Approximate Deconvolution Boundary Conditions for
Large Eddy Simulation

J. Borggaard * and T. Iliescu |

Abstract

We introduce new boundary conditions for Large Eddy Simulation. These boundary conditions
are based on an approximate deconvolution approach. They are computationally efficient and
general, which makes them appropriate for the numerical simulation of turbulent flows with
time-dependent boundary conditions. Numerical results are presented to demonstrate the new
boundary conditions in a simplified linear setting.
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1 Introduction

Large Eddy Simulation (LES) is one of the most successful techniques for the numerical simulation
of turbulent flow [1, 2]. The goal of LES is to decompose the flow into large and small scales by
convolving the flow with a spatial filter [1, 2]. Equations for the large scales (defined by a filter width
parameter) are suitable for approximation using discretizations that are computationally tractable.
A number of issues arise in LES, including model closure issues similar to those appearing in
Reynolds averaging the Navier-Stokes equations [1]. However, one of the main challenges for LES
is specification of efficient, general boundary conditions for the filtered variables [3].

There are essentially two ways to treat boundary conditions in LES [1]. The first is to decrease
the filter width to zero at the boundaries. This popular approach, known as Near Wall Resolution
(NWR) [1], captures the important flow features near the boundary, but has high computational
cost since it requires a fine mesh near the wall. The second is referred to as Near Wall Modeling
(NWM) [1]. The NWM boundary conditions are developed with the aid of physical modeling
such as ensuring conditions on the shear stress or reproducing the logarithmic law of the wall in
the mean. Although more ad-hoc (and problem specific), the discretization near boundaries can
remain coarse. Hence, the NWM approach is a better candidate for LES of realistic turbulent flows.

In this paper, we propose new boundary conditions for LES based on approzimate deconvolution.
An advantage of these Approximate Deconvolution Boundary Conditions (ADBC) is that they
are suited for turbulent flows with time-dependent boundary conditions. There are numerous
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applications where the boundary conditions need to be time accurate. One such example is flow
control, where for example, blowing and suction on the surface of an airfoil can be used to reduce
the skin-friction drag. Note that current LES boundary conditions are not up to this task: NWR
would lead to a prohibitively high computational cost and the needed boundary layer theory for
NWM is not available. Our new boundary conditions avoid these two roadblocks—they are efficient
and general.

2 Approximate Deconvolution Boundary Conditions

In order to develop efficient LES algorithms, we consider a constant, and thus “large,” filter radius
d near boundaries (see Figure 1). This approach avoids the high computational cost of NWR,
where § (and thus the mesh spacing h)— 0 near the wall. Using superscripts n and n+ 1 to denote
variables at current and next time-steps, respectively, the challenge is to prescribe the boundary
condition for the filtered variable at the next time level, @"*!(xq). Our approach computes this
from known quantities: U” in the domain and u”*! on the boundary.
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Figure 1: Setting for the ADBC Algorithm.

Our new boundary conditions are inspired by deconvolution approaches used in model closure
[4, 5]. The derivation begins with the formula

T (x0) = (g5 * u" ) (x0) = / g5(x0 — y)umti(y) dy.
Q

The convolution integral is computed using given Dirichlet values u”*! on the boundary while

approximation to u™*! in the interior is performed using approximate deconvolution of the filtered

variables. This may be implemented explicitly (using @") or implicitly (using u"*!). The approx-

imate deconvolution uses the filtered velocity and pressure (@* and p*, for k = n or n + 1) to

construct an approximation to the original unfiltered variables (u™*! and p™*!) in the interior, e.g.
2
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Since the ADBC filters through the boundaries, we need to account for the boundary commu-
tation error (BCE) term introduced in [6, 7] and analyzed mathematically in [8, 9],

(2) /8Q gs5(x0 — ) [Re™'Vu(s) n(s) — p(s) n(s)] ds,

where n(s) is the outward unit normal vector to €2 at the point s € 9€). Specifically, we need to find
approximations for Vu"*!(s) and p"*!(s). Again, we choose to use an approximate deconvolution
approach, as in (1).

Quadrature is used in the ADBC method to approximate the convolution integral

(3) "~ wou (xg) + Zwl < F(x;) — 6—Au ) + Zwb ntl(x

1€T i€B

where {x;} represent quadrature points and {w;}, the corresponding weights (including gs). The
index sets Z and B represent interior and boundary points, respectively. As we expect, § — 0 leads
to w; — 0 for ¢ > 0 since they include the filter function. Thus, the original unfiltered boundary
condition is recovered. We can consider the sums as correction terms. In practice, the rapid decay
of the gs function away from zg allows us to set weights to zero outside of, for example, the shaded
area in Figure 1. In our numerical experiments, we use an explicit implementation. Complex flows
may require the implicit formulation making the implementation more challenging since they are
nonlocal boundary conditions.

Explicit ADBC Algorithm

Step 1. Compute an approximate deconvolution approximation for u™ at the mesh-points
inside the shaded area in Figure 1 not on the boundary.

Step 2. Using the approximations in Step 1 and the exact values of u”*! on the boundary,
compute an approximation for the BCE term (2).

Step 3. Compute the approximation to " (xg) using 3 (k = n).

The convolution in W *!(xg) in Step 3 is carried out in an efficient way: at the beginning of
the simulation, we pre-compute convolutions of the form g5 * ¢;, where ¢; are finite element basis
functions corresponding to the mesh-points inside the shaded area in Figure 1; then, at each time-
step, we estimate the convolution integral with simple algebraic operations of the form u”“(g(g*qu).

