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Large Eddy Simulation for Turbulent Flows

Traian Iliescu, Ph.D.

University of Pittsburgh, 2000

This thesis is concerned with one of the most promising approaches to the

numerical simulation of turbulent flows, the Large Eddy Simulation (LES) in which

the large scales of the flow are calculated directly, while the interactions with the

small scales are modeled. Specifically, we analyze two new LES models, introduced

in [30] and [51].

First, we sketch the derivation of the LES model introduced by Galdi and

Layton in [30], pointing out its main improvement over traditional LES models: the

modeling of the interactions between small and large scales uses a closure approx-

imation in the Fourier space which attenuates the high wave number components

(or equivalently the small scales) of the flow , instead of increasing them. We then

present the mathematical analysis of this new model, proving existence, uniqueness

and stability of weak solutions.

Second, we present three new models for the turbulent fluctuations modeling

the interactions between the small scales in the flow. These models, introduced in [51],

are based on approximations for the distribution of kinetic energy in the small scales

in terms of the mean flow. We also prove existence of weak solutions for one of

these models. We then show how this model can be implemented in finite element

procedures and prove that its action is no larger than that of the popular Smagorinsky

subgrid-scale model.

Third, we consider “numerical-errors” in LES. Specifically, for one filtered

flow model, we show convergence of the semidiscrete finite element approximation of

the model and give an estimate of the error.

Finally, we provide a careful numerical assessment and comparison of a

classical LES model and the Galdi-Layton model. We are focusing herein on global,

quantitative properties of the above models vis à vis those of the mean flow variables.

Direct numerical simulation (DNS), the classical LES model, two variants of the
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Galdi-Layton LES model and the Smagorinsky model are compared using the two–

dimensional driven cavity problem for Reynolds numbers 400 and 10000.
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Chapter 1

Introduction

1.1 Turbulence

Turbulence has been a long standing challenge for human mind. Five cen-

turies after the first studies of Leonardo da Vinci, understanding turbulence continues

to be many scientists’ dream.

Figure 1.1: Leonardo da Vinci’s manuscript

Turbulence is part of everyday life. Atmospheric flows, water currents be-

low the ocean’s surface and rivers are turbulent. Fluid flows around cars, ships and

airplanes are turbulent. Many other examples of turbulent flows arise in aeronautics,

hydraulics, nuclear and chemical engineering, environmental sciences, oceanography,

meteorology, astrophysics and internal geophysics (see [71]). These are not only sci-

entific challenges: predicting hurricanes, global climate change calculations, pollution

1
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dispersal estimation, and energy consumption optimization are some of the most

important practical challenges at present (see [32]).

The Navier-Stokes equations probably contain all of turbulence. They de-

scribe the motion of every incompressible newtonian (i.e. with a linear stress-strain

relation) fluid, since they are derived directly from conservation laws without further

assumptions. However, except for very simple flows, there is no analytical solution

for these equations. Moreover, the mathematical theory the Navier-Stokes equations

is not complete. Thus, it is the author’s belief that, even though the Navier-Stokes

equations represent the cornerstone to the understanding of turbulence, we need more

insight coming from physics and numerical simulations. In 1949, John von Neumann

wrote in one of his reports, privately circulated for many years (see [26]):

These considerations justify the view that a considerable mathematical effort

towards a detailed understanding of the mechanism of turbulence is called for.

The entire experience with the subject indicates that the purely analytical

approach is beset with difficulties, which at this moment are still prohibitive.

The reason for this is probably as was indicated above: That our intuitive

relationship to the subject is still too loose - not having succeeded at anything

like deep mathematical penetration in any part of the subject, we are still quite

disoriented as to the relevant factors, and as to the proper analytical machinery

to be used.

Under these conditions there might be some hope to ’break the deadlock’ by

extensive, well-planned, computational efforts. It must be admitted that the

problems in question are too vast to be solved by a direct computational attack,

that is, by an outright calculation of a representative family of special cases.

There are, however, strong indications that one could name certain strategic

points in this complex, where relevant information must be obtained by direct

calculations. If this is properly done, and then the operation is repeated on the

basis of broader information then becoming available, etc., there is a reasonable

chance of effecting real penetrations in this complex of problems and gradually

developing a useful, intuitive relationship to it. This should, in the end, make

an attack with analytical methods, that is truly more mathematical, possible.

This is so very true at present, too!
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1.1.1 Mathematical Description of Turbulence -

the Navier-Stokes Equations

The equations describing the motion of any incompressible newtonian fluid in a

bounded domain are the well-known Navier-Stokes equations:

{

∂tu − Re−1∆u + u · ∇u + ∇p = f in Ω,

∇ · u = 0 in Ω,
(1.1.1)

where u is the velocity of the fluid flow, p is the pressure, f is the external force,

and Ω is a bounded simply connected domain with smooth boundary Γ. The equa-

tions (1.1.1) are the Navier-Stokes equations in the non-dimensional form; the control

parameter of the flow is the Reynolds number, Re, which is defined as:

Re =
LV

ν
,

L and V being respectively a characteristic scale and velocity of the flow, and ν

its (kinematic) viscosity. From the physical point of view, Re represents the ratio

between the inertial forces and the viscous forces. In (1.1.1), −Re−1∆u is usually

called the “viscous term”, and u · ∇u =

(

∑d
j=1 uj

∂ui

∂xj

)

i=1,d

the “convective term”.

The Navier-Stokes equations (1.1.1) must be supplemented by boundary

and initial conditions. Also, to ensure the uniqueness of the pressure, we impose
∫

Ω
p(x, t)dx = 0.

As mentioned before, the Navier-Stokes equations are derived directly from

conservation laws: the first equation in (1.1.1) represents the conservation of mo-

mentum, and the second equation in (1.1.1) the conservation of mass. Thus, these

equations do not represent a model - every incompressible newtonian fluid flow (lam-

inar or turbulent) must satisfy the Navier-Stokes equations.

In the mathematical setting of the Navier-Stokes equations, the only control

parameter, Re, makes the difference between laminar and turbulent flows: laminar

flows occur at low Reynolds numbers, whereas turbulent flows occur at high Reynolds

numbers. Thus, since all turbulent flows satisfy the Navier-Stokes equations, it seems

natural to use a mathematical approach in trying to understand turbulence.

However, the present state of the mathematical theory of the Navier-Stokes

equations is not encouraging. First of all, except for very simple settings like Couette

flow or Poiseuille flow, we do not have an analytical solution. Moreover, existence and

uniqueness for weak solutions (introduced by Jean Leray in the celebrated paper [70]
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in 1934) have been proven only in two dimensions. In the three dimensional case,

existence and uniqueness for the weak solutions have been proven ( [59]) only for small

Reynolds numbers (laminar flows) or, equivalently, for a small time interval (“small”

considered with respect to the initial data). The coupling between the nonlinearity of

the convective term (u·∇u) and the absence of symmetry in (u, p) are considered (see

G.P. Galdi [27]) to be the core difficulty in the mathematical theory of the Navier-

Stokes equations. Despite the efforts of many famous scientists, much remains to be

done since Jean Leray’s first attempt in 1934. It is the author’s belief that, even

with a complete mathematical theory for the Navier-Stokes equations, we will still

need extra insight from the physical (and numerical) world in order to understand

turbulence!

In this respect, the quotes from von Neumann’s paper given in the beginning

of the chapter are as true as ever!

1.1.2 Physical Description of Turbulence

Since we are still far from a mathematically rigorous understanding of tur-

bulence, of great interest is the physical (experimentalist) approach.

However, this path is by no means easier. This is apparent when we try to

define turbulence. To the author’s knowledge, there is no widely accepted definition of

turbulence. As Frisch noted in [26], a good way to enter the rich world of turbulence

phenomena is through the book of Van Dyke (1982) “An Album of Fluid Motion”,

presenting pictures of varied turbulent flows. Another way to describe turbulence is

by listing its characteristic features (for a detailed presentation, the reader is referred

to Lesieur [71], Frisch [26], and Hinze [44]). We are presenting now some of these

characteristic features:

• Turbulent flows are irregular. This is a very important feature, appearing in

almost any definition of turbulence. Because of irregularity, the deterministic

approach to turbulence becomes impractical, in that it appears impossible to

describe the turbulent motion in all details as a function of time and space

coordinates. However, it is believed possible to indicate average (with respect

to space and time) values of velocity and pressure.

• Turbulent flows are diffusive. This causes rapid mixing and increased rates

of momentum, heat and mass transfer. Turbulent flows should be able to mix
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transported quantities much more rapidly than if only molecular diffusion pro-

cesses were involved. For example, if a passive scalar is being transported by

the flow, a certain amount of mixing will occur due molecular diffusion. In

a turbulent flow, the same sort of mixing is observed, but in a much greater

amount than predicted by molecular diffusion. From the practical viewpoint,

diffusivity is very important: the engineer, for instance, is mainly concerned

with the knowledge of turbulent heat diffusion coefficients, or the turbulent

drag (depending on turbulent momentum diffusion in the flow).

• Turbulent flows are rotational. For a large class of flows, turbulence arises due

to the presence of boundaries or obstacles, which create vorticity inside a flow

which was initially irrotational. Turbulence is thus associated with vorticity,

and it is impossible to imagine a turbulent irrotational flow.

• Turbulent flows occur at high Reynolds numbers. Turbulence often arises

as an instability of laminar flows when the Reynolds number becomes too high.

This instability is related to the complex interaction of viscous and convective

(inertial) terms.

• Turbulent flows are dissipative. Viscosity effects will result in the conversion

of kinetic energy of the flow into heat. If there is no external source of energy to

make up for this kinetic energy loss, the turbulent motion will decay (see [26]).

• Turbulent flows are continuum phenomena. As noticed in [44] , even the

smallest scales occuring in a turbulent flow are ordinarily far larger than any

molecular length scale.

• Turbulence is a feature of fluid flows, and not of fluids. If the Reynolds

number is high enough, most of the dynamics of turbulence is the same in all

fluids (liquids or gases). The main characteristics of turbulent flows are not

controlled by the molecular properties of the particular fluid.

1.1.3 Numerical Approach to Turbulence

As we have seen from the previous two sections, both approaches (math-

ematical and physical) are pretty far from giving a complete answer to the under-

standing of turbulence. However, mainly due to the efforts in the engineering and

geophysics communities, the numerical simulation of turbulent flows emerged as an
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essential approach in tackling turbulence. Even though the numerical approach has

undeniable accomplishments (“We Flew to the Moon!”), it is by no means an easy

and straightforward one.

The most natural approach to the numerical simulation of turbulent flows

is the Direct Numerical Simulation (DNS), in which all the scales of the motion

are simulated using solely the Navier-Stokes equations. Motivated by Kolmogorov’s

theory (see [3] p. 8, [77] p. 25), small scales exist down to O(Re−3/4). Thus, in order

to capture them on our mesh, we need a meshsize h ≈ Re3/4, and consequently (in

3D) N = Re9/4 mesh points. To give the flavor of the Reynolds number, here are

some examples (see [77] p. 7)

• model airplane (characteristic length 1 m, characteristic velocity 1 m/s)

Re ≈ 7 · 104

• cars (characteristic speed 3 m/s)

Re ≈ 6 · 105

• airplanes (characteristic speed 30 m/s)

Re ≈ 2 · 107

• atmospheric flows

Re ≈ 1020

So for Re = 106 (a reasonable number for many industrial applications), the

number of meshpoints would be N = 1013.5. The present computational resources

make such a calculation impossible!

Even though the DNS is obviously unsuited for the numerical simulation

of turbulent flows, it can be useful to validate turbulence models. Moreover, even

if DNS were feasible for turbulent flows, a major hurdle would be defining precise

initial and boundary conditions. At high Reynolds numbers the flow is unstable.

Thus, even small boundary perturbations may excite the already existing small scales.

This results in unphysical noise being introduced in the system, and in the random

character of the flow. Indeed, as observed in [3], the uncontrollable nature of the

boundary conditions (in terms of wall roughness, wall vibration, differential heating

or cooling, etc.) forces the analyst to characterize them as “random forcings” which,

consequently, produce random responses.
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Since turbulent flows must be simulated numerically with or without math-

ematical support (“Airplanes Must Fly!!!”), and since DNS approach, based solely on

the Navier-Stokes equations, is not suitable (at least at present) for turbulent flows,

scientists had to find different approaches . Most of these approaches to the numerical

simulation of high Reynolds numbers flow problems are based on the insight gained

from the phenomenological (physical) description of turbulence.

As we pointed out in subsection 1.1.2, irregularity is one of the most im-

portant features of turbulent flows. Even though it seems impossible to describe the

turbulent motion in all details as a function of time and space coordinates, it appears

possible to indicate average values of flow variables (velocity and pressure). As

pointed out in [44], mere observation of turbulent flows and oscillograms of quantities

varying turbulently shows that these averages exist, because:

1. At a given point in the turbulent domain a distinct pattern is repeated

more or less regularly in time.

2. At a given instant a distinct pattern is repeated more or less regularly

in space; so turbulence, broadly speaking has the same over-all structure throughout

the domain considered.

Moreover, the details of the motion at the level of small scales are not of

interest for most applications in engineering and geophysics. Also, the very data used

in practice is an average, too: for example the weather forecasting centers are usually

hundreds of kilometers apart.

Motivated by this, Osborne Reynolds developed a statistical approach in

1895 and derived the famous equations that bear his name to describe the dynamics

of the “mean” (average) flow.

Formally, the Reynolds equations are obtained from the Navier-Stokes equa-

tions by decomposing the velocity u and the pressure p into a mean (average) com-

ponent, u and p respectively, and a turbulent component (fluctuation), u′ and p′

respectively:

u = u + u′ p = p+ p′ (1.1.2)

It is interesting to note that, while this decomposition into means and fluc-

tuations was developed by Reynolds, it was advanced much earlier by, for example,

da Vinci in 1510 in his description of vortices trailing a blunt body (as translated by

Piomelli): “Observe the motion of the water surface, which resembles that of hair,

that has two motions: One due to the weight of the shaft, the other due to the shape
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of the curls; thus water has eddying motions, one part of which is due to the principal

current, the other to the random and reverse motion.”

We have to define the “mean component”. There are esentially three ways of

defining the mean component, corresponding to the way we average the Navier-Stokes

equations.

1. Ensemble Averaging. This is done by performing many physical

experiments on the same problem, measuring the velocity and pressure at every time

and at every point in the domain, and then averaging over this set of experimental

data. This can be done via realization of a physical experiment or a computational

simulation with white noise introduced in the problem data. The mean u is well

defined as there are the fluctuations u′ = u−u. Ensemble averaging satisfies: u = u

and u′ = 0.

2. Time Averaging. This was Reynolds’ original idea. Choosing a time

scale T , we define the mean flow variables by:

u(x, t) :=
1

T

∫ t+T

t

u(x, τ)dτ p(x, t) :=
1

T

∫ t+T

t

p(x, τ)dτ

This time scale has to be (see [44] p. 6) sufficiently large compared with

the time scale of turbulence, and small compared with the time scale of any slow

variations in the flow that we do not want to consider as part of turbulence. For

“stationary turbulence”, the means are time independent and defined by:

u = lim
T→∞

1

T

∫ T

0

u(x, τ)dτ.

In the limit as T → ∞ the following hold:

u = u, f = f p = p, u′ = 0, p′ = 0, f ′ = 0. (1.1.3)

Thus, they are often imposed as an approximation for T large.

Substituting decomposition (1.1.2) into the Navier-Stokes equations, averag-

ing the resulting equations and using (1.1.3) we get the famous Reynolds equations:

{

∂tu −Re−1∆u + u · ∇u −∇ · τ + ∇p = f in Ω,

∇ · u = 0 in Ω,
(1.1.4)

where τ = (τij)ij, τij = uuij −ui uj is the Reynolds stress tensor representing the

influence of the energy contained in the small scales upon the mean flow variables.

Since τ is symmetric, it contains six unknown variables. Thus, to get a closed system



9

in (1.1.4), we have to model the Reynolds stress tensor τ in terms of u and p. A

presentation of the corresponding models is delayed until Chapter 3.

3. Spatial Averaging This approach uses a space filtering operation ap-

plied on the Navier-Stokes equations. As in the time averaging approach, we obtain

a system of equations for the mean flow variables. This system is not closed. Thus,

as before, we have to use some modeling (approximation) techniques (usually in the

Fourier space) in order to get a closed system. The resulting models are called Large

Eddy Simulation (LES) models. We will present the evolution of these models, as

well as an anlysis of two new models in the next chapter.

A good survey of the spatial filters commonly used in LES is given in [3],

[16], [83].

Let f(x, t) be an instantaneous flow variable (velocity or pressure) in the

Navier-Stokes equations, and h denote an averaging kernel. Specifically, h(0) >

0,
∫

Rd h(x)dx = 1 with h(x) → 0 rapidly as |x| → ∞. The corresponding filtered

flow variable is defined by convolution:

f(x, t) :=

∫

Rd

h(x − x′) f(x′, t) dx′. (1.1.5)

The effect of the filtering operation becomes clear by taking the Fourier

transform of expression (1.1.5). By definition, the Fourier transform of f is:

f̂(k, t) :=

∫

Rd

f(x, t) e−ikx dx, (1.1.6)

where k represents the wave number vector. As a notation convention, from now on

we will denote the Fourier transform of f by either f̂ , or F(f). By the convolution

theorem, we get:

f̂(k, t) = ĥ(k) f̂(k, t). (1.1.7)

Thus, if ĥ = 0, for | ki |> kc, 1 ≤ i ≤ d, where kc is a “cut-off” wave number,

all the high wave number components of f are filtered out by convoluting f with h.

In 1958 Holloway [45] denoted a filter with these characteristics an “Ideal Low Pass

Filter”. However, if ĥ falls off rapidly (exponentially, say), a cut-off wave number can

also be defined for all practical purposes. Several researchers have investigated the

properties of different filters in connection with their applicability to the numerical

simulation of turbulent flows ( [69], [58], [14]).

In addition to the ideal low pass filter, most commonly box filters and Gaus-

sian filters have been used ( [24]). The box filter (also known as “moving average” or

“top hat filter”) is commonly used in practice for experimental or field data.
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• Ideal Low Pass Filter

h(x) :=

d
∏

j=1

sin
2πxj

δ
πxj

(1.1.8)

ĥ(k) =















1 if | kj |≤
2π

δ
, ∀ 1 ≤ j ≤ d,

0 otherwise.

(1.1.9)

• Box Filter

h(x) :=















1

δ3
if | xj |≤

δ

2
, ∀ 1 ≤ j ≤ d,

0 otherwise.

(1.1.10)

ĥ(k) =

d
∏

j=1

sin
δkj

2
δkj

2

(1.1.11)

• Gaussian Filter

h(x) :=
(γ

π

)3/2 1

δ3
e
−
γ | x |2
δ2 (1.1.12)

ĥ(k) = e
−
δ2 | k |2

4γ (1.1.13)

In formulas (1.1.8)–(1.1.13), δ represents the radius of the spatial filter h,

and γ is a parameter. For the ideal low pass filter, it can be defined a clear cut-off

wave number, equal to
2π

δ
. In contrast, the Fourier transform the box filter is a

damped sinusoid and thus, spurious “amplitude reversals” are produced by its use in

the Fourier space. Finally, the Fourier transform the Gaussian filter is also a Gaussian

and decays very rapidly. In fact, for all practical purposes, it is essentially contained

in the range

[

−2π

δ
,
2π

δ

]

.

In the light of the above discussion, we conclude that spatial filtering tends

to eliminate from the filtered varaibles the rapidly fluctuating (in space) components,

usually characterized as “turbulence”. The spatial filter h and the the spatial as well
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as temporal derivatives commute (in the absence of boundaries and for constant filter

radius). Thus, the space filtered Navier-Stokes equations are:
{

∂tu − Re−1∆u + ∇ · (uu) + ∇p = f in Ω,

∇ · u = 0 in Ω,
(1.1.14)

The above system is not closed. Thus, we have to use different techniques,

such as approximation and modeling in Fourier space, in order to obtain a closed

system for the mean flow variables. The resulting models are called Large Eddy

Simulation (LES) models. In these models, the motions and interactions of large

eddies are computed directly, while the effects of the small eddies on those large ed-

dies are modeled. This approach is motivated by one of the most important features

of turbulent flows, irregularity. Indeed, homogeneous, isotropic turbulence is (at

least when fully developed and sufficiently far away from walls) widely believed to

have a random structure. This is consistent with experiments and observations of the

mixing property. The fact that it is random suggests that it has an universal charac-

ter and the effects of the small scales on the larger ones should be modelable and (in

the mean at least) predictable. On the other hand, the large eddies in a turbulent

flow are widely believed to be deterministic, hence predictable once the effects of the

smaller eddies on them is known. It is also widely believed (and evidence to date is

in accord) that these large eddies do NOT exhibit exponential sensitivity to pertur-

bations. Further, these large eddies are often the most important flow structures and

carry the most energy. LES is based on this idea: model the mean effects of the small

scales on the larger ones using their universal features, and then simulate via DNS

the motion of the larger ones.

