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Abstract

A chain code is a common, compact and size-efficient way to rep-
resent the contour shape of an object. When a group of objects is
studied using chain codes, previous works require to obtain one chain
code for each object. In this paper we assign a single chain to a group
of objects, in such a way that all the properties of each object of the
group can be recovered from the single chain. In order to achieve
higher levels of compression, we propose a lossless method, that con-
sists of representing a group of objects by means of a single chain, and
then to apply a context-mixing algorithm. Regarding other methods
of compression of the state-of-the-art, our experiments demonstrate
that the best compression performance is achieved when our lossless
method is applied. In this case more than 15% of a better compression
level is reached.

Keywords: Single chains, Chain codes, Contour shapes, Compression, Context-
mixing, Huffman, Arithmetic.
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1 Introduction

A chain code is a common and compact way to represent a contour shape.
The “Freeman chain code”, proposed by Freeman in 1961 [8], is known

as F8-chain code (F8 for short). It is composed of eight directions and
travels through the center of the pixels of a contour shape on the basis of
eight connectivity. Each movement direction is codified using a symbol α ∈
{0, 1, 2, . . . , 7} in counter clockwise direction (see Figure 1).
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Figure 1: Symbols to encode with F8.

Analogous to F8, F4-chain code (F4 for short) travels through the edges
of the pixels of a contour shape using four connectivity basis. A movement
direction is codified using a symbol α ∈ {0, 1, 2, 3} (see Figure 2). It is also
known as a crack code because it covers the contour shape along edges of
border pixels [1, 4, 6, 17, 29].
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Figure 2: Symbols to encode with F4.

Since Freeman proposed the first chain code [8], a considerable amount
of papers using chain codes for a wide variety of issues have appeared. For
example, for map representations [1, 18], to look for dominant points [2, 3,
9, 22], and for analysis and document compression [10, 20, 28]. In 1999,
Bribiesca [5] proposed the vertex chain code, denoted by V CC. Among its
most important features, V CC is composed by the symbols 0, 1 and 2. It
is invariant under mirror and rotation transformations and invariant to the
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initial point. It has some information between the contour shape and inside
information of the object. This code represents the changes made of a contour
shape by computing the number of affected pixels (see Figure 3).
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Figure 3: Symbols to encode with V CC.

Sánchez-Cruz and Rodŕıguez-Dagnino [27] proposed in 2005 the 3OT -
chain code (3OT for short). They compared 3OT with F4 and obtained a
better result due to the use of the symbols 0, 1 and 2 to label the changes
generated in relation to orthogonal directions. 3OT has the same number
of symbols than V CC, however it is composed of 3 vectors to codify the
contour: reference, support and change. The symbol 0 represents no changes
between reference and support, 1 represents a change equal to reference and
2 represents a change in contrary sense of the reference (see Figure 4).

0 1 2

Figure 4: Symbols to encode with 3OT .

Relied on F8, also in 2005, Kui and Žalik [15] proposed a new chain code,
that we called here AF8-chain code (AF8 for short). This code is based on
changes obtained with every pair of F8 code vectors when following the
contour, i.e. every vector of change in the contour is compared with the
previous one, and depending on the angle, a symbol is given (see Figure 5).
AF8 was compared with F4, F8, V CC and 3OT [23], and the results showed
that AF8 reported more advantages when using the Huffman algorithm.
However, in 2009 the combination 3OT -Arithmetic coding [25] performed
better compression levels than AF8-Arithmetic.
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Figure 5: Symbols to encode with AF8.

From F4, V CC, 3OT, F8, AF8 other chain codes have been derived. The
derived codes arise by combining the symbols that appear in the contours,
making a probabilistic model to modify the number of bits required to store
the coded contour shape. For example, E−V CC, V−V CC and C−V CC-
chain codes were proposed in [14]. The E−V CC-chain code was obtained
by considering that V CC uses two bits to represent three symbols. The
V−V CC-chain code arises by considering a variable-length of V CC. The
C−V CC-chain code is based on applying the Huffman algorithm on the V CC
code-symbols. On the other hand, the M−3OT -chain code was proposed by
considering grouping symbols of 3OT [24], whereas MDF9-chain code was
proposed by considering the AF8 patterns in pieces of discrete straight lines
of the contour shapes [21]. Recently, NAD-chain code was introduced in [30]
and obtained more compression levels in [31]. It is a variation of AF8, where
instead of using the symbols 0, . . . , 7, the authors use four symbols grouped
in the following strings of symbols: 0, 2, 310, 311, 312, 301, 300 and 1 (and
labeling the angles according to Figure 6). The AAF8-chain code is the
newest basic code (it is not a derivation of another known code), introduced
in [26] and inspired in F8 and 3OT. AAF8-chain code is composed of three
vectors (two angles), in which, regarding the reference vector, a symbol of
change direction is given, independently of the support vector direction. It
is considered in a basis of eight connectivity. Table 1 shows the basic and
the derived codes.

