A BOUNDED ARTIFICIAL VISCOSITY MODEL FOR THE
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Abstract. In this paper, we present a rigorous numerical analysis for a bounded artificial
viscosity model for the numerical simulation of turbulent flows. In practice, the commonly used
Smagorinsky model (7 = (cs8)2|V*u|V*u) is overly dissipative, and yields unphysical results. To
date, several methods for “clipping” the Smagorinsy viscosity have proven useful in improving the
physical characteristics of the simulated flow. However, such heuristic strategies rely strongly upon
a priori knowledge of the flow regime. The bounded artificial viscosity model, as introduced in
[15], relies on a highly nonlinear, but strongly monotone and smooth, semilinear elliptic form for
the artificial viscosity. For such a bounded model, we have introduced a variational computational
strategy, provided finite element error convergence estimates, and included several computational
examples indicating its improvement over the overly diffusive Smagorinsky model.

Key words. Large eddy simulation, turbulence, artificial viscosity, Smagorinsky model

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. In this paper, we present analysis and numerical computa-
tions for a bounded artificial viscosity model for the numerical simulation of viscous
incompressible flow problems. We consider models for the turbulent viscosity coeffi-
cient which depend on bounded, smooth, increasing functions (e.g. that depicted in
Figure 1) of the magnitude of the deformation tensor. As the Smagorinsky eddy vis-
cosity model is widely known to be overly dissipative (References here!!!), strategies
must be developed by which the eddy viscosity is reduced in particular portions of
the flow regime. We argue that the bounded artificial viscosity model can be used as
a viable alternative to other highly successful damping procedures, which are tailored
to particular flow regimes about which much is known.

Turbulence is central to many important applications such as global change esti-
mation, improving the energy efficiency of engines, controlling dispersal of contami-
nants, and designing biomedical devices. It is absolutely fundamental to understand-
ing physical processes of geophysics, combustion, forces of fluids upon elastic bodies,
drag, lift and mixing. To this end, much attention has been paid to the problem
of not only accurately simulating turbulent flow, but also to providing reasonable
approximations at relatively small computational cost.

Direct numerical simulation of turbulent flows is not feasible for the foreseeable
future in many of these applications. Indeed, Kolmogorov’s 1941 theory (K-41) of
homogeneous, isotropic turbulence predicts that small scales exist down to O(Re=3/4),
where Re > 0 is the Reynolds number. Thus, in order to capture all scales on a mesh,
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Figure 1: The graph of a(-); the horizontal axis represents ||AVu"||.

we need a mesh-size h ~ Re~3/4, and consequently (in 3D) N ~ Re/* mesh points.

Large eddy simulation (LES) is one of the most successful approaches in the
numerical simulation of turbulent flows. LES seeks to calculate the large, energetic
structures (the large eddies) in a turbulent flow. The large structures are defined
by convolving the flow variables with a rapidly decaying spatial filter g5s. To derive
equations for @, the large eddy flow structure, we convolve the NSE with gs(x). The
resulting system is not closed, since it involves both u and w. The tensor 7(u,u) =
uuT —uu’ is often called the subgrid-scale stress (SGS) tensor. Thus, the closure
problem in LES is to model the SGS tensor (u,u).

Although many approaches to the closure problem for LES prevail in the litera-
ture, the simplest and most commonly used among them is the Eddy Viscosity (EV)
model. EV models are motivated by the idea that the global effect of the SGS stress
tensor 7(u,u), in the mean, is to transfer energy from resolved to unresolved scales
through inertial interactions. EV models are motivated by K-41 theory and its asso-
ciated energy cascade ([11, 24, 28]). Thus, the action of the SGS stress T is thought
of as having a dissipative effect on the mean flow[5]. The mathematical realization is
the model

V- -r(u,u) % -V - (vrV®a) + terms incorporated into p,

where V*u is the deformation tensor and vr > 0 is the “turbulent viscosity coef-
ficient”. The modeling problem then reduces to determining one parameter: the
turbulent viscosity coefficient vr (@, 9).

The most common EV model is known in LES as the Smagorinsky model in which

VT = Usmag (T, 0) := (c50)2]| V|5 (1.1)

This model was studied in [31] as a nonlinear artificial viscosity in gas dynamics and
in [29] for geophysical flow calculations. A complete mathematical theory for partial
differential equations involving this term was constructed by Ladyzhenskaya [18, 19].
Lilly [21] showed (under a number of optimistic assumptions) that ¢, has a simple,
universal value 0.17.

Although the Smagorinsky model is easy to implement, stable, and replicates
energy dissipation rates, it is quite inaccurate for many problems. Probably the most
common complaint for the Smagorinsky model (1.1) is that it is too dissipative. The
reason in clearly illustrated in Figure 1: for large values of the velocity deformation
tensor, the Smagorinsky model introduces an unbounded amount of artificial viscosity
(AV). This behavior in manifest in practical computations of flows displaying large
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velocity deformation tensors, such as wall-bounded flows. For example, for turbulent
channel flows and pipe flows [24], the Smagorinsky model yields unphysical results.
(MANY references here!!!!)

Different approaches have been devised to cope with this limitation. One ap-
proach is to use a “clipping procedure”, in which essentially the computed coeflicient
vy is clipped every time it exceeds a prescribed value. For wall-bounded flows, a
straightforward modification of the Smagorinsky model is the van Driest damping [30]
which uses the turbulent boundary layer theory to match the velocity profile near the
boundary. For stratified flows, one common modification is to use a Ri-dependent
model, where Ri is the Richardson number of the flow (References here!!!). Other
more involved damping procedures are the dynamic SGS models introduced by [12],
in which ¢, is chosen locally in space and time, ¢; = ¢s5(x,t). Among these is the
Lagrangian dynamic SGS model of [22, 25]. All of these approaches target the same
deficiency of the Smagorinsky model — its overly diffusive character.

In this paper, we consider a bounded artificial viscosity model for the numerical
simulation of turbulent flows with high velocity deformation tensors. The bounded
AV model has a general form: it can be used to reduce the overly dissipative nature of
the Smagorinsky model without massive a priori knowledge of the flow regime. The
bounded AV model reads

vr = ud°a(d]|Vaulr) Va, (1.2)

where a(-) is a general function whose graph resembles that in Figure 1.

The bounded AV model was proposed in [15] as an alternative to the Smagorinsky
model and yielded improved results for convection-dominated convection-diffusion
problems. In this paper, we analyze and test the bounded AV model (1.2) in the
numerical simulation of incompressible fluid flows.

