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Abstract. The representation of images is an active and very important area in image processing and pattern
recognition. Therefore, in the literature, different contour codes for binary images have been proposed, such as
F4; F8; VCC; 3OT , and AF8. These codes have been used in many papers since the first chain code, F8, was
introduced by Freeman in 1961. All the codes have been tried here as vector representations, including vertex
chain code (VCC). To know their properties, this paper provides an analysis of comparisons of each code, and
as an important contribution, we investigated the relationship between them and found a series of transforma-
tions that allow simple and efficient sets to go from one code to another. We found the equivalences between
F4; VCC; 3OT ; F8, and AF8. As an important consequence of the transition matrix concept, we proposed a new
code for eight connectivity by observing a missing code in the state of the art and in the inspiration of the 3OT
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1 Introduction
Using chain codes is a common way for binary object-shape
representation. The Freeman code, proposed in 1961,1 is
known as Freeman chain code, and it is composed of
eight directions, so we call it here F8 code. It is a compact
way to represent binary object shapes, and it has the char-
acteristic of going through a sequence of pixels of the con-
tour on the basis of eight connectivity. Each movement
direction is codified using a symbol α, where α ¼
0; 1; 2; : : : ; 7 in clockwise direction [see Fig. 1(b)].
Analogous to F8, F4 code visits the pixels of the contour
using four connectivity. A movement direction is codified
using a symbol α, with α ¼ 0; 1; 2; 3 [see Fig. 1(a)]. F4 is
also known as crack code because it covers the contour
shape along edges of border pixels.2–6

Since Freeman proposed the first chain code,1 a consid-
erable amount of papers using chain codes for a wide variety
of issues have appeared.

One motivation to study chain codes is that, despite the
different chain codes that have been proposed independently,
a theoretical analysis is necessary to know if the codes are
related. Of course, implementing the codes takes some tech-
nical effort. For example, 3OT is more difficult to implement
than vertex chain code (VCC) because the former takes into
account relative changes regarding a reference vector, which
remains the same unless another change occurs. As can be
studied from the literature, different proposals have been
implemented independently. However, a question arises:
can a general scheme be constructed that relates the different
codes and predicts the existence of more?

Another motivation to study chain codes is that they can
be used particularly in compression of scanned documents.
For example, recently 3OT code has been utilized to com-
press image text documents, obtaining more than twice the

levels of compression regarding the international standard
called Joint Bilevel Image Expert Group 2.7

Other applications are, for example, for map representa-
tions,2,8 to look for dominant points,9–13 for analysis, and, as
we already mentioned, for document compression.7,14

Since the basic codes were appearing independently, a
question to answer is: can existing codes be obtained through
a general model? Therefore, the main objective of this paper
is to make a theoretical analysis of the different codes
existing in the literature and to find a general model that
relates them, although they emerged independently. From
this study, filling the gaps of missing codes is necessary.

Among the advantages of this study, we can say that hav-
ing equivalences of the codes, we can handle different geo-
metric interpretations of the shapes-of-objects information,
mainly depending on four or eight neighborhood in contour
representations for analysis and recognition purposes.

Depending on the model of representation used, it is nec-
essary to work with either eight or four neighborhood. For
example, if a comprehensive analysis of discrete straight
lines detection is required, then eight neighborhood is nec-
essary.15 On the other hand, if improving the level of com-
pression is required, then 3OT code plays an important role.
While 3OT code improves levels of compression regarding
the VCC, the latter has some advantages in terms of repre-
sentation. For example, due to its nature, VCC can give
information of concavities and convexities of the contours;
another advantage is its relationship with the Euler
number.16 Other proposals can search more geometric
properties. The codes give particular geometric interpreta-
tions depending on whether they represent four or eight
connectivity.

In 1999, Bribiesca17 proposed VCC. Among its most
important features, VCC is composed of three symbols:
α ¼ 1; 2; 3; it is invariant under mirror and rotation transfor-
mations and invariant to the initial point, which has some
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relationship between the contour and inside information.
This code represents the changes made to an object contour
by computing the number of affected pixels.

In 2005, Sánchez-Cruz and Rodríguez-Dagnino18 pro-
posed the 3OT code. They compared it with F4 and obtained
a better performance, thanks to the use of the symbols 0, 1,
and 2 to label the changes generated in relation to orthogonal
directions. 3OT code has the same number of symbols as
VCC; however, it is composed of three vectors to codify
the contour: reference, support, and change. In this case,
the symbol 0 represents no changes between reference and
support, whereas 1 represents a change equal to reference
and 2 represents a change in contrary sense of reference.

Supported on the F8, in 2005 Kui and Zalik19 proposed a
new chain code, which we call here AF8. It is based on
changes obtained with every pair of F8 code vectors
when following the contour, i.e., any vector change in the
contour is compared with the previous one, and depending
on the angle, a symbol is given. This code was compared
with F4, F8, VCC, and 3OT,20 and the results showed
that AF8 offered more advantages.

The set of codes studied is B ¼ fF4; VCC; 3OT;F8;
AF8g, and we call them basic codes (see Definition 1).