All the chain codes above mentioned have the common particularity that
they were designed to represent a contour shape of an isolated object. How-
ever, to achieve even higher compression levels, we propose to change the
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Figure 6: Symbols to encode with NAD.

Year proposed Basic code Derived codes
1961 F8, F4
1999 V CC E−V CC, C−V CC, V−V CC
2005 3OT M−3OT
2005 AF8 MDF9, NAD
2014 AAF8

Table 1: Basic codes and their derived codes.

paradigm, instead we now represent groups of objects by using a single chain.
The idea is simple: we concatenate the chain codes of each contour shape
of the group. In general the concatenation of chains is always possible, but
in order to recover the single chains that form the concatenated chain, it is
necessary to have more information, like the length of each single chain and
the position of each object. We avoid all this extra storage thanks to the
characteristics of the chain codes of objects with pairwise disjoint.

The contents of this work are as follows. In Section 2, some preliminaries
are given. In Section 3 the concept of a chain code for a contour shape is
extended to a group of objects by using only a single chain. Experiments and
results exploiting the idea of using a single chain code for a group of objects
are given in Section 4. Finally, in Section 5 some conclusions of this paper
are given.
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2 Preliminaries

In this section we introduce some concepts, algorithms and notations used
throughout this work.

An alphabet A is a set of symbols. A chain C of length n over an alphabet
A is a sequence of n elements of A

C := c1c2 · · · cn, ci ∈ A for all i = 1, . . . , n.

If there is not ambiguity hazard about the alphabet A, we just say that C is
a chain.

Let C := c1 · · · cn and T := t1 · · · tm be chains of length n and m, respec-
tively. We define the concatenation of C and T, denoted by C · T or CT, as
the chain:

CT := c1 · · · cnt1 · · · tm.

Let Γ be a contour shape of an object. A chain code of Γ is a chain C(Γ)
that represents (encode) the contour shape Γ, this means that it is possible
to recover (decode) the contour shape Γ using only the information of the
chain code C(Γ).

The contour shape of an object can be seen as a set of vectors [26], so,
a chain code is a representation of a set of vectors. As a consequence, all
the basic codes can be handled as vector components, V CC inclusive, as it
is explained also in [26].

2.1 Compression algorithms

For data compression, several coding schemes have been used. One of the
most popular is the Huffman algorithm [11]. It is probably the most used
component of compression methods like GZIP, JPEG and also in compressing
of binary objects. Huffman algorithm is simple and easily described in terms
of the prefix-code tree generated from the probability that a symbol appears
in a message, giving a short code to the most frequent symbol and a larger to
that which appear with lower probability. For a code of size n the algorithm
runs in O(n log n) time, however the algorithm has the disadvantage that the
code lengths must be rounded to a whole number of bits.

Another of the most known code-schemes, is the Arithmetic algorithm [19].
Arithmetic coding works better with sources of small alphabets. It can be
computed by updating the probabilities of each symbol of a message in an
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interval between 0 and 1, dividing the interval in proportion to the probabil-
ity distribution for each input symbol, narrowing the interval by a factor of
pi on each symbol i. This procedure is carried out iteratively until reading
the last symbol.

On the other hand, although PPM (Prediction by Partial Matching) al-
gorithm [7] is slower to run, it has better compression performance. The
main idea of PPM is to consider previous symbols (context) of a message to
generate conditional probability of the current symbol. Because the proba-
bility distribution tend to be high it can be used by Arithmetic algorithm to
obtain a bit sequence, working much better than Huffman algorithm for this
approach.

Content-mixing algorithm is related to PPM in the sense that the com-
pressor is divided into a predictor and an Arithmetic coder, except that it
uses a binary alphabet to simplify encoding and model merging [16].

Particularly, PAQ archivers are a family of lossless data compressors
based on context-mixing, and they are distributed as free software under the
GNU general public license.