The paper is organized as follows. In Section 2, we discuss the commonly used
eddy viscosity model. We note the benefits and limitations of heuristic procedures in
which a “clipping” of the Smagorinsky artificial viscosity is performed, and present
(1.2) as a viable alternative to such strategies. In Section 3, we provide the variational
setting for which the NSE with (1.2) is solved and introduce the necessary notations.
In Section 4, we present some stability results for the variational solution to NSE
with (1.2), which are generalizations of Leray’s inequality for the usual Navier-Stokes
system. In Section 5, we prove an error estimate for the semi-discrete finite element
approximation of NSE with (1.2). Finally, in Section 6, we include finite element
calculations for NSE with (1.2) which both support the theoretical error estimate
of Section 6, and show that the bounded AV model (1.2) better results than the
Smagorinsky model (1.1) in the numerical simulation of channel flows. We provide
both sequential computations for an academic vortex decay problem and parallel
computations for 2D and 3D channel flows, using the Virginia Tech Large Eddy
Simulator (ViTLES).

2. Large Eddy Simulation. LES is connected to a natural computational idea:
when a computational mesh is so coarse that the problem data and solution sought
fluctuate significantly inside each mesh cell, it is only reasonable to replace the problem
data by mesh cell averages of that data and for the approximate solution to represent
a mesh cell average of the true solution. Thus, if § is the mesh cell width, then we
should seek to approximate not the pointwise fluid velocity w(x,t) but rather some
mesh cell average u(x,t). The simplest such average is given by the convolution of
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the velocity w with a rapidly decaying spatial filter gs(x). The most popular filters
gs(x) are the sharp cut-off, box (top hat), Gaussian, and differential.

Then this is the idea of LES in a nutshell: pick a useful filter gs(x) and define
u(x,t) := (gs * u)(x,t). Derive appropriate equations for @ by filtering the Navier-
Stokes equations (NSE). Solve the closure problem. Impose accurate boundary con-
ditions for w. Then discretize the resulting continuum model and solve it. Generally,
such an averaging suppresses any fluctuations in u below O(§) and preserves those
on scales larger than O(9).

In many flows, the portion of the flow that must be modeled, u' := u — W, is
small relative to the portion that is calculated, w. Models in LES tend to be both
simple and accurate, and the overall computational cost tends not to be much greater
than doing an (unreliable, under-refined) solution of the NSE on the same mesh. This
was the LES idea of deriving equations for space averaged variables mentioned by
Richardson [27].

In the case of an incompressible fluid, the non-dimensionalized form of the Navier-
Stokes equations (NSE) is

u; — Re'Au+ (u-V)u+Vp=Ff, inQ, (2.1)
V-u=0, inQ, (2.2)
u =20, on . (2.3)

where wu is the velocity, p is the pressure, and Re := U L/v is the Reynolds number,
defined as the ratio between the product of a characteristic length-scale L and a
characteristic velocity U, and the kinematic viscosity v.

To derive equations for w, we convolve the NSE with the chosen filter function
95(x). Using the fact that (for constant § > 0 and in the absence of boundaries)
filtering commutes with differentiation, gives the space-filtered NSE:

us— Re 'Au+ V- (uul) +Vp=—-V-7(u,u) in Qx (0,7), (2.4)
V-u= 0 in Qx(0,7),. (2.5)

This system is not closed, since it involves both u and w. The tensor 7(u,u) =
uul —w@! or 7 (u,u) = W;w; —U; W, is often called the subgrid-scale stress (SGS)
tensor. Thus, the closure problem in LES is to model the SGS tensor 7(u,u), i.e. to
specify a tensor S = S(@, @) to replace T(u,u) in (2.4).

2.1. Eddy Viscosity Models. The most popular approach to the closure prob-
lem is the Eddy Viscosity (EV) model. EV models are motivated by the idea that
the global effect of the subfilter-scale stress tensor 7(u,u), in the mean, is to transfer
energy from resolved to unresolved scales through inertial interactions. EV models
are motivated by Kolmogorov’s (K-41) theory ([11, 24, 28]), and in particular by the
energy cascade.

The essence of the energy cascade ([27]) is that kinetic energy enters the turbulent
flow at the largest scales of motion, and is then transferred by inviscid processes to
smaller and smaller scales, until it is eventually dissipated through viscous effects.
Thus, the action of the subfilter-scale stress T is thought of as having a dissipative
effect on the mean flow: the scales uncaptured on the numerical mesh (above the cut-
off wavenumber k.) should dissipate energy from the large scales (below the cut-off
wavenumber k).

Boussinesq [5] first formulated the EV/Boussinesq hypothesis based upon an
analogy between the interaction of small eddies and the perfectly elastic collision of
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molecules (e.g., molecular viscosity or heat): “Turbulent fluctuations are dissipative
in the mean.” The mathematical realization is the model

V- -1(u,u) % =V - (vrV°") + terms incorporated into p,

where V*%@ := (V& + Val)/2 is the deformation tensor of & and vr > 0 is the
“turbulent viscosity coeflicient”. The modeling problem then reduces to determining
one parameter: the turbulent viscosity coefficient vr (@, d).

2.2. The Smagorinsky Model. The most common EV model is known in LES
as the Smagorinsky model, in which

VT = VSmag (W, ) := (cs0)?|| V|| F, (2.6)

where ¢ is the filter radius, ¢, is the Smagorinsky constant, and ||o||r := Z;j’ i1 loij?

is the Frobenius norm of the tensor ¢. This model was studied by [31] as a nonlinear
artificial viscosity in gas dynamics and by [29] for geophysical flow calculations. A
complete mathematical theory for partial differential equations involving this term
was constructed by Ladyzhenskaya [18, 19].

Lilly [21] showed that, for isotropic, homogeneous turbulence, ¢, has a simple,
universal value 0.17 and is not a “tuning” constant. Defining the dissipation rate
e(t) = ﬁ||Vu(t)||27 Lilly’s idea was to equate the dissipation rates (¢) = {€model) and
from this to determine a value for ¢;. The Smagorinsky model (1.1) where ¢; ~ 0.17
seems to be a universal answer in LES. It is easy to implement, stable, and (under
“optimistic” assumptions) it replicates energy dissipation rates. Unfortunately, it can
be also quite inaccurate for many problems.

The most successful form of the Smagorinsky model is the dynamic SGS model
of [12], in which ¢, is chosen locally in space and time, ¢; = ¢4(x,t). An essential
improvement is that the dynamic SGS model introduces backscatter ([23]), the inverse
transfer of energy from small scales to large scales. A yet improved version of the
dynamic SGS model is the Lagrangian dynamic SGS model of [22, 25].