The fundamental questions in LES are:

1. The famous closure problem. Writing the velocity as u = u + u′, we

get:

uu = u u + uu′ + u′u + u′u′,

representing the decomposition of the averaged nonlinear interactions. In

order to obtain a closed system in (??) – (??), the LES model has to model uu in

terms of u only.

2. Modeling the turbulent fluctuations, u′u′. Although u′u′ represents

the interaction of small scales, numerous experiments, both physical and experimen-

tal, have shown that it plays an important role in modeling uu. The model used for

u′u′ should be faithful to the physics of the turbulent flow.
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3. Boundary conditions. Since spatial filtering is NOT a pointwise oper-

ation (it involves integration), special care has to be taken in imposing the boundary

conditions on u. Actually, many studies have reported a serious loss of accuracy

in LES near walls. Since the behavior of turbulent motion is crucial for important

applications (such as aerospace industry), obtaining realistic boundary conditions is

one of the main challenges in LES. A new approach, more consistent with the physics

of the turbulent flow, is presented in [30] and [83].

4. Mathematical Foundations. Even though LES is a highly developed

field in the engineering and geophysics communities, its mathematical foundations are

yet to be set. This is a stringent challenge, since many LES models, based solely on

physical intuition (and data fitting!), are pretty far from giving satisfactory answers

to the understanding and prediction of turbulence.

5. Numerical Algorithms. By their very nature, turbulent flows are

strongly unstable in physical as well as numerical experiments. Thus, advancing

the the understanding and prediction of turbulence requires specialized numerical

algorithms.

5. Numerical Validation and Testing. This is a very important and

subtle issue – it is the ultimate test to assess the quality of our numerical solution.

This thesis is concerned with some of these challenges.

1.2 Chapter Description

Chapter 2 of this thesis analyzes the Galdi-Layton LES model. Introduced

in [30], this model is an improvement over the LES model introduced by Clark,

Ferziger and Reynolds in [14] in that it uses a closure approximation which better at-

tenuates the small scales in the flow. First we present the evolution of the LES models.

Then, we briefly introduce the Galdi-Layton model, pointing out the improvement

over [14] in the closure approximation: instead of using a Taylor series expansion

in the Fourier space (which actually increases the high wave number components),

in [30] a rational (Padé) approximation (attenuating the high wave number compo-

nents) was used. This different approach results in a different model for the cross

terms uu′ + u′u. We also present the mathematical analysis (existence, uniqueness

and stability of the weak solutions) of the corresponding continuum model, where the

turbulent fluctuations u′u′ are modeled by the commonly used Smagorinsky term.
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Chapter 3 presents three new models for the turbulent fluctuations u′u′.

Introduced in [51] and motivated by Boussinesq assumption, these new models are

more faithful to the physics of the turbulent flows. Specifically, the turbulent diffusion

vanishes for linear mean velocities and the magnitudes of the turbulent diffusion

is proportional to a consistent approximation of the turbulent kinetic energy. For

one of this new models we also prove existence of weak solutions for the resulting

system (NSE plus the proposed subgrid-scale term). Finally, we show how it can be

implemented using finite element methods and prove that its action is no larger than

that of the popular Smagorinsky subgrid-scale model.

In chapter 4 we consider the “numerical errors” in LES. Specifically, for

one space filtered flow model, we show convergence of the semidiscrete finite element

approximation of the model and give an estimate of the error.

Chapter 5 provides a numerical assesment of the Galdi-Layton LES model.

Specifically, for the 2D Driven Cavity test problem, for Reynolds numbers ranging

between 400 and 10000, we present the numerical results (including graphs of the

kinetic energy as well as plots of the streamlines) corresponding to the Galdi-Layton

model, Direct Numerical Simulation, the model in [14], and the benchmark results

in [34].

Finally, Chapter 6 consists of conclusions and future research.



Chapter 2

The Galdi-Layton LES Model

2.1 Evolution and Present State of LES Models

Developed by the engineering and geophysics communities, LES has emerged

as one of the most promising approaches in the numerical simulation of turbulent

flows. A detailed presentation of the evolution of the LES models is given in [3],

[32] and [71]. We will just mention now the main developements related to the LES

models considered in this thesis.

LES was introduced in 1970 by Deardorff [20], who carried out a numerical

simulation of the turbulent flow in a channel at infinite Reynolds number. Leonard in

1974 [69], Kwak, Reynolds and Ferziger in 1975 [58], and Clark, Ferziger and Reynolds

in 1979 [14] have applied different spatial filters to turbulent flow simulations. Moin,

Reynolds and Ferziger in 1978 [78], and Moin and Kim in 1982 [79], studied the near

wall region in numerical simulations of turbulent channel flows.

One important class of LES models are the “Scale similarity models”, where

the subgrid-sclae (SGS) velocity is approximated by the difference between the filtered

and twice filtered velocities u−u. These models were introduced in 1980 by Bardina,

Ferziger and Reynolds [6].

But probably the most commonly used LES model is the “dynamic eddy

viscosity model” introduced in 1991 by Germano, Piomelli, Moin and Cabot [33]. In

this model, the eddy viscosity coefficient is computed dynamically as the numerical

computations evolve rather than imposed a priori, and depends on the energy con-

tained in the smallest resolved scales. The approximation to the SGS stresses, so

computed, are often observed to nearly vanish in laminar flows and at solid bound-

aries. It has been used in LES of transitional and fully-developed turbulent channel

14
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flows and extended to compressible flows, too.

From the above presentation, it is clear that LES for turbulent flows has a

very rich history, being used in a wide range of applications and having associated

with, as a result, a well documented data base. However, it is the author’s belief that

despite the undeniable achievements of the engineering and geophysics communities in

developing and using LES, there is an urgent need for a rigorous, more mathematical

approach to LES. Specifically, although physical insight has to be used in developing

LES models, it is desirable to devise models with greater universality, meaning, which

work more generally and contain fewer problem dependent parameters.

This chapter is concerned with the analysis of such a model.

2.2 The Galdi-Layton LES Model

This section briefly presents a traditional LES model (introduced by Clark,

Ferziger and Reynolds in [14], analyzed mathematically by Coletti in [15], [16], and

numerically Cantekin, Westerink and Luetich in [10]) and the new LES model in-

troduced by Galdi and Layton in [30], pointing out the essential difference in their

derivation.

Consider an incompressible viscous fluid flowing in a bounded domain Ω

in IR3 and driven by body forces and/or boundary velocities. In nondimensionalized

terms, its velocity u and pressure p are solutions of the Navier-Stokes equations, given

by:






















































∂u

∂t
− Re−1∆u + u · ∇u + ∇p = f in Ω × [0, T ],

∇ · u = 0 in Ω × [0, T ],

u(x, 0) = u0(x) in Ω,

u = g on ∂Ω,

where
∫

Ω
p(x)dx = 0. The spatial averages of the flow variables are obtained through

convolution with a spatial filter; one common filter, which we select herein, is the

Gaussian filter:

gδ(x) :=
(γ

π

)3/2 1

δ3
e−γ |x|2

δ2 , (2.2.1)
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where γ is a constant (often γ = 6) and δ is the averaging radius. Extending all

variables by zero outside Ω, the convolution u = gδ ∗ u represents the eddies of size

O(δ) or larger. For constant filter width δ, differentiation and convolution commute.

Thus, applying this averaging operator to the Navier-Stokes equations gives the set

of space-filtered Navier-Stokes equations:






















































∂u

∂t
− Re−1∆u + ∇ · (uu) + ∇p = f in Ω × [0, T ],

∇ · u = 0 in Ω × [0, T ],

u(x, 0) = u0(x) in Ω,

u(x, t) = (gδ ∗ u)(x, t) on ∂Ω.

(2.2.2)

Letting u = gδ ∗ u, u′ = u − u, the nonlinear interaction term uu =

(u + u′)(u + u′) can be decomposed into three parts:

uu = (u + u′)(u + u′) = u u + uu′ + u′u + u′u′ (2.2.3)

Thus, developing a continuum model for the motion of large eddies has

minimally two essential ingredients: an approximation for the outer convolution and

an approximation for u′ in terms of u. The system (2.2.2) cannot be directly solved

due to the well known closure problem. Continuum models used for LES are an

aproximation to u in (2.2.2). Thus, it is worthwile to consider the essential properties

of solutions of (2.2.2) which we seek (in so far as possible) to be retained in solutions

of LES models.

Proposition 2.2.1 Let (u(x, t), p(x, t)) be weak solutions of the Navier-Stokes equa-

tions. Then,

(i) u(x, t) is infinitely differentiable in space, u in C∞(Ω),

(ii) u → u in L2(Ω) as δ → 0, and

(iii) the kinetic energy in u is bounded by that of u:

1

2

∫

Ω

| u |2 dx ≤ C

∫

Ω

| u |2 dx ≤ C(Re, f ,u0) <∞ (2.2.4)

Proof: (i) and (ii) follow by standard properties of convolution operators (see,

e.g., [46]), while (iii) follows from Young’s inequality for convolutions:

1

2

∫

Ω

| u |2 dx ≤ 1

2

∫

IR3

| u |2 dx ≤ C

∫

IR3

| u |2 dx = C

∫

Ω

| u |2 dx

≤ C(Re, f ,u0) <∞
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To perform a large eddy simulation, closure in (2.2.2) must be addressed to

obtain a system whose solution approximates (u, p). Many approximations are possi-

ble see, e.g., Aldama [3], Sagaut [82]. Proposition 2.2.1 gives a quantitative criterion

for comparing different models: if the global kinetic energy in the model approximat-

ing u is significantly larger than that of a DNS approximation to u, the model needs

to be reconsidered. Further the distribution of energy is also important. By Propo-

sition 2.2.1 (i) it should be concentrated in the low frequencies with corresponding

attenuation of high frequencies.

With this in mind, consider the closure problem in (2.2.2). Equation (2.2.3)

is a decomposition of the averaged nonlinear interactions into “resolved sclaes”, u u,

“cross terms”, uu′ + u′u describing the interaction of large and small eddies, and

“subgrid scale” term u′u′, describing the effects of the interaction of small eddies on

the mean flow.

Proposition 2.2.2 For smooth functions u : IR3 → IR3,

u u = O(1),

uu′ + u′u = O(δ2), and

u′u′ = O(δ4), specifically ‖u′u′‖ ≤ Cδ4‖∇∇u‖2

Proof: The proofs of all three are by similar Fourier methods. Thus, for compactness,

we will give only the last one. Since u′ = u − u,

‖u′u′‖ = ‖F(u′u′)‖ = ‖ĝδû′ ∗ û′‖
= ‖ĝδ(û − û) ∗ (û − û)‖

Since max | ĝδ |≤ 1, by standard properties of convolution operators (see

Corollary 4.5.2 in [46]), we have ‖u′u′‖ ≤ ‖û − û‖2.

Now consider ‖û − û‖ = ‖(1 − ĝδ)û‖. Expanding 1 − ĝδ in a Taylor series

in k, note that ĝδ(k) = 1 − δ2

4γ
| k |2 (+O(δ4 | k |4)).

Thus, by a standard approximation theoretic argument ‖û−û‖ ≤ Cδ2‖∇∇u‖.
We finally obtain

‖u′u′‖ ≤ Cδ4‖∇∇u‖2,

completing the proof.
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This proposition gives insight into the selection of subgrid scale models. If

the subgrid scale model for ∇· (u′u′) is O(δ2) on the smooth components of the flow,

then it is not a faithful model of turbulent fluctuations. An O(δ2) subgrid scale model

will dominate the model of the larger cross terms in calculations. Accordingly, it is

important to perform experiments in which the subgrid scale model is either absent

or exceedingly small to test the model of the cross terms.

We start now presenting the derivation of the classical LES model. It is

worthwile to note that this model evolved in several steps. First, in 1974 Leonard [69]

developed a continuum model of u u:

u u = u u +
δ2

4γ
∆(u u) +O(δ4)

Using this in (2.2.3) and dropping the second, third and fourth terms on the

RHS of (2.2.3) gives a first LES model. Next, in 1979 Clark, Ferziger and Reynolds [14]

developed an anlogous model for the cross terms uu′ + u′u. These two models were

combined and rederived in a unified manner in Aldama [3]. We will refer to this

combination as the “clasical” model. Typically, the last term u′u′ is modeled by a

nonlinear diffusion mechanism.

The modeling technique used in the derivation of the classical LES model

is employing closure approximation in Fourier space in (2.2.3) (see , e.g., [69], [14],

[3]). For example, for the first term on the RHS of (2.2.3), we have:

F(u u) = ĝδ ∗ F(uu) = ĝδ(û ∗ û)

= e−
δ2

4γ
|k|2(û ∗ û).

Using a Taylor series approximation to the exponential, gives:

F(u u) =

(

1 − δ2

4γ
| k |2

)

(û ∗ û) +O(δ4)

Proceeding in a similar manner for the other three terms, dropping all terms

(formally) of order O(δ4) or higher, and then taking the inverse Fourier transform

(see [3] for details), we get the classical space-filtered LES model used in many studies,

e.g., [3], [16], [10], etc.:
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





















































∂w

∂t
− Re−1∆w + ∇ · (ww) + ∇q + ∇ ·

(

δ2

2γ
∇w∇w

)

= f in Ω × [0, T ],

∇ ·w = 0 in Ω × [0, T ],

w(x, 0) = u0(x) in Ω,

w(x, t) = (gδ ∗ u)(x, t) on ∂Ω,

(2.2.5)

where (w, q) are an approximation to (u, p) and ∇w∇w is shorthand for
∑

l
∂wi

∂xl

∂wj

∂xl

and model the cross terms in (2.2.3). The turbulent fluctuations u′u′ in (2.2.3) are

usually modeled by a Smagorinsky term of the form Csδ
2|D(u)|D(u), which is added

to the LHS of the first equation in (2.2.5) (here D(u) := 1
2
(∇u + (∇u)t) is the

deformation tensor associated with u ). A detailed presentation of the Smagorinsky

term is given in Section 3.1. The Smagorinsky [84] model is also common and popular

due to its simplicity and good stability properties. Thus, the classical LES model

becomes:










































































∂w

∂t
− Re−1∆w + ∇ · (ww) + ∇q + ∇ ·

(

δ2

2γ
∇w∇w

)

−∇ ·
(

Csδ
2|∇w|∇w

)

= f̄ in Ω × [0, T ],

∇ · w = 0 in Ω × [0, T ],

w(x, 0) = u0(x), in Ω,

w(x, t) = (gδ ∗ u)(x, t), on ∂Ω.

The Taylor series approximation used in the derivation of the above model

is, however, inconsistent with Proposition 2.2.1 (i)’s required attenuation of high

frequencies in u. It actually increases the high wave number components (large

| k |), whereas the original function ĝδ = e−
δ2

4γ
|k|2 decreases the high wave number

components, see figure below.

This incorrect stimulation of high frequencies plays an important role in

numerical calculations at high Reynolds numbers, since increasing the high wave

number components (large | k |) in the Fourier space is equivalent to increasing the

small scales (small | x |) in the physical space (IR3). We believe that this is the true
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Figure 2.1: (a) Fourier transform of the Gaussian filter - thickest line; (b) Traditional

approximation by Taylor series - second to thickest line; (c) New approximation by

rational function - thinest line.

cause of the need for powerful dissipative mechanisms, such as the O(δ2) Smagorinsky

model for u′u′.

Motivated by the above observation, Galdi and Layton proposed in [30] a

modified model which is consistent with the required attenuation of high frequencies

in u. This model is based upon a rational approximation to ĝδ, such as the (0,1)

Padé:

ĝδ = e−
δ2

4γ
|k|2 =

1

1 + δ2

4γ
| k |2

+O(δ4). (2.2.6)

The resulting model is given by:



























































∂w

∂t
− Re−1∆w + ∇ · (ww) + ∇q + ∇ ·

[

(

− δ2

4γ
∆ + I

)−1(
δ2

2γ
∇w∇w

)

]

= f̄ , in Ω × [0, T ],

∇ · w = 0, in Ω × [0, T ],

w(x, 0) = w0(x), in Ω,

w(x, t) = (gδ ∗ w)(x, t), on ∂Ω.
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Actually, there are two natural variants of this model:

1) Galdi-Layton with convolution, where the smoothing operator
(

− δ2

4γ
∆ + I

)−1

is

replaced by smoothing by direct convolution with the Gaussian filter;

2) Galdi-Layton with auxiliary problem, where the inverse operator is calculated

directly, solving a discrete Poisson problem.

As for the classical LES model, the turbulent fluctuations are modeled by a

Smagorinsky term. Thus, the Galdi-Layton LES model we consider is:











































































∂w

∂t
− Re−1∆w + ∇ · (ww) + ∇q + ∇ ·

[

(

− δ2

4γ
∆ + I

)−1(
δ2

2γ
∇w∇w

)

]

−∇ ·
(

Csδ
2|∇w|∇w

)

= f̄ , in Ω,

∇ · w = 0, in Ω,

w(x, 0) = u0(x), in Ω,

w(x, t) = (gδ ∗ u)(x, t), on ∂Ω.

Before moving to the mathematical analysis of the Galdi-Layton model, we

wish to note one peculiar feature of the smooth solutions of the classical model (2.2.5)

for 2D flows with periodic in space boundary conditions.

Lemma 2.2.1 Let w be a C1 L-periodic in space function in 2 dimensions (i.e.

w(x + Lei, t) = w(x, t), i = 1, 2, ∀x ∈ R
2, ∀t > 0, where e1, e2 is the canonical

basis of R
2, and L is the period in the i-th direction), with ∇ ·w = 0. Then,

2
∑

i,j,l=1

∫ L

0

∫ L

0

∂wi

∂xl

∂wj

∂xl

∂wi

∂xj
dxdy = 0.

The same property is not true in 3 dimensions: (∇w∇w,∇w) does not vanish iden-

tically in 3D.

Proof: The first claim is a simple index calculation. Indeed:

2
∑

i,j,l=1

∂wi

∂xl

∂wj

∂xl

∂wi

∂xj
=

(

∂w1

∂x1

∂w1

∂x1
+
∂w1

∂x2

∂w1

∂x2

)

∂w1

∂x1
+

(

∂w2

∂x1

∂w1

∂x1
+
∂w2

∂x2

∂w1

∂x2

)

∂w2

∂x1

+

(

∂w1

∂x1

∂w2

∂x1

+
∂w1

∂x2

∂w2

∂x2

)

∂w1

∂x2

+

(

∂w2

∂x1

∂w2

∂x1

+
∂w2

∂x2

∂w2

∂x2

)

∂w2

∂x2
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Multiplying out, the R.H.S. of the above expression becomes a sum of 8 terms. Using

∇ · w =
∂w1

∂x1
+
∂w2

∂x2
= 0,

the first and the eighth term on the R.H.S. cancel out; the second and the sixth term

on the R.H.S. cancel out; the third and the seventh term on the R.H.S. cancel out; the

fourth and the fifth term on the R.H.S. cancel out. Thus, the whole R.H.S. cancels out.

For the second claim, it is straightforward to simply choose smooth, periodic

vector functions w, calculate (∇w∇w,∇w), and verify that it does not identically

vanish. Indeed, choosing:

w(x1,x2,x3) = {w1,w2,w3}(x1,x2,x3)

= {Sin(x1 + x2 + x3), Cos(x1 + 2x2 + x3),

−2Cos(x1 + 2x2 + x3) − Sin(x1 + x2 + x3)},

it is obvious that w is a periodic function of period 2π in 3D. Moreover, ∇ · w = 0.