From B other codes have been derived. The derived codes
were obtained by combining the symbols that appear in the
contours and making a probabilistic model to modify the
number of bits required to store the coded contours. For
example, EVCC, VVCC, and CVCC were proposed in
Ref. 21. EVCC was obtained by considering that VCC
uses two bits to represent three symbols, VVCC arises by con-
sidering a variable length of VCC chain, and CVCC is based
on applying the Huffman algorithm on the VCC code sym-
bols. On the other hand, M3OT was proposed by considering
grouping symbols of 3OT,22 whereas MDF9 was proposed
by considering the AF8 patterns in pieces of discrete straight
lines of the contour shapes.15 Table 1 shows the basic and the
derived codes.

According to different criteria to satisfy the need to re-
present the object shapes and looking for relationships of
contours and inner regions, in the literature, it is reported
that each code of the set B was obtained independently
and in different years. However, we demonstrate that there
is an equivalence of all basic codes, even more there is a
way to go from one code to another. In 1997, Wilson
found an equivalence between F8 and F4.6 However, in
this work, we found the equivalence between the basic
codes proposed since then.

In this paper, we demonstrate that there is a transition
matrix that allows us to go from one code C1 to another

C2, with Ci ∈ B. If this happens, we say the codes C1

and C2 are equivalent.
The transition matrix that allows us to go from a code to

another will be very important because if a coding has some
properties, like rotation invariance, they have to be reflected
in the transition matrix.

Of course, all the codes can be handled as vector compo-
nents, VCC inclusive, as we show in this paper. The men-
tioned codes are useful to represent contour shapes in
either four or eight connectivity. A summary of the basic
codes for eight and four connectivity contours appears in
Table 2. According to the number of vectors used to codify,
we classify the basic codes in three types.

• Type 1 is composed of the codes that use one vector.
• Type 2 is composed of the codes that use two vectors.
• Type 3 is composed of the codes that use three vectors.

This information is shown in Table 2, in which we notice
that there are two codes of types 1 and 2; however, there is a
missing code for type 3 represented by a small box, which
has not been proposed. In this work, after analyzing matrix
transformations to find code equivalences, we discover this
missing code.

In Sec. 2, we introduce the basis of the codes F4; VCC;
3OT;F8, and AF8. In Sec. 3, we study the case of four con-
nectivity, and we demonstrate that F4, VCC, and 3OT are
equivalent. In Sec. 4, we deal with the case of eight connec-
tivity, and we demonstrate that F8 and AF8 are equivalent.
Despite that some codes are for eight connectivity and others
are for four connectivity, in Sec. 5, we demonstrate that all
the codes of the basis are equivalent. As a result of equiv-
alences of chain codes, in Sec. 6, we found a new code
for eight connectivity. In Sec. 7, we test our new code on
some sample objects and obtain some results. Finally, in
Sec. 8, we present some conclusions and future work.

2 Concepts and Definitions
The codes that we use in this work are F4; VCC; 3OT;F8,
and AF8; from these we give the following definitions:

Fig. 1 Freeman symbols obtained in clockwise direction: (a) F4 code
and (b) F8 code.

Table 1 Basic codes and their derived codes.

Year proposed Basic code Derived codes

1961 F8; F4

1999 VCC EVCC , CVCC , VVCC

2005 3OT M3OT

2005 AF8 MDF9

Table 2 Bases of chain codes representing four and eight connec-
tivity. The box represents a missing code.

One vector Two vectors Three vectors

4 connectivity F4 VCC 3OT

8 connectivity F8 AF8 □
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Definition 1 The set of codes studied is B ¼ fF4; VCC;
3OT;F8; AF8g, and we call them basic codes.

Definition 2 If a figure is codified with some codeX , and
the coding is

C ¼ fCX ð1Þ; : : : ; CX ðnÞg;

then the number n is called the length of the code X .

2.1 F4 and F8 as a Vector Representation
Traditionally, F4 and F8 symbols are obtained by consider-
ing their basis vector in counterclockwise direction.
However, for convenience, in this paper, we use the clock-
wise direction (see Fig. 1).

2.2 VCC as a Vector Representation
The VCC was initially conceived as a code based on the
number of pixel vertices that are in touch with the boundary
contour of the shape, giving three cases coded by an alphabet
of three symbols. However, by analyzing the nature of this
code, we can give it a vector interpretation. As can be seen in
Fig. 2 for VCC basis, given two connected resolution pixels,
there are three adjacent edges at the vertex of the contour.
The two edges of the outer contour can be used as directed
segments in the same direction. On the other hand, when a
pixel resolution is visited and we see that the visited vertex
has two adjacent edges, we define two vectors and consider
one of them as a vector change to the right. Finally, if the
vertex visited is adjacent to three pixels of resolution,
there is a vector change to the left.