2.3. The Overly Diffusive Character of the Smagorinsky Model. Whether
simplistic or more involved, all these approaches target the same defficiency of the
Smagorinsky model - its overly diffusive character. This negative feature of the
Smagorinsky model is clearly illustrated by the schematic in Figure 1. Plotting the
amount of AV introduced by the Smagorinsky model against ||[6ID(u)||, we obtain a
linear profile: Indeed, (1.1) can be rewritten as

vr = VSmag(ﬂ7 5) = Cs2 d ”(SVSH”FJ (27)

which yields a linear profile for vr (if ¢ is held constant). In smooth regions of
the flow, where the deformation tensor is relatively small (||D(u)||r < O(1/4)), the
Smagorinsky model will introduce a moderate amount of AV (v < O(4)). In those
regions of the flow where the deformation tensor is large (||D(u)||r > O(1/4?), for
example), the Smagorinsky model will introduce an unphysical amount of AV (vy ~
o(1)).

The overly diffusive feature of the Smagorinsky model is manifest in practical
computations of flows displaying a large deformation tensor, such as wall-bounded
flows. Indeed, for turbulent channel flows and pipe flows, because the velocity defor-
mation tensor is very large near the solid wall, the Smagorinsky model introduces an
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unphysical amount of AV. (References!!!!) Similarly, in stratified flows with large
shear (and thus, large deformation tensors), the Smagorinsky model introduces an
unphysical amount of AV in the vertical direction. (References!!!!)

There have been numerous modifications of the Smagorinsky model, all trying to
attenuate its overly diffusive character. The simplest such approach is the “clipping
procedure”

vr = Vgl:;ff;”g (@, ) := max{Vsmay(w,9),C}, (2.8)

where C is a user-defined constant. (References!!!!)
A more involved approach for wall-bounded flows (such as channel and pipe flows)
is the Van Driest damping [30], in which

+

vr = v§2 (@,0) == [(1 - e_y2_5>] VSmag (T, 0), (2.9)

where y* is the nondimensionalized distance to the wall (see Chapter 12 in [4] for
more details). The main improvement over the ad hoc clipping procedure 2.8 is that
the damping function in 2.9 is chosen so that the resulting flow satisfy the turbulent
boundary layer theory [24]. In stratified flows, the Smagorinsky model is used with a
damping function in the vertical direction

c Ri _
Vi = l/gfnag(u,(S) i=4/1— El/smag(uﬁ), (2.10)

where Ri is the Richardson number given by the ratio of shear and buoyancy (CHECK!!!!),
and Ri, is a critical Richardson number (a popular choiceis Ri. ~ 0.25). (References!!!!)

2.4. The Bounded AV Model. We consider in this paper the bounded AV
model, a general, mathematically sound alternative to the Smagorinsky model. The
bounded AV model reads

vr = pé°a(8|Vu|)Vu, (2.11)

where a(-) is a general function whose graph ressembles that in Figure 1. This new
model, proposed in [15] for convection-diffusion problems, is a clear improvement over
the Smagorinsky model. Indeed, in the flow regions with large velocity deformation
tensors, the bounded AV model introduces a bounded amount of AV, just enough to
spread the solution onto the computational mesh. This is in clear contrast with the
Smagorinsky model, which introduces an unbounded amount of AV, thus being overly
dissipative. The improvement of the bounded AV model over the Smagorinsky model
is clearly supported by the 2D and 3D channel flow experiments in Section 7.

The bounded AV model is very general. Indeed, the function a(-) in (1.2) is
just required to be bounded and monotonically increasing (see Figure 1). Thus,
the bounded AV model clearly includes as a particular case the ad hoc “clipped”
Smagorinsky model (2.8). Although the bounded AV model does not directly include
the Smagorinsky model with Van Driest damping (2.9) (a(-) must be monotonically
increasing) or the Ri-dependent Smagorinsky model (2.10) (a(-) depends on Vu,
whereas (2.10) depends on g—’;), it is certainly related to these two models, target-
ing the overly diffusive character of the Smagorinsky model. Note also that, while
models (2.9) and (2.10) are tailored for specific flows (wall-bounded and stratified,
respectively), the bounded AV model is not restricted to any particular type of flow.
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There are numerous challenges in the numerical analysis of LES, where the study
of classic topics such as consistency, stability, and convergence of the LES discretiza-
tion are still at an initial stage. Only the first few steps along these lines have been
made, some of which are presented in the exquisite monograph of John [16].

A thorough numerical analysis for the finite element implementation of the Smagorin-
sky model has been presented in [9, 10]. Further studies have been presented in [20].
In [17], the authors have presented a rigorous numerical analysis for the popular claim
that the Smagorinsky model yields error estimates which are independent of the Re.

In this paper, we present a rigorous numerical analysis for the finite element
implementation of the bounded AV model for the NSE:

u; — Re ™ *Au — V - (u6°a(§|Vu|)Vu) + (u-V)u —Vp=f, inQ, (2.12)

V.u=0, in@Q, (2.13)

u=0, ondQ. (2.14)

We also illustrate our error estimates through numerical simulations with the bounded
AV model for 2D and 3D channel flows and the 2D vortex decay problem.

3. The Variational Formulation. In this section, we develop the variational
formulation for (2.12)- (2.14). We will denote by W™ P?() the usual Sobolev spaces
[?] with norms || - [[wm.» and semi-norms | - |wm.», and set H™(Q) := W™?2(Q) and
LP(Q) := WOP(Q). In the sequel we will denote || - || and (-,-) the norm and inner
product for L?(€2), and || - ||,» the norm for H™((2).

Specifically, we use the following function spaces for the variational formulation:

Velocity space: X := Hj(Q) := {ve H'(Q) : v=0o0n 00},
Pressure space : Q := L2(Q) := {q € L*(Q) : / gdz = 0} .
Q

The variational formulation of (2.12)-(2.14) proceeds in the usual manner. Mul-
tiplying (2.12), (2.13) by a velocity (v) and pressure (g) test function, respectively,
integrating over (2, and integrating by parts (using the fact that v = 0 on 909), we
obtain

(ug,v) + A(u,v) + B(u,u,v)
+C(u,u,v) — (p,V-v) = (f,v), Yve X, te[0,T], (3.1)
(V-u,q) =0, Vge @, te[0,T) (3.2)
where the bilinear form A(-,-) is defined by
A(u,v) := v (Vu,Vv),
and the trilinear forms B(-,-,-) and C(-,-,-) are defined by
B(u,v,w) := pudé’ (a(6|Vu|)Vv, Vw) ,

C(u,v,w) := (u-Vv,w).
In addition, note that the velocity and pressure spaces, X and @, satisfy the
inf-sup condition
inf sup (&Y ?)

> B> 0.
1€Qvex llgllllvll1
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3.1. Finite Element Spaces. Let  C IRY, (d = 2,3) be a polygonal domain
and let T}, denote a triangulation of 2 made up of triangles (in IR?) or tetrahedrals
(in IR®). Thus, the computational domain is defined by

Q=JK, KeT,.

We also assume that for a particular triangulation T}, of (2, there exist constants
¢1, ¢ such that

cth < hkx < e2pr,

where hg is the diameter of K, px is the diameter of the greatest ball (sphere)
included in K and h = maxger, hi. Let Px(A) denote the space of polynomials on
A of degree no greater than k. Then we define the finite element spaces associated
with the velocity and pressure spaces as follows.