However, (∇w∇w,∇w) does not vanish identically (for example, (∇w∇w,∇w)(0, 1, 0)

= −3.23722, roughly).

Using the above lemma, we can prove an interesting bound on the kinetic

energy of smooth 2D solutions of the classical model under periodic in space boundary

conditions.

Proposition 2.2.3 Let (w, q) be a smooth, classical solution of the model (2.2.5)

under periodic in space boundary conditions in two dimensions. Then, the kinetic

energy in w is bounded by problem data:

1

2

∫

Ω

| w(x, t) |2 dx ≤ 1

2

∫

Ω

| w(x, 0) |2 dx + C(Re, f).

Proof: Multiply (2.2.5) by w, integrate over Ω, integrate by parts as necessary, and

use Lemma 2.2.1. This gives:

1

2

d

dt

∫

Ω

| w(x, t) |2 dx +Re−1

∫

Ω

| ∇w(x, t) |2 dx =

∫

Ω

f · wdx,

from which the result follows.

Lemma 2.2.1 describes an exact cancellation property of the kinetic energy

contribution to the large eddies by their interaction with small eddies in the classical
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model for 2D smooth periodic in space solutions of the classical model. How is this to

be reconciled with the clear picture developed of the model as (incorrectly) stimulating

the kinetic energy in high frequencies of w? Our hypothesis (tested numerically in

Chapter 5) is clear. The classical model redistributes (incorrectly) the kinetic energy

in 2D and 3D, but perhaps also augments it in 3D.

The simplest test problem which fits Proposition 2.2.3’s assumption in every

respect except the boundary conditions is the 2D driven cavity. We thus choose this

as being most favorable to the classic model and would anticipate the failure of the

classical model to be more severe in 3D.

2.3 Mathematical Analysis of the New Model

First, let us give a short survey of the corresponding mathematical analysis

for the classical LES model (for a detailed analysis, see Coletti [15], [16]). For the

classical model with the turbulent fluctuations modeled by a Smagorinsky term, Co-

letti has proved (Theorem 16 in [16]) that there exists a weak solution, provided that

the power µ of the norm of the deformation tensor in the Smagorinsky term satisfies

µ > 0.5, and that the coeficient Cs is “large” compared with δ. If these conditions

are satisfied, Coletti also proved the uniqueness (Theorem 17 in [16]) and stability

(Theorem 19 in [16]) of the weak solution.

2.3.1 Existence of Weak Solutions

In this section we will prove the existence of a weak solution of the Galdi-

Layton LES model with the turbulent fluctuations modeled by a Smagorinsky term.
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























































∂w

∂t
− Re−1∆w + ∇ · (ww) + ∇q + ∇ ·

[

(

− δ2

4γ
∆ + I

)−1(
δ2

2γ
∇w∇w

)

]

−∇ ·
(

Csδ
2|D(w)|D(w)

)

= f̄ , in Ω,

∇ · w = 0, in Ω,

w(x, 0) = u0(x), in Ω,

w(x, t) = (gδ ∗ u)(x, t), on ∂Ω.

(2.3.7)

For clarity of presentation, in the sequel we shall replace D(w) by ∇w and

consider periodic in space boundary conditions, as defined in Lemma 2.2.1. According

to a note in [86], p.4, periodic in space boundary conditions lead to “a simpler func-

tional setting, while many of the mathematical difficulties remain unchanged (except,

of course those related to the boundary layer difficulty, which vanish)”.

We prove existence of weak solutions for a small µ, specifically for µ ≥ 0.1.

This reduction of µ is an improvement over the restriction for the classical model

(µ ≥ 0.5).

We start by proving two a priori estimates. Due to the highly nonlinear

term occuring in LES models, more a priori bounds are needed than in the case of

the Navier-Stokes equations.

Lemma 2.3.1 (First a priori estimate). Assume ||ū0||2 ≤ Cs/3c, and Re
2

∫ T

0
||f̄ ||2ds ≤

Cs/3c. Any weak solution of (2.3.7) satisfies

||w(t)||2 +
Re−1

2

∫ t

0

||∇w||2ds ≤ 2Cs

c
, ∀t ∈ [0, T ], (2.3.8)

where c is a positive constant depending only on the size of the domain Ω and on the

constants of our problem (Cs, Re, µ, δ and γ).

Proof: Let s = 1 + µ, and v :=

(

− δ2

4γ
∆ + I

)−1(
δ2

2γ
∇w∇w

)

. Multiplying (2.3.7)

by w, and integrating over Ω, we get:

d

dt
||w||2 = −Re−1||∇w||2 − (v,∇w) + (f̄ ,w) − Cs||∇w||2s

2s (2.3.9)
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Case 1: 1 < s <
3

2
. By the definition of || · ||

−1,





3s

3 − s





′ , we have:

|(v,∇w)| ≤ ||v||
1,

3s

3− s

||∇w||
−1,





3s

3 − s





′ (2.3.10)

By the Sobolev Embedding theorem and Elliptic Regularity, we get:

||v||
1,

3s

3− s

≤ c||v||2,s ≤ c||∇w∇w||s = c||∇w||22s (2.3.11)

By the definition of the spaces involved, we also have:

||∇w||
−1,( 3s

3−s)
′ ≤ ||w||( 3s

3−s)
′ (2.3.12)

Using (2.3.10), (2.3.11), (2.3.12), and the Cauchy-Schwarz inequality, we get:

d

dt
||w||2 ≤ −Re−1

2
||∇w||2 − Cs||∇w||2s

2s + c||∇w||22s||w|| 3s
4s−3

+
Re

2
||f̄ ||2 (2.3.13)

Since 1 < s <
3

2
, we have:

||w|| 3s
4s−3

= ||w||2(s−1)
3s

4s−3

||w||3−2s
3s

4s−3

(2.3.14)

We now distinguish the following two subcases:

Subcase (i)
3s

4s− 3
≤ 2 or, equivalently, s ≥ 6

5
.

Thus,

||w||3−2s
3s

4s−3

≤ c ||w||3−2s
2 (2.3.15)

Using the Sobolev Embedding theorem and Poincaré’s inequality for periodic func-

tions with zero mean gives:

||w||2(s−1)
3s

4s−3

≤ c ||w||2(s−1)

1, 3s
5s−3

≤ c ||w||2(s−1)
1,2s ≤ c ||∇w||2(s−1)

2s (2.3.16)

By (2.3.14), (2.3.15) and (2.3.16), we have

||w|| 3s
4s−3

≤ c ||∇w||2(s−1)
2s ||w||3−2s

2 (2.3.17)

Putting together (2.3.13) and (2.3.17), we get:

d

dt
||w||2 ≤ −Re

−1

2
||∇w||2 − Cs||∇w||2s

2s(1 − c||w||3−2s) +
Re

2
||f̄ ||2, (2.3.18)
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for all s ∈
(

6

5
,
3

2

)

.

Subcase (ii)
3s

4s− 3
> 2 or, equivalently, s <

6

5
.

Applying the interpolation inequality given by Lemma 2.2’ [G94], we get:

|w|0, 3s
4s−3

≤ c |w|
5s−6

3−5s

1,2s ||w||1−
5s−6

3−5s

2 . (2.3.19)

Now, for s ∈
[

11

10
,

6

5

)

, we also have:

5s− 6

3 − 5s
≤ 2(s− 1). (2.3.20)

Thus, from (4.3.11) and (4.3.12), we get:

||w|| 3s
4s−3

≤ c ||∇w||2(s−1)
2s ||w||1−

5s−6

3−5s

2 . (2.3.21)

By (2.3.13), (4.3.12), and using s = 1 + µ, we get:

d

dt
||w||2 ≤ −Re

−1

2
||∇w||2 − Cs||∇w||2s

2s

(

1 − c||w||1− 5s−6

3−5s

)

+
Re

2
||f̄ ||2, (2.3.22)

for all s ∈
(

11

10
,
6

5

)

.

Case 2: s ≥ 3

2
Using Hölder’s inequality, gives:

|(v,∇w)| ≤ ||v|| 2s
2s−1

||∇w||2s. (2.3.23)

Elliptic Regularity thus implies:

||v|| 2s
2s−1

≤ ||v||2, 2s
2s−1

≤ c||∇w∇w|| 2s
2s−1

= c||∇w||2 4s
2s−1

. (2.3.24)

Thus, by (4.3.15) and (4.3.16), there follows:

|(v,∇w)| ≤ ||∇w||2 4s
2s−1

||∇w||2s. (2.3.25)

But, since
4s

2s− 1
≤ 2s for s ≥ 3

2
, we have:

||∇w||2 4s
2s−1

≤ ||∇w||22s. (2.3.26)

Inequalities (4.3.17) and (4.3.18) imply:

|(v,∇w)| ≤ c||∇w||22s ≤ c||∇w||2s
2s ≤ c||∇w||2s

2s ||w||2 (2.3.27)
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Therefore, using (2.3.13) and (2.3.27), we get:

d

dt
||w||2 ≤ −Re

−1

2
||∇w||2 − Cs||∇w||2+2µ

2+2µ(1 − c||w||2) +
Re

2
||f̄ ||2 (2.3.28)

Now, putting together (4.3.10), (4.3.14) and (4.3.19), gives:

d

dt
||w||2 ≤ −Re

−1

2
||∇w||2 − Cs||∇w||2+2µ

2+2µ(1 − c||w||1−β) +
Re

2
||f̄ ||2, (2.3.29)

where β is a nonnegative number. Using the hypothesis on the smallness of the data,

and (2.3.29), we can now easily prove (by contradiction) that:

||w(t)||2 +
Re−1

2

∫ t

0

||∇w(s)||2 ds ≤ 2Cs

c
∀ t ∈ [0, T ].

Remark: Another way of phrasing Lemma 2.3.1 is that, for small data, w ∈
L∞(0, T ;L2(Ω)), and ∇w ∈ L2(0, T ;L2(Ω)).

Lemma 2.3.2 (Second a priori estimate). Assume

ū0 ∈ L2(Ω), ∂tū0 ∈ L2(Ω), ∇ū0 ∈ L2+2µ(Ω),

f̄ ∈ L2(0, T ;L2(Ω)), and ∂tf̄ ∈ L2(0, T ;L2(Ω)).

Any weak solution of (2.3.7)satisfies:

||wt||2L∞(L2) + ||∇w||2L∞(L2) + ||∇w||2+2µ
L∞(L2+2µ) + ||∇wt||2L2(L2)

∫ T

0

∫

Ω

|∇wt|2 |∇w|2µdxdt+

∫ T

0

∫

Ω

(∇w · ∇wt)
2 |∇w|2µ−2dxdt

≤ c[||∂tū0||2L2 + ||∇ū0||2L2 + ||∇ū0||2+2µ
2+2µ + ||f̄ ||2L2(L2) + ||∂tf̄ ||2L2(L2)]e

cT

Notation. ∂tū0 means:

∂tū0 : = −ūoj∂jū0 + ∂j[(Re
−1 + Cs|∇ū0|2µ)∂jū0] −

∂j

[

(

− δ2

4γ
∆ + İ

)−1(
δ2

2γ
∂`ū0∂`ū0j

)

]

+ f̄ |t=0 −∇q0

To get the initial value of pressure q0, we apply the divergence operator to the above

equation:

∆q0 = −∂iū0j∂jū0i + Cs∂j

[

∂i|∇ū0|2µ∂jū0i

]

−

∂i∂j

[

(

− δ2

4γ
∆ + İ

)−1(
δ2

2γ
∂`ū0i ∂`ū0j

)

]

in Ω.
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The natural boundary conditions are obtained integrating by parts:

∫

Ω

−∂iū0j∂jū0i + Cs∂j[∂i|∇ū0|2µ∂jū0i] − ∂i∂j

[

(

− δ2

4γ
∆ + İ

)−1(
δ2

2γ
∂`ū0i∂`ū0j

)

]

dx

=

∫

∂Ω

∂j[Cs | ∇ū0 |2µ ∂jū0] · n − ∂j

[

(

− δ2

4γ
∆ + İ

)−1(
δ2

2γ
∂`ū0i∂`ū0j

)

]

· n dσ,

and thus we take:

∂nq0 := ∂j[Cs|∇ū0|2µ∂jū0] − ∂j

[

(

− δ2

4γ
∆ + İ

)−1(
δ2

2γ
∂`ū0i∂`ū0j

)

]

In the above derivations we have used the consistency conditions on the initial data:

∇ · ū0 = 0 in Ω and ū0 = 0 on ∂Ω, as well as the Helmholtz-Weyl decomposition for

f̄ .

Proof: We differentiate in time the first equation of (2.3.7), multiply by wt, and

integrate over Ω:

1

2

d

dt
||wt||2L2 +

∫

Ω

∂twj∂jwi∂twidx + Cs

∫

Ω

|∇wt|2|∇w|2µdx + (2.3.30)

Re−1||∇wt||2L2 + 2µCs

∫

Ω

(∇w · ∇wt)
2|∇w|2µ−2dx =

δ2

2γ

∫

Ω

(∂`∂twi∂`wj + ∂`wi∂`∂twj)

[

(

− δ2

4γ
∆ + I

)−1

(∂j∂twi)

]

dx +

∫

Ω

f̄t · wtdx ≤ δ2

γ

∫

Ω

|∇wt| |∇w| |
(

− δ2

4γ
∆ + I

)−1

∇wt|dx +

∫

Ω

f̄t · wtdx

Then, we multiply the first equation of (2.3.7) by wt, and integrate over Ω:

||wt||2L2 +

∫

Ω

wj∂jwi∂twidx +
Re−1

2

d

dt
||∇w||2L2 + (2.3.31)

Cs

∫

Ω

(∇w · ∇wt)|∇w|2µdx =

δ2

2γ

∫

Ω

∂`wi∂`wj

[

(

− δ2

4γ
∆ + I

)−1

(∂j∂twi)

]

dx +

∫

Ω

f̄ ·wtdx

Summing up (2.3.30) and (2.3.31), and using

Cs

∫

Ω

(∇w · ∇wt)|∇w|2µdx =
Cs

2µ+ 2

d

dt

∫

Ω

|∇w|2µ+2dx,
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we get:

d

dt

(

1

2
||wt||2L2 +

Re−1

2
||∇w||2L2 +

Cs

2 + 2µ
||∇w||2+2µ

2+2µ

)

+ Cs

∫

Ω

|∇wt|2|∇w|2µdx +

2µCs

∫

Ω

(∇w · ∇wt)
2|∇w|2µ−2dx +Re−1||∇wt||2L2 + ||wt||2L2 ≤

−
∫

Ω

∂twj∂jwi∂twidx −
∫

Ω

wj∂jwi∂twidx +

−δ
2

γ

∫

Ω

|∇wt||∇w| |
(

− δ2

4γ
∆ + I

)−1

∇wt|dx +

δ2

2γ

∫

Ω

|∇w|2|
(

− δ2

4γ
∆ + I

)−1

∇wt|dx +

∫

Ω

f̄t · wtdx +

∫

Ω

f̄ ·wtdx (2.3.32)

We now try to estimate the “bad” terms on the RHS of the above relation so that we

can apply Gronwall’s lemma.

By the Sobolev Embedding theorem, Elliptic Regularity, and Lemma 2.2’ in [G94],

we have:

||
(

− δ2

4γ
∆ + I

)−1

∇wt||L∞ ≤ c||
(

− δ2

4γ
∆ + I

)−1

∇wt|| 3
2
+s,2 ≤

c||∇wt||− 1

2
+s,2 ≤ c||wt|| 1

2
+s,2 ≤ c||∇wt||

1

2
+s||wt||

1

2
−s (2.3.33)

for any s ∈ (0, 1/2). Using Young’s inequality, we evaluate the third term on the

RHS of (2.3.32) as follows:

δ2

γ

∫

Ω

|∇wt||∇w||
(

− δ2

4γ
∆ + I

)−1

∇wt|dx =

δ2

γ

∫

Ω

|∇wt||∇w|µ|∇w|1−µ|
(

− δ2

4γ
∆ + I

)−1

∇wt|dx ≤

ε

∫

Ω

|∇wt|2|w|2µdx + c

∫

Ω

|∇w|2−2µ|
(

− δ2

4γ
∆ + I

)−1

∇wt|2dx (2.3.34)

Using (2.3.33) and Young’s inequality the last term on the RHS of the above inequality

can be further evaluated as:
∫

Ω

|∇w|2−2µ|
(

− δ2

4γ
∆ + I

)−1

∇wt|2dx ≤ ||
(

− δ2

4γ
∆ + I

)−1

∇wt||2L∞

∫

Ω

|∇w|2−2µdx

≤ c||∇wt||1+2s||wt||1−2s

∫

Ω

|∇w|2−2µdx ≤

ε||∇wt||2
∫

Ω

|∇w|2−2µdx + c||wt||2
∫

Ω

|∇w|2−2µdx (2.3.35)

Now, since the above inequality is true for any positive ε, and since
∫

Ω
|∇w|2−2µdx is

bounded in L1(0, T ), (by Lemma 2.3.1), (2.3.34) and (2.3.35) imply:

δ2

4γ

∫

Ω

|∇wt| |∇w| |
(

− δ2

4γ
∆ + I

)−1

∇wt|dx
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is a “good” term (we can apply Gronwall’s inequality). (Note that we used µ ≤ 1;

the case µ > 1 is trivial).

We treat similarly (using Young’s inequality and (2.3.33)) the fourth term on the

RHS of (2.3.32):

δ2

2γ

∫

Ω

|∇w|2|
(

− δ2

4γ
∆ + I

)−1

∇wt|dx ≤ δ2

2γ
||
(

− δ2

4γ
∆ + I

)−1

∇wt||L∞

∫

Ω

|∇w|2dx ≤

c||∇wt||
1

2
+s||wt||

1

2
−s

∫

Ω

|∇w|2dx ≤ ε||∇wt||2
∫

Ω

|∇w|2dx + c||wt||
2−4s
3−2s

∫

Ω

|∇w|2dx.

Using now the same argument as above (∇w ∈ L2(0, T ;L2(Ω)) by Lemma 2.3.1), we

get:

δ2

2γ

∫

Ω

|∇w|2|
(

− δ2

4γ
∆ + I

)−1

∇wt|dx

is a “good” term, too.

We now evaluate the first term on the RHS of (2.3.32). Using Hölder’s inequality,

Lemma 2.2’ in [G94] and Young’s inequality, we get:

−
∫

Ω

∂twj∂jwi∂twidx ≤
∫

Ω

|wt|2|∇w|dx ≤ ||wt||2L4||∇w||

≤ c||wt||1/2||∇wt||3/2||∇w|| ≤ ε||∇w|| ||∇wt||2 + c||∇w|| ||wt||2.

Since ||∇w|| ∈ L2(0, T ) (Lemma 2.3.1), we get that −
∫

Ω
∂twj∂jwi∂twi is a “good”

term, too. The second term on the RHS of (2.3.32) can be estimated exactly in the

same way (it can also be estimated in a better way, but it is worthless here):

−
∫

Ω

wj∂jwi∂twidx ≤
∫

Ω

|w| |∇w| |wt|dx ≤ ||∇w||
(
∫

Ω

|w|2|wt|2
)1/2

≤ ||∇w|| ||w||L4||wt||L4 ≤ c||∇w||
(

||w||1/4||∇w||3/4
) (

||wt||1/4||∇wt||3/4
)

≤ c||∇w||7/4||wt||1/4||∇wt||3/4 ≤ ε||∇w||7/4||∇wt|| + c||∇w||7/4||wt||

Using the Cauchy-Schwarz inequality, we can trivially estimate
∫

Ω
f̄ · wt dx and

∫

Ω
f̄t · wtdx.

Now, applying Gronwall’s Lemma for (2.3.32), the lemma is proven.

Theorem 2.3.1 (Existence of Weak Solutions) If the conditions in Lemma 2.3.1 and

Lemma 2.3.2 are satisfied, then there exists a weak solution to (2.3.7) in L∞(0, T ;L2(Ω))∩
L2+2µ(0, T ;W 1,2+2µ

0,div
(Ω)).
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Proof: We shall use a so called “Faedo-Galerkin” method. Let {a`} ⊆ W 1,2+2µ

0,div
(Ω)

be an orthonormal basis. We can assume, without loss of generality, that a1 = ū0.