Among the PAQ archivers, one of them is called PAQ8L, which is used
for lossless compression of files with alphabets of few symbols. Throughout
the work we use PAQ8L because we want to apply it to chain codes, which
come from alphabets of size 2, 3, 4 or 8.

In last decade, the Huffman and Arithmetic algorithms have been widely
used to prove the binary object compression methods [14, 15, 18, 21, 23,
24, 25, 27]. Relied on RLE and MTFT transform to decrease the chain
code entropy, Zalik and Lucak [30], and Zalik et al. [31] reached the best
rate compression to isolated binary objects. On the other hand, methods
for document image compression have been carried out in [20] and [28],
achieving better compression performance than JBIG2 and DjV u by a wide
range, where PAQ8L was utilized to compress the resuling file text of such
proposed methods.

3 Single chains

In this section we give two algorithms. One of them is to encode a group of
N objects. The idea is simple but powerful, to create a single chain formed
by the concatenation of the chain codes of each object. The second algorithm
is used to decode the single chain that represents the group of N objects.
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Algorithm 3.1 Encode N objects
Input N objects Γ1, . . . ,ΓN .
Output A single chain S that represents the N objects.

1.- Encode each of the N objects Γ1, . . . ,ΓN to obtain the chain codes
S1, . . . , SN .

2.- Define the single chain that represents all the objects as S := S1 · · ·SN .

Example 3.2 The F4-single chain of Figure 7 is

SF4 := F4(a) · F4(b),

where F4(a) = 000101111212122232330100033222323003

and F4(b) = 0010103001212121123322112332330303.

(a) (b)

Figure 7: Image composed by two objects.

Observe that given N arbitrary chains, it is always possible to create the
concatenation S from these N chains, but in order to recover the original
objects, it is necessary to have more information, as the length of each in-
dividual chain and the position of each of them in S. We avoid this extra
storage exploiting the characteristics of the chain codes.
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As we mentioned in Introduction, all the basic codes can be handled as
vector components. This means that as a consequence, when a chain code
is decoded, we obtain the sequence of vectors that represents the contour
shape.

Lemma 3.3 Let C be a crack code of a contour shape Γ and let v1, . . . , vn
be the vectors obtained when C is decoded. There exists a unique vector vi
such that the end of vi is the beginning of v1.

Proof. The existence is easy, it is vn. Assume v1 is the vector from the point
(0, 0) to the point (1, 0). Let vi be a vector such that the end of vi is the
point (0, 0), the beginning of v1. The beginning of vi+1 is the point (0, 0).
vi+1 is not the vector to (−1, 0) neither (0, 1) because v1 is the leftmost top
vector of the contour shape. vi+1 is not the vector to (1, 0) or (0,−1) because
in this case vi+1 = v1 or vi+1 = −vi, but vectors of a contour shape don not
overlap. This means there is not a vi+1 vector and thus vi = vn. 2

Remark 3.4 The contour shapes that we are considering in this work are
always closed curves because they come from a real object, so, for this work,
the previous Lemma is also valid for chain codes that are not crack codes,
i.e., for codes that cover the contour shape traveling through the center of
the pixels. The proof of this fact is similar.

The pair of previous results say that if we have a single chain S as the
result of applying Algorithm 3.1 to N objects, then, in order to recover the
N objects, we need to decode the chain S as a simple chain code, until the
end of one vector is the beginning of the first vector, in this moment we have
completed an object.

Algorithm 3.5 Decode N objects
Input A single chain S that represents N objects.
Output N objects Γ1, . . . ,ΓN represented by S.

1.- Let v1 be the first vector found when S is decoded as a chain code.

2.- Define j := 1, i := 1 and the set of vectors V := {v1}.

Do

3.- i := i + 1. Let vi the following found vector when S is decoded as a
chain code.
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4.- V = V ∪ {vi}.

Until The end of vi is the beginning of v1.

5.- Define Γj := V and j = j + 1.

6.- Eliminate the symbols of S used to find the object V .

If S is no empty. go to Step 1.-
Else The sets Γj represent the objects encoded by S.

Observe that condition Until guarantees that an object was found, because
by Lemma 3.3, the first found vector with this property should be the end
of an object.

4 Experiments and results

In this section we apply our proposed method of single chains to represent
groups of objects in order to obtain high levels of compression. To test our
method, we use the 44 images of Figure 8. The first 12 objects of Figure 8
were downloaded from the Repository [12]. The rest of the objects were
downloaded from the Repository [13].