So, when we use VCC code we need to analyze every
two vectors (first and second). If the second vector has
the same direction as the first, we put 0. If the second vector

Fig. 2 Bases used for the codes, all with vector representations, including VCC code. CF4 ¼ f0; 0; 0;0;
1;1;1; 0;1;1;2; 1; 2;1;2;2; 2; 2;3;2;3; 3;0;0;0; 3; 2;2;3;3; 0; 3g, CVCC ¼ f1;0;0;0; 1; 0;0;2;1; 0;1;2;
1;2;1; 0;0;0;1; 2; 1;0;1;0; 0; 2;2;0;1; 0;1;2g, C3OT ¼ f0;0;0; 2; 0;0;1; 1; 0;2;1;1; 1; 1;0;0;0; 2;1;1;
0;2;0; 0;1;2;0; 1; 0;2;1;1g.
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changes 90 deg to the right regarding the first, we put 1. If
the second vector changes 90 deg to the left regarding the
first, we put 2. The vectorial base, or simply base, is given
in Fig. 2.

2.3 3OT as a Vector Representation
In the case of 3OT, we need to use three vectors to codify the
contour: reference, support, and change. The symbol 0 rep-
resents no changes between reference and support, 1 repre-
sents a change in the same direction to a reference, and
2 represents a change in contrary sense of the reference.
Of course, support vector can be a sequence of r vectors
in the same direction, with r ≥ 1.

Figure 3 shows an example of coding using F4, VCC,
and 3OT.

Before starting to define the bases, we mention some
features that the codes of B have in common.

Note 1 F4; VCC; 3OT;F8, and AF8 have the following
common features (Figs. 3 and 4 illustrate some
examples):

1. Contour pixels are visited on clockwise direction.
2. By simplicity, the first pixel is visited at leftmost top

of the figure.

The second part of Note 1 is a convention. We
have always started with this pixel to compare differ-
ent chain codes of the same figure. Of course, another
convention is possible if starting with another pixel is
required.

Note 2 F4, VCC, and 3OT have the following common
features (Fig. 3):

1. Edges of contour pixels are visited.
2. The first vertex visited is in the leftmost part of the

top of the first pixel.
3. The first two contour edges of the first pixel visited

correspond to 3 and 0 symbols of F4 code.

4. The first change of a discrete curve corresponds to
the symbol “2” of 3OT code.

5. The chain codes have the same length.

Note 3 F8 and AF8 have the following common features
(see Figs. 4 and 5):

1. Centers of contour pixels are visited.
2. The first center visited is that of the first pixel.
3. The chain codes have the same length.

The following three notes are a consequence of
Table 2.

Note 4 If F4 or F8 needs to be coded/decoded, vector by
vector have to be analyzed.

Note 5 If VCC or AF8 needs to be coded/decoded, every
two consecutive vectors have to be analyzed.

Note 6 If 3OT needs to be coded/decoded, every three con-
secutive vectors have to be analyzed.

Note 7 As usual, F4 and F8 codes are used following clock-
wise direction (see Fig. 1).

Fig. 3 The figure is covered through outer vertex.

Fig. 4 The figure is covered through centers of pixels. CF8 ¼ f0;0;
0;2;2; 1; 2;3;3; 4; 4;4;5;6; 0; 0;7;5;4; 4; 6;7g, CAF8 ¼ f1;0;0; 2; 0;
7;1;1; 0; 1;0;0; 1; 1;2;0;7; 6; 7;2;1g.

Fig. 5 The figure is covered through centers of pixels. CF8 ¼ f0;
0;0;2; 3; 4;3;5; 6; 7g; CAF8 ¼ f1;0;0; 2; 1;1;7;2; 1;1g.
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Figure 4 shows an example of codification using
F8 and AF8.

Definition 3 Two codes C1 and C2 are equivalent if it is
possible to go from one code to another without visiting
object shapes; in this case, we write C1 ≡ C2.

Definition 4 Let C1 and C2 be equivalent codes. A
matrixM is called transition matrix from C1 to C2 if it allows
to go from the code C1 to the other code C2. If this happens,
this matrix M is denoted by C1

TC2
.

3 F4, VCC, and 3OT are Equivalent
In this section, we demonstrate F4 ≡ VCC and F4 ≡ 3OT.

From linear algebra, a matrix T of r rows and s columns
can be written as

T ¼ ðtpqÞr×s;

where tpq represents the element of row p and column q of
the matrix T.

Theorem 1. ðF4 ≡ VCCÞ If S0 ¼ 0, S1 ¼ 1. S2 ¼ �, and
S3 ¼ 2, then a transition matrix from F4 to VCC is

F4
TVCC ¼ ðtpqÞ4×4;

where tpq ¼ Sðq−pmod 4Þ. Conversely, a transition matrix from
VCC to F4 is

VCCTF4 ¼ ðtpqÞ4×3;

where

tpq ¼
�
pþ q − 2mod 4 if q ∈ f1; 2g
pþ 2mod 4 if q ¼ 3

:

Proof.