3 Numerical Results

We use the heat equation to illustrate our approach. The advantage of considering this linear prob-
lem is that we can use it to isolate the issue of boundary conditions from closure and commutation
issues associated with nonlinear PDEs such as the Navier-Stokes equations. We stress that this
is just the first step in the numerical validation of the ADBC method and that investigations in
realistic turbulent flows are needed.



The heat equation in a domain 2 C R? has the following form:

up— Au = f in Qx (0,77,
(1) u=g on 99 x (0,77,
u(x,0) = up(x) in Q.

To convolve the above equation with a spatial filter, one needs to extend first u, f, g and ug to R3.
By following the approach in [9], we obtain the space-averaged momentum equations

(2) uy — Au — /89 gs(x —s) Vu(s) -n(s)ds=f in R®x(0,7).

where n(s) is the outward unit normal vector to 092 at the point s € 9.
For simplicity, we consider the 1D heat equation. We chose f, g and ug such that

(3) u(z,t) =t +sin(2 7 x) + sin(8 7 x)

be the exact solution for (1). This yielded f(x,t) = 1+ 472 sin(272) + 6472 sin(87x), g(t) =
t,and ug(z) = sin(27x) + sin(8 7 x). The above functions need to be extended outside (0,1) in
order to convolve equations (1) with gs. We extended wu by its values at the boundaries, that is,
u(z,t) =t for & ¢ (0,1) This yields the extension for f and ug f(z,t) = 1 and ug(x) =t for z ¢
(0,1). We consider gs to be the Gaussian filter g5(z) = (6/76%)/? exp(—622/6%), with § = 0.2.

A finite element approximation of (1) with piecewise linear basis functions, and an explicit
Euler time discretization is used. The interval (0,1) is divided into 20 equidistant subintervals
(Az = 0.05). To compute the convolutions with the Gaussian filer, we extended the computational
domain (0,1) to the left and to the right by § = 0.2. To eliminate effects of time integration (and
our explicit implementation) we use a small time-step, At = 0.0001.

The space-averaged momentum equations (2) have the following one-dimensional form

ou ou — )
(4) Uy — AU+ gs(x —0) —(0,¢) —gs(x —1) —(1,t) =f in R x(0,7).
oz oz
The first challenge in a numerical implementation of (4) is that the terms %(0, t) and %(1, t)
are not known a priori. A straightforward approximation to these terms is by using finite differences

ou u(Az,t) — u(0,t) ou u(l,t) —u(l — Ax,t)

5 —(0,t) = d —(1,t) ~ .

(5) 835( *) Az an 835( *) Az

Unfortunately, this approximation is based on the values of u at the mesh points near the boundary,
which are not known a priori either. The solution is to use an approximate deconvolution approach:

52> u(0) — 2 u(Az) + u(2Az)

(6) u(Az,t) =~ H<A$)_<ﬂ AL ,

and similarly for u(1 — Az, t).

We conducted four sets of numerical experiments for (1). In all these experiments, we inte-
grated in time for 500 time-steps, which corresponds to a final time Tf;,q = 0.5. The errors in
approximating u in all four sets of experiments are plotted in Figure 2.



Test 1: Exact Boundary Term, Ezact Boundary Conditions (Figure 2, top-left). This represents
our benchmark.

Test 2: No Boundary Term, Exact Boundary Conditions (Figure 2, top-right). This experiment
was conducted to illustrate the influence of the boundary term in (4). By dropping the boundary
term in (4), we got an increase by three orders of magnitude in the error in w compared to that
in Test 1. This indicates that (2) should be included in the LES model. These numerical results
confirm the exquisite theoretical considerations in [8].

Test 3: Approzimate Boundary Term, Exact Boundary Conditions (Figure 2, bottom-left). The
boundary term is approximated through a combined finite-differences, approximate deconvolution
approach (5)-(6). The results are not as good as those in Test 1, since we do not use the exact
boundary term anymore. However, they are significantly better than those in Test 2 - there is a
four-fold reduction of the error in .

Test 4: Approzimate Boundary Term, Approzimate Boundary Conditions (Figure 2, bottom-
right). Both the boundary term and the boundary conditions are approximated. There is basically
just a slight decrease of accuracy from Test 3, especially at the boundary. This decrease, however,
does not seem to degrade the overall accuracy.

4 Conclusions

We have introduced the ADBC algorithm, a new set of boundary conditions for LES. The ADBC
algorithm is based on an approximate deconvolution approach. The new boundary conditions are
computationally efficient and general (they function in cases where the boundary layer theory is
not available). These two features make the ADBC algorithm well suited for turbulent flows with
time-dependent boundary conditions, such as those in a closed-loop flow control setting.

We tested ADBC in a finite element discretization of the one-dimensional heat equation. We
chose a linear problem in order to decouple the boundary treatment from the closure problem
(due to the nonlinearity in the Navier-Stokes equations). The numerical results proved that the
boundary commutation error term (2) should be included in the LES model. They also suggested
that our approximations to the boundary commutation error term (2) and boundary conditions are
appropriate.

The error in @ in Tests 1 and 2 in Section 3 illustrate the importance of including the boundary
commutation error (2). Test 3 shows the appropriate treatment of (2) in ADBC. Finally, Test 4
shows the efficient treatment of boundary conditions in ADBC. These first numerical tests with
ADBC were promising. We will continue our careful numerical validation of ADBC in the numer-
ical simulation of realistic turbulent flows, such as turbulent channel flows with time-dependent
boundary conditions.
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Figure 2: Error in @ (top to bottom and left to right): exact Commutation Error, exact Boundary
Conditions; no Commutation Error, exact Boundary Conditions; approximate Commutation Error,
exact Boundary Conditions; approximate Commutation Error, approximate Boundary Conditions;



