0) is not sensitive
to perturbations on the interval I1 whereas is highly sensitive in I2. For instance perturbing q0(x) by
δ1(x) = 1

1000 e−14x leads to an insignificant change in z(q0). On the other hand, perturbing q0(x) by
δ2(x) = 1

1000 e−14(1−x) leads to a considerable change in z(q0). This can be visualized in Fig. 2.
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Fig. 2 Response of solutions to different perturbations

This example emphasizes the importance of determining those perturbations that produce the most
significant changes in the solution. While both perturbations have the same L2 norm ‖δ1‖L2([0,1]) =
‖δ2‖L2([0,1]) = 1.916× 10−4, they have two significantly different responses. The relative change in
z(q0) when q0 is perturbed by δ1 is

‖z(q0 +δ1)− z(q0)‖L2([0,1])

‖z(q0)‖L2([0,1])
= 9.4828×10−5

whereas an equivalent relative perturbation δ2 leads to a substantially larger relative change in z(q0),

‖z(q0(x)+δ2(x))− z(q0(x))‖L2([0,1])

‖z(q0(x))‖L2([0,1])
= 0.5122.

This can be easily explained by observing that the components of δ2 in the first few MSPV’s are
substantially larger than those of δ1. Therefore the study of the local sensitivity requires us to examine
the Hilbert-Schmidt decomposition of Dq[z(q0)].

3 Elliptic Equation with a Random Diffusion Coefficient

In practice, the input parameter q is only known with a limited degree of certainty, due to the presence
of unknown or unmodeled sources of variation, such as environmental factors or multiscale effects. In
such cases q may be modeled as a random field q(x,ω) defined on some probability space (Ω,F ,dω)
and z = z(x,ω) satisfies the stochastic equivalent of the partial differential equation (2.1), given by

−∇ · (q(x,ω)∇z(x,ω)) = f (x) a.s. on D×Ω

z(x,ω) = 0 a.s. on ∂D×Ω.
(3.1)

Equation (3.1) can be interpreted as a family of deterministic forward problems, each corresponding
to a certain ‘state of the world’ ω. Uncertainty in the model response z resulting from the stochastic
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variability of q, is mostly quantified in terms of so-called statistical quantities of interest, such as the
mean E[z(x, ·)], the covariance cov(x1,x2) := E[z(x1, ·)z(x2, ·)]−E[z(x1, ·)]E[z(x2, ·)], or exceedance
probabilities such as P(max

x∈D
z(x,ω)≥ zmax), all of which can be written as an integral of the form

QoI[z(x)] =
∫

Ω

G(z(x,ω),x) dω. (3.2)

Monte Carlo sampling methods estimate such integrals by evaluating the integrand G at a random
sample of model outputs {z(·,ωi)}nmc

i=1 corresponding to realizations {q(·,ωi)}nmc
i=1 of the stochastic

input parameter and then aggregating, i.e.

QoIMC[z(x)] =
1

nmc

nmc

∑
i=1

G(z(x,ωi),x). (3.3)

Often it is possible to express q as, or at least approximate it by, a function whose dependence on
ω is mediated by a finite number of random variables, i.e. q(x,ω) = q(x,Y1(ω), ...,YN(ω)), where
Y = (Y1, ...,YN) ∈ Γ. We assume here for simplicity that the support Γ of the random vector Y is a
hyper-rectangle in RN and that Y1, ...,YN have a joint density function ρ : Γ→ [0,∞). The stochastic
forward problem (3.1) then takes the form of the ‘finite noise’ problem in which z = z(x,y) satisfies

−∇ · (q(x,y)∇z(x,y)) = f (x) a.s. on D×Γ

z(x,y) = 0 a.s. on ∂D×Γ,
(3.4)

and related quantities of interest may be computed as

QoI[z(x)] =
∫

Γ

G(z(x,y),x) ρ(y) dy. (3.5)

Stochastic collocation methods provide an efficient alternative to Monte Carlo sampling when the
model output z(·,y) depends smoothly on the random vector y and can be interpreted as a sampling-
based strategy in which the sample points yi ∈ Γ are chosen to correspond with sparse grid quadrature
points that are used to approximate the high dimensional integral in (3.5). A sparse grid approximation
of the integral in (3.5) is therefore a weighted sum of the form

QoISC[z(x)] =
nsc

∑
i=1

wi G(z(x,yi),x), (3.6)

where wi are precomputed quadrature weights corresponding to quadrature points yi.
Both Monte Carlo and stochastic collocation methods require a population of sample paths of the

input parameter q and the response function z for the estimation of descriptive statistical quantities
of interest. In this context, the information derived from the Fréchet derivative, and in particular its
spectral decomposition, is more ambiguous, since it is based on a local linearization of the parameter-
to-output mapping. Variations in the model output from a given sample path z0 = z(·,ωi0) may have
resulted from a slight perturbation of q in a direction of significant impact, or from a larger deviation
where the linear approximation no longer holds. In order to obtain a description of the model sensi-
tivity that is uniformly accurate over the parameter space, we compute a family of linearizations so
that all output sample paths can be explained to within a given tolerance by one of the linear models
thus obtained. This simple procedure is explained somewhat circuitously in Algorithm 1.
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Compute a Family of Fréchet Operators for a Random Sample
Algorithm 1. Input: tol, {q(x,ωi)}nmc

i=1, {z(x,ωi)}nmc
i=1.