Consider now the sequence of functions

V n =

n
∑

`=1

c`n(t)a`(x),

where the coefficients c`n are chosen to satisfy the following system of differential

equations:
∫

Ω

(

∂tV
na` + (Re−1 + Cs|∇V n|2µ)∇V n · ∇a` + V n

j ∂jV
na`
)

dx =

+
δ2

2γ

∫

Ω

[

(

− δ2

4γ
∆ + I

)−1

(∂`V
n
i ∂`V

n)

]

∂ja
`dx +

∫

Ω

f̄a`dx, (2.3.36)

with the initial condition

c`n(0) =

∫

Ω

ū0a
`dx. (2.3.37)

Note that the a priori estimate of Lemmas 2.3.1 and 2.3.2 hold for (2.3.36), too. Also

note that (2.3.36) and (2.3.37) is an autonomous system of differential equations with

c`n(t) as unknowns, and from the first a priori estimate (Lemma 2.3.1) we have that

max
t∈[0,T ]

n
∑

`=1

c2`n(t) = ‖V n‖2
L∞(L2) (2.3.38)

is bounded uniformly in n. Thus, from the elementary theory of differential equations,

it follows the existence and uniqueness of c`n.

From the sequence {V n} we shall choose subsequences which converge in

some sense. For simplicity, these subsequences will be still denoted by {V n}. Thus,

using the first a priori estimate given by Lemma 2.3.1, by the usual technique (see [38])

we get a subsequence (still denoted by {V n}) converging strongly in L2(0, T ;L2(Ω)),

and weakly in L∞(0, T ;L2(Ω)) ∩ L2+2µ(0, T ;W 1,2+2µ

0,div
(Ω)) to a function V . Using

Lemma 2.2’ in [27], the Cauchy-Schwarz inequality, and the Sobolev Embedding the-

orem, we get:
∫ T

0

||V n − V ||4L4dt ≤ c

∫ T

0

||V n − V ||L2||∇(V n − V )||3L2dt ≤

≤ c

(
∫ T

0

||V n − V ||2L2

)1/2
[

(
∫ T

0

||∇(V n − V )||6L2

)1/6
]3

≤ c

(∫ T

0

||V n − V ||2L2

)1/2
[

(∫ T

0

||∇(V n − V )t||2L2

)1/2
]3

,
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which can be written as:

||V n − V ||L4(L4) ≤ c||∇(V n − V )t||3/4
L2(L2)||V n − V ||1/4

L2(L2)

Using the a priori estimates given by Lemma 2.3.1 and Lemma 2.3.2, and the above

inequality, we get the strong convergence of V n to V in Lq(0, T ;Lq(Ω)) for any 1 ≤
q ≤ 4.

Multiplying (2.3.36) by d`n, summing over `, and integrating from 0 to T , we get:

∫ T

0

∫

Ω

(∂tV
n + V n

j ∂jV
n)Φ + (Re−1 + Cs|∇V n|2µ)∇V n · ∇Φ dx dt =

=
δ2

2γ

∫ T

0

∫

Ω

[

(

− δ2

4γ
∆ + I

)−1

(∂`V
n
i ∂`V

n)

]

∂jΦdx dt+

∫ T

0

∫

Ω

f̄Φdx dt, (2.3.39)

where Φ is an arbitrary function obtained as a linear combination of a`(x) with

coefficients d`(t), which are absolutely continuous functions on time with square

summable first derivatives. Now it is easy to verify that (2.3.39) is valid for any

Φ ∈ L∞(0, T ;L2(Ω)) ∩ L2+2µ(0, T ;W 1,2+2µ

0,div
(Ω)). For fixed Φ, we pass to the limit in

(2.3.39) as n → ∞. Using the a priori estimates in Lemmas 1 and 2, we can pass to

the limit in the first and last term by the usual technique (see [38] Section 3). For

the strongly nonlinear second and third terms, we use an idea of Minty and Browder.

We introduce the functions:

Ak
i (∇V n) = (Re−1 + Cs|∇V n|2µ)∂kV

n
i − δ2

2γ

∑

`

(

− δ2

4γ
∆ + I

)−1

∂`V
n
i ∂`V

n
k(2.3.40)

which are uniformly bounded (by Lemmas 2.3.1 and 2.3.2), and therefore converge

weakly to functions Bk
i (x, t). Thus, the limiting equation of (2.3.39) is:

∫ T

0

∫

Ω

[(∂tVi + Vj∂jVi)Φi +Bk
i ∂kΦi]dx dt =

∫ T

0

∫

Ω

f̄iΦidx dt (2.3.41)

We now need the following lemma:

Lemma 2.3.3 For any two functions v′,v′′ ∈ L∞(0, T ;L2(Ω))∩L2+2µ(0, T ;W 1,2+2µ

0,div
(Ω))

we have:

∑

i,k

∫ T

0

∫

Ω

[Ak
i (∇v′) − Ak

i (∇v′′)](∂kv
′
i − ∂kv

′′
i )dx dt ≥ 0 (2.3.42)

Proof: Letting w := v′ − v′′, and using the strong monotonicity of the µ-Laplacian,

the Sobolev Embedding Theorem, elliptic regularity, Lemma 2.2’ in [27], Poincaré’s
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inequality, and Lemmas 2.3.1 and 2.3.2, we get:

∑

i,k

∫ T

0

∫

Ω

[

Ak
i (∇v′) − Ak

i (∇v′′)
]

(∂kv
′
i − ∂kv

′′
i )dx dt ≥

Re−1||∇w||2 + c

∫ T

0

||∇w||2+2µ
2+2µdt−

δ2

2γ

∫ T

0

∫

Ω

(

− δ2

4γ
∆ + I

)−1

[∇v′∇v′ −∇v′′∇v′′]∇w dx dt =

Re−1||∇w||2 + c

∫ T

0

||∇w||2+2µ
2+2µdt−

δ2

2γ

∫ T

0

∫

Ω

[∇v′∇v′ −∇v′′∇v′′]

[

(

− δ2

4γ
∆ + I

)−1

∇w

]

dx dt ≥

Re−1||∇w||2 + c

∫ T

0

||∇w||2+2µ
2+2µdt− c

δ2

2γ

∫ T

0

||
(

− δ2

4γ
∆ + I

)−1

∇w||L∞

∫

Ω

|∇v′∇w + ∇w∇v′′|dx dt ≥

Re−1||∇w||2 + c

∫ T

0

||∇w||2+2µ
2+2µdt− c

δ2

2γ

∫ T

0

||
(

− δ2

4γ
∆ + I

)−1

∇w|| 3
2
+ε,2

∫

Ω

|∇v′∇w + ∇w∇v′′|dx dt ≥

Re−1||∇w||2 + c

∫ T

0

||∇w||2+2µ
2+2µdt−

c

2γ

∫ T

0

||w|| 1
2
+ε,2

∫

Ω

|∇v′∇w + ∇w∇v′′|dx dt ≥

Re−1||∇w||2 + c

∫ T

0

||∇w||2+2µ
2+2µdt−

c

2γ

∫ T

0

||∇w|| 12+ε||w|| 12−ε

∫

Ω

|∇v′∇w + ∇w∇v′′|dx dt ≥

Re−1||∇w||2 + c

∫ T

0

||∇w||2+2µ
2+2µdt−

c

2γ

∫ T

0

||∇w|| 32+ε||w|| 12−ε{∇v′∇w + ∇w∇v′′}dt ≥

Re−1||∇w||2 + c

∫ T

0

||∇w||2+2µ
2+2µdt−

c

2γ

∫ T

0

||∇w||2{||∇v′∇w + ∇w∇v′′}dt ≥

Re−1||∇w||2 + c

∫ T

0

||∇w||2+2µ
2+2µdt−

c

2γ

∫ T

0

||∇w||2(||∇v′|| + ||∇v′′||)dt ≥ 0,

by Lemma 2.3.2 and the smallness of data with respect to Re.

Subtracting (2.3.39) from (2.3.42), we get:

−
∫ T

0

∫

Ω

(∂tV
n
i + V n

k ∂kV
n
i − f̄i)(V

n
i − ηi) + Ak

i (∇η)(∂kV
n
i − ∂kηi)dxdt ≥ 0(2.3.43)

for any function η ∈ L∞(0, T ;L2(Ω)) ∩ L2+2µ(0, T ;W 1,2+2µ

0,div
(Ω)). Passing to the limit

as n → ∞ in the above relation does not present any problem except in the second

term. Thus, since ∇V n ∈ L2+2µ(0, T ;L2+2µ(Ω)) (by Lemma 2.3.2), we have to verify

that V n
k V

n converges strongly in the L
2+2µ
1+2µ norm. Letting p = (2 + 2µ)/(1 + 2µ), we

get:

||V n
k V

m
` − VkV`||Lp(Lp) ≤ ||(V n

k − Vk)V
n
` ||Lp(Lp) + ||Vk(V

n
` − V`)||Lp(Lp) ≤

||V n
k − Vk||L2p(L2p)||V n

` ||L2p(L2p) + ||Vk||L2p(L2p)||V n
` − V`||L2p(L2p)
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Since 2p < 4, the RHS of the above inequality tends to zero as n → ∞. Therefore,

we can pass to the limit in (2.3.43), and we get:

−
∫ T

0

∫

Ω

(∂tVi + Vk∂kVi − f̄i)(Vi − ηi) + Ak
i (∇η)(∂kVi − ∂kηi)dx dt ≥ 0 (2.3.44)

Letting η = V − εξ in the above relation, where ε > 0 and ξ ∈ L∞(0, T ;L2(Ω)) ∩
L2+2µ(0, T ;W 1,2+2µ

0,div
(Ω)), and Φ = εξ in (2.3.41), and then summing up these two

relations, we get:

∫ T

0

∫

Ω

[Bk
i − Ak

i (∇V − ε∇ξ)]∂kξidx dt ≥ 0 (2.3.45)

Doing the same as above, but now for η = V + εξ, we get:

∫ T

0

∫

Ω

[Bk
i − Ak

i (∇V + ε∇ξ)]∂kξidx dt ≥ 0 (2.3.46)

Since ε > 0 is arbitrary, relations (2.3.45) and (2.3.46) imply that:

∫ T

0

∫

Ω

[Bk
i − Ak

i (∇V )]∂kξidx dt = 0 (2.3.47)

for any ξ ∈ L∞(0, T ;L2(Ω)∩ L2+2µ(0, T ;W 1,2+2µ

0,div
(Ω)). Relations (2.3.41) and (2.3.47)

imply the existence of a weak solution to (2.3.7):

∫ T

0

∫

Ω

(∂tV + Vj∂jV )Φ + (Re−1 + Cs|∇V |2µ)∇V · ∇Φdx dt =

δ2

2γ

∫ T

0

∫

Ω

(

− δ2

4γ
∆ + I

)−1

(∂`Vj∂`V )∂jΦ dx dt+

∫ T

0

∫

Ω

f̄Φdx dt.

2.3.2 Uniqueness and Stability of Weak Solutions

Using the same assumptions as in the previous section, we shall prove unique-

ness for the weak solution of (2.3.7)in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2+2µ

0,div
(Ω)), and

stability.

Theorem 2.3.2 (Uniqueness) With the same assumptions as in the existence theo-

rem, problem (2.3.7)has a unique weak solution in L∞(0, T ;L2(Ω))∩L2(0, T ;W 1,2+2µ

0,div
(Ω)).
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Proof: Let V ′, V ′′ be two weak solutions of (2.3.7)in L∞(0, T ;L2(Ω))∩L2(0, T ;W 1,2+2µ

0,div
(Ω)),

and U = V ′ − V ′′. Then U satisfies, in a distributional sense:

d

dt
U − ∂k[A

k(∇V ′) − Ak(∇V ′′)] + V ′∇V ′ − V ′′∇V ′′ = 0

with U(0) = 0. Multiplying by U and integrating over Ω, we get:

1

2

d

dt
||U ||2L2 +

∫

Ω

[Ak(∇V ′) − Ak(∇V ′′)]∂kUdx +

∫

Ω

(V ′∇V ′U − V ′′∇V ′′U)dx = 0

Adding and subtracting V ′′∇V ′U to the above relation, and using the fact that
∫

Ω
V ′′∇UU = 0, we get:

1

2

d

dt
||U ||2L2 +

∫

Ω

[Ak(∇V ′) − Ak(∇V ′′)]∂kUdx +

∫

Ω

U∇V ′U dx = 0 (2.3.48)

Using Hölder’s inequality, and the Sobolev Embedding theorem, we get:

∫

Ω

U∇V ′Udx ≤ ||U ||L6||U ||L3||∇V ′||L2 ≤ c||U ||2L6||∇V ′||L2

≤ c||∇U ||2L2||∇V ′||L2 (2.3.49)

Noting that in Lemma 2.3.3 we actually proved that

∫

Ω

[Ak(∇V ′) − Ak(∇V ′′)]∇Udx ≥ α||∇U ||2L2,

with α positive, and using Lemma 2.3.2 and relations (2.3.48) and (2.3.49), we get:

1

2

d

dt
||U ||2L2 + α||∇U ||2L2 ≤ α

2
||∇U ||2L2

Since U(0) = 0, the above relation implies that U ≡ 0.

Theorem 2.3.3 (Stability) With the same assumptions as in the existence theorem,

two solutions V ′ and V ′′ in L∞(0, T ;L2(Ω))∩L2(0, T ;W 1,2+2µ

0,div
(Ω)) with different initial

data V ′
0 , V

′′
0 , and different external forces f ′ and f ′′, satisfy:

||V ′ − V ′′||L∞(L2) ≤
(

||V ′
0 − V ′′

0 || + c||f ′ − f ′′||L1(L2)

)

ec, (2.3.50)

where c is a positive constant depending on all the parameters of the fluid, including

T .
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Proof: Let f = f ′−f ′′, and U = V ′−V ′′. Using the same approach as in the previous

theorem’s proof, we get:

1

2

d

dt
||U ||2L2 + α||∇U ||2+2µ

L2+2µ ≤ c||U ||2L2||∇V ′||2L2+2µ + c||f ||2L2 +
α

2
||∇U ||2+2µ

L2+2µ

Applying Gronwall’s inequality and the a priori estimates in Lemma 2.3.2, we get

(2.3.50).

Remark. In Theorem 2.3.1’s proof, we have used the smallness of data with respect

to Re. For µ small enough, i.e. 32µ3(4 + 2µ) < 1/4 or, equivalently µ < 0.122547

roughly, we can avoid this by multiplying (2.3.7) by Au := ∇ · [(1 + |∇u|2µ)∇u], and

then using the inequality
∫

Ω
|Au|2dx ≥ (1−2

√

32µ3(4 + 2µ))
∫

Ω
(1+|∇u|2µ)2|∆u|2dx.

Of course, we cannot use the Faedo-Galerkin method anymore, and thus we follow

the approach in [38].



Chapter 3

New LES Models for the Turbulent
Fluctuations

3.1 Introduction

In 1877 Boussinesq (and others) put forward the basic analogy between

the mixing effects of turbulent fluctuations and molecular diffusion: −∇ · (u′u′) ∼
−∇ · (νT (∇u + ∇ut)). This assumption lies at the heart of essentially all turbulence

models and subgridscale models. By revisiting the original arguments of Boussinesq,

Saint-Venant, Kelvin, Reynolds and others, we give three new approximations for the

turbulent viscosity coefficient νT in terms of the mean flow based on approximation

for the distribution of kinetic energy in u′ in terms of the mean flow u. We prove

existence of weak solutions for one of the corresponding models. Finite difference

implementations of the new eddy viscosity/subgrid-scale model are transparent. We

show how it can be implemented in finite element procedures and prove its action is

no larger than that of the popular Smagorinsky-subgrid-scale model.

We start with the space-filtered Navier Stokes equations, derived in subsec-

tion 1.1.3:















∂tu − Re−1∆u + ∇ · (uu) + ∇p = f in Ω × [0, T ],

∇ · u = 0 in Ω × [0, T ],

where uu = u u+uu′ +u′u+u′u′. We consider herein the modeling of the turbulent

stresses.

The fundamental relation still used for modeling turbulent stresses was put

forward by Boussinesq in 1877, [9], stating, in effect, that the interaction of turbulent

fluctuations are dissipative in the mean. This “Boussinesq model” is based upon an

37



38

analogy between the mixing effects of turbulent fluctuations and molecular diffusion

and is written as:

u′u′ ∼ −νT (∇u + ∇ut) +
2

3
kδij, νT := turbulent diffusion parameter, (3.1.1)

where k is the mean turbulent kinetic energy, which can be included in the pressure

term. Relations like (3.1.1) have been verified for some simplified settings such as

convection of a passive scalar under various assumptions. This work is presented and

surveyed well in Part III of Mohammadi and Pironneau [77]. However, we empha-

size that the Boussinesq “model/approximation” (3.1.1) is not strictly speaking an

approximation but rather a physical analogy.

Since (3.1.1) is the first step and very heart of turbulence models, subgrid-

scale models and even the shallow water equations, it is useful first to review the

reasoning of Boussinesq behind (3.1.1) and a few representative attempts to determine

νT = νT (x, t,u, p, Re, · · · ).
The assumption behind (3.1.1) is that in the mean the small eddies or tur-

bulent fluctuations are isotropic and collide elastically and exchange momentum like

molecules. Eddies do not, of course, interact perfectly elastically, see Frisch [26] or

Corrsin [18]. Furthermore, there are also turbulent flows for which the turbulent

fluctuations do not even seem to be isotropic. See Section 9.6 of Frisch [26] for more

on the physical reasoning underlying (3.1.1).

There are numerous approaches to calculating the coefficient νT . Turbulence

models (algebraic, mixing length, one equation, two equation...) typically give for-

mulas of increasing complexity which are solved approximately to determine νT – see,

for example, [16], [39], [77], [72] for good surveys of these approaches. Most recently,

the trend has been away from these approaches to much simpler subgrid-scale mod-

els combined with resolution and adaptivity. The most common such subgrid-scale

model is due to Smagorinsky [84] in which:

νT ∼ Csδ
2|∇u + ∇ut|, δ := length scale of resolvable eddies,

so that

∇ · τ ∼ ∇ · (Csδ
2|∇u + ∇ut|(∇u + ∇ut)) − 2

3
∇k; (3.1.2)

see also [84], [33], [59], [62], [63], [22], [39] for more on the mathematical foundation

of this model. The parameter Cs in (3.1.2) was originally taken a constant; in the

dynamic eddy viscosity model of [33], Cs = Cs(x, t) is determined by a clever extrap-

olation procedure. The form of (3.1.2) is consistent with Kraichnan’s [57] extension of
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of Kolmogorov “K − 42” theory to 2D turbulence and, accordingly, (3.1.2) performs

well in 2D simulations (as reported, e.g., by [77]). The most straightforward ( [62],

[63]) extension to 3D is

νT ∼ Csδ
2|∇u + ∇ut|2/3, (3.1.3)

so that

∇ · u′u′ ∼ −∇ · (Csδ
2|∇u + ∇ut|2/3(∇u + ∇ut)) +

2

3
∇k.

To explain relations like (3.1.3), recall that the “K− 42” theory of isotropic

turbulence developed by Kolmogorov (see Frisch [26]) predicts that the smallest length

scale of persistent eddies is O(Re−3/4). When a formula like (3.1.3) is used on a

computational mesh, the smallest resolvable eddy occurs when |∇u+∇ut| ∼ O(δ−1).

Thus, the effective local turbulent viscosity in these eddies is νT ∼ Csδ
2δ−2/3 = Csδ

4/3.

By the “K−42” theory, eddies below O((Csδ
4/3)3/4) = O(δ) thus decay exponentially

due to the turbulent dissipative term (3.1.3). Thus, the only persistent eddies are

precisely those resolvable: O(δ) or larger.

Again, Cs in (3.1.3) can be regarded as a constant or a distribution to be

determined by dynamic extrapolation methods, following [33].

3.2 A new Boussinesq-type subgridscale model

To motivate the need for another subgrid-scale model, note that the models

(3.1.2) and (3.1.3) have at least two intuitive shortcomings. First, for flows with

linear velocity profiles, the formulas (3.1.2) and (3.1.3) would still introduce significant

amounts of turbulent diffusion even though the flow field is laminar. Second, accepting

the reasoning of Boussinesq, the amount of turbulent diffusion by small eddies should

depend on the kinetic energy in those small eddies, so that νT = νT

(

1

2
ρ0|u′|2

)

or

νT = νT

(

1

2
ρ0|u′|2

)

.