Xh-z{ueXmC(‘)d- | € Pr(K), VK € Ty},
Qn:={0€QNC):q|, € P(K), VK € T»},

where C(Q) denotes the set of continuous functions on the closure of Q. Analogous
to the continuous inf-sup condition, we also assume that the spaces X, @y satisfy
the discrete inf-sup condition

inf sup LV

> B> 0.
9€Qn vex, [lallllvly

We now note the usual approximation properties for the finite element spaces
X4, Qp. For (u,p) € H¥1(Q) x HH1(Q), we have that the interpolants (Inu, Irp) €
X, X Qp, satisfy

llu — Inull < CrA*u| gsa,
||u - Ihu||1 S C]hk|u|Hk+1,
lp = Inpl| < Crh?|p|ga+r.

From [?], we have the following results

LEMMA 3.1. Let {Tn} 0 < h <1 denote a quasi-uniform family of subdivisions
of a polyhedral domain 2 C R4, Let (K P,N) be a reference finite element such
that P ¢ Wh?(K) N W™4(K) where 1 < p,q <00 and 0 < m < 1. For K € Ty, let

(K, Pk, Nk) be the affine equivalent element, and Vj, = { 1 v is measurable and v X

Then there exists C = C(l,p,q) such that
1/p 1/q
[ > ||v||Wl,,(K] < opm—trmin(0.4-4) [ S [loll% q(K)] NCE)
KeTy, KeTh

LEMMA 3.2. Let Iyv denote the interpolant of v. Then for all v € W™P(Q) N
C"(9) and 0 < s < min{m,r + 1},

”'U - Ih'U“WS,oo S Chm_s_d/pl’l}lwm,p.

€ Pg, VK € Th}.
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4. Stability Results. In this section, we prove some stability results concerning
the variational problem (3.1)-(3.2), as well as its semi-discrete finite element approx-
imation. Useful in the following analysis are the following three lemmas.

LEMMA 4.1. [15] For u,v € X, and the function a(-) satisfying

0<a(z) <1, a'(z) >0, V z €[0,00),
we have

B(u,u,u —v) — B(v,v,u—v) >0

Proof. Consider the functional I : X — IR, defined by

IU) = /Q A(|VU|)dz,

where the function A : [0,00) — IR is defined by

A(z) = /0m ta(t)dt.

First, note that

dI(U, V) = / AU gvag = / o(|VU|)VUVV da,
0 VU] 0

where dI(U, V) is the Géateaux derivative of I at U in the direction of V.
Therefore, setting Uy := du, Us := dv, and V := Uy — Us, we have

B(u,u,u —v) — B(v,v,u —v) = % dI(Uy,V) —dI(U,,V)). (4.1)

However, we can rewrite this expression as
'd
dI(Uy, V) —dI(U,, V) = / EdI(UQ +t(U; —U,),V)dt
0

= ‘/01 %/QGOV(UQ + t(Ul - UQl))V(UQ +t(U1 - UZ))VVd-'L'dt

1
V(Us + Uy — Up)VV)VV
= (VU + (U, - U VU, + (U - Up)VV da dt
/O/Q"“ O+ U =)@, o, — v - o2 I D)V de

+/0 /Qa(|V(U2+t(U1 _U))IVV P da dt. (4.2)

As a(z),ad'(z) > 0, it is clear that the expression in (4.2) is nonnegative. Finally,
using (4.1) we obtain the stated result. [ |
LEMMA 4.2. For ui,us,v,w € X, and the function a(-) satisfying

0<a(z) <1, 0 <d(z) < M,, YV z € [0, 00),
we have

|B(u1,v,w) — B(ua,v,w)| < Muud”™ |(|Vuy — Vus|Vo, Vw)| (4.3)
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and

|B(u1,v,w)| < Moud™ (Ve[ Vo, Vo)) (4.4)

Proof. Without loss of generality, we assume that |Vu;| > |Vus|. Immediately,
we have

|B(u1, v, w) — B(uy, v, w)| = pd” [(|a(|Vur|) — a(8|Vus|)| Vo, Vw)[.  (4.5)

Now, by the mean value theorem, we have that there exists ¢, € [|[Vual|,|Vu1l|], such
that

|a(d|Vu]) — a(8|Vus|)| = a'(ca)(|Vur | — [Vual).
Combining this with the reverse triangle inequality, | |z| — |y|| < |# — y|, we have
la(0|Vuil|) — a(8|Vus|)| < d'(ca)|Vur — Vual. (4.6)

Finally, substituting (4.6) into (4.5) and noting that a'(c,) < M,, we obtain (4.3).
The result (4.4) follows directly. |
LEMMA 4.3. (Leray’s inequality) A solution of (3.1)-(3.2) satisfies

1 ¢ 1 ¢
@I + [ olValPar < SO+ [ (£ wd.
0 0
Proof. The stated result follows by setting v = v and ¢ = p in (3.1) and (3.2),
noting that
B(u,u,u) >0, C(u,u,u) =0,

and integrating from 0 to t. |
We now establish the semi-discrete approximation as the solution of (3.1)- (3.2)
restricted to the finite element spaces Xy, Qp,-
Definition [Semi-Discrete Approximation] The semi-discrete approximation is
defined to be an element (up,pr) € C(0,T; X)) NC(0,T;Q}) such that

(uh,tav) + A(uhav) + B(Uh,uh,’l])
+C(uh;uhav) - (ph7v ) U) = (.fav) J Vv € Xh, te [O,T], (47)
(V-un,q) =0, VgeQn, te[0,T].  (4.8)

We immediately obtain the following two lemmas.
LEMMA 4.4. (Leray’s inequatity for uy.) A solution of (4.7)-(4.8) satisfies

1 ¢ 1 ¢
s+ [ olIVaslPar < Sun)? + [ (Funar.
0 0

Proof. Setting v = up and ¢ = py, in (4.7)-(4.8), we immediately have

S llun @)1 + ol Vusl® < (f, un). (4.9)
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Integrating from 0 to ¢ thus yields the stated result. |
LEMMA 4.5. (Stability of uy.) A solution of (4.7)-(4.8) satisfies

lwnll o o,1,22(2)) < CUIfllL200,m5m-1 () + [[w(0)]|L2()- (4.10)

Furthermore, there exists a > 0 such that

t
lun®)llz2(@) < e™*Ilun(0)ll2) +/ e N f()lm-1@), V>0 (411)
0

Also, we have that up(t) € L>®(Q) for all t > 0.
Proof. Using (4.9) and the fact that

1
(Fsun) < N1 £ll7-1(0) + el @),

we have
d
%Iluhll2 + CillumllE ) < Call FllFr-1(0)- (4.12)

Therefore, the estimate (4.10) directly follows from dropping the ||um||ip(9) from
(4.12) and integrating from 0 to ¢.