Choose i0 ∈ {1, ...,nmc} and let I = {i0}, K = size(I )
Compute the operator Dq[z(q(·,ωi0))] and its singular value decomposition.
while There are paths q(·,ωi) so that

‖z(q(·,ωi))− z(q(·,ωik))−Dq[z(q(·,ωik)](q(·,ωi))−q(·,ωik)‖ ≥ tol

for all ik ∈ I do
Choose iK+1 ∈ {1, ...,nmc}\I .
Compute the operator Dq[z(q(·,ωiK+1))] and its singular value decomposition.
Let I = {I , iK+1}, K← K +1

end while
Note that although the samples appearing in Algorithm 1 are Monte Carlo samples indexed by

ω ∈ Ω, this method applies equally to sparse grid samples in a stochastic collocation scheme. In the
worst case, when none of the model outputs can be explained with sufficient accuracy by linearizations
based at other sample paths (either due to an overly strict tolerance or a highly nonlinear parameter-to-
output map) the number of linearizations required is nmc, or nsc in the case of stochastic collocation.
Generally, however, far fewer Fréchet derivatives are needed.

By combining a statistical description of the model with the spectral decomposition of the sensi-
tivity operator (2.4) we now are able to study, as well as quantify, the interplay between parameter
uncertainty and system sensitivity and hence obtain a more holistic understanding of the underly-
ing mechanisms that cause a variation in the system response. The following example illustrates this
interplay more concretely.

Example 2. Consider three stochastic systems of the form (3.1) with the same forcing term

f (x) = π
2 sin(πx)(1+ x)−πcos(πx),

but with different, random diffusion coefficients, q1,q2, and q3, given by

q1(x,ω) := 1+ x+
1
2

(
Y1(ω)−

1
2

)
cos(2πx)+

1
2

(
Y2(ω)−

1
2

)
cos(3πx),

q2(x,ω) := q1(x,ω)+Y3(ω)e(
√

1000(x− 1
2 ))

2
, and

q3(x,ω) := q1(x,ω)+Y3(ω)e(
√

1000(x− 1
10 ))

2
,

where the random variables (Y1,Y2) ∼ unif([0,1]2) and Y3 = 1− Ỹ3, with Ỹ3 ∼ beta(2,5) are mutu-
ally independent. The parameters q2 and q3 are obtained from q1 by including a sharp increase in
diffusivity at positions x = 0.5 and x = 0.1 respectively.

Fig. 3 shows the frequency plots of q1, q2, and q3, while Fig. 4 shows frequency plots of the the
deviations zi(x,ω)− z0(x) of the corresponding model outputs z1, z2, and z3 from the deterministic
reference output z0(x) = sin(πx). Interestingly, z1− z0 and z2− z0 have almost identical distributions,
both of which differ considerably from that of z3− z0. It seems that a sharp increase in diffusion
near the center x = 0.5 has almost no influence on the solution, while a similar increase at x = 0.1
has a considerable effect. We use a family of spectral decompositions of Dq[zi(qi(·,ω j))], based on
a random sample of 10,000 sample paths for each diffusion coefficient qi, to explain this behavior.
To approximate the parameter-to-output mapping to within a relative tolerance tol = 10−3 for the
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given sample size required 7 linear models for q1 and q2 and 11 models for q3. According to the
decomposition (2.4), we expect sample paths whose deviations qi(x,ω)−qi(x,ω j) from their nearest
linearization centers have significant components in the dominant directions {vn}n≈1, to have a greater
effect on the model output. Those aligned with less dominant directions are likely to have a smaller
effect. This holds, provided the singular values have sufficiently rapid decay. For convenience, we
denote these deviations simply by dqi(x,ω), for i = 1,2,3. Fig. 5 plots the first 10 right singular
vectors {vn}10

n=1 for each of the 7 singular value decompositions of the Fréchet operators linearizing
the model for q2. Remarkably, all of the dominant singular vectors vanish at x = 0.5, although this is
the spatial location at which q2 shows the most variation. Thus, these perturbations are likely to have
no significant effect on the output. Fig. 6 describes the cumulative contribution of the components
|〈dqi(·,ω),vn〉|2 of dqi onto the first k right basis vectors {vn}k