This section presents a subgridscale model similar to (3.1.2), (3.1.3) which

meets these two conditions based on a more complete elaboration of the analogy of

Boussinesq. The space filter used in the sequel is a Gaussian:

gδ(x) :=
(γ

π

)3/2 1

δ3
e−γ

|x|2

δ2 ,

where γ is a constant (often γ = 6) and δ is the averaging radius.
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Herein, we consider the term describing turbulent fluctuations:

−∇ · (gδ ∗ (u′u′)). (3.2.4)

We use a closure approximation introduced in [30]. Specifically, since

u = u + u′ ⇒ u = gδ ∗ u + gδ ∗ u′.

Extending all functions by zero outside Ω, the Fourier transform of this last equation

gives:

û = ĝδû + ĝδû
′,

from which

û′(k) = ((1/ĝδ(k)) − 1) û(k), (3.2.5)

where ĝδ(k) = exp

(

− δ2

4γ
(k2

1 + k2
2 + k2

3)

)

.

Using the approximation

ĝδ(k)
.
=

1

1 + δ2

4γ
|k|2

+O

(

δ4

16γ2
|k|4
)

.

in (3.2.5) gives:

û′(k)
.
=
δ2

4γ
|k|2û(k).

After taking the inverse Fourier transform, we arrive at the approximation

u′ .= − δ2

4γ
∆u (+O(δ4) terms). (3.2.6)

The term involving the turbulent fluctuations

∇ · (u′u′)

is formally O(δ4). However, turbulent fluctuations play an important role in dissipa-

tion of energy from large eddies to smaller eddies. Thus, in turbulent flow simulations,

models of the turbulent fluctuations are normally included in the simulation via some

variant of Smagorinsky’s model as discussed in the introduction.

To model these turbulent fluctuations, reconsider Boussinesq’s idea (3.1.1).

Following the analogy between turbulent mixing and molecular diffusion to its logical

conclusion, νT must be considered as a function of either the local kinetic energy in

u′ or its local average

νT = νT

(

1

2
ρ0|u′|2

)

, or νT = νT

(

1

2
ρ0|u′|2

)

.
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A classical dimensional argument suggests the correct form of νT to be given by the,

so-called, Kolmogorov-Prandtl expression:

νT
.
= cµ`m

√
k′, k′ :=

1

2
ρ0|u′|2, `m := “mixing length′′. (3.2.7)

In spatial filtering, the critical length scale is the filter width δ. The kinetic energy

in the small eddies can be related back to using the approximation (3.2.6). Indeed,

the approximation (3.2.6) for u′ in (3.2.7) gives the relation:

νT
.
= cµδ

√

1

2
ρ0

(

δ2

4γ

)2

|∆u|2 = c′µ
δ3

γ
|∆u|. (3.2.8)

This yields the subgridscale model for turbulent fluctuations given by

∇ · u′u′ ∼ −∇ ·
[

c′µ
δ3

γ
|∆u|(∇u + ∇ut)

]

+
2

3
∇k. (3.2.9)

An important issue arises in how to use (3.2.9). The model (3.2.9) can be added to

the models used for large eddy motion, such as in [10], [3], [30]. However, there has

recently been a trend in the direction of simple fluids models composed of the Navier-

Stokes equations augmented by a subgridscale model such as (3.2.9). These simpler

models are paired with highly resolution in simulations by adaptive algorithms, or

with dynamical modeling of the parameters, following [33].

Accordingly, as a first step in the analytical understanding of (3.2.9) we

consider the Navier-Stokes equations supplemented by (3.2.9):



















wt + ∇ · (ww) + ∇q − Re−1∆w −∇ ·
[

c′µ
δ3

γ
|∆w|(∇w + ∇wt)

]

= f , in Ω,

∇ · w = 0, in Ω.

(3.2.10)

The subgridscale model (3.2.9) has the clear features that the turbulent dif-

fusion vanishes for linear mean velocities and the magnitude of the turbulent diffusion

is proportional to a consistent approximation of the turbulent kinetic energy.

If νT is taken to be a function of the local average of the kinetic energy in the

small eddies, the previous derivation is changed only slightly, replacing |∆u| in (3.2.9)

by gδ ∗ |∆u|. Another important approximation step is gδ ∗ |∆u| ∼ |gδ ∗∆u|, which is

the magnitude of the “Gaussian Laplacian”. The resulting subgridscale model (which

replaces (3.2.9) in (3.2.10)) is given by:

∇ · u′u′ ∼ −∇ ·
[

c′µ
δ3

γ
|gδ ∗ ∆u|(∇u + ∇ut)

]

+
2

3
∇k. (3.2.11)
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Interestingly, if we begin with (3.2.11) and reverse the steps in the derivation

of (3.2.9), (3.2.11) a third subgridscale model results. Indeed, by (3.2.6), −u′ .= ∆u.

Thus, |gδ ∗ ∆ū| .= |gδ ∗ (−u′)| = |gδ ∗ (ū − u)| = |ū− gδ ∗ ū|. The third model reads:

∇ · u′u′ ∼ −∇ ·
[

c′′µ
δ3

γ
|u − gδ ∗ u|(∇u + ∇ut)

]

+
2

3
∇k. (3.2.12)

This third model can arise in a particularly simple way. Indeed, as u′ =

u − u, |u′|2 = |u − u|2. A scale similarity approximation can be used, specifically,

|u − u|2 ∼ |u − u|2. This scale similarity approximation to the turbulent kinetic

energy gives (3.2.12).

Nonlinear diffusion equations whose coefficients depend upon local averages

of u (as in (3.2.12)) have recently also used for image smoothing, e.g., [75], [11].

3.3 Implementation Issues

The subgrid-scale term (3.2.9) can, of course, be added to any discretization

of any convection dominated problem to enhance numerical stability. (This is the

viewpoint of subgridscale modeling adopted in, for example, [62], [63].) For this use,

(3.2.9) is computationally attractive with δ = h (the local meshwidth) since the extra

term vanishes when ∆u = 0 and is O(h3) when |∆ū| = O(1). When u fluctuates

across a few mesh points, |∆u| = O(h−2) so that in this case (3.2.9) introduces only

O(h) artificial viscosity.

If the convection-dominated problem is discretized by a finite difference

method, the implementation of the model (3.2.8) is clear: |∆u| is calculated by the

usual five point discrete Laplacian. If a finite element method using C1-elements is

used, then the implementation of (3.2.8) is equally clear. If the most usual case of C0

elements, e.g., conforming linears on triangles or tetrahedrons, is used, then (3.2.9)

must be interpreted correctly as ∆φh does not exist for such functions φh.

Specifically, let Ω be a polyhedral domain with a finite element mesh Πh(Ω)

constructed which divides Ω into conforming d-simplices. Thus, in 2D the triangles

are edge to edge and in 3D the tetrahedra are face to face. Let Xh denote the usual

space of conforming, C0, piecewise linears

Xh := {vh(x) : vh ∈ C0(Ω) ∩H1
◦ (Ω) and vh is affine on each simplex}.

For such functions vh ∈ Xh,∆h can be correctly interpreted in terms of jumps in

∇vh · n̂ across edges (2D) or faces (3D) of Πh(Ω). This interpretation was (to our
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knowledge) first pointed out and exploited in the work of Eriksson and Johnson [23]

(see also [54] for another use of edge jump in a discretization). For K a triangle

(2D) or tetrahedron (3D), following [23], and vh ∈ Xh, define the piecewise constant,

discrete Laplacian as

|∆hv
h||K := max

f⊂∂K∩Ω
|[∇vh · nf ]f |/ diameter (K),

where nf is the exterior unit normal to K on the edge or face f of K, and [·]f denotes

the jump of the indicated (discontinuous) quantity across f . The function |∆hv
h|

is piecewise constant for a linear finite element space. For higher order spaces, ∆vh

inside K is added to the above edge jump definition of ∆h.

For locally quasi-uniform meshes, |∆hv
h| satisfies the following inverse esti-

mates, [23] for all vh ∈ Xh,

||h∆hv
h||L2(Ω) ≤ C||∇vh||L2(Ω),

and

||hK∆hv
h||L2(K) ≤ C||∇vh||L2(ω(K)), (3.3.13)

where ω(K) is the union of all the elements sharing a common edge/face with K in

2D/3D.

The next proposition shows that the effects of the SGS model (3.2.8) are, at

their largest, comparable to those of the Smagorinsky model (3.1.2), provided δ ∼ hK .

Proposition 3.3.1 Suppose the inverse estimates (3.3.13) hold. Then, for all

uh ∈ Xh

∫

Ω

δ3|∆huh|∇uh · ∇uhdx ≤ C

∫

Ω

(δ3/hK)|∇uh|∇uh · ∇uhdx,

where C depends on the smallest angle in the triangulation.

Proof: Consider one triangle K. Since both ∇uh and ∆huh are constant on K,
∫

K

δ3|∆huh|∇uh · ∇uhdx = δ3|∆huh| ||∇uh||2L2(K) ≤

(using (3.3.13)) ≤ C δ3h−1
K

(

∑

K′⊂ω(K)

||∇uh||2L2(K′)

)1/2

||∇uh||2L2(K)

≤ Cδ3h−1
K

(

∑

K′⊂ω(K)

||∇uh||2L2(K)

)1/2(
∑

K′⊂ω(K)

||∇uh||2L2(K)

)

(3.3.14)



44

Now,
∑

K′⊂ω(K) is a sum over a fixed number of terms bounded by C(θmin), a con-

stant only depending on the minimum angle θmin in the mesh. Thus, using Hölder’s

inequality, we get




∑

K′⊂ω(K)

||∇uh||2L2(K′)





1/2

≤ C(θmin)





∑

K′⊂ω(K)

||∇uh||3L2(K′)





1/3

.

Therefore,

(3.3.14) ≤ C(θmin)δ
3h−1

K

[

∑

K′⊂ω(K)

||∇uh||L2(K′)

]1/3[
∑

K′⊂ω(K)

||∇uh||3L2(K′)

]2/3

.

Since ∇uh
|K′

is a constant vector,

||∇uh||L2(K′) ≤ meas(K ′)−1/6||∇uh||L3(K′) ≤ ||∇uh||L3(K′),

provided that meas(K ′) =
∫

K′ 1dx ≤ 1 (this condition holds if, for example, 0 <

h << 1). Thus,
∫

K

δ3|∆huh| · |∇uh|2 ≤ C(θmin)δ
3h−1

K

[

∑

K′⊂ω(K)

||∇uh||3L3(K′)

]

.

Summing this inequality over K ∈ Πh(Ω) and again using that Πh(Ω) satisfies a

minimum angle condition gives the result.

This proposition thus establishes that the SGS model (3.2.8) is more selective

than the good and accepted Smagorinsky SGS model in that the former vanishes in

cases where the latter is significant while (in the sense of the quadratic form) the

largest action of the former is bounded by the latter.

3.4 Existence of Solutions

This section considers the question of existence of weak solutions to the

system (3.2.10) with the modification (3.2.11). Thus, we seek (w, q) satisfying:






















































wt + ∇ · (ww) + ∇q − Re−1∆w −∇ · (δ3|gδ ∗ ∆w|(∇w + ∇wt)) = f , in Ω, t > 0

∇ · w = 0, in Ω, t > 0,

w(x, 0) = gδ ∗ u0(x), in Ω,

w(x, t) = 0 on ∂Ω.

(3.4.15)
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The Dirichlet boundary condition we take in (3.4.15) provides a convenient condition

on Γ. It is known, however, that for modeling accuracy near Γ it should be replaced

by a slip with friction type condition which recovers no-slip as δ → 0, [30], [83].

Theorem 3.4.1 Let T > 0, and Ω be a bounded domain in IRn. Then, for any given

u0 ∈ L2(Ω), f ∈ L2(Ω × (0, T )),

there exists at least one weak solution to (3.4.15) in Ω × (0, T ).

Remark: The model (3.2.9) without regularization is more difficult due to the un-

bounded coefficient |∆u| in (3.2.9). Appropriate mathematical tools for such problems

are in their early stages of development, see, e.g., [31].

Proof: We shall use the Faedo–Galerkin method. Let D(Ω) := {ψ ∈ C∞
0 (Ω) : ∇·ψ =

0 in Ω}, H(Ω) the completion of D(Ω) in L2(Ω), H1(Ω) the completion of D(Ω) in

W 1,2(Ω) and {ψr} ⊂ D(Ω) be the orthonormal basis of H(Ω) given in Lemma 2.3

in [38]. We shall look for approximating solutions vk of the form:

vk(x, t) =

k
∑

r=1

ckr(t)ψr(x) , k ∈ N, (3.4.16)

where the coefficients ckr are required to satisfy the following system of ordinary

differential equations

dckr

dt
+

k
∑

i=1

Re−1(∇ψi,∇ψr)cki +

k
∑

i,s=1

(ψi∇ψs, ψr)ckicks +

γ3

k
∑

i=1

cki

(

k
∑

j=1

|ckj(gδ ∗ ∆ψr)|(∇φi + ∇φt
i),∇ψr + ∇ψt

r)

)

= (f , ψr),

r = 1, · · · , k (3.4.17)

with the initial condition

ckr(0) = (gδ ∗ v0, ψr) (3.4.18)

Multiplying (3.4.17) by ckr, and summing over r, we get:

||vk(t)||22 +2Re−1
∫ t

0
||∇vk(ζ)||22dζ + 2δ3

∫ t

0
|gδ ∗ ∆vk(ζ)| ||∇vk(ζ) + ∇vt

k(ζ)||22dζ =

2
∫ t

0
(vk(ζ), f(ζ))dζ + ||vk(0)||22 ∀ t ∈ [0, T ) (3.4.19)
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Using the Cauchy-Schwarz inequality, Korn’s inequality, and Gronwall’s lemma, we

get:

||vk(t)||22 +

∫ t

0

||∇vk(ζ)||22dζ ≤M, ∀ t ∈ [0, T ), (3.4.20)

with M independent of t and k. Thus,

|ckr(t)| ≤ M1/2, ∀ r = 1, · · · , k. (3.4.21)

From the elementary theory of partial differential equations, (3.4.21) implies that

(3.4.17) admits a unique solution ckr ∈ W 1,2(0, T ) for all k ∈ N .

Using the same approach as the one in [38], from these a priori bounds we get the

existence of v ∈ L2(0, T,H1(Ω)) such that

lim
k→∞

(vk(t) − v(t),w) = 0 uniformly in t ∈ [0, T ], ∀ w ∈ L2(Ω) (3.4.22)

lim
k→∞

∫ T

0

(∂i(vk − v),w)dζ = 0 ∀ w ∈ L2(Ω × [0, T ]), i = 1, · · · , k.(3.4.23)

Now we shall prove the strong convergence of {gδ ∗∆vk} to gδ ∗∆v in L2(ω× [0, T ]) for

all ω ⊂⊂ Ω. To show this, we need the following Friederichs’ inequality (see, e.g, [27]

Lemma II. 4.2): Let C be a cube in R
n, then for any η > 0, there exists K(η, C)

functions ϕi ∈ L∞(C), i = 1, · · · , K such that:

∫ T

0

||w(t)||22,Cdt ≤
k
∑

i=1

∫ T

0

(w(t), ϕi)
2
Cdt+ η

∫ t

0

||∇w(t)||22,Cdt (3.4.24)

Applying the above inequality with w := gδ ∗ ∆vk − gδ ∗ ∆wk, we get

∫ t

0

||gδ ∗ ∆vk − gδ ∗ ∆v||22,Cdt ≤
k
∑

i=1

∫ T

0

(gδ ∗ ∆vk − gδ ∗ ∆v, ϕi)
2
Cdt+

+ η

∫ T

0

||∇(gδ ∗ ∆vk − gδ ∗ ∆v)||22,Cdt

= −
k
∑

i=1

∫ T

0

(∇vk −∇v, gδ ∗ ∇ϕi)
2
Cdt+

η

∫ T

0

||∇(gδ ∗ ∆vk − gδ ∗ ∆v)||22,Cdt

Using (3.4.23) and the fact that ||∇(gδ ∗∆vk − gδ ∗∆v)||22,C ≤ C(g, δ)||vk − v||22,C , we

get

lim
k→∞

∫ T

0

||gδ ∗ ∆vk − gδ ∗ ∆v||22,C = 0 (3.4.25)
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Applying (3.4.24) with w := vk − v, and using (3.4.23), we get

∫ T

0

||vk(t) − v(t)||22,Cdt = 0 (3.4.26)

Now we shall prove that v is a weak solution of (3.4.15). Integrating (3.4.17) from 0

to t ≤ T , we get:

∫ t

0

−Re−1(∇vk,∇ψr) − (vk · ∇vk, ψr)dζ = −
∫ t

0

(f , ψr)dζ + (3.4.27)

δ3

∫ t

0

(|gδ ∗ ∆vk|(∇vk + ∇vt
k),∇ψr + ∇ψt

r) + (vk(t), ψr) − (vk(0), ψr)

From (3.4.22) and (3.4.23) we get

lim
k→∞

(vk(t) − v(t), ψr) = 0, lim
k→∞

∫ t

0

(∇vk(ζ) −∇v(ζ),∇ψr)dζ = 0 (3.4.28)

Let C be a cube containing the support of ψr. Then:

|
∫ t

0

(vk · ∇vk, ψr) − (v · ∇v, ψr)dζ| ≤ |
∫ t

0

((vk − v) · ∇vk, ψr)Cdζ)|

+ |
∫ t

0

(v · ∇(vk − v), ψr)Cdζ| (3.4.29)

Setting S := maxx∈C |ψr(x)|, and using (3.4.20), we also have:

|
∫ t

0

((vk − v) · ∇vk, ψr)Cdζ| ≤ S

(
∫ t

0

||vk − v||22,Cdζ

)1/2(∫ t

0

||∇vk||22,Cdζ

)1/2

≤ SM1/2

(
∫ t

0

||vk − v||22,Cdζ

)1/2

Thus, using (3.4.26), we get:

lim
k→∞

|
∫ t

0

((vk − v) · ∇vk, ψr)Cdζ| = 0 (3.4.30)

We also have:

|
∫ t

0

(v · ∇(vk − v), ψr)Cdζ| ≤
n
∑

i=1

|
∫ t

0

(∂i(vk − v), viψr)Cdζ|

and since viψr ∈ L2(Ω × [0, T ]), (3.4.23) implies:

lim
k→∞

|
∫ t

0

(v · ∇(vk − v), ψr)Cdζ| = 0 (3.4.31)
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Relations (3.4.29) – (3.4.31) yield:

lim
k→∞

|
∫ t

0

(vk · ∇vk − v · ∇v, ψr)dζ| = 0. (3.4.32)

Also,
∫ t

0

(|gδ ∗ ∆vk|(∇vk + ∇vt
k) − |gδ ∗ ∆v|(∇v∆ + ∇vt),∇ψr + ∇ψt

r)dζ ≤

|
∫ t

0

(|gδ ∗ ∆v|(∇(vk − v) + ∇(vk − v)t),∇ψr + ∇ψt
r)dζ| +

|
∫ t

0

(|gδ ∗ ∆vk − gδ ∗ ∆v|)(∇vk,+∇vt
k),∇ψr + ∇vt

k)∇ψt
r)dζ| (3.4.33)

We have:

|
∫ t

0

(|gδ + ∆v|(∇(vk − v) + ∇(vk − v)t),∇ψr + ∇ψt
r)dζ| ≤

n
∑

i=1

|
∫ t

0

(∂i(vk − v), |gδ ∗ ∆v|∇ψr)dζ|

and since |gδ ∗ ∆v|∇ψr ∈ L2(Ω × [0, T ]), (3.4.23) implies:

lim
k→∞

|
∫ t

0

(|gδ ∗ ∆v|(∇(vk − v) + ∇(vk − v)t),∇ψr + ∇ψt
r)dζ| = 0 (3.4.34)

On the other hand, setting S̃ := maxx∈C |∇ψr(x)|, and using (3.4.20), we get:

|
∫ t

0

(|gδ ∗ ∆vk − gδ ∗ ∆v|)(∇vk,+∇vt
k),∇ψr + ∇ψt

r)dζ| ≤

S

(
∫ t

0

||gδ ∗ ∆vk − gδ ∗ ∆v||22,Cdζ

)1/2 (∫ t

0

||∇vk||22,Cdζ

)1/2

≤

S̃M1/2

(
∫ t

0

||gδ ∗ ∆vk − gδ ∗ ∆v||22,Cdζ

)1/2

Thus, using (3.4.26), we get:

lim
k→∞

|
∫ t

0

(|gδ ∗ ∆vk − gδ ∗ ∆v|)(∇vk + ∇vt
k),∇ψr + ∇ψt

r)dζ| = 0 (3.4.35)

Relations (3.4.33) - (3.4.35) yield:

lim
k→∞

|
∫ t

0

(|gδ ∗ ∆vk)(∇vk + ∇vt
k − |gδ ∗ ∆v|(∇v + ∇vt),∇ψr + ∇ψt

r)dζ| = 0(3.4.36)

Therefore, taking the limit over k → ∞ in (3.4.28), and using (3.4.28), (3.4.32) and

(3.4.36), we get:
∫ t

0

{−Re−1(∇v,∇vr) − (v · ∇v, ψr}dζ = −
∫ t

0

(f , ψr)dζ + (v(t), ψr) − (v(0), ψr)

+ δ3

∫ t

0

(|gδ ∗ ∆v|(∇v + ∇vt),∇ψr + ∇ψt
r)
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However, from Lemma 2.3 in [38] we know that every function ψ ∈ D(Ω) can be

uniformly approximated in C2(Ω) by functions of the form

ψN(x) =

N
∑

r=1

γrψr(x) , N ∈ N, γr ∈ R

So, writing (3.4.35) with ψN instead of ψr, and passing to the limit as N → ∞, we

get the validity of (3.4.35) for all ψ ∈ D(Ω). Thus, v is a weak solution of (3.4.15).