4.1 Applications of single chains

Let C be a chain. By C + PAQ8L we mean the result of applying PAQ8L
to the chain C. The size, in bytes, of C is denoted by Size(C) and the size
of C + PAQ8L is denoted by Size(C + PAQ8L). If C is a chain code, to
specify what kind of code it is we write C(P ), where P is an element of
B := {F4, F8, V CC,AF8, 3OT,NAD}.

Let C1, . . . , CN be the chain codes of N objects Γ1, . . . ,ΓN with pairwise
disjoint and let S be the single chain that represents the N objects. Results
of this section show that for all P ∈ B we have

Size(S(P ) + PAQ8L) <
N∑
i=1

Size(Ci(P ) + PAQ8L).

Moreover, minimum of left side is attached when P = 3OT and in this case,
Size(S(3OT ) + PAQ8L) is up to 25% less than the sum

∑N
i=1 Size(Ci(P ) +
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PAQ8L), for any other P ∈ B. This means that in order to improve the
compression of a figure composed by objects with pairwise disjoint in up to
25%, it is better to create a single chain with 3OT that represents all the
objects of the image, instead of manage isolated chain codes of each object.

The chain codes of the objects that appear in Figure 8 are denoted by
C1(P ), . . . , C44(P ), where P ∈ B. Table 2 shows the values Size(Ci(P ) +
PAQ8L), for i = 1, . . . , 44 and P ∈ B.

In order to see the behavior of single chains we have formed 12 groups
of objects from Figure 8. There are objects with a short length in compar-
ison of other objects. For instance the length of objects 6, 7, 8 and 9 are
2264, 1236, 5996 and 1096, respectively. Thus the sum of the lengths of ob-
jects 6, 7 and 9 is less than the length of object 8. For that reason we have
decided that the smallest group, the Group 1, is composed by the objects of
the first repository, i.e. the first 12 objects. Groups 2, 3, 4 and 5 are com-
posed by objects from 1 to 13, to 14, to 15 and to 16, respectively. Group 6
is formed by objects 1 to 20 and then we added 4 objects to each new group
until Group 12, which is formed by the 44 objects.

For j = 1, . . . , 12, let Nj be the number of objects of the group j and let
Sj(P ) be the single chain that represents the objects of same group j with
the codification P ∈ B. Table 3 shows the values Size(Sj(P ) + PAQ8L)

(row “Single chain”) and
∑Nj

i=1 Size(Ci(P ) + PAQ8L) (row “Isolated”) for
j = 1, . . . , 12 and P ∈ B. In both cases, computing the sum and using
single chains, the lowest value is always given when the codification is made
with 3OT. Column “Percent of improvement” shows the percent of memory
storage saved, when a group of objects is encoded with 3OT in a single chain
rather than have encoded as isolated objects.

Figure 9 shows that the performance by increasing the groups is not
linear, but rather, results in a slightly warped curve, i.e. decreasing its slope
for larger groups. As can be observed, this behavior tells that while larger is
the concatenated string (i.e. as more objects are compressed), then greater
is the performance of the use of single chains.

4.2 Comparing with Huffman and Arithmetic

Among the most used algorithms to compress chains of characters are Huff-
man, Arithmetic and context-mixing. Regarding the first two of them, ver-
sions of variable-length of Huffman and Arithmetic adaptive have also been
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Object
F4 F8 V CC AF8 3OT NAD

+ PAQ8L
Bird 297 296 289 292 292 294

Butterfly 251 248 242 238 242 242
Circle 114 113 91 82 95 83
Fire 224 223 214 215 209 215
Horse 341 340 337 339 326 343
Plane 128 126 127 127 129 132
Shuttle 150 150 146 149 142 152
Spider 487 481 457 440 455 443
Square 45 41 39 44 43 45
Star 105 96 90 90 85 93

Thunder 162 154 157 165 167 170
Tiger 456 458 456 482 439 488
Bull 305 305 297 305 292 309

Mexico 261 268 260 272 258 277
Giraffe 350 347 344 362 338 369
Frog 271 273 263 266 260 271

Omega 170 176 164 164 162 168
VW 199 202 196 208 190 209
Bat 281 283 276 281 268 284

Motorcycle 543 548 531 538 529 543
Camel 277 279 277 285 271 292
Eagle 188 187 184 192 185 192