Next, to obtain the estimate (4.11), we note that by Poincaré’s inequality, ||u||r2 <
ClIVullL>,

d
a”“h”2 + Collumlli2i0) < Coll fllf-1(q)- (4.13)

Therefore, inequality (4.11) follows by using an integrating factor.
Finally, from (4.12) we have that

IVunll < Cliflla-1(2)-

The interpolation property (3.3) implies therefore, that

lunllpe (@) < CRY =42 £l -1(q)-
]

5. An A Priori Error Estimate. In order to prove an a priori error estimate
for the semi-discrete approximation (up, pp), we must assume that the solution to the
continuous problem satisfies ||u||Le, ||Vu|lre < M.

THEOREM 5.1. Assume that the system (3.1)-(3.2) has a solution (u,p) € X X Q
which satifies

llullLe, [Vul|L= < M, V t € [0,T].

Then, the semidiscrete approzimation (4.7)-(4.8) is convergent to the solution of
(8.1)-(3.2) on the interval (0,T) as h — 0. In addition, the approzimation (wp,ps)
satisfies the following error estimate

lle — wnl|Foe 0,120y + IV (0 = wn) 1720 7, 12(02))

< (Ju(®) - wh O +_jnt 7w~ v.p= o)1)

h,q
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where
Flu—v,p—q):=|lu- U||L°°(0,T;L2(Q)) + [[(u — ’U)tHZLw(o,T;Lz(Q))
+HIV(u —v)[[z200,7,22(2)) + IP — allz=(0,7522(02))-
Proof. We begin by defining the following quantities
€ =u—up, ¢:=U—-up n:=u-U,

where U is some member of X}, such that ||U||re,||VU||z~ < M. Note that this
must be true of the interpolant satisfying the RHS of (5.1).

First, subtracting (4.7) from (3.1), we have
(€u, V)+A(€y, V)+B(u, u,v)—B(up, up, v)+C(u, u,v)—C(up, up, v) —(p—pp, V-v) = 0.
Next, noting that €, = ¢ + n and setting v = ¢, we have

(¢ta¢) + A(¢t>¢) + B(U7 Ua ¢) - B(uhauh7¢) = G(¢)> (52)

where

G(8) := —(m,¢) — A(n, ¢)

—(
—(B(u,u,¢) - B(U,U, ¢))
—(C(u,u,¢) - C(U, U, ¢))
—(C(U,U,9) - Clun, un, 9))

+(

=0+

First we note that (5.2) may be rewritten as

p—pp, V- 9)
(I1) + (III) + (IV) + (V) + (VI).

S 6P + olIVHIP < G(9),

as B(U,U,¢) — B(up,up,d) > 0 by Lemma 4.1.
What remains is to estimate each of the terms in G().

0 < 10| < 3161 + limel”

(I1) < |A(, @) < o[ VallIVell
1
< 2y — 2,
< al[Vell® + ;- lIVall

(III) < [B(u,u,¢) — B(U,u,¢)| + |B(U,u,$) - B(U,U, ¢)|
= |B(u,u,¢) - B(U,u,9)| +|BU,n, )|
Using Lemma 4 in each of these terms gives
|B(u,u,$) — BU,u, )| < Maud”*'(|Vn|Vu, Vo)
< Mapd” |Vl ||V V|
< Moud™ |Vl M| V7]

c
< ellV4|* + gIIWIIQ,
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and
|B(U,n, )| < Myus” ' (|VU|Vn, V)

< Mopd® V|| VUV
< Mopd™* |V el| M| V||

c
< es||Vgl* + g||V77||2-

(IV) S |C(U7U,¢) - C(U,’ll,7¢)| + |C(U,U, ¢) - C(U,’ll,7¢)|
=[Cm,u,9)| +|CU,n, )|

Estimating each of these terms, we get

|C(n,w, )| = [(n- Vu, )|

< ll¢lllin - V]
< llgll /> M|

M2d M?2d
< =SSl + =5l

IC(U,n,9)| = (U - Vn, ¢)|
< |¢lHU - Vnll
llpll d"/> 01|V
M3d
2

IN

M2d
TI|¢II2 +

IN

Va1,

(V) S |C(U7 Ua ¢) - C(Uh,U,¢)| + |C(uh7U7 ¢) - C(uhauh7¢)|

Estimating each of these terms (and using the fact that ||ug||r~ < Cy), we have

IC(6,U,9)| = |(¢- VU, ¢)| < dM?|¢],

|C(u’h7¢a ¢)| = |(uh . v¢a ¢)|
< |9l [luwn - Vol
< ll¢ll Cud"?| V]

c
<ellVell* + all¢|l2-

(VI) =(p—pn,V - ¢)
=®V-9)
=(P-PV-9),
where P is some element of @, (using the mass equation). Therefore,
(VD) <llp =PIV - ¢l
< llp = Plld'?|[ V]|

c
<esl|Vol® + gllp— P|1.
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Now, we can combine all of the estimates for (I) - (VI) (appropriately choosing
€1 — €5) to obtain

2 dt||¢||2 +CilIV4II* < Callgll* + Csllmell* + Callnll® + C51IVall* + Csllp — PII*.

Applying Gronwall’s lemma, we have for almost all ¢ € [0, 7],

le@I* + C1llVellL20,5L2 () < Cr (16O + llmell® + [1nll* + [IVall* + [lp = PII?) -

Thus, estimate (5.1) follows by setting (U, P) to be the element of (X}, @) in the
RHS of (5.1), and noting that

lw — vl Lo (o,7;02 ) < 9llLee(0,1322(2)) + 10l L (0,7502(02))

and

IV (w —un)ll200,75020) < WIVOllL20,1ie20) + IVallL2o,15020) -
|

6. Newton Approximation Scheme for the Bounded AV Model. In this
section, we discuss the Newton approximation scheme as applied to the Navier-Stokes
equations with bounded artificial viscosity term. Note that approximate solutions
Up,pr € Xp X Qp must satisfy a nonlinear system. In this section, we derive the
Newton approximation scheme for the semi-discrete variational problem, and note
that, in practice, one would apply a Newton iteration at each time step for a fully
discrete approximation.

We first derive the Gateaux derivative for the bounded artificial viscosity term
considered in this paper.

THEOREM 6.1. Suppose that the function a(-) : R — R is analytic, and define
the (continuous) map Gy : Xp — Xy, as

(Gi[u],v) := (a(|Vu|)Vu, Vv).