Chapter 4

Numerical Analysis of LES Models

4.1 Convergence of Finite Element Approximations

of Large Eddy Motion

This chapter considers “numerical-errors” in LES. Specifically, for one fil-

tered flow model, we show convergence of the semidiscrete finite element approxima-

tion of the model and give an estimate of the error.

Motivated by the presentations in Chapter 2 and Chapter 3, this chapter

considers a class of LES models, including the classical LES model (developed in [14])

and the Galdi-Layton LES model (developed in [30]). This class of LES models can be

written generically as: find (w, q), where w : Ω(⊂ R
d)×[0, T ] → R

d, p : Ω×(0, T ] → R

satisfying:







































































wt + ∇ · (ww) − Re−1∆w + ∇q + δ2∇ · (A−1(∇w∇w))

−∇ · (νT (w) ∇w) = f̄ , in Ω × (0, T ],

∇ · w = 0, in Ω × (0, T ],

w(x, 0) = ū0(x) in Ω,

+ Boundary conditions on Γ = ∂Ω.

(4.1.1)

The notation and terms in (4.1.1) require some explanation. The opera-

tor A−1 denotes a regularization operator, described below. The term ∇w∇w is

50
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shorthand for the 2-tensor:

(∇w∇w)ij :=
d
∑

`=1

∂wi

∂x`

∂wj

∂x`

The function νT (w) is the “turbulent viscosity” coefficient arising from the

subgridscale model employed for turbulent fluctuations. A detailed presentation of the

choices for νT is given in Chapter 3. In this chapter we will use the most commonly

used Smagorinsky [84] model (described in Section 3.1), in which, for clarity, we

replace ∇w + ∇wt by ∇w:

νT (w) = Csδ
2|∇w|.

The domain Ω is assumed to be bounded, simply connected and have C1

boundary Γ. The question of boundary conditions for (4.1.1) is a fundamental ques-

tion in LES. There are various proposals; we impose a boundary condition suggested

in [30] and developed in [83]. If the fluid particles adhere to the walls, it does not

follow that the large eddies also “stick”. (In fact, it is clear that large eddies do

move slip along walls and lose energy as they slip.) The conditions we impose are

no-penetration and slip with resistance. Specifically,















w · n̂ = 0, on ∂Ω,

w · τ̂j + β−1(δ, Re)t · τ̂j = 0, on ∂Ω, j = 1, d− 1.

(4.1.2)

Here β(δ, Re) is the friction coefficient, and the vectors n̂ and τ̂j (where j = 1

if d = 2 and if d = 3, j = 1, 2) denote the unit normal and tangent vectors to Γ where,

if d = 3, τ̂1 ⊥ τ̂2. If d = 3, all terms in which τ̂j occurs should (by understanding) be

summed from j = 1, 2; for example, ||w · τ̂j||2Γ means
∑2

j=1 ||w · τ̂j||2Γ. Also t represents

the Cauchy stress vector associated with w. Specifically,

t = n̂ · [−qI − δ2A−1(∇w∇w) +Re−1∇w + νt(w)∇w].

There are several natural choices for the regularization A−1 in (4.1.1). The

most commonly used model was with no regularization, i.e. A−1 ≡ I (see [69], [14],

[3], [16]). A more careful derivation of the LES model in [30] suggests the inclusion

of the regularization operator A−1 in the system (4.1.1). One choice of A−1 is simply

to reapply the spatial filter underlying (4.1.1): A−1v = gδ ∗ v; another possibility is

A−1v = (−δ2∆ + I)−1v. The convergence analysis in this chapter is for the classical

model of [69], [14] with no regularization, A−1 ≡ I.
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We now introduce the notation for the functional setting. The L2(Ω) norm

and inner product are denoted || · || and (·, ·). The L2(Γ) norm and inner product are

denoted || · ||Γ and (·, ·)Γ. The L3(Ω) norm is || · ||L3 and the Sobolev W k,p(Ω) norm

is denoted || · ||k,p, with p omitted if p = 2. See, e.g., [27] for a clear development of

Sobolev spaces focusing on those important for the Navier-Stokes equations.

The velocity space is X := {v ∈ W 1,2(Ω)d : v · n̂ = 0 on Γ}. The pressure

space is Q := L2
0(Ω) where L2

0(Ω) := {λ(x) ∈ L2(Ω) : (λ, 1) = 0}. Mathematical prop-

erties of such velocity-pressure spaces are developed in, e.g., [35], [38], [39], [65], [73].

There are two fundamental issues in large eddy simulation: assessment of

“modeling errors” and “numerical errors”. The modeling error refers to the question

of how close w(x, t) is to the true flow averages: |||w − ū||| for some norm ||| · |||.
To our knowledge, there are no analytical results to date on this question, but there

are experimental results comparing various averages of w to those same averages of

ū (i.e. averages of averages of u). Accepting w(x, t) as an interesting model for

ū, “numerical errors” describe how close an approximation wh is to w. This leads

to classical questions of stability, consistency and convergence for approximations of

(4.1.1).

This chapter considers precisely this question for finite element approxima-

tions of (4.1.1). In Theorem 4.3.1 we show that the usual, continuous in time, finite

element approximation to (4.1.1), wh, converges to w as the meshwidth h → 0 for

the Reynolds number Re and averaging radius δ fixed.

This analysis leads to interesting questions beyond the case of the usual

Navier-Stokes equations (pioneered by Heywood and Rannacher in a series of pa-

pers [40], [41], [42], [43]), including: the case of slip with friction boundary condi-

tions (4.1.2) (see e.g., [65], [73] for some work related to this case), the degeneracy of

the µ-Laplacian based subgridscale model in (4.1.1) (see, e.g., [21], [62] for numerical

analysis of the equilibrium model composed of NSE + µ-Laplacian), the “cross-term”

δ2∇· (∇w∇w) in (4.1.1) which is non-monotone, nonlinear and higher order, and the

dependence of the error on the Reynolds number Re, and the averaging radius δ.

Our convergence analysis comes to grips with some of these questions but not

all. In particular, we prove convergence as h→ 0 for fixed Re. In some sense, Theorem

4.3.1 shows that the parameter δ does not degrade convergence. Naturally, it is hoped

and expected that a sharper analysis would show that its presence in the model results

in improved estimates. The degeneracy in the Smagorinsky [84] subgridscale model
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is not an essential difficulty but (surprisingly) its polynomial growth, which must

match that of the cross term to ensure boundedness of the kinetic energy in w, seems

to cause suboptimality in the resulting error estimates. This issue has recently been

studied in a simplified setting in [50].

Nevertheless, convergence wh → w as h → 0 is proven. The long term

analytical goals in the numerical analysis of large eddy simulation are then to sharpen

this result especially with respect to error dependence on δ and Re, where possible,

and complement it with analysis of the modeling error. Preliminary steps in this last

direction have recently been made in [52] for a different class of LES model.

4.2 Variational Formulation of the Model

A detailed presentation of existence results for weak solutions of (4.1.1) has

been given in Chapter 2 and Chapter 3. Although existence of strong solutions is

still an open problem, we shall nevertheless assume that (4.1.1), (4.1.2) has a unique

strong solution. Any additional required smoothness on (w, q) will be explicitly stated

as it is used. Since the boundary conditions on w are not simple Dirichlet conditions,

extra care must be taken in developing a variational formulation of (4.1.1) in (X,Q).

Consider the following term, for v ∈ X:

∫

Ω

∇ · [qI + δ2(∇w∇w) − (Re−1 + νT (w))∇w] · v dx =
∫

Γ

n̂ · [qI + δ2(∇w∇w) − (Re−1 + νT (w))∇w] · v ds−
∫

Ω

q∇ · v + [δ2(∇w∇w) − (Re−1∇w + νT (w))∇w] : ∇v dx.

Decomposing v = (v·τ̂j)τ̂j+(v·n̂)n̂ = (v·τ̂j)τ̂j in the first integral, cancelling

the obvious terms and using (4.1.2), gives:

∫

Ω

∇ · [qI + δ2(∇w∇w) − (Re−1 + νT (w))∇w] · v dx =

β(δ, Re)

∫

Γ

(w · τ̂j)(v · τ̂j) ds−
∫

Ω

q∇ · v + [δ2(∇w∇w) − (Re−1 + νT (w))∇w] : ∇v dx (4.2.3)
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With the integral identity (4.2.3) in mind, the strong solution of (4.1.1),

(4.1.2) is a differentiable map w : [0, T ] → X, q : (0, T ] → Q satisfying:



































(wt,v) − (q,∇ · v) + β(δ, Re)(w · τ̂j,v · τ̂j)Γ + ((Re−1 + νT (w))∇w,∇v)

− (w · ∇v,w) − δ2((∇w∇w),∇v) = (f̄ ,v),

(λ,∇ · w) = 0,

(4.2.4)

for all (v, λ) ∈ (X,Q). The next lemma is fundamental to energy estimation. Its

proof is the same index calculation as in the case of the no-slip boundary condition.

Lemma 4.2.1 For any u,v,w ∈ X satisfying ∇ · w = 0

(w · ∇v,u) = −(w · ∇u,v).

Thus, (v · ∇v,v) = 0 for any such v and

(v · ∇v,w) =
1

2
(v · ∇v,w) − 1

2
(v · ∇w,v).

Proof: Using the divergence theorem, w · n̂ = 0 on Γ for all w ∈ X, and ∇ · w = 0,

we get:

(w · ∇v,u) + (w · ∇u,v) =

∫

Ω

d
∑

i=1

(

wi
∂vj

∂xi

uj + wi
∂uj

∂xi

vj

)

dx

=

∫

Ω

d
∑

i=1

wi
∂

∂xi
(vjuj) dx

=

∫

Γ

d
∑

i=1

∂

∂xi
(vjuj)win̂i ds−

∫

Ω

d
∑

i=1

∂wi

∂xi
vjuj dx

= 0,

which completes the proof.

The next two technical lemmas quantify the control the model of turbulent

diffusion exerts over the interaction of large and small eddies. They are also the key

for proving existence of weak solutions, as we have seen in Chapter 2 and Chapter 3.

Define, for compactness,

F (w) := (Re−1 + νT (w))∇w − δ2(∇w∇w). (4.2.5)
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Lemma 4.2.2 Let νT (w) := Csδ
2|∇w|, where Cs = Cs(Ω) is large enough. Then,

there is a constant C such that for any v1,v2 ∈ X:

(F (v1) − F (v2),∇(v1 − v2)) + β(δ, Re)((v1 − v2) · τ̂j, (v1 − v2) · τ̂j)Γ ≥
Re−1||∇(v1 − v2)||2 + CCsδ

2||∇(v1 − v2)||3L3 + β(δ, Re)||(v1 − v2) · τ̂j||2Γ.

Remark: This lemma does not include the ∇· (ww) nonlinearity describing how the

large eddies convect themselves. Due to this ∇·(ww) term the nonlinearity in (4.1.1)

is not monotonic.

Proof: Let F̃ (w) := (Re−1 + Csδ
2|∇w|)∇w − δ2(∇w∇w).

Note that F (w) = F̃ (w) + Csδ
2|∇w|∇w.

Letting vγ := γv1 + (1 − γ)v2, γ ∈ [0, 1], and using the µ-Laplacian’s strong mono-

tonicity (see, e.g., [62]) and the approach in [16], we get for Cs ≥ 4:

(F (v1) − F (v2),∇(v1 − v2)) + β(δ, Re)((v1 − v2) · τ̂j, (v1 − v2) · τ̂j)Γ =

β(δ, Re)‖(v1 − v2) · τ̂j‖2
Γ + (F (v1) − F (v2),∇(v1 − v2)) ≥

β(δ, Re)‖(v1 − v2) · τ̂j‖2
Γ +

∫

Ω

(
∫ 1

0

d

dγ
F̃ (vγ)dγ

)

∇(v1 − v2))dx + CCsδ
2||∇(v1 − v2)||3L3 ≥

β(δ, Re)‖(v1 − v2) · τ̂j‖2
Γ +Re−1||∇(v1 − v2)||2 + CCsδ

2||∇(v1 − v2)||3L3 +
∫

Ω

∫ 1

0

(

1

2
Csδ

2|∇vγ| |∇(v1 − v2)|2 − δ2|∇vγ||∇(v1 − v2)|2 − δ2|∇vγ||∇(v1 − v2)|2
)

dγdx ≥

β(δ, Re)‖(v1 − v2) · τ̂j‖2
Γ +Re−1||∇(v1 − v2)||2 + CCsδ

2||∇(v1 − v2)||3L3

The next technical lemma concerns the continuity properties of F (·).

Lemma 4.2.3 Assume νT (w) := Csδ
2|∇w|. Then, there is a constant C such that

for any v1,v2, φ ∈ X with ||∇v1||L3 ≤ r and ||∇v2||L3 ≤ r,

(F (v1) − F (v2),∇φ) ≤ C̄3rδ2||∇(v1 − v2)||L3||∇φ||L3 +Re−1||∇(v1 − v2)|| ||∇φ||.

Proof: Using the Cauchy-Schwarz inequality and adding and subtracting terms as

appropriate, gives:



56

(F (v1) − F (v2),∇φ) = Re−1‖∇(v1 − v2)‖‖∇φ‖ +

Csδ
2(|∇v1|∇v1 − |∇v2|∇v2,∇φ) + δ2(∇v1∇v1 −∇v2∇v2,∇φ) ≤

Re−1‖∇(v1 − v2)‖‖∇φ‖ + Csδ
2(|∇v1|∇v1 − |∇v1|∇v2 + |∇v1|∇v2 − |∇v2|∇v2) +

δ2(∇v1∇v1 −∇v1∇v2 + ∇v1∇v2 −∇v2∇v2,∇φ) ≤
Re−1‖∇(v1 − v2)‖‖∇φ‖ + Csδ

2‖∇v1‖L3‖∇(v1 − v2)‖L3‖∇φ‖L3 +

Csδ
2‖∇(v1 − v2)‖L3‖∇v2‖L3‖∇φ‖L3 + δ2‖∇v1‖L3‖∇(v1 − v2)‖L3‖∇φ‖L3 +

δ2‖∇(v1 − v2)‖L3‖∇v2‖L3‖∇φ‖L3,

which proves the lemma.

Using these lemmas, an energy bound for the solution of the continuous problem

(4.1.1), (4.1.2) can be proven. (This first bound is the foundation upon which an

existence theory for (4.1.1), (4.1.2) is built).

Proposition 4.2.1 [Leray’s inequality for the Large Eddy Model].

Let w(x, t) satisfy (4.2.4). Then, w satisfies the energy inequality:

1

2
||w(t)||2 +

∫ t

0

[β(δ, Re)||w · τ̂j||2Γ +Re−1||∇w||2 + CCsδ
2||∇w||3L3] dt′

≤ 1

2
||w(0)||2 +

∫ t

0

(f̄ ,w) dt′,

for any t > 0.

Proof: Set v = w and λ = q in (4.2.4). Using Lemma 4.2.2 then gives:

1

2

d

dt
||w||2 +Re−1||∇w||2 + CCsδ

2||∇w||3L3 + β(δ, Re)||w · τ̂j||2Γ ≤ (f̄ ,w),

from which the energy inequality follows.

The Nonlinear Galerkin Projection under Slip with Friction Boundary

Conditions

Before proceeding with the error analysis of the nonlinear, time dependent

problem, we give estimates of two equilibrium projections. The first (Proposition

4.2.2) gives an estimate of the error in the nonlinear Galerkin projection obtained
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by dropping time dependence and convection (hence retaining only those terms as-

sociated with the turbulence modeling.) This estimate is not optimal - reflecting the

quadratic growth in the model’s nonlinearity. (Suboptimal estimates similar to this

also occur in error analysis of problems, such as the µ-Laplacian [5], which are locally

Lipschitz and strongly monotone in the sense of Vainberg [89].) Proposition 4.2.2

thus gives an idea of rates of convergence attainable in more complex settings as well.

After that, in Proposition 4.2.3, we give an analysis of the error in the Galerkin ap-

proximation to the Stokes problem with slip with friction boundary conditions. This

projection is used essentially in the analysis of the time dependent problem in Section

4.3.

We assume that the velocity-pressure space (Xh, Qh) satisfies the natural

( [65], [73]) inf-sup condition associated with slip with friction conditions on Γ:

inf
λh∈Qh

sup
vh∈Xh

(λh,∇ · vh)

||λh||
[

||∇vh||2 + ||vh · τ̂j||21
2
,Γ

]1/2
≥ α > 0. (4.2.6)

Under this condition, the space of discretely divergence-free functions V h

V h := {vh ∈ Xh : (λh,∇ · vh) = 0, ∀ λh ∈ Qh}

is well defined ( [35], [39]).

Proposition 4.2.2 Let χh denote the best approximation of w in V h and assume

||∇χh||L3 ≤ C̄||∇w||L3. Assume also the conditions of Lemma 4.2.2 hold. Let w̃ ∈ V h

be defined by

(F (w) − F (w̃),∇vh) + β(δ, Re)((w − w̃) · τ̂j,vh · τ̂j)Γ = 0, for all vh ∈ V h.

Then, w̃ ∈ V h exists uniquely and the error w − w̃ satisfies:

β(δ, Re)||(w − w̃) · τ̂j||2Γ +Re−1||∇(w − w̃)||2 + CCsδ
2||∇(w − w̃)||3L3 ≤

≤ C{(CCs)
−1/2(C||∇w||L3)3/2δ2||∇(w − χh)||3/2

L3 +

Re−1||∇(w − χh)||2 + β(δ, Re)||(w − χh) · τ̂j||2Γ},

where C,C and C̄ are constants.

Proof: That w̃ exists uniquely follows from standard arguments using monotonicity

following Minty’s Lemma ( [76], [74]).
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Adding and subtracting terms gives:

β(δ, Re)((χh − w̃) · τ̂j,vh · τ̂j)Γ + (F (χh) − F (w̃),∇vh) =

β(δ, Re)((χh − w) · τ̂j,vh · τj)Γ + (F (χh) − F (w),∇vh), ∀ vh ∈ V h.