n=1 as a percentage of the total sum
∑

Ntot
n=1 |dqi(·,ω),vn|2, i.e. the ratio

k

∑
n=1
|〈dqi(·,ω),vn〉|2/

Ntot

∑
n=1
|〈dqi(·,ω),vn〉|2

for i = 1,2,3. For both q1 and q3, this ratio shows a strong initial increase, attesting to the fact that
most perturbations are essentially aligned with the first few basis functions. In contrast, the ratio
in the middle graph shows a much larger spread, with a significant number of sample paths whose
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components onto the first 60 basis functions have a cumulative contribution of less than 60% to the
total sum, confirming that the significant basis functions are incapable of capturing the smooth bump
in q2 at x = 0.5.

To confirm that the model response is indeed determined by the first couple of basis functions, we
show frequency plots similar to those in 6, but for deviations dzi = zi(x,ω)− zi(x,ω j), i = 1,2,3 of
the model output sample paths from their linearization centers (see Fig. 7). Evidently, variations in
the model output are overwhelmingly determined by the first 10-20 right singular vectors vn.
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4 Sensitivity Analysis and the Identification of Uncertain Parameters

In certain cases the parameter q in (3.1) is not directly observable, and must be inferred from noisy
measurements ẑ of the model output z. If statistical information of ẑ is available, the effect of these
statistical variations on the estimated parameter q can be quantified. As in the case of the propagation
of uncertainty through the forward model, the stochastic behavior of the input parameter q is usually
quantified by means of statistical quantities of interest, obtained by aggregating either a Monte Carlo
type sample, or the weighted sum of sample paths located at sparse grid collocation points .

In this section, we propose the use of the truncated Hilbert-Schmidt decomposition given in
(2.4) to simultaneously construct a reduced order model for the stochastic input-output mapping
corresponding to (3.1) and estimate a representative sample of Monte Carlo or stochastic collo-
cation paths, {q(·,ωi)}nmc

i=1, or {q(·,yi)}nsc
i=1 respectively. We begin by choosing an arbitrary mea-

surement ẑ(·,ωi0) and using deterministic parameter identification techniques to obtain an estimate
q̂(·,ωi0) of the sample path q(·,ωi0), e.g. through minimization of the norm ‖z(q̂(·,ωi0)− ẑ(·,ωi0)‖2

H1
0

(see [14–16]). We then compute a linearization of the forward model, centered at the input-output
pair (q(·,ωi0),z(q(·,ωi0))) as well as its (reduced) Hilbert-Schmidt decomposition characterized by
the triple {vi0

n }r
n=1, {ui0

n }r
n=1, {σi0

n }r
n=1, where r can be chosen according to a desired approximation

tolerance, as discussed earlier. We point out that scalar variable sensitivity analysis-enabled linear
models have been used in conjunction with Monte Carlo sampling methods in earlier forward simu-
lation studies [17]. Here, we take advantage of the fact that for sample paths q(·,ωi), i 6= i0 that are
‘close’ to q(·,ωio), the linear approximation

z(q(·,ω))≈ z(q(·,ωi0))+
r

∑
n=1

σn〈q(·,ω)−q(·,ωi0),v
i0
n 〉ui0

n (4.1)

holds. We can therefore cheaply estimate these paths as expansions q̃ of the orthonormal set {vi0
n } by

setting

ẑ(·,ω) = z(q(·,ωi0))+
r

∑
n=1

σn〈q̃(·,ω)−q(·,ωi0),v
i0
n 〉ui0

n (4.2)

and solving for the components 〈q̃(·,ω),vi0
n 〉 to obtain

q̃(·,ω) =
r

∑
n=1
〈q(·,ωi0),v

i0
n 〉vi0

n +
r

∑
n=1

1
σn
〈ẑ(·,ω)− z(q(·,ωi0)),u

i0
n 〉vi0

n . (4.3)



10 J. Borggaard, V. Leite Nunes, and H.-W. van Wyk

Although (4.3) defines a linear mapping from the data ẑ to q̃, it nevertheless suffers from the same ill-
posedness inherent in related nonlinear inverse problems. Since the terms in the second sum feature
the reciprocals of the Fréchet operator’s singular values σi0

n , the components of ẑ(·,ω)− z(q̂(·,ωi0))
onto the singular vectors ui0

n corresponding to small singular values have a strong influence on the es-
timate q̃. Numerical errors or the presence of other, unknown sources of variation in these directions
may thus have an unnecessarily significant effect on q̃, especially since these are in directions to which
z is insensitive. This expansion, however, also suggests a straightforward regularization strategy. Re-
stricting the number of terms r yields an approximation of (4.3) that is more stable as a mapping from
ẑ to q̃.

