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Abstract

A new chain code to represent 3D discrete curves is proposed. The method is based on a search for
relative changes in the 3D Euclidean space, composed of three main vectors: a reference vector, a
support vector, and a change direction vector, utilized to obtain a directed simple path in a grid of
26 connected components. A set of rotation transformations is defined in the 3D Euclidean space,
and despite encountering a complete set of 73 different basic pattern chains, an alphabet of only 25
symbols is required to represent any face, edge or vertex-connected discrete curve. Also, we used the
code to represent trees, using parentheses and a lexicographical order to be able to traverse each of
their branches. Important properties of this code are found: independence under translation, rotation
and mirror transformations, as well as high compression levels. Finally, a set of 3D curve-skeleton
and digital elevation model data to study the terrain were utilized to prove the proposed code.

Keywords: 3D chain code; invariant, simple paths, curve-skeletons, trees, compression, relative code

1 Introduction

Nowadays, research on chain codes is an important and very active field in computer vision and pattern
recognition. In recent years, a vast number of papers about contour representations by means of chain
codes have been written ([1] - [24]).

On the other hand, the first approach to represent 3D digital curves using chain codes was introduced
by Freeman in 1974 [22]. Line structures are quantized on a cubic lattice (voxels). For each data node,
there are 26 possible directions to the next data node. So, this chain code is based on face, edge and
vertex-connectivity and depends absolutely on Cartesian coordinates (see Fig. 1).

To determine whether or not a discrete curve is a digital line segment, in 1983 Kim [2] defined digital
arcs in 3D digital pictures.

Guzman [3] proposed a 3D coding for stick bodies. In such a work, Guzman considered stick bodies
divided in two parts: “limb” and “junction”. Limbs are the elongated parts (generalized cylinders)
protruding in three roughly orthogonal directions; whereas junctions are the places where limbs meet.
It is stated that the structural approach of pattern recognition and scene understanding rely on the
decomposition of a scene into identifiable parts and its subsequent syntactical analysis.

Digital representation schemes for 3D curves were presented in 1997 by Jonas et al. [23]. In 2003,
Safonova and Rossignac [24] proposed a compact approximation scheme for 3D curves; they showed that
piecewise circular curves have an advantage over polygonal and b-spline curves. In [25], a method is
described for reconstructing a 3D rigid curve from a sequence of uncalibrated images using 3D epipolar

∗Part of this work was made by the first author during a sabbatical stay at Centro de Investigaciones en Óptica,
A. C., Department of Optical Metrology, León, Guanajuato, México
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Figure 1: The 26 directions of the Freeman code

parameterization; it is shown that 6-connected chain codes match all the identified requirements and
should be preferred.

The orthogonal direction change chain code (5OT) for representing 3D discrete curves, composed of
five symbols, was proposed by Bribiesca [13]. Recently Bribiesca [14] has utilized 5OT chain code to
apply on tree structures. 5OT is a code to represent face-connectivity.

On the other hand, there is something interesting to note in previous papers about chain codes,
particularly in two dimensions: chain code representations are suitable to handle not only edges of pixels,
but, also, their vertices. In literature, there are chain codes to represent four-connectivity: F4 (Freeman
chain code of four directions, [1]), 3OT (three orthogonal chain directions, [5]), VCC (vertex chain code,
[4]) and C-VCC (compact vertex chain code, [8]), whereas for eight-connectivity there are F8 (Freeman
chain code of eight directions, [1]), AF8(Angle Freeman Chain code of eight directions [7]) and MDF9
(Modified Differential Freeman chain code of nine symbols, [15]). For 3D chain codes, the most used is
Freeman chain code of 26 directions [22], whereas the relative code for face-connectivity is 5OT [13]. As
can be noted, an important question arises for 3D chain code representations: is it possible to find a
relative chain code, not only for face connectivity but for edge and vertex connectivity, i.e., for the 26
vicinity in a cubic grid representation?

In this work, we have answered this question affirmatively; moreover, we have applied a proposed
3D chain code to curve-skeletons and to digital elevation model data. Also, we found that it is possible
and feasible to propose a code in three dimensions that is invariant under transformations of translation,
rotation, mirror and independent to the vicinity of the voxels: face, edge or vertex connectivity. Another
important advantage is that the new code requires little storage in memory.

In Sections 2, we introduce important concepts and definitions that are used throughout the paper:
Simple Paths, Generalized Elemental Paths (GEPs), Rotation Transformations and Equivalent Elemental
Paths. In Section 3, absolute and relative codes, as well as our proposed three-dimensional relative code
(3DRC), are addressed. In Section 4, we apply our proposed 3DRC code to simple paths and tree
structures; we also explain how to decode. In Section 5, invariant under translation, rotation and mirror
transformations are proved, whereas in Section 6 the method is used to encode 3D objects, and an analysis
and comparison with existing codes are carried out. Conclusions and further work are given in Section 7.

2 Important concepts and definitions

In this section, we introduce the most important concepts and definitions used throughout the paper.
Mainly, they are concerned with elemental paths