Setting vh = χh − w̃ and using Lemma 4.2.2, gives:

β(δ, Re)||(χh − w̃) · τ̂j||2Γ +Re−1||∇(χh − w̃)||2 + CCsδ
2||∇(χh − w̃)||3L3 ≤

≤ (F (χh) − F (w),∇(χh − w̃)) + β(δ, Re)((χh − w) · τ̂j, (χh − w̃) · τ̂j)Γ

Thus, using the Cauchy-Schwarz inequality, Young’s inequality and Lemma 4.2.3,

gives:

β(δ, Re)||(χh − w̃) · τ̂j||2Γ +Re−1||∇(χh − w̃)||2 + CCsδ
2||∇(χh − w̃)||3L3 ≤

≤ 1

2
Re−1||∇(χh − w)||2 +

1

2
Re−1||∇(χh − w̃)||2 +

β(δ, Re)

2
||(χh − w̃) · τ̂j||2Γ +

β(δ, Re)

2
||(χh − w) · τ̂j||2Γ +

C̄3rδ2||∇(χh − w̃)||L3||∇(w − χh)||L3,

where r = max{||∇χh||L3, ||∇w||L3}, which is bounded by C||∇w||L3. Collecting

terms, gives:

β(δ, Re)||(χh − w̃) · τ̂j||2Γ +Re−1||∇(χh − w̃)||2 + 2CCsδ
2||∇(χh − w̃)||3L3 ≤

δ26C̄r||∇(χh − w̃)||L3||∇(w − χh)||L3 +Re−1||∇(w − χh)||2 +

β(δ, Re)||(w − χh) · τ̂j||2Γ.

Using Young’s inequality and the triangle inequality, completes the proof.

Remark 4.2.1 For stability estimates of the L2 projection, the reader is referred

to [19] and [90].

The Stokes Projection under Slip with Friction Boundary Conditions

We consider the linear projection operator Π(w, q) = (w̃, q̃) ∈ (Xh, Qh)

defined by solving the following discrete Stokes problem. (w̃, q̃) satisfies:

Re−1(∇(w − w̃),∇vh) + β(δ, Re)((w − w̃) · τ̂j,vh · τ̂j)Γ − (q − q̃,∇ · vh) = 0,

(∇ · (w − w̃), λh) = 0, for all (vh, λh) ∈ (V h, Qh).
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This is equivalent to the following. Find w̃ ∈ V h satisfying

Re−1(∇(w − w̃),∇vh) + β(δ, Re)((w − w̃) · τ̂j,vh · τ̂j)Γ − (q − λh,∇ · vh) = 0,

for all vh ∈ V h and for any λh ∈ Qh.

Proposition 4.2.3 Suppose the discrete inf-sup condition (4.2.6) holds. Then, (w̃, q̃)

exists uniquely in (Xh, Qh). The error satisfies:

Re−1||∇(w − w̃)||2 + β(δ, Re)||(w − w̃) · τ̂j||2Γ ≤
≤ C inf

λh∈Qh
vh∈V h

{Re−1||∇(w − vh)||2 + β(δ, Re)||(w − vh) · τ̂j||2Γ +Re||q − λh||2} ≤

≤ C inf
λh∈Qh

vh∈Xh

{max{Re−1, β(δ, Re)}(||∇(w − vh)||2 + ||(w − vh) · τ̂j||2Γ) +

Re||q − λh||2}.

Proof: Let Ih(w) denote some approximation of w in V h. Decompose the error as

w−w̃ = η−φh where η = w−Ih(w) and φh = wh−Ih(w) ∈ V h. The error equation

can then be rewritten, picking vh = φh, as:

Re−1(∇φh,∇φh) + β(δ, Re)(φh · τ̂j, φh · τ̂j)Γ =

Re−1(∇η,∇φh) + β(δ, Re)(η · τ̂j, φh · τ̂j)Γ − (q − λh,∇ · φh)

Using the Cauchy-Schwarz inequality and ||∇ · φh|| ≤ ||∇φh||, we get:

Re−1||∇φh||2 + β(δ, Re)||φh · τ̂j||2Γ ≤ 2
(

Re−1||∇η||2 + β(δ, Re)||η · τ̂j||2Γ +Re||q − λh||2
)

.

By the triangle inequality, we get:

Re−1||∇(w − w̃)||2 + β(δ, Re)||(w − w̃) · τ̂j||2Γ ≤
≤ C inf

λh∈Qh
vh∈V h

{Re−1||∇(w − vh)||2 + β(δ, Re)||(w − vh) · τ̂j||2Γ +Re||q − λh||2}

The stated result with infimum taken over Xh follows since, under the discrete inf-sup

condition (4.2.6), it is known that if ∇ · w = 0 the infimum over V h can be replaced

by an infimum over Xh (relation (1.12) on p.60 in [35]).
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4.3 Finite Element Approximation of Large Eddy

Motion

The usual, continuous-in-time, Galerkin finite element approximation of the

solution of (w, q) of the large eddy model (4.1.1), (4.1.2), is defined as follows. First,

finite dimensional, finite element subspaces

Xh ⊂ X, Qh ⊂ Q

are selected satisfying the discrete inf-sup condition:

inf
λh∈Qh

sup
vh∈Xh

(λh,∇ · vh)

||λh||
[

||∇vh||2 + ||vh · τ̂j||21
2
,Γ

]1/2
≥ C > 0. (4.3.7)

The continuous-in-time approximations (wh, qh) are maps wh : [0, T ] → Xh, qh :

(0, T ] → Qh, satisfying wh(0) approximates ū0 in Xh, and


































(wh
t ,v

h) − (qh,∇ · vh) + β(δ, Re)(wh · τ̂j,vh · τ̂j)Γ + (Re−1 + νT (wh)∇wh,∇wh)

− δ2(∇wh∇wh),∇wh) +
1

2
(wh · ∇wh,vh) − 1

2
(wh · ∇vh,wh) = (f̄ ,vh)

(λh,∇ ·wh) = 0,

(4.3.8)

for all (vh, λh) ∈ (Xh, Qh). Using V h and the nonlinear operator F (·) defined by

(4.2.5), the approximation (4.3.8) can be written more compactly. wh : [0, T ] → V h

satisfes:

(wh
t ,v

h) + β(δ, Re)(wh · τ̂j,vh · τ̂j)Γ + (F (wh),∇vh) + (4.3.9)

+ b(wh,wh,vh) = (f̄ ,vh), for all vh ∈ V h,

where, as before, b(·, ·, ·) is explicitly skew-symmetrized b(u,v,w) := 1
2
(u · ∇v,w) −

1
2
(u · ∇w,v). The method (4.3.9) is stable. It satisfies the same energy inequality as

the continuous problem.

Proposition 4.3.1 [Leray’s inequality for wh]. Let wh satisfy (4.3.8). Then, wh

satisfies:

1

2
||wh(t)||2 +

∫ t

0

[

β(δ, Re)||wh · τ̂j||2Γ +Re−1||∇wh||2 + CCsδ
2||∇wh||3L3

]

dt′

≤ 1

2
||wh(0)||2 +

∫ t

0

(f̄(t′),wh(t′)) dt′.
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In particular,

||wh(t)||2 +

∫ T

0

[

β(δ, Re)||wh · τ̂j||2Γ +Re−1||∇wh||2
]

dt ≤

||wh(0)||2 + Cmax{Re, β(δ, Re)−1}
∫ T

0

||f̄(t)||2 dt.

Proof: The proof is the same as that of Proposition 4.2.1.

By a similar argument, we obtain a particularly simple bound on ||wh(t)||,
uniform in both Re and δ.

Lemma 4.3.1 Let wh satisfy (4.3.8). Then,

max
0≤t≤T

||wh(t)|| ≤ ||wh(0)|| +
∫ T

0

||f̄(t)|| dt.

Proof: Set vh = wh and λh = qh in (4.3.8). Dropping the non-negative terms

resulting on the L.H.S., gives:

1

2

d

dt
||wh(t)||2 ≤ (f̄ ,wh) ≤ ||f̄ || ||wh||.

Thus,
d

dt
||wh(t)|| ≤ ||f̄(t)||, and the result follows.

Combining this lemma and Proposition 4.2.1, gives an a priori bound on the

quantity

ah(t) := ||wh(t)||1/2
(

||∇wh||2 + ||wh · τ̂j||2Γ
)1/4

.

Lemma 4.3.2 With ah(t) as above, ah(t) ∈ L4(0, T ) uniformly in h. Indeed,

||ah(t)||4L4(0,T ) ≤
(

||wh(0)|| +
∫ T

0

||f̄(t)|| dt
)2

(

max{Re, β(δ, Re)−1}||wh(0)||2 + Cmax{Re, β(δ, Re)−1}2

∫ T

0

||f̄(t)||2 dt
)

.

Proof:

||ah(t)||4L4(0,T ) ≤ ||wh||2L∞(0,T )

∫ T

0

||∇wh||2 + ||wh · τ̂j||2Γ dt.

The result now follows from Proposition 4.3.1 and Lemma 4.3.1.

The method (4.3.8) reduces existence of wh to existence for a system of

ordinary differential equations in V h. The Cauchy-Schwarz inequality and Proposition
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4.3.1 give immediately an a priori bound on wh(t). Thus, wh(x, t) exists uniquely.

Using (4.3.7) and standard arguments, (see [35]), qh does as well.

We now turn to the error in the approximation wh of w. There are many

interesting and important questions in the error analysis of large eddy simulation.

These include dependence of the errors upon Re and δ, including cases in which δ and

h are related. In this report we consider only the first without which later steps are not

imaginable: we consider convergence of wh to w as h→ 0 for Re and δ fixed. For the

above reasons, this is already nontrivial. Further, if there were a convergence result

for wh to w which was uniformly in δ, this would immediately imply a convergence

result w → u (the solution of the underlying Navier-Stokes equations) as δ → 0.

Such a result has never been proven (to the author’s knowledge) for any conventional

turbulence model and only for the Camassa-Holm’s model and one large eddy model

(see [66]).

Theorem 4.3.1 Suppose ∇w ∈ L4(0, T ;L2(Ω)), w · τ̂j ∈ L4(0, T ;L2(Γ)), and the

discrete inf-sup condition (4.3.7) holds. Let w̃ denote the Stokes projection of w into

V h, and suppose ||∇w̃||L3 ≤ C||∇w||L3. Then, the error e = w − wh satisfies

||e||2L∞(0,T ;L2) + β(δ, Re)||e · τ̂j||2L2(0,T ;L2(Γ)) +Re−1||∇e||2L2(0,T ;L2) + CCsδ
2||∇e||3L3(0,T ;L3)

≤ C∗(T )||w(0)− wh(0)||2 + β(δ, Re)||(w − w̃) · τ̂j||2L2(0,T ;L2(Γ))

+Re−1||∇(w − w̃)||2L2(0,T ;L2) + C∗(T )||wt − w̃t||2L2(0,T ;L2) +

+C∗(T )(C̄r)3/2(CCs)
−1/2δ2||∇(w − w̃)||3/2

L3/2(0,T ;L3(Ω))
+

C∗(T ) max{Re, β(δ, Re)−1}[||∇w||2L4(0,T ;L2) + ||w · τ̂j||2L4(0,T,L2(Γ)) + ||ah(t)||2L4(0,T )] ·
·[||∇(w − w̃)||2L4(0,T ;L2) + ||(w − w̃) · τ̂j||2L4(0,T ;L2(Γ))].

Remark 4.3.1 The norm ||ah(t)||L4(0,T ) is bounded by problem data in Lemma 4.3.2,

and C∗(T ) = C exp
[

C max{Re, β(δ, Re)−1}||w||2L4(0,T ;H1)

]

. The error in the Stokes

projection w̃ is bounded by approximation theoretic terms in Proposition 4.2.3.

Remark 4.3.2 The dependence of constants upon Re (which is >> O(1), typically)

and β(δ, Re) (which → 0 as Re→ ∞, typically, [83]) is as expected. It would be very

interesting (and certainly challenging) to sharpen the dependence of these constants on

Re. On the other hand, some of the suboptimality (in terms of rates of convergence as

h→ 0) parallels that of the simple nonlinear projection studied in Proposition 4.2.2.
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Proof: Letting e = w−wh and vh ∈ V h, an error equation is obtained by subtracting

(4.3.8) from (4.2.4). This yields

(et,v
h) + β(δ, Re)(eh · τ̂j,vh · τ̂j)Γ (4.3.10)

+ (F (w) − F (wh),vh) + b(w,w,vh) − b(wh,wh,vh) = (q − λh,∇ · vh),

where λh ∈ Qh is arbitrary. Let w̃ ∈ V h denote an approximation to w. Then, with

η = w− w̃ and φh = (wh − w̃) ∈ V h, the error equation (4.3.10) can be rewritten as:

(φh
t ,v

h) + β(δ, Re)(φh · τ̂j,vh · τ̂j)Γ + (F (wh) − F (w̃),∇vh) =

b(w,w,vh) − b(wh,wh,vh) + (F (w) − F (w̃),∇vh) −
(q − λh,∇ · vh) + (ηt,v

h) + β(δ, Re)(η · τ̂j,vh · τ̂j)Γ. (4.3.11)

Motivated by (4.3.11), we shall take w̃ to be the Stokes projection under slip with fric-

tion boundary conditions, whose error is estimated in Proposition 4.2.3. Specifically,

w̃ ∈ V h satisfies:

β(δ, Re)((w − w̃) · τ̂j,vh · τ̂j)Γ +Re−1(∇(w − w̃) , ∇vh) − (q − λh,∇ · vh) = 0,

for all vh ∈ V h. (4.3.12)

With this definiton of w̃ some terms on the R.H.S. of (4.3.11) vanish, and the R.H.S.

of (4.3.11) becomes:

R.H.S. of (4.3.11) with this w̃ = b(w,w,vh) − b(wh,wh,vh)

+([νT (w)∇w − δ2(∇w∇w)] − [νT (w̃)∇(w̃) − δ2(∇w̃∇w̃)], ∇vh)

+(ηt,v
h). (4.3.13)

In (4.3.11), set vh = φh = wh − w̃ ∈ V h. Consider the resulting (nonlinear) eddy

viscosity terms with vh = φh.

([νT (w)∇w − δ2(∇w∇w)] − [νT (w̃)∇(w̃) − δ2(∇w̃∇w̃)],∇φh)

≤ (using Lemma 4.2.3) ≤ C̄3rδ2||∇(w − w̃)||L3||∇φh||L3 (4.3.14)

Using (4.3.14) in (4.3.11) with vh = φh, gives, using Lemma 4.2.2,

1

2

d

dt
||φh||2 + β(δ, Re)||φh · τ̂j||2Γ +Re−1||∇φh||2 +

+CCsδ
2||∇φh||3L3 ≤ b(w,w, φh) − b(wh,wh, φh) +

+||ηt|| ||φh|| + C̄3rδ2||∇η||L3 ||∇φh||L3. (4.3.15)
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Consider now the convection terms on the R.H.S. of this last inequality. Adding and

subtracting terms, gives:

b(w,w, φh) − b(wh,wh, φh) = b(w, e, φh) + b(e,w, φh) − b(e, e, φh).

By skew symmetry and e = η − φh, this reduces to:

b(w,w, φh) − b(wh,wh, φh) = b(w, η, φh) + b(e,w, φh) − b(e, η, φh). (4.3.16)

In the analysis of the trilinear form we will use the following lemma:

Lemma 4.3.3 (Lemma 2.2 (f) in [68]) For all u,v,w ∈ X

b(u,v,w) ≤ C
(

||∇u||2 + ||u · τ̂j||2Γ
)1/4 ||u||1/2||∇v||

(

||∇w||2 + ||w · τ̂j||2Γ
)1/2

We shall use this lemma in (4.3.16). To this end, note that by the energy inequalities

in Proposition 4.2.1 and Proposition 4.3.1, we have:

||wh|| ∈ L∞(0, T ), ||∇w||, ||∇wh|| ∈ L2(0, T ), (4.3.17)

and their indicated norms are bounded by problem data of (4.1.1) uniformly in h.

Thus,

|b(w, η, φh) + b(η,w, φh) − b(e, η, φh)| ≤ C
(

ah(t) + a(t)
)

||∇η|| ||∇φh||,

where ah(t) = ||wh||1/2(||∇wh||2 + ||wh · τ̂j||2Γ)1/4 and a(t) = (||∇w||2 + ||w · τ̂j||2Γ)1/2.

The remaining term on the R.H.S. of (4.3.16) is b(φh,w, φh). Using Lemma 4.3.3,

gives:

b(φh,w, φh) ≤ C(||∇φh||2 + ||φh · τ̂j||2Γ)3/4||φh||1/2||∇w||

≤ ε

2
(||∇φh||2 + ||φh · τ̂j||2Γ) +

C

ε
||∇w||4||φh||2.

Using these bounds in (4.3.16), gives for any ε > 0:

|b(w,w, φh) − b(wh,wh, φh)| ≤ ε(||∇φh||2 + ||φh · τ̂j||2Γ) +

C

ε
(ah(t)2 + a(t)2)(||∇η||2 + ||η · τ̂j||2Γ) +

C

ε
||∇w||4 ||φh||2.

Note that a(t) ∈ L2(0, T ) by the energy estimate, and we have assumed the ad-

ditional regularity in time that a(t) ∈ L4(0, T ). The form of ah(t) differs from
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a(t). Note that by Lemma 4.3.2, ah(t) ∈ L4(0, T ) uniformly in h. Picking ε =

1/2 min{Re−1, β(δ, Re)} and inserting this last estimate in (4.3.15), gives:

1

2

d

dt
||φh||2 +

β(δ, Re)

2
||φh · τ̂j||2Γ +

1

2
Re−1||∇φh||2 + CCsδ

2||∇φh||3L3 ≤

Cmax{Re, β(δ, Re)−1}(ah(t)2 + a(t)2)(||∇η||2 + ||η · τ̂j||2Γ) +

Cmax{Re, β(δ, Re)−1}||∇w||4||φh||2 + ||ηt|| ||φh|| +
C̄3rδ2||∇η||L3||∇φh||L3. (4.3.18)

Applying again Young’s inequality, for any ε > 0, gives:

C̄3rδ2||∇φh||L3||∇η||L3 ≤

≤ ε

3
δ2||∇φh||3L3 +

2

3
ε−1/2δ2(C̄3r)3/2||∇η||3/2

L3 ≤ (picking ε = CCs)

≤ 1

3
CCsδ

2||∇φh||3L3 + 2
√

3(C̄r)3/2(CCs)
−1/2δ2||∇η||3/2

L3 . (4.3.19)

Inserting (4.3.19) into (4.3.18) and collecting terms, gives:

1

2

d

dt
||φh||2 +

β(δ, Re)

2
||φh · τ̂j||2Γ +

1

2
Re−1||∇φh||2 +

2

3
CCsδ

2||∇φh||3L3 ≤

C max{Re, β(δ, Re)−1}(ah(t)2 + a(t)2)(||∇η||2 + ||η · τ̂j||2Γ) +
(

1

2
+ Cmax{Re, β(δ, Re)−1}||∇w||4

)

||φh||2 +
1

2
||ηt||2 +

2
√

3(C̄r)3/2(CCs)
−1/2δ2||∇η||3/2

L3 .

Since, by assumption, ||∇w||4 ∈ L1(0, T ), Gronwall’s inequality now implies:

max
0≤t≤T

||φh(t)||2 +

∫ T

0

β(δ, Re)||φh · τ̂j||2Γ +Re−1||∇φh||2 + CCsδ
2||∇φh||3L3 dt′ ≤

C∗(T )||φh(0)||2 + C∗(T )

∫ T

0

||ηt||2 + (C̄r)3/2(CCs)
−1/2δ2||∇η||3/2

L3 dt
′ +

C∗(T ) max{Re, β(δ, Re)−1}(||ah(t)||2L4(0,T ) + ||a(t)||2L4(0,T )) ·
(||∇η||2L4(0,T ;L2(Ω)) + ||η · τ̂j||2L4(0,T ;L2(Ω))),

where C∗(T ) = C exp[Cmax{Re, β(δ, Re)−1}||w||2L4(0,T,H1(Ω))].

The theorem now follows by the triangle inequality.



Chapter 5

Numerical Results

5.1 Objectives

The purpose of this chapter is to provide a careful numerical assessment and

comparison of the classical LES model:
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∂w

∂t
− Re−1∆w + ∇ · (ww) + ∇q + ∇ ·

(

δ2

2γ
∇w∇w

)

−∇ ·
(

Csδ
2|∇w|∇w

)

= f̄ in Ω,

∇ · w = 0 in Ω,

plus Initial and Boundary Conditions,

and the Galdi-Layton LES model:
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∂w

∂t
− Re−1∆w + ∇ · (ww) + ∇q + ∇ ·

[

(

− δ2

4γ
∆ + I

)−1(
δ2

2γ
∇w∇w

)

]

−∇ ·
(

Csδ
2|∇w|∇w

)

= f̄ , in Ω,

∇ · w = 0, in Ω,

plus Initial and Boundary Conditions.

as described in Section 2.2. Actually, two Galdi-Layton models will be considered :
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1. Galdi-Layton with convolution, where the smoothing operator
(

− δ2

4γ
∆ + I

)−1

is replaced by smoothing by direct convolution with the Gaussian filter, gδ;

2. Galdi-Layton with auxiliary problem, where the inverse operator is cal-

culated directly, solving a discrete Poisson problem.