• F4 to VCC: Assume that a figure is codified with F4,
and the coding is

CF4 ¼ fCF4ð1Þ; : : : ; CF4ðiÞ; : : : ; CF4ðnÞg:

Let us denote by CVCC the chain code we want to obtain
of the same figure coded by F4. By Note 1 and Note 2,
the first two orthogonal vectors of the first pixel compose
the first code symbol, 1, of VCC, i.e., CF4ðnÞ ¼ 3 and
CF4ð1Þ ¼ 0, and CVCCð1Þ ¼ 1. While we cover the F4
chain, we have to focus on two contiguous vectors.
Now, taking into account every pair of vectors from
F4 basis, we can obtain one of the symbols of VCC
basis, independent of orientation. Observe that if CF4ði −
1Þ ¼ j and CF4ðiÞ ¼ j, then CVCCðiÞ ¼ 0,

if CF4ði − 1Þ ¼ j and CF4ðiÞ ¼ jþ 1mod 4, then
CVCCðiÞ ¼ 1, CF4ði − 1Þ ¼ j and CF4ðiÞ ¼ jþ
2mod 4 never happens (for this is used S2 ¼ �),

if CF4ði − 1Þ ¼ j and CF4ðiÞ ¼ jþ 3mod 4, then
CVCCðiÞ ¼ 2, where i ¼ 2; · · · ; n and j ∈ f0;1;2;3g.
These facts can be represented with the transition

matrix F4TVCC, which can be read like a multiplication
table.

0 1 2 3

0

1

2

3

0
B@

0 1 � 2

2 0 1 �
� 2 0 1

1 � 2 0

1
CA

For example, if we have in some place of F4: a sym-
bol 2 followed by 3, in VCC we have 1.

• VCC to F4: Assume that a figure is codified with
VCC, and the coding is

CVCC ¼ fCVCCð1Þ; : : : ; CVCCðiÞ; : : : ; CVCCðnÞg:

Let us denote by CF4 the coding of the same figure with
F4. For Note 1 and Note 2, CF4ðnÞ ¼ 3 and CF4ð1Þ ¼ 0.
To find the element CF4ðiÞ, for i ¼ 2; · · · ; n, we analyze
the elements CF4ði − 1Þ and CVCCðiÞ. Thus, we have

if CF4ði − 1Þ ¼ 0 and CVCCðiÞ ¼ 0, then CF4ðiÞ ¼ 0,
if CF4ði − 1Þ ¼ 0 and CVCCðiÞ ¼ 1, then CF4ðiÞ ¼ 1,
if CF4ði − 1Þ ¼ 0 and CVCCðiÞ ¼ 2, then CF4ðiÞ ¼ 3.

Of course, this analysis can be carried out independent
of the vector orientations. So, transition matrix from
VCC to F4 VCCTF4 is

0 1 2
0

1

2

3

0
B@

0 1 3

1 2 0

2 3 1

3 0 2

1
CA

which we can also read like a multiplication table. For
example, if we have CF4ði − 1Þ ¼ 2 and we have
CVCCðiÞ ¼ 1, then CF4ðiÞ ¼ 3. ▯

Now see how to go from F4 to 3OT and vice versa.

Theorem 2. (F4 ≡ 3OT) A transition matrix from F4 to
3OT is

F4T3OT ¼ ðtpqÞ4×4;

where

tpq ¼
(
1 if p ¼ q;
2 if jp − qj ¼ 2

� otherwise

:

And a transition matrix from 3OT to F4 is

3OTTF4
¼ ðtpqÞ4×2;

where tpq ¼ pþ ð−1Þqmod 4.

Proof.

• F4 to 3OT: Assume that a figure is codified with F4,
and the coding is
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CF4 ¼ fCF4ð1Þ; : : : ; CF4ðiÞ; : : : ; CF4ðnÞg:
Denote by C3OT the coding of the same figure with 3OT.
For Note 1 and Note 2 CF4ðnÞ ¼ 3 and CF4ð1Þ ¼
0. For i ¼ 1; 2; · · · ; n, we find C3OTðiÞ with the help
of CF4ðiþ 1Þ, CF4ðiÞ, and CF4ðkÞ, where k < i
and CF4ðkÞ ≠ CF4ðkþ 1Þ ¼ CF4ðkþ 2Þ ¼ · · ·¼ CF4ðiÞ.
If CF4ð1Þ ¼ CF4ð2Þ ¼ · · ·¼ CF4ðiÞ, i.e., if there is no
k that satisfies the condition, then k ≔ n. Of course,
CF4ðnþ 1Þ ≔ CF4ð1Þ. Now see the following facts:

− If CF4ðiþ 1Þ ¼ CF4ðiÞ, then C3OTðiÞ ¼ 0.
− On the contrary, if CF4ðiþ 1Þ ≠ CF4ðiÞ, we have two

options:

* if CF4ðiþ 1Þ ¼ CF4ðkÞ, then C3OTðiÞ ¼ 1,
* if CF4ðiþ1Þ¼CF4ðkÞþ2mod4, then C3OTðiÞ¼2.

These facts can be represented with the transition matrix

F4T3OT as

0 1 2 3
0

1

2

3

0
B@

1 � 2 �
� 1 � 2

2 � 1 �
� 2 � 1

1
CA

which can be read like a multiplication table. For example, if
we have in some place CF4ðjÞ ¼ 3 and CF4ðiþ 1Þ ¼ 1, in
3OT, we have C3OTðiÞ ¼ 2.