Since we do not know a priori for which sample paths q(·,ω) this linear approximation is reason-
able, it is necessary to compare the resulting model outputs z(q̃(·,ωi)) with the measured data ẑ, keep-
ing only the collection {q̃(·,ωi)}i∈I of paths satisfying ‖ẑ(·,ω)− z(q̃(·,ωi))‖ < tol. We then choose
an arbitrary i1 ∈ {1, ...,nmc}\I , construct a linearization at the new point and iterate the process, us-
ing the remaining sample paths, until all paths {q(·,ωi)}nmc

i=1 have been estimated. This procedure is
formalized in Algorithm 2.

As with the linearization of the stochastic forward model, the number of linearizations needed to
estimate q so that the difference of the model output to ẑ is within a given tolerance, can be nmc, in
the worst case. Our numerical studies, however, show this not to be the case.

Estimate the sample paths of the uncertain parameter q
based on a random sample of measurements ẑ of the model output z.

Algorithm 2. Input: tol, {ẑ(x,ωi)}nmc
i=1.

Let k = 0, I = /0.
Choose ik ∈ {1, ...,nmc}\I and let I = {I , ik}.
Compute the estimate q̂(·,ωik) of q(·,ωik) from ẑ(·,ωik).
Compute the operator Dq[z(q̂(·,ωik))] and its singular value decomposition.
Use (4.3) to obtain estimates {q̃(·,ωi)} of {q(·,ωi)} for all i ∈ {1, ...,nmc}\I .
while there are paths ẑ(·,ωi) so that

‖z(q̃(·,ωi))− ẑ(·,ωil )‖ ≥ tol (4.4)

for all il , l = 0, ...,k. do
if (4.4) doesn’t hold for i ∈ {1, ...,nmc}\I then let I = {I , i}.
else

Let ik+1 = i, I = {I , ik+1}. k← k+1.
Repeat steps ...

end if
end while

Example 3 (Parameter Identification). Here we apply Algorithm 2 to identify the diffusion coeffi-
cient q1(x,ω) defined in Example 2 from stochastic measurements ẑ of the output, using the method
discussed above. In contrast to the previous example, we use a set of 65 sample paths {ẑ(·,yi)}nsc

i=1
corresponding to the quadrature points yi ∈ Γ of a sparse grid stochastic collocation approach, based
on a Clenshaw-Curtis scheme (see [6–8, 18]). For the estimates q̃, we use a truncation level of r = 99
and r = 20 respectively. To approximate all sample paths q(·,yi) so that the corresponding model
output differs from the data to within an L2-error tolerance of tol = 0.001 requires 9 linear models
for both truncation levels r = 99 and r = 20, the linearization centers of which are depicted in Fig. 8.
Although a lower truncation level r results in a less accurate reconstruction q̃ of q (see Fig. 9), this
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Fig. 8 Estimates q̂(·,yik ) of the linearization centers q(·,yik ), k = 1, ...,9 (dotted lines) together with their true values (solid
lines) for both truncation levels.

doesn’t seem to affect the validity of the linear model, attested to by the fact that 9 linear models with
similar linearization centers (see Fig. 8) are sufficient to explain the input-output map for both r = 99
and r = 20 to within the required relative error tolerance (Fig. 10).
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Fig. 9 Sample paths of the true parameter q as well as its estimate q̃.

For this example we used the same truncation levels r for the Hilbert-Schmidt decompositions of
all linearizations. A more efficient implementation would adjust r for each linearization, according to
some predetermined approximation tolerance.
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Fig. 10 Boxplot of the relative L2-error in the model output for the parameter estimate based on truncated Hilbert-Schmidt
decompositions with r = 99 and r = 20 expansion terms respectively.

5 Conclusion

In this paper, we presented two algorithms that exploit rapidly decaying Hilbert-Schmidt (singular)
values of the Fréchet derivative operator in performing uncertainty quantification. We first demon-
strate the ability of the Schmidt pairs to select those parametric perturbations that are significant and
those that can be neglected. The first algorithm computes a family of Fréchet operators for a random
sample such that the generated linearizations cover the sample space. This family of operators allow
one to efficiently interrogate the sample space.

The remaining algorithm efficiently reduces the number of samples required to perform iden-
tification of random parameters. Only nine linear models were required to characterize the input-
output map within a relative tolerance of 0.001. These algorithms require minimal dependence on the
smoothness of the input-output map. However, when the map is not as smooth, both the number of
linearizations required will increase and the rate of decay of the singular values will likely not be as
sharp. The applicability of these strategies for more complex parameter estimation problems is the
subject of further study.
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