In both the classical and the Galdi-Layton LES model, we are modeling the

turbulent fluctuations by a Smagorinsky term −∇ · (Csδ
2|∇w|∇w).

We are focusing herein on global, quantitative properties of the above mod-

els vis à vis those of (ū, p̄). Direct numerical simulation (DNS), the classical LES

model, the two variants of the Galdi-Layton LES model and the Smagorinsky model

are compared using the two–dimensional driven cavity problem. As noticed in Sec-

tion 2.2, Lemma 2.2.1 describes an exact cancellation property of the kinetic energy

contribution to the large eddies by their interaction with small eddies in the classical

model for two – dimensional smooth periodic in space solutions of the classical model.

Thus, the clear picture developed of the classical model as (incorrectly) stimulating

the kinetic energy in high frequencies of w is tested numerically in this chapter.

The simplest test problem which fits Proposition 2.2.3’s assumption in every

respect (except the boundary conditions) is the 2D driven cavity. We thus choose

this as being most favorable to the classical model and would anticipate the failure

of the classical model to be more severe in 3D.

5.2 Numerical Setting

This problem is given by Ω = (0, 1)2, the boundary conditions w = (1, 0)

for 0 < x < 1, y = 1, homogeneous Dirichlet boundary conditions at the other

boundaries, and f = 0 (see Figure 5.1). The driven cavity problem is a classical test

example used in a number of papers, e.g. [10], [16], [34]. The incompatibility of the

boundary conditions at the corners (0, 1) and (1, 1) leads to a non–smooth solution

such that in general analytical results, such as Proposition 2.2.3, do not hold. Also,

an appropriate initial condition for the time dependent problem is not agreed upon

in the literature. We have used a, so–called, impulsive start in our computations,

i.e. the velocity inside the domain is chosen zero at the beginning. It is well known

that such an impulsive start is inconsistent with the physical behaviour of the fluid,

see [36]. But, since we are interested in the long time behaviour of the flow, the choice
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of the initial condition does not play an important role as long as the computations

converge.

Y

(0,0)    X       (1,0)

(1,1)
   

(0,1)

      Horizontal
   flow

No slip

        No slip

No slip

Figure 5.1: Driven Cavity Test Problem.

We did computations for a low Reynolds number flow (Re = 400) and a high

Reynolds number flow (Re = 10000). Results for comparison are available for both

Reynolds numbers in [34]. All LES models are applied without turbulent viscosity

for Re = 400 and with the accepted and common Smagorinsky subgrid scale model

for the ∇ · (u′u′) term

νT = 0.01 δ2|D(w)|D(w) (5.2.1)

in the tests for Re = 10000. The pure Smagorinsky discretization uses also ( 5.2.1)

as turbulent viscosity.

All computations were carried out on equidistant grids with squares of size

h×h. First, the Navier–Stokes equations are discretized in time using the fractional–

step–θ–scheme which is analyzed for the time dependent Navier–Stokes equations

in [56]. This implicit scheme is of second order accuracy, more stable than the Crank–

Nicolson scheme and is a popular scheme in the temporal discretization of the Navier–

Stokes equations, e.g. see [87]. Unless mentioned otherwise, all computations were

carried out with the equidistant time step ∆t = 0.01.

The equations in each time step are discretized by the Q2/P
disc
1 finite ele-

ment discretization, Q2/P−1 in [37], i.e. the velocity is approximated by continuous

piecewise biquadratics and the pressure by discontinuous linears. This conforming
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pair of finite element spaces satisfies the inf–sup or Ladyzhenskaya–Babuška–Brezzi

stability condition. It is one of the most popular finite element discretizations for

Navier–Stokes equations, e.g. see [25], [37], and has been proven to be superior to

other discretizations in a recent study for a benchmark problem for laminar flows [53].

The fractional–step–θ–scheme divides each time step in three sub time steps.

In each sub time step, a nonlinear saddle point problem has to be solved. The

DNS and the Smagorinsky discretizations are treated always fully nonlinear. In the

LES models, the convective term and the turbulent viscosity term are also treated

implicitly whereas the additional term coming from the LES models is computed in

each sub time step before the nonlinear iteration and it is not changed within this

iteration. The linear problems are solved by a coupled multigrid method with Vanka–

type smoothers as studied numerically e.g. in [55], [53]. These algorithmic choices

are currently considered best in terms of reliability, stability and accuracy in finite

element CFD.

We present results for the mesh widths h = 1/32 ( 8 450 velocity degrees of

freedom, 3 072 pressure d.o.f.) and h = 1/64 ( 33 282 velocity d.o.f., 12 288 pressure

d.o.f.). If not mentioned otherwise, the averaging radius δ is chosen to be the diameter

of the mesh cell, i.e. the longest distance of two of its vertices, which is δ =
√

2h. All

computations were carried out with the code MooNMD2.4 [8].

5.3 The low Reynolds number flow

One property of a good turbulence model is that its use in a laminar or

low Reynolds number flow results in a solution which is very close to the solution

obtained with the DNS. All models in our study show a very similar behaviour with

respect to the kinetic energy and the H1–seminorm of the computed solutions, see

Figures 5.2, 5.3 and Table 5.1. This result contradicts the observations in [16] that

the classical LES with the P2/P1 spatial finite element discretization (Taylor/Hood)

on a triangular mesh does not give satisfying results for the driven cavity problem

with Re = 400. Since the essential difference in our study and the study presented

in [16] is the finite element discretization, the Q2/P
disc
1 finite element discretization

seems to have a better stabilization effect on the classical LES than the P2/P1 finite

element discretization.
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Figure 5.2: Kinetic energy, Re = 400, h = 1/64, δ =
√

2/64.

5.4 The high Reynolds number flow

The simulations with the classical LES and Smagorinsky type turbulent

viscosity of form (5.2.1) blow up in finite time for RE = 10000, see Figures 5.6 -

5.9. Table 5.2 shows that a refinement of the spatial mesh does not prevent the blow

up. A reduction of the time step on the same level prevents the blow up, but on

the next finer level, the simulations with the classical model blow up again. Even

more important, the simulations with the classical LES model blew up also for initial

conditions different from the impulsive start, e.g. we used the solutions of the other

models for h = 1/64 an at T = 1000, see Figure 5.10, as initial conditions. Even with

these fully developed flows as initial conditions, the simulations with the classical
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Figure 5.3: H1–semi norm, Re = 400, h = 1/64, δ =
√

2/64.

LES blew up within only few time steps, see Figures 5.4 and 5.5! Thus, the impulsive

start is not responsible for the failing of the classical LES.

The failure of the simulations with the classical LES is consistent with results

reported by Coletti in [16]. He reports blow up of the simulations with this model

for RE = 10000 and the P2/P1 finite element discretization. In other calculations we

have observed the same for the Taylor/Hood finite element on a quadrilateral grid

(Q2/Q1).

The above observations suggest the blow up of the kinetic energy in the

classical model, the reason being, in our opinion, that the classical model does indeed

stimulate rather than attenuate small eddies.
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Table 5.1: Result obtained for stationary state, Re = 400, h = 1/64, δ =
√

2/64.

model kinetic energy H1-semi norm
Galerkin 4.082648e-02 5.284203
classical LES 4.162151e-02 5.232359
Galdi/Layton with auxiliary problem 4.156234e-02 5.257608
Galdi/Layton with convolution 4.160454e-02 5.241819
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Figure 5.4: Blow up of classical LES starting with various fully developed flow fields.

The simulations with the Galdi/Layton model with the auxiliary problem

and with the Galdi/Layton model with convolution, both with turbulent viscosity

of type (5.2.1), do not blow up in contrast to the classical LES, see Figures 5.6 -

5.9. Both approaches give similar results for the global energy balance. From the

computational point of view, we found that the regularization using the auxiliary

problem is much cheaper than performing a convolution.

A closer look on the results presented in Figures 5.6 - 5.10 gives some re-

markable observations. The solutions obtained with all models (except the DNS for

h = 1/32) achieve a stationary or quasi–stationary (with very small oscillations)

state. The energy balance of the solutions obtained with the DNS is considerably

different for h = 1/32 and h = 1/64. That indicates that the discretization error in

space is still relative large. Also the streamline plot, Figure 5.10, left upper corner,

coincides with the results in [34] reasonably well but not perfeclyt. The kinetic energy

of all computed solutions for h = 1/64 is smaller than for h = 1/32. For h = 1/32,
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Figure 5.5: Streamlines of classical LES solution just before blow up (T = 1000.15

and starting with Smagorinsky solution).

Table 5.2: Blow up times for classical model, Re = 10000, δ =
√

2/64.

∆t\h 1/64 1/128
10−1 2 10−1 10−1

10−2 19 10−2 2 10−2

10−3 no blow up 8 10−3

10−4 no blow up 239 10−4

the kinetic energy of the DNS solution is larger than for the Smagorinsky solution

whereas the situation for h = 1/64 is vice versa. The kinetic energy for the solution

of both Galdi/Layton models is somewhat larger than for the DNS and Smagorinsky

solution.

The Galdi/Layton models as well as the Smagorinsky model show a smooth-

ing effect on the discrete solution. This can be seen form the fact that the H1–semi

norms of the discrete solutions is considerably smaller than for the discrete solution

obtained with the DNS, Figures 5.7 and 5.9. This can be expected since the solution

of the LES models approximates gδ ∗ u which is C∞(Rd), d = 2, 3 for any u having

bounded kinetic energy.

We used values reported in [34] to plot the pictures of the streamlines pre-

sented in Figure 5.10. Our plotting program is not able to plot streamlines with

absolute value less than 10−5 such that we could not plot all the values from [34]. As

mentioned above, the streamfunction for the DNS solution coincides reasonable well
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Figure 5.6: Kinetic energy, Re = 10000, h = 1/32, δ =
√

2/32.

with the results given in [34]. Of course, the streamfunctions of the solutions obtained

with the LES models must be different. These models are expected to suppress small

eddies. Because of the conservation of mass, in turn the larger eddies must become

even larger. This is achieved very well by both variants of the Galdi/Layton model,

Figure 5.10, upper right and lower left corner. The main vortex is in both cases

much larger than for the DNS solution and the small vortices are smaller. However,

the suppression of the small eddies results in quite different shapes of the various

secondary vortices, e.g. compare the lower left corner of the solutions.
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Figure 5.7: H1–semi norm, Re = 10000, h = 1/32, δ =
√

2/32.

5.5 The discretization of the viscous term

A result of our numerical studies which is not directly related to turbulence

models but we think is also of interest is presented in Figure 5.11. Often the gradient

formulation

(∇w,∇v) (5.5.2)

is used as variational form of the viscous term instead of the deformation tensor

formulation

2(ID(w), ID(v)). (5.5.3)

For smooth, divergence-free functions, the two formulations are equivalent. The form

(5.5.2) is easier to implement, less matrices have to be stored, and the discrete systems
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Figure 5.8: Kinetic energy, Re = 10000, h = 1/64, δ =
√

2/64.

are easier to solve. However, the numerical results obtained with both discretizations

may differ considerably. Whereas the solution obtained with (5.5.3) shows only small

and less oscillations in the H1–semi norm, the solution obtained with (5.5.2) oscillates

largely and with a much higher frequence. Thus, the flow computed with (5.5.2) has a

much more turbulent character than the flow with (5.5.3). Taking the Reynolds num-

ber and the mesh size into consideration, the turbulent behaviour of (5.5.2) seems to

be exaggerated such that we consider the solution obtained with (5.5.3) to be better.

The computational superiority of the deformation tensor to the gradient formulation

of the viscous terms and turbulent diffusion terms is consistent with an early obser-

vation of Schultz cited in Ames [4] of the superiority of tensor artificial viscosity in

multidimensional finite difference calculations. It is interesting that nonlinear artifi-
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Figure 5.9: H1–semi norm, Re = 10000, h = 1/64, δ =
√

2/64.

cial viscosities were used already in the 1950’s by von Neumann for compressible flow

with shocks, see e.g. Ames [4], Richtmyer and Morton [80].

5.6 Summary

We want to summarize the most important results of our numerical study:

• The Galdi/Layton LES models did not blow up in the numerical simulation of

a high Reynolds number flow for which the classical LES failed.
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Figure 5.10: Streamlines, upper left DNS, upper right Galdi/Layton with auxiliary

problem, lower left Galdi/Layton with convolution, lower right Smagorinsky, Re =

10000, h = 1/64, δ =
√

2/64, t = 200s.

• The qualitative study of the computed solutions show that the Galdi/Layton

LES models behave as expected: small eddies were suppressed and large eddies

became larger.

A quantitative investigation of the solutions obtained by the Galdi/Layton LES mod-

els, also for flows in three dimensional domains, is subject of a forthcoming study.
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Chapter 6

Conclusions and Future Resarch

In this thesis, we have analyzed the following LES models:

• the Galdi-Layton LES model, introduced in [30], modeling the cross terms

uu′ + u′u;

• three new LES models for the turbulent fluctuations u′u′, introduced in [51].

In Chapter 2, we sketched the derivation of the Galdi-Layton model, and

then we presented the existence, uniquenes and stability of weak solutions for this LES

model with a classical Smagorinsky term modeling the turbulent fluctuations. The

mathematical challenges in analyzing this LES model are those for the Navier-Stokes

equations plus the nonlinearity added by the two extra terms:

−∇ ·
[

(

− δ2

4γ
∆ + I

)−1(
δ2

2γ
∇w∇w

)

]

, modeling the cross terms (6.0.1)

−∇ ·
[

Csδ
2|∇w|2µ∇w

]

, modeling the turbulent fluctuations (6.0.2)

Mathematically, the Smagorinsky term (6.0.2) is strongly monotone, and

thus helps in the analysis. The difficult term is (6.0.1). In the classical (traditional)

model ([14]), the corresponding term is −∇·
[(

δ2

2γ
∇w∇w

)]

. It is interesting to note

that the inverse operator in (6.0.1) not only that appears naturally in the derivation of

the Galdi-Layton model, but is also helpful in the mathematical analysis. Specifically,

in Lemma 2.2.1, we use the elliptic regularity introduced by

(

− δ2

4γ
∆ + I

)−1

to prove

the first a priori estimate on w for µ ≥ 0.1. This is a better result compared with the

corresponding one obtained by Coletti in [16] (i.e. µ ≥ 0.5), since we are not forced

to introduce too much extra viscosity in the system. However, we have to note that

whereas our result is for small data, the corresponding one in [16] is for large data.

80



81

Furthermore, due to the fact that

(

− δ2

4γ
∆ + I

)−1

is a global operator, we have to

use te smallness of data in order to replicate the result in [16] on the monotonicity of

the sum of operators (6.0.1) and (6.0.2).

It is the author’s belief that the mathematical analysis of the Galdi-Layton

LES model can be improved in this respect. Specifically, we should try to find new

approaches to avoid imposing the smallness of data. For example, following the

remark at the end of Chapter 2, for µ small enough, we can obtain an a priori bound

on ∆w; since we cannot use the Faedo-Galerkin method anymore, we can try to use

a modified version of the approach in [38].

Another research direction is to investigate how low the power µ can be in

order to guarantee existence of weak solutions. It seems that for the approach we have

used in this thesis, µ ≥ 0.1 is sharp; thus, we should try to find alternative approaches

to decrease the lower bound for µ, an important result not only theoretically, but also

practically.

But probably the most important research direction concerning the Galdi-

Layton LES model is the model itself. Specfically, a very natural question we can

ask ourselves is “Why should we expand everything in terms of δ2 only? Why not

go farther, to δ4, say?” The advantage of such an approach would be that we could

hope to get a more accurate LES model. For example, instead of chopping off the

turbulent fluctuations term u′u′ (of order δ4) and then modeling it, we could just take

it into account through our approximation! This approach is, however, beset with

difficulties, such as an appropriate treatment of the higher order derivatives resulting

from the higher order approximations used in the derivation of the model. These

higher order derivatives have to be defined and treated numerically in a correct and

careful manner. However, it is the author’s opinion that such an approach would

increase the amount of mathematical consistency in the corresponding LES models

and, a result, decrease the amount of physical intuition involved.

In Chapter 3 we presented three LES models for the turbulent fluctuations

u′u′. Introduced in [51], and motivated by Boussinesq assumption −∇ · (u′u′) ∼
−∇·(νT (∇u+∇ut)), these models use new approximations for the turbulent viscosity

coefficient νT in terms of the mean flow based on approximation for the distribution

of kinetic energy in u′ in terms of the mean flow u. We also prove existence of weak

solutions for one such model.
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These new models are proposed as an alternative to the popular Smagorinsky

model:

νT ∼ Csδ
2|∇u + ∇ut|. (6.0.3)

To motivate the need for different subgrid-scale models, note that (6.0.3)

has at least two intuitive shortcomings. First, for flows with linear velocity profiles

(6.0.3) would still introduce significant amounts of turbulent diffusion even though

the flow field is laminar. Second, accepting the reasoning of Boussinesq, the amount

of turbulent diffusion by small eddies should depend on the kinetic energy in those

small eddies so that νT = νT

(

1

2
ρ0|u′|2

)

or νT = νT

(

1

2
ρ0|u′|2

)

. The three new

models presented in Chapter 3 overcome both shortcomings.

As future research directions, we should mention finding new models faithful

to the physics of the flow. Also, the mathematical analysis for these models should

give us more insight and additional criteria in our search. But probably the most

important research direction is the numerical validation of our models (we will come

back to this in more details later).

Two fundamental issues in LES are the assessment of “modeling errors” and

“numerical errors”. The modeling error refers to the question of how close w(x, t) is

to the true flow averages: |||w − ū||| for some norm ||| · |||. To our knowledge, there

are no analytical results to date on this question, but there are experimental results

comparing various averages of w to those same averages of ū (i.e. averages of averages

of u). Accepting w(x, t) as an interesting model for ū, “numerical errors” describe

how close an approximation wh is to w. This leads to classical questions of stability,

consistency and convergence for approximations of (4.1.1).

Chapter 4 considers precisely this question for finite element approximations

of (4.1.1). In Theorem 4.3.1 we show that the usual, continuous in time, finite ele-

ment approximation to (4.1.1), wh, converges to w as the meshwidth h → 0 for the

Reynolds number Re and averaging radius δ fixed.

The long term analytical goals in the numerical analysis of large eddy sim-

ulation are then to sharpen this result especially with respect to error dependence

on δ and Re, where possible, and complement it with analysis of the modeling error.

Preliminary steps in this last direction have recently been made in [52] for a different

class of LES models.

Chapter 5 provided a careful numerical assessment and comparison of the

classical LES model ( [14]) and the Galdi-Layton LES model. Direct numerical simu-

lation (DNS), the classical LES model, two natural variants of the Galdi-Layton LES
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model and the Smagorinsky model are compared using the two–dimensional driven

cavity problem. The numerical experiments clearly suggest that the classical LES

model is catastrophically structurally unstable: small perturbations in the model re-

sult in blow-up of the kinetic energy. On the contrary, the kinetic energy of the two

variants of the Galdi-Layton LES model does not blow-up.

It is the author’s belief that the numerical validation and testing of the LES

models are two of the most important challenges in the LES of turbulent flows. It is

imperative that we find reliable, robust benchmark test problems, so that we can use

the numerical simulations as a criterion in selecting the best LES models.

In particular, for our LES models, we plan to run numerical simulations for

the channel flow and flow past a cylinder test problems. The next step is to make the

transition to 3D numerical calculations. The corresponding numerical results should

be compared with DNS on finer meshes, as well as with actual physical experiments

to give us an honest numerical evaluation of our LES models.

LES has a huge potential toward the prediction and understanding of turbu-

lent flows. Mathematicians have to keep up with the outstanding increase in available

computational power, and advance the LES through better models, better mathe-

matical analysis, better numerical algorithms, and better numerical validation and

testing.
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