• 3OT to F4: Assume that a figure is codified with 3OT,
and the coding is

C3OT ¼ fC3OTð1Þ; : : : ; C3OTðiÞ; : : : ; C3OTðnÞg:
Denote by CF4 the coding of the same figure with F4. For
Note 1 and Note 2, CF4ðnÞ ¼ 3 and CF4ð1Þ ¼ 0, and to
find the element CF4ðiÞ, for i ¼ 2; · · · ; n, the element
CF4ðkÞ (k defined in proof of F4 to 3OT) and the element
C3OTði − 1Þ are analyzed.

If C3OTði − 1Þ ¼ 0, then CF4ðiÞ ¼ CF4ði − 1Þ,
if C3OTði − 1Þ ¼ 1, then CF4ðiÞ ¼ CF4ðkÞ,
if C3OTði − 1Þ ¼ 2, then CF4ðiÞ ¼ CF4ðkÞ þ 2mod 4.

This study can be represented with the transition matrix
3OTTF4 as

1 2
0

1

2

3

0
B@

0 2

1 3

2 0

3 1

1
CA

and taking into account that we have C3OTði − 1Þ ¼ 0,
CF4ðiÞ ¼ CF4ði − 1Þ. ▯

4 F8 and AF8 are Equivalent
In this section, we give a proof that F8 and AF8 are
equivalent.

Theorem 3. ðF8 ≡ AF8Þ A transition matrix from F8 to
AF8 is

F8TAF8 ¼ ðtpqÞ8×8;

where tpq ¼ q − pmod 8 and a transition matrix from AF8
to F8 is

AF8TF8 ¼ ðtpqÞ8×8;

where tpq ¼ pþ q − 2mod 8.

Proof.

• F8 to AF8: Assume that a figure is codified with F8,
and the coding is

CF8 ¼ fCF8ð1Þ; : : : ; CF8ðiÞ; : : : ; CF8ðnÞg:
Let us denote by CAF8 the coding of the same figure with
AF8. For i ¼ 1; 2; · · · ; n, we find CAF8ðiÞ with the help
of CF8ðiÞ and CF8ði − 1Þ, where CF8ð0Þ ≔ CF8ðnÞ. We
have the following facts:

if CF4ðiÞ ¼ CF4ði − 1Þ þ r; with 0 ≤ r ≤ 7;

then CAF8ðiÞ ¼ r:

These facts can be represented by the transition matrix
F8TAF8 as

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0
BBBBBBBBB@

0 1 2 3 4 5 6 7

7 0 1 2 3 4 5 6

6 7 0 1 2 3 4 5

5 6 7 0 1 2 3 4

4 5 6 7 0 1 2 3

3 4 5 6 7 0 1 2

2 3 4 5 6 7 0 1

1 2 3 4 5 6 7 0

1
CCCCCCCCCA

which can be read like a multiplication table. For example, if
we have in some place of F8 4 followed by 3, in AF8, we
have 7.

• AF8 to F8: Assume that a figure is codified with AF8,
and the coding is

CAF8 ¼ fCAF8ð1Þ; : : : ; CAF8ðiÞ; : : : ; CAF8ðnÞg:

Denote by CF8 the coding of the same figure with F8.
Because AF8 is invariant under rotation, we can suppose
that CF8ð1Þ ¼ 0. To find the element CF8ðiÞ, for i ¼
2; · · · ; n, we analyze the elements CF8ði − 1Þ and
CAF8ðiÞ. Next conditions take place:

If CAF8ðiÞ ¼ r; with 0 ≤ r ≤ 7;

then CF8ðiÞ ¼ CF8ði − 1Þ þ rmod 8:

Because there are 8 × 8 different combinations of CAF8ðiÞ
and CF8ði − 1Þ, this study is represented by the transition
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matrix AF8TF8. The transition matrix can be read like a multi-
plication table.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0
BBBBBBBBB@

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 0

2 3 4 5 6 7 0 1

3 4 5 6 7 0 1 2

4 5 6 7 0 1 2 3

5 6 7 0 1 2 3 4

6 7 0 1 2 3 4 5

7 0 1 2 3 4 5 6

1
CCCCCCCCCA

For example, if we have CAF8ðiÞ ¼ 3, and CF8ði − 1Þ ¼
5, then CF8ðiÞ ¼ 0. ▯

Example 1 In this example, we show how to use the tran-
sition matrix F8TFA8. The chain code CF8 of Fig. 5 is
CF8 ¼ f0; 0; 0; 2; 3; 4; 3; 5; 6; 7g, and the transition matrix
F8TFA8 can be read like a multiplication table.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0
BBBBBBBBB@

0 1 2 3 4 5 6 7

7 0 1 2 3 4 5 6

6 7 0 1 2 3 4 5

5 6 7 0 1 2 3 4

4 5 6 7 0 1 2 3

3 4 5 6 7 0 1 2

2 3 4 5 6 7 0 1

1 2 3 4 5 6 7 0

1
CCCCCCCCCA

Taking into account two consecutive symbols of Fig. 5, we
have the following steps:

CF8ð0Þ ¼ 7 and CF8ð1Þ ¼ 0, then CAF8ð1Þ ¼ 1 [position
(7,0) of the table]

CF8ð1Þ ¼ 0 and CF8ð2Þ ¼ 0, then CAF8ð2Þ ¼ 0 [position
(0,0) of the table]