Dolphin 217 222 210 222 214 227
Gear 276 277 270 275 266 280
Pitbull 203 205 196 203 195 208
Rex 331 336 328 335 322 339
Horse 284 288 278 282 277 289
Boot 179 181 175 175 172 180
Car 157 161 157 161 151 164
Star 192 194 195 204 192 208

Chicken 178 180 173 178 171 182
Jump 236 235 227 236 226 240
Hand 231 236 224 228 224 228

Penguin 161 164 152 157 154 160
Chevy 198 204 207 225 200 228
Dog 231 232 223 223 220 224
Fish 192 197 189 195 185 198
Girl 307 306 292 303 290 305
Spiral 327 321 312 307 309 317
Guitar 87 88 83 90 84 94
Rex 226 229 218 232 217 233
Plane 167 168 165 167 163 167
T-shirt 128 129 121 124 122 122
Jeans 152 151 144 152 141 155

AVERAGE 233.30 234.05 226.73 232.05 224.37 235.5

Table 2: Bytes of individual objects of Figure 8.
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Group
F4 F8 V CC AF8 3OT NAD Percent of

+ PAQ8L improvement

1 to 12
Isolated 2760 2726 2645 2663 2624 2700

22.26%
Single chain 2140 2140 2070 2050 2040 2060

1 to 13
Isolated 3065 3031 2942 2968 2916 3009

21.81%
Single chain 2380 2370 2310 2290 2280 2300

1 to 14
Isolated 3326 3299 3202 3240 3174 3286

21.86%
Single chain 2580 2570 2510 2500 2480 2500

1 to 15
Isolated 3676 3646 3546 3602 3512 3655

21.70%
Single chain 2860 2850 2790 2790 2750 2800

1 to 16
Isolated 3947 3919 3809 3868 3772 3926

21.79%
Single chain 3070 3050 2990 2990 2950 3000

1 to 20
Isolated 5140 5128 4976 5059 4921 5130

21.76%
Single chain 3980 3960 3890 3890 3850 3910

1 to 24
Isolated 6098 6093 5917 6033 5857 6121

22.66%
Single chain 4680 4650 4570 4580 4530 4610

1 to 28
Isolated 7095 7103 6894 7028 6823 7137

23.2%
Single chain 5400 5360 5290 5300 5240 5330

1 to 32
Isolated 7858 7873 7646 7807 7563 7931

23.97%
Single chain 5910 5860 5780 5810 5750 5840

1 to 36
Isolated 8679 8709 8452 8640 8361 8771

24.53%
Single chain 6480 6430 6350 6380 6310 6410

1 to 40
Isolated 9592 9621 9328 9535 9229 9685

24.80%
Single chain 7130 7090 6980 7020 6940 7050

1 to 44
Isolated 10265 10298 9976 10210 9872 10362

25.55%
Single chain 7550 7500 7400 7430 7350 7460

Table 3: Comparison between single chains and isolated chain codes.
Row “Single chain” of a Group shows the bytes needed to save a single

chain that represents all the objects of the group.
Row “Isolated” of a Group shows the bytes needed to save all the chain

codes that represent all the objects of the group.
In yellow the lowest number of bytes needed to save the information of a

group of image.
Column “Percent of improvement” shows the percent of memory storage
saved, when a group of objects is encoded with 3OT in a single chain

instead of to be encoded as isolated objects.
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used. Furthermore, the context-mixing algorithm already has an enhanced
version of the Arithmetic algorithm.

Given a group of objects, in terms of compression, we already know by
Table 3 that it is better to use a single chain for the whole group and then
PAQ8L instead of a chain code for every object and the PAQ8L for every
chain code. Now some questions arise with respect to the performance of
Huffman and Arithmetic and context-mixing algorithms: What is the be-
havior of these algorithms when

(a) a single chain for the whole group is obtained and then algorithms for
compression are applied to this single chain?, or

(b) isolated chain codes for every object are obtained and then algorithms
for compressing are applied to each of these chains?

Which method gives the best compression level? In order to give an an-
swer, we have compared the performance of these three known algorithms.
Table 4 shows the number of bytes required to compress individual objects
using the Huffman algorithm. On the other hand, Table 5 shows the num-
ber of bytes required to compress individual objects using the Arithmetic
algorithm.