Then the Gateauz derivative in the direction of w evaluated at w, denoted as Jo, G1[w]
is equal to

a'(|Vul)

(Ju G110],0) = (a(| V) Vo, Vo) + ( nk

[Vu : Vw]Vu, V'u)

Proof. Under the assumption that a(-) is analytic, we have a Taylor series
expansion

2 al™(0) z

a(r) =
— n!
Therefore,
(G1[u],v Z |Vu|"Vu Vo).
n=0

For n = 0, it is clear that

(JuVw,Vv) = (Vw, Vv),
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and we have the formula for generic n > 1,
(Tu|Vw|"Vw, Vo) = (|Vu|"Vw, Vo) + n (|Vu|"?[Vu : Vw]Vu, Vo) .
Therefore, we have that

00 a(n) 0

(Ju Gr1w],v Z |Vu|"Vw Vo) Z " |Vu|" ’[Vu : Vw]Vu, Vo)

.

=0
= a4 |Vu|"V'w Vo) Z 1 ‘ (|V|g| | [Vu : Vw]Vu,V'v)
=0 1 ’

a’(IVUI)

= (a(|Vu|)Vw, Vv) + ( Vu

[Vu : Vw]Vu, V’u)

[ |
COROLLARY 6.2. Suppose that the function a(-) : R = R is analytic, and define
the (continuous) map G : X, — Xj as

(G2[u],v) := (a(d|Vu|)Vu, Vv) .

Then the Gdteaux derivative in the direction of w evaluated at w, denoted as Ty, Go[w]
is equal to

a'(|0Vul)

(T Galtw], v) = (a(|3Vul) Vo, V) + 6 ( =

[Vu : Vw]Vu, Vv)

[ |

We now consider the semi-discrete approximation (wp, pr) € Xp X Qp which solves

the overall Navier-Stokes system with bounded artificial viscosity term. For notational

simplicity, we drop the “h” subscripts from w and p. Define the (continuous) map
G:XpxQp— Xp X Qyp as

(Glw,p], (v,9)) := (ut,v) + v (Vu, Vo) + pd? (a (5|Vu|)Vu Vo)
+(u-Vu,'u)—(p,V-U) (qa ) (fv )

Therefore, we immediately have that the Gateaux derivative of G in the direction of
(u,p), evaluated at (w,r) is given by

(Ttwp) Glw, 7], (v,q)) = (wy,v) + v (Vw, Vv) + pé” (a(5|Vu|) Vw, Vo)
o+1 al(6|vu)
(T
+ (u - Vw,v) + (w - Vu,v)
—(T',V "U) + (qav ’lU) - (fa'u)

[Vu : Vw]Vu, Vv)

Now, substituting this formula for (7., G[w,r], (v,q)) into the Newton iteration
system

<\7(u(ﬂ—1),p("—1)) g[u(n) - u(n—l),p(n) - p(n—l)], (’U, q)> == <g[u(n—1)7p(n—1)]7 (’UJ Q)> )
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we obtain the Newton iteration scheme
(u,g"), v) +v (Vu(”),'v) + pé° (a(5|Vu(”_1)|)Vu("), Vv)

! n—1)
st (@ OV D))
w7 (et

+ (w . Tu, o) + (u - VaD,0) = (50,7 0) + (4,7 ul)
= (f,v) +ps’! (a’(6|Vu("_1)|)|Vu("_1)|Vu("_1),Vq;) n (u(”—l) -Vu("—l),u)

[Va( b Vu(")]Vu("l),V'u)

for all (v,q) € Xp X Qp-
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7. Numerical results. In this section we present numerical results for the
bounded AV model (2.12)—(2.14). We start by illustrating the improvement in the
bounded AV model over the overly dissipative Smagorinsky model in the numerical
simulation of 2D and 3D channel flows (Section (7.1)). We then present a careful
mesh refinement study supporting the error estimates (Section (7.2)).

7.1. Improvement in the BAV model. In this section, we illustrate the im-
provement in the bounded AV model over the overly dissipative Smagorinsky model.
To this end, we have chosen the 2D and 3D channel flows.

The computational domain is Q = (0,10) x (0,1). We chose Dirichlet boundary
conditions at the inlet (z = 0), on top (y = 1) and bottom (y = 0), and “do-nothing”
boundary conditions (i.e., (—pl + 2Re™'D(u)) - n = 0) at the outlet (z = 10). The
boundary conditions and the forcing term have been chosen so that the exact solution
be

u(z,y) =40y (1 —y)
v(z,y) =0
p(z,y) = —80Re 'z

this choice results in homogeneous boundary conditions on top and bottom, parabolic
inflow profile, and the forcing term being identically zero.

We chose a large value for the horizontal velocity (v = 10) in the center of
the channel (y = 0.5) since we wanted to compare the Smagorinsky model and the
bounded AV model in flows displaying two regimes: (a) moderate/low velocity de-
formation tensors; and (b) high velocity deformation tensors. Our choice displays
both regimes: the center of the channel displays regime (a) (||D(u)||7 = 0) and the
near-wall region displays regime (b) (||D(u)||r = 80v/2).

We also chose Re = 10°.

The numerical simulations in this section have been carried out with the Virginia
Tech Large Eddy Simulator (VITLES) (see Appendix A for a detailed description
of the algorithm and computational implementation). We used a coarse nonuniform
mesh of size h = 0.5, a small time-step At = 10~%, and a small penalty parameter
e = 10~* in the penalty method to compute the pressure.

Since we use Taylor-Hood finite element spaces for the spatial discretization and
Crank-Nicolson for the time-discretization, we expect that the leading term in the
total error will be given by the spatial discretization for these small choices for At
and £ (O(h?) > O(At?) + O(g)). The nonlinear system at each time-step is solved
with a Newton iteration up to an Euclidian norm of the residual vector less than
1078, The final time is T = 1 (i.e., 10* time-steps). Since u = 10 in the center of the
channel, this allows a particle in the center to travel the entire length of the channel
once.

It is clear that, since we have an exact solution, this flow is not turbulent. We
chose this setting, however, because in the next section we will investigate the behavior
of the error with respect to the mesh refinement (and thus we need the exact solution).
Obviously, a real turbulent flow numerical comparison of the Smagorinsky and the
bounded AV models is needed and will be carried out in a future study.

Figures 7.1-7.3 present numerical results for: (i) a coarse, under-resolved nu-
merical simulation (just the NSE, without any SGS model); (ii) the Smagorinsky
model (1.1); and (iii) the bounded AV model (1.2).

We chose a filter radius 6 = 0.5. This relatively large value for § increased the
effect of the SGS models on the numerical results, allowing a clearer comparison. We
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also chose the Smagorinsky constant C; = 0.17, which is a popular choice in the
literature. For the bounded AV model, we chose p = Cs = 0.17 and ¢ = 1. These
choices are identical to those for the Smagorinsky model and are most probably not
optimal. The function a(-) was chosen to ressemble that in Figure 1:

1
1+ 49e 570 ID(w)llF

a(8 |D(w)||r) := —0.02 + (7.1)

This is exactly the function that was chosen in [15] for a completely different setting
(a rotating pulse for the convection-diffusion equation). Thus, this choice is most
probably not optimal for our present setting. We emphasize that we compare the
Smagorinsky model with tuned parameters with the bounded AV model with nonop-
timized parameters.