CF8ð2Þ ¼ 0 and CF8ð3Þ ¼ 0, then CAF8ð3Þ ¼ 0 [position
(0,0) of the table]

CF8ð3Þ ¼ 0 and CF8ð4Þ ¼ 2, then CAF8ð4Þ ¼ 2 [position
(0,2) of the table]

CF8ð4Þ ¼ 2 and CF8ð5Þ ¼ 3, then CAF8ð5Þ ¼ 1 [position
(2,3) of the table]

CF8ð5Þ ¼ 3 and CF8ð6Þ ¼ 4, then CAF8ð6Þ ¼ 1 [position
(3,4) of the table]

CF8ð6Þ ¼ 4 and CF8ð7Þ ¼ 3, then CAF8ð7Þ ¼ 7 [position
(4,3) of the table]

CF8ð7Þ ¼ 3 and CF8ð8Þ ¼ 5, then CAF8ð8Þ ¼ 2 [position
(3,5) of the table]

CF8ð8Þ ¼ 5 and CF8ð9Þ ¼ 6, then CAF8ð9Þ ¼ 1 [position
(5,6) of the table]

CF8ð9Þ ¼ 6 and CF8ð10Þ ¼ 7, then CAF8ð10Þ ¼ 1
[position (6,7) of the table]

So

CAF8 ¼ f1; 0; 0; 2; 1; 1; 7; 2; 1; 1g:
This result can be verified geometrically in Fig. 5.

5 All Chain Codes are Equivalent
The coded vectors of F4 visit outer edges of the contours,
whereas those of F8 visit the centers of pixels, and also
F4 is a four connected representation, whereas F8 is for
eight connectivity. In this section, we prove one of the
main results of this paper: F4 ≡ VCC ≡ 3OT ≡ F8 ≡ AF8.

Theorem 4. (F4 ≡ F8)

F4TF8 ¼

0
B@

0 □ � 7

1 2 □ �
� 3 4 □

□ � 5 6

1
CA

and

F8TF4 ¼

0
BBBBBBBBB@

0 010 01 0121 � � � 03

□ 10 1 121 12 � � 3

� 10 1 121 12 1232 � �
� 0 □ 21 2 232 23 �
� � � 21 2 232 23 2303

30 � � 1 □ 32 3 303

30 2010 � � � 32 3 303

0 010 01 � � 2 □ 03

1
CCCCCCCCCA
:

Proof.

• F4 to F8: Let us assume that a figure is codified with
F4, and the coding is

CF4 ¼ fCF4ð1Þ; : : : ; CF4ðiÞ; : : : ; CF4ðnÞg:
Let CF8 be the coding of the same figure with F8. For
i ¼ 1; 2; · · · ; n, we find CF8ðiÞ with the help of CF4ðiÞ
and CF4ði − 1Þ, where CF4ð0Þ ≔ CF4ðnÞ. We have to
analyze every two vectors in F4 and see how they become
in F8. Next conditions take place.

If CF4ði − 1Þ ¼ 0 and CF4ðiÞ ¼ 0, then CF8ðiÞ ¼ 0,
if CF4ði − 1Þ ¼ 0 and CF4ðiÞ ¼ 1, then CF8ðiÞ ¼

□ðemptyÞ, since for F8 we are in the center of the
same pixel, so we do nothing.

CF4ði − 1Þ ¼ 0 and CF4ðiÞ ¼ 2 never happens (for this �
is used),

if CF4ði − 1Þ ¼ 0 and CF4ðiÞ ¼ 3, then CF8ðiÞ ¼ 7,
where i ¼ 1; : : : ; n. All these facts can be summarized
in the next transition matrix.

0 1 2 3
0

1

2

3

0
B@

0 □ � 7

1 2 □ �
� 3 4 □

□ � 5 6

1
CA :

• F8 to F4: Let us assume that a figure is codified
with F8, and the coding is

CF8 ¼ fCF8ð1Þ; : : : ; CF8ðiÞ; : : : ; CF8ðnÞg:
Denote by CF4 the coding of the same figure with F4.
For Note 1 and Note 2 CF4ðnÞ ¼ 3 and CF4ð1Þ ¼ 0.
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For i ¼ 2; · · · ; n we find CF4ðiÞ with the help of
CF8ðiÞ and CF8ði − 1Þ. We have to analyze every
two vectors in F8 and we see how they become in
F4. Some examples are shown below.

If CF8ði − 1Þ ¼ 0 and CF8ðiÞ ¼ 0, then CF4ðiÞ ¼ 0,
if CF8ði − 1Þ ¼ 0 and CF8ðiÞ ¼ 1, then CF4ðiÞ ¼ 010

because we need the vectors 0, 1, and 0 in F4 to
visit the same pixels of vector 1 in F8 (Fig. 6),

CF8ði − 1Þ ¼ 0 and CF8ðiÞ ¼ 4 never happens,

if CF8ði − 1Þ ¼ 0 and CF8ðiÞ ¼ 7, then CF4ðiÞ ¼ 03,
where i ¼ 2; · · · ; n. All these facts can be written in
the following transition matrix:

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0
BBBBBBBBB@

0 010 01 0121 � � � 03

□ 10 1 121 12 � � 3

� 10 1 121 12 1232 � �
� 0 □ 21 2 232 23 �
� � � 21 2 232 23 2303

30 � � 1 □ 32 3 303

30 2010 � � � 32 3 303

0 010 01 � � 2 □ 03

1
CCCCCCCCCA

It can also be read like a multiplication table. For exam-
ple, if we have CF8ði − 1Þ ¼ 5 and CF8ðiÞ ¼ 3, then
CF4ðiÞ ¼ 1. ▯

Theorem 12. F4 ≡ VCC ≡ 3OT ≡ F8 ≡ AF8

Proof. Using Theorem 1 we have F4 ≡ VCC, and for
Theorem 2, we have F4 ≡ 3OT. Thanks to Theorems 3
and 4, we know that F8 ≡ AF8 and F8 ≡ F4, respectively.
Thus, the assertion is true. ▯

6 New Code
As an important application of the transition matrix concept,
we create a new code using a matrix. This code is inspired in
3OT, but the new code is obtained by visiting the centers of
pixels. Let us call the new code AAF8 (because it uses two
angles to determine a symbol).

• F8 to AAF8: Let us assume that a figure is codified
with F8, and the code is

CF8 ¼ fCF8ð1Þ; : : : ; CF8ðiÞ; : : : ; CF8ðnÞg:
For i ¼ 1; 2; · · · ; n, we create CAAF8ðiÞ with the help

of CF8ðiþ 1Þ; CF8ðiÞ, and CF8ðkÞ, where k < i and
CF8ðkÞ ≠ CF8ðkþ 1Þ ¼ CF8ðkþ 2Þ ¼ · · ·¼ CF8ðiÞ. If
CF8ð1Þ ¼ CF8ð2Þ ¼ · · ·¼ CF8ðiÞ, kcn. It is defined that
CF8ðnþ 1Þ ≔ CF8ð1Þ. Thus,
− if CF8ðiþ 1Þ ¼ CF8ðiÞ, then CAAF8ðiÞ ¼ 8.
− On the contrary, if CF8ðiþ 1Þ ≠ CF8ðiÞ, then consider

the next cases.

If CF8ðiþ 1Þ ¼ CF8ðkÞ þ rmod 8, with 0 ≤ r ≤ 7, then
CAAF8ðiÞ ¼ r.

So, CAAF8ðiÞ arises from the following transition matrix
AF8TAAF8:

Fig. 6 More vectors are necessary in F4 than in F8 to code the same
set of pixels.

Fig. 7 The set of allowed vector arrays of our proposed AAF8 code.
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0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0
BBBBBBBBB@

0 1 2 3 4 5 6 7

7 0 1 2 3 4 5 6

6 7 0 1 2 3 4 5

5 6 7 0 1 2 3 4

4 5 6 7 0 1 2 3

3 4 5 6 7 0 1 2

2 3 4 5 6 7 0 1

1 2 3 4 5 6 7 0

1
CCCCCCCCCA

This matrix is written like that which transforms F8 to
AF8 because both show what happens between reference
and change vectors. However, in this transformation, a sup-
port vector is involved, and no matter the direction of support
vector, we consider that reference and change vectors give
the codification of the shape.

Since the new code is

CAAF8

¼fCF8ðnÞ;CF8ð1Þ;CAAF8ð3Þ; : : : ;CAAF8ðiÞ; : : : ;CAAF8ðnÞg;

where CAAF8ð1Þ ¼ CF8ðnÞ and CAAF8ð2Þ ¼ CF8ð1Þ, we
should keep the information of CF8ðnÞ and CF8ð1Þ to find
the transition matrix AAF8TF8. As can be observed, given
the first two known F8 vectors, a third vector (the change

Fig. 8 The figure is covered through the centers of pixels. CF8 ¼
f0;0; 0; 2;2;1;2; 3;3;4;4; 4; 5;6;0;0; 7; 5;4;6; 7g, CAAF8 ¼ f8;8;3;
8; 1; 0;2;8;2; 8; 8;2;2;3; 8; 1;5;5; 1; 3;2g.

Fig. 9 Images encoded using F4; VCC; 3OT; F8; AF8, and AAF8.
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vector) composes one of the symbols given in Fig. 7, which
shows a graphical aspect of the different symbols of the
new code.

A very important observation arises: to consider the first
change of direction, it is necessary to know the first two vec-
tors F8ðnÞ and F8ð1Þ, reference and support, respectively, so
that the third vector (of the change) is oriented with a certain
angle with respect to the reference, and codify the change
with one of the eight symbols of Fig. 7 (clearly, symbol 8
actually does not represent change of direction). In the fol-
lowing change to encode, the reference vector becomes in
what was of support F8ð1Þ and the new vector of change
has a certain angle regarding reference vector. The behavior
of the support vector was already coded in the previous step,
so the information of the actual path of the shape is
never lost.

• AAF8 to F8: Assume that a figure is codified with
AAF8, and the code is

CAAF8¼
fCF8ðnÞ;CF8ð1Þ;CAAF8ð3Þ; : : : ;CAAF8ðiÞ; : : : ;CAAF8ðnÞg:

Let CF8 be the coding of the same figure with F8. To find
the element CF8ðiÞ, for i ¼ 2; · · · ; n − 1, consider, again,
k < i and the condition that CF8ðnÞ and CF8ð1Þ are known.

If CAAF8ðiÞ ¼ r; with 0 ≤ r ≤ 7;

then CF8ðiþ 1Þ ¼ CF8ðkÞ þ rmod 8:

Of course, there are also eight different values for CF8ðkÞ,
so there is a complete set of 64 combinations of CAAF8ðiÞ and
CF8ðkÞ to obtain a symbol CF8ðiþ 1Þ, which can be written
in terms of the next table.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

0
BBBBBBBBB@

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 0

2 3 4 5 6 7 0 1

3 4 5 6 7 0 1 2

4 5 6 7 0 1 2 3

5 6 7 0 1 2 3 4

6 7 0 1 2 3 4 5

7 0 1 2 3 4 5 6

1
CCCCCCCCCA

Finally, if we have CAAF8ðiÞ ¼ 8, then CF8ðiþ 1Þ ¼
CF8ðiÞ.

Each row of the matrix represents CAAF8 symbol, whereas
the columns represent CF8.

The complete set of vector arrays represented by AAF8
symbols appear in Fig. 7.

The difference of this equivalence with that of F8 to AF8
is that in this a support vector is involved, and this vector can
have one of the eight different directions of F8 code.

Figure 8 shows an example of codification using F8
and AAF8.

To assign a symbol to each change direction in Fig. 8, we
can be assisted by Fig. 7. Observe that we can choose the
vector patterns that best match the contour in the position
we are coding depending on the angle given mainly by

Table 3 Original sizes, number of pixels, and lengths of the different
codes.

Object Size Number of pixels l4 l8

Bull 286 × 278 38,115 2122 1651

Map 310 × 213 21,747 1560 1120

Giraffe 197 × 505 36,945 2866 2316

Frog 183 × 151 12,789 1704 1172

Omega 187 × 184 14,565 1492 1178

VW 447 × 204 57,337 1388 1058

Bat 550 × 265 53,096 2054 1444

Motorcycle 853 × 695 289,672 5044 3689

Camel 293 × 285 32,202 1796 1330

Eagle 226 × 213 19,363 1214 816

Dolphin 305 × 284 27,613 1394 1022

Pitbull 220 × 246 26,126 1328 1019

Trex 431 × 287 34,053 2208 1651

Horse 238 × 174 11,886 1836 1277

Boot 269 × 359 45,787 1458 1144

Car 309 × 204 47,973 1202 1010

Star 259 × 244 28,244 1178 860

Chicken 184 × 180 17,946 966 678

Jump 203 × 244 13,776 1378 947

Hand 309 × 287 47,132 1864 1371

Penguin 122 × 160 8500 831 564

Car 2 406 × 221 1085 1378 1179

Dog 230 × 275 23,805 1562 1152

Fish 221 × 171 22,037 1158 841

Spiral 187 × 181 14,501 3128 2213

Guitar 24 × 77 584 240 186

Trice 356 × 164 25,758 1460 1056

Plane 355 × 109 13,306 1216 932

T-shirt 191 × 206 23,890 860 682

Jeans 220 × 297 35,541 1410 1121
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the change direction vector regarding the reference vector
and taking into account if the represented vector pattern
of the contour points to the right or to the left of the direction
of travel.

7 Evaluation and Results
We tested our method on a sample of shapes. We evaluated
the different codes over 30 different irregular shapes that
appear in Fig. 9, obtained from a repository,23 whose
sizes and number of pixels are given in Table 3. The images
shown in Fig. 9 were coded using F4; VCC; 3OT;F8; AF8,
and AAF8.

Let l4 be the length (i.e., the number of symbols in the
chains) of the F4, VCC, and 3OT chain codes, and l8 the
length of F8, AF8, and AAF8 chains. Table 3 also presents
the lengths of the chain codes.

A transition matrix makes it possible to go from any chain
code to another independently if it is to represent four or
eight neighborhood.

If the basic codes are equivalent, they have different infor-
mation content. However, since there is a conflict between
the code representation in four or eight neighborhood
when recognition tasks are carried out, the feasibility in
the representation should be taken into account when look-
ing for patterns within chains.

8 Conclusions and Further Work
We have obtained a new relative code composed of three vec-
tors: a reference, support, and change direction vector for
eight connectivity.

A method to obtain the main codes of the literature has
been developed. This method allows us to go from one code
to another. So we have demonstrated that all basic codes
are equivalent, although each of them was proposed
independently.

We have observed a missing code, of three vectors, to
complete the schema. Such a code is composed of three vec-
tors for eight connectivity, which we have called AAF8. This
new code is relative and two angles are involved in its
construction.

The main characteristics of AAF8 are as follows: it is
invariant under rotation transformation and as the other
eight connected codes, AAF8 has the smallest length chain.

Just as with previous codes, future works should be
implemented for analysis and recognition tasks and, also,
to find and compare derived codes from AAF8.
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