Finally, Figure 10 shows the behavior of bytes employed when chain codes
and a single chain are used to encode the Figure 8. The left graph shows
the average of bytes needed to encode an object of Figure 8, when the figure
is encoded element by element, i.e., for every object of the figure, a chain
code is obtained, and then, an algorithm to compress is applied to every
chain code. The right graph shows the average of bytes needed to encode an
object of Figure 8, when the figure is encoded in a simple chain and then, an
algorithm to compress is applied.

From these results, it can be seen that, considering all the different
chain codes, broadly speaking Huffman and Arithmetic algorithms compress
slightly better when objects are treated in isolation, moreover, the efficiency
remains practically equal to the best performances given by 3OT , AF8 and
NAD, in this order. However, it is clear that when context-mixing algorithm
is applied, the compression significantly improves the case of single chains by
a wide margin.

In the case of compression for chain codes, Huffman has better perfor-
mance on AF8, followed by NAD and then 3OT . A similar behavior on 3OT
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Object
F4 F8 V CC AF8 3OT NAD

+ Huffman
Bird 594 596 458 377 441 381

Butterfly 503 517 409 330 351 332
Circle 268 284 213 144 190 144
Fire 728 714 558 478 536 479
Horse 1079 1207 629 667 629 789
Plane 566 555 469 306 375 309
Shuttle 309 309 222 182 222 182
Spider 1499 1460 1222 922 1035 923
Square 274 273 137 137 137 139
Star 363 384 288 206 258 208

Thunder 604 451 486 325 360 326
Tiger 1067 1218 638 647 638 748
Bull 531 577 383 339 383 346

Mexico 390 407 305 246 286 253
Giraffe 690 745 495 459 495 472
Frog 426 440 346 273 303 279

Omega 373 424 265 220 265 225
VW 347 361 256 206 256 208
Bat 514 534 409 323 365 327

Motorcycle 1261 1360 969 807 932 815
Camel 449 486 341 297 341 302
Eagle 304 293 251 172 209 175

Dolphin 349 373 267 229 259 233
Gear 373 399 294 258 278 269
Pitbull 332 365 243 204 243 207
Rex 552 598 415 373 415 382
Horse 459 478 369 293 328 298
Boot 365 405 260 227 260 231
Car 301 338 198 178 198 181
Star 295 319 226 187 217 193

Chicken 242 254 192 147 175 149
Jump 345 355 280 216 242 223
Hand 466 501 356 292 348 294

Penguin 208 212 170 125 146 127
Chevy 345 384 222 232 222 250
Dog 391 421 297 240 294 244
Fish 290 313 224 180 213 185
Girl 477 519 369 313 357 322
Spiral 782 830 619 493 559 497
Guitar 58 59 43 39 43 42
Rex 365 374 283 227 270 232
Plane 287 287 223 200 223 201
T-shirt 215 241 152 140 152 141
Jeans 347 370 248 247 248 248

AVERAGE 476.74 499.74 356.69 297.74 333.90 307.06

Table 4: Bytes when Huffman algorithm is applied to the chain code of every
object of Figure 8. 15



Object
F4 F8 V CC AF8 3OT NAD

+ Arithmetic
Bird 584 600 465 346 348 349

Butterfly 511 522 405 289 284 291
Circle 276 292 217 152 143 151
Fire 707 712 565 420 385 420
Horse 1072 1196 448 554 398 670
Plane 575 557 456 279 277 281
Shuttle 308 314 228 164 171 164
Spider 1476 1452 1194 801 784 802
Square 282 282 10 12 12 17
Star 369 386 292 191 193 192

Thunder 595 453 464 289 221 290
Tiger 1075 1209 494 553 421 651
Bull 531 584 388 319 320 325

Mexico 398 410 310 239 233 246
Giraffe 675 731 489 429 388 444
Frog 433 446 344 257 262 263

Omega 381 427 269 201 205 204
VW 343 368 263 190 194 192
Bat 518 537 410 295 282 298

Motorcycle 1267 1353 975 731 698 739
Camel 454 490 348 278 273 282
Eagle 312 299 248 165 174 168

Dolphin 357 377 274 215 200 219
Gear 378 404 299 244 243 258
Pitbull 338 371 250 192 198 195
Rex 556 601 423 354 339 363
Horse 466 482 369 274 274 279
Boot 371 410 265 212 207 215
Car 307 342 191 156 162 157
Star 303 326 233 181 165 188

Chicken 250 261 197 143 150 145
Jump 352 361 280 210 203 215
Hand 470 504 363 265 267 267