Figure 7.1 presents the horizontal velocity component (u) for the under-resolved
(no SGS model) numerical simulation (top), the Smagorinsky model (middle), and
the bounded AV model (bottom). It is clear that the under-resolved simulation yields
inaccurate results. This illustrates the need for SGS modeling at this mesh resolution
and Reynolds number. The Smagorinsky model yields improved results. The hori-
zontal velocity in the center of the channel, however, is too high (11 instead of 10).
The bounded AV model yields the best results. (Integrate further in time!!!)

The numerical results for the vertical velocity component (v) in Figure 7.2 are
similar to those for u in Figure 7.1: the under-resolved simulation (top) yields poor
results, the Smagorinsky model (middle) yields improved results, and the bounded
AV model (bottom) yields the best results.

But the most dramatic results are those for the pressure (p) in Figure 7.3. The
under-resolved simulation yields again very inaccurate results. The Smagorinsky
model yields again better results, but this time the pressure gradient is about 70
times higher than the exact value (5.5 instead of the exact value of 0.08). The
bounded AV model yields much better results, the pressure gradient being reduced
approximately 5 times.

This behavior is the perfect illustration of the improvement of the bounded AV
model over the Smagorinsky model. Indeed, the Smagorinsky model is overly diffusive
and introduces an unphysical amount of AV. Thus, the pressure gradient needs to
increase dramatically to keep the same flow rate through the channel. The bounded
AV model, on the other hand, introduces a moderate amount of AV which requires a
much more realistic pressure gradient.
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U=0.5115225’335445555665??5885995

Fi1G. 7.1. The horizontal velocity distribution: DNS (top); Smagorinsky (middle); and BAV
(bottom,).

7.2. Mesh refinement study. In this section, we present a careful mesh re-
finement study supporting the error estimates in Theorem 5.1 for the bounded AV
model (1.2).

7.2.1. 2D Channel Flow. To this end, we chose as a first test the same com-
putational domain and the same boundary conditions as those in Section 7.1. This
time, however, the boundary conditions and the forcing term have been chosen such
that the exact solution be

p(z,y) = [l — Re ! (37)?] sin(37y)e ‘'z

Thus, the forcing term is identically zero, and the boundary conditions are homoge-
neous Dirichlet on the top and bottom of the channel, sinusoidal at the inlet, and
“do-nothing” (stress-free) at the outlet. This choice of u is motivated by the vortex-
Decay problem which we employ as our second numerical test.

The numerical simulations were carried out with VIiTLES (see Appendix A) on 4
and 8 processors. We used a small time-step At = 1073 and a small penalty parameter
€ = 10~* in our numerical experiments. Because of our discretization, as explained
in the previous section, we expect the spatial discretization error to dominate the
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F1a. 7.2. The vertical velocity distribution: DNS (top); Smagorinsky (middle); and BAV (bottom).

time-discretization error. At each time-step, the Newton iteration was stopped when
the Euclidian norm of the residual vector was less than 10719, We integrated the flow
in time until T' = 10, which allows a particle in the center of the channel to travel the
full channel length. We chose the following parameters in the bounded AV model:
the filter radius § = 0.1, u = Cs = 0.17,6 = 1, and a(-) the same as that in (7.1). We
emphasize again that these parameters in the bounded AV model were not optimized
in any way for this particular flow.

In Table 7.1, we present the L>(0,7'; L?) norm of the error (second column) as a
function of mesh-size h (first column). We also present the observed order of accuracy
(third column) and the theoretical order of accuracy given by Theorem 5.1 (fourth
column). (More to follow...)

TABLE 7.1
Taylor Hood finite element discretization, ||€||pc0 (o, 1;12)-

h [lell Loo (0,7;2.2) Observed Theoretical
Order of Accuracy | Order of Accuracy
1/2 0.1 2
1/4 0.01 2.2 2

7.2.2. The 2D Vortex Decay Problem. In this section, we present numerical
results for the bounded AV model applied to the vortex decay problem of Chorin [7]. A
similar study for the vortex decay problem using the Smagorinsky model was presented
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F1G. 7.3. The pressure distribution: DNS (top); Smagorinsky (middle); and BAV (bottom).

in [17]. For the vortex decay problem, we define the domain Q = (0,1)2 C R2, and
specify
uy := — cos(nmz) sin(nwy) exp(—2n’x2t/T),

us := sin(nmz) cos(nmy) exp(—2n2n2t/7),

1
pi= —Z(cos(2n7ra:) + cos(2nmy)) exp(—4n*72t/T).

Note that for 7 := Re™!, the set (u1,us,p) solves the time-dependent Navier-Stokes
equations with the appropriate (time dependent, Dirichlet) boundary conditions. For
our purposes, we take (7.2) as the solution to (??) and illustrate two points: that
the spatial semi-discretization error estimates are satisfied and that the estimates are
bounded uniformly with respect to the Reynolds number.

Accordingly, we specify the following parameters,

Re := 10",
7 := 1000,
final time T := 2,
eddy scale 6 := 0.1,
p=0C2%:=0.17,
At :=0.01.
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h [ llu — unllL=(0,1;L2) | Tate || [[u — unllL2(0,7;L2) | T8tE || [[w — Un||L2(0,7;11) | Tate

1/8 || 4.020927- 107 4.936365- 10" 1.560773 - 107

1/16|| 3.103567-10=2 [3.70| 3.952673-10-2 |3.64 2.886625 - 10° 243

1/24|| 5.534371-10"3 [4.25| 7.594030-10"3 [4.07 1.096755 - 10° 2.39

1/32 1.822532-1073 [3.86|| 2.418206-10=3 [3.98| 5.182457-10"' |2.61

1/40| 7.778230-10~* [3.82|| 1.018835-10 3 [3.87| 2.870239-10 ! [2.65

1/48|| 4.227375-10~1 |3.34| 5.138958-10~7 |3.75| 1.763596-10- |2.68
1/56 || 2.567581-10 1 |3.26] 2.907396-10 % |3.70| 1.166515-10 © |2.68
1/64] 1.645877-10 % |3.33| 1.779283-10 7 |3.68| 8.151033-10 2 |2.68

1/72] 1.102856-10~% [3.40( 1.154125-10~% [3.68] 5.940966- 102 [2.69
TABLE 7.2
Finite element convergence estimates for the vorter decay problem.