Penguin 216 218 172 124 128 126
Chevy 346 390 206 226 176 245
Dog 397 425 305 226 234 229
Fish 298 319 231 175 169 179
Girl 478 521 376 302 298 310
Spiral 791 834 619 443 424 447
Guitar 63 66 49 45 45 47
Rex 368 378 289 219 220 223
Plane 286 286 230 186 172 187
T-shirt 222 247 157 132 125 133
Jeans 342 372 251 225 188 225

AVERAGE 479.48 502.61 347.98 270.52 255.75 279.34

Table 5: Bytes when Arithmetic algorithm is applied to the chain code of
every object of Figure 8. 16



and AF8 had already been observed in [23]. On the other hand, Arithmetic
performs better for 3OT , followed by AF8, as happened in [25]. Finally,
PAQ8L helps all alike, especially when a single chain is considered. Al-
though the performance is almost the same, except for a few bytes, 3OT is
the best option to compress.

4.3 A single chain is better

Why is better to use a single chain to represent the whole objects than to
use a chain of each object? As can be seen from the results obtained in
our work, the compression rates are higher if chain codes are concatenated
than if we manage them separately. Previous works like [21, 24, 30] have
made improvements in the compression of chain codes than come from binary
objects, thanks in part to the geometrical analysis of the shape-of-objects,
trying to catch the redundancy occurred in the contours, which has resulted
in finding pattern substrings and repetitions of bit streams, both to reduce
the entropy to improve compression of the chains. However, a deeper sta-
tistical analysis as the one conducted by the PAQ8L archiver shows that
the search for better patterns can be replaced if better statistical models are
sought.

The frequency and context information of the symbols contained in a
single string obtained by the Arithmetic and context-mixing to a single chain,
is much poorer if all are concatenated. Thus, statistical information given
by the frequency of each symbol is better enriched in a longer chain than
in a shorter, causing, in the case of mixing context prediction of contexts is
markedly improved, and thus the compression. The advantage of using the
PAQ8L method is that it uses statistical models to estimate the probability
distribution of symbols. It relies mainly on variable order models based on
PPM (Prediction by Partial Matching), which perform a statistical analysis
of models with different orders at the same time and then uses matching of
larger context. It is based on the premise that the larger context which is
available for statistical model is the best predictor.

4.4 Comparison with the state-of-the-art

Perhaps a comparison with existing methods in the literature is not entirely
fair, since to date these methods have been performed on chains for each
of the objects in the image, while we have proposed to use only one chain.
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Moreover, in our model we do not set out to reduce the entropy of chains, as
is done, for example, in [30, 31], who use RLE and Move-to-front Transform
to reduce entropy of the chains. However, highlighting the advantage of
encoding with a single chain to all objects, and even without reducing the
entropy of the chain, let us consider the average number of bytes required to
store the set of objects: for one hand, the best compression levels appeared
in [31] for the first 12 objects tested, an average of 198.21 bytes is reported,
while using our method our best average is 170 bytes, which is 14.23% of
gain. However, as the number of objects increases, it is interesting to see
that the gain with our method is increased, as shown in Table 3. Thus, for
the case of the 44 objects, we obtained an average of 167 bytes, and our profit
would be 15.7%. However, it is important to note that we did not reduce the
entropy of the chains, so surely, the gain can be increased if this concept is
considered in a future work.

5 Conclusions and further work

As we know, in literature, a number of interesting articles about methods
to represent, separately, contours of binary objects have appeared. Authors
have carried out an analysis of length and compression performance. In this
paper we have used the following strategy: a single chain that represents
all the objects of a image has been found and then it has been applied
the context-mixing algorithm. The combination of a single chain created
with 3OT and PAQ8L achieve up to 25% of efficiency about compression in
comparison with manage chain codes representing each object of the image,
and 15.7% better compression regarding the state-of-the-art.

Our experiments demonstrate that no matter the code, obtaining a sin-
gle chain and then apply context-mixing algorithm is the best compression
method.

Of course, we applied the algorithms of compression on the chain codes
without tranforming them to reduce its entropy, however, as a further work,
if algorithms to reduce the entropy of a single chain code are implemented,
the compression levels can be improved even more.

As a consequence of single chains, giving one more step to what has been
done so far in the literature to encode individual objects, we have proposed
an new method to improve compression efficiency when considering groups
of objects that appear in an image.
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Figure 8: Image composed by 44 objects.
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