For our calculations, we assume n = 3, i.e. a 3 X 3 array of vortices and study
the finite element convergence rates for fixed 6 := 0.1 as h — 0. For the spatial
discretization, we take the Taylor-Hood finite element pair and implement the Newton
iteration scheme as described in Section 6. For the temporal discretization, we use
the Crank-Nicholson scheme. Indicated in Table 7.2, the spatial semi-discretization
convergence estimates follow their predicted values of 3 in the spatial L2 norm and 2 in
the spatial H! norm. Also, note that these estimates are independent of the selected
Reynolds number, as we have taken a relatively high value for Re and a relatively
high value for At.

Acknowledgments. The authors thank .....
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Appendix A. The Virginia Tech Large Eddy Simulator (ViTLES).

We introduce in this paper ViTLES, the Virginia Tech Large Eddy Simulator,
a parallel, finite element computational platform for the numerical validation and
testing of new LES approaches. We describe next the numerical algorithm and its
computational implementation.

A.1. Algorithm: Spatial Discretization. For spatial discretization, we use
the finite element (FE) method with the usual Galerkin formulation.

The computational domain is decomposed in a collection of non-overlapping tri-
angles (in 2D) or tetrahedra (in 3D). Thus, the geometric flexibility of FE allows us
to treat complex geometries.

We use Taylor-Hood finite elements: on each triangle (2D) or tetrahedron (3D),
each velocity component is a quadratic polynomial, and the pressure is a liniar poly-
nomial. The basis functions for the velocity are defined at vertices and the midpoints
of the edges; the basis functions for the pressure are defined at the vertices.

From the choice of nodal points, both velocity and pressure are continuous across
the element (triangle or tetrahedron) boundaries (Cuvelier et al. [8], p. 238). One can
also show that the Taylor-Hood finite elements satisfy the inf-sup (or Ladyzhenskaya-
Babuska-Brezzi) condition (see Brenner and Scott [6], p. 253-255).

A.2. Algorithm: Time Discretization. For time discretization, we used Crank-
Nicolson. This is an implicit method, second order accurate in time. It is also A-stable
(see Cuvelier et al. [8], p. 330-333). Since the Crank-Nicolson method is implicit in
time, one needs to pay a higher computational cost by solving a nonlinear system of
equations at each time step. The payoff is the increased stability of the calculation,
which is very impotant in the numerical simulation of turbulent flows.

Thus, at each time step, one has to solve

uk+1

ok
Tu — 0V - (2uD(u*th)) + 0kt - V)urt + gvphtt (A1)

=(1-6)V- (2uD(u")) — (1 - ) (u* - V)u* — (1 — 0)Vp* + 6F5+! + (1 — 0)f*,

where (uf+1, p*+1 £E+1) and (u*, p*, f*) are the velocity, pressure, and forcing vectors
at the current and previous time-step, respectively, § = % for Crank-Nicolson, and At
is the time-step. We use Newton’s method to solve the resulting nonlinear system in
(A.1); a detailed description of our approach is presented in section A.4.

A.3. Algorithm: Penalty Method. The incompressibility constraint V-u = 0
in the Navier-Stokes equations (2.1)—(2.3) is relaxed through the penalty method:

epe + V- -u. =0, (A.2)

where ¢ is a small parameter. This popular approach is described in Cuvelier et al.
[8] (Chapter 8 and Section 10.3.1), in Gunzburger [13] (Chapter 5 and Section 7.1),
and in Quarteroni and Valli [26] (Section 9.6.4).

Obviously, the incompressibility constraint is no longer satisfied, but it can be
proven that (formula (5.16) in [13])

|u - us'l + ||p_p5||0 <Ce.

Thus, as € — 0, the solution of the penalized problem converges to that of the
unpenalized problem. In our computations. we used € = 0.0001.
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A.4. Algorithm: Newton Iteration. Since we are using an implicit method
for time discretization (Crank-Nicolson), we need to solve a nonlinear system of equa-
tions at each time step. To do this, we use Newton’s Method because of its fast
(quadratic) convergence. Before describing Newton’s Method for our setting, we need
to comment on the incompressibility constraint.

As mentioned in the previous subsection, we use the penalty method (A.2) to
perturb the incompressibility constraint. The time discretization we chose for the
penalty method reads

epf £V -kt = gpk,

where the k£ + 1 superscript denotes the current time step, and the k superscript
denotes the previous time step. In this form, the penalty method ressembles the
artificial compressibility method described in Gunzburger [13] p.77, Cuvelier et al.
[8] p. 339-340, the Augmented Lagrangian method described in Quarteroni and Valli
[26] p. 330, or the Iterated Penalty method described in Gunzburger [13] p. 76. It
is interesting to note that the Iterated Penalty method for stationary Navier-Stokes
equations satisfies

lu —u™ i +|lp—p™lo = OE™),

where n is the number of iterations. Thus, it seems natural to expect more than
linear convergence for our time-dependent formulation for the penalty method (A.2);
further investigation is needed.

Putting together (A.1) and (A.2), at each time-step we have to solve

R(uk*! ph+1) = 0
where
R(uFt phtl) = (ubt! — ALV - (2uD (ubt1)) + At (uFTL - V)ubtt + 9ALtVPH ! + Ry,
Vbt 4 gphtt — oph) (A.3)
and Ry, is the part of R(uk*t!, p*+1) that depends only on u* and p*:
Ry := —u® — (1 — 0)AtV - (2uD(u*)) + (1 — O)At(uF - V)uF + (1 — ) AtVp*.

The Newton iteration (u”,p™) will yield an approximation to (u**!, p*¥*+1), where n
is the Newton iteration number. We choose to start the Newton iteration with the
velocity and pressure obtained at the previous time-step:

u® = u” and  p° =ph.
Thus, we need to solve
R(u™,p™) = 0.
Newton’s method now reads
R'(u”,p™)(u" ™ —u”p" —p") = —R(u",p"),
where

/ aRi(unapn)
R n, & i = AT o~
[ (’LL b )] J a(un,pn)j
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is the Jacobian of R. We explicitly construct the approximation to R’, element by
element, from a sequence of finite differences

Ri((u",p") + he;) — Ri((u",p")

h ?
where h is the differencing parameter and e; is the j-th unit vector. The reason for
using an explicit construction of the approximation to the Jacobian instead of using
matrix-free Jacobian vector products is that we will need the actual Jacobian matrix
in sensitivity computations in our longer-term research. We also note that our finite
difference implemenatation for the Jacobian is ripe for automatic differentiation.

[R'(u”,p")]i; ~

A.5. Computational Implementation. ViTLES is written on top of PETSc
(the portable, extensible toolkit for scientific computing) developed at Argonne Na-
tional Laboratory [2, 1, 3]. It makes use of MPI, linpack and the blas. We have
also used ADIC, the automatic differentiation tool [14], to compute Jacobians. This
allows us to rapidly implement different boundary condition and closure models as
well as perform sensitivity analysis. Routines have been developed to convert ViTLES
format to several visualization routines including Tecplot, VTK and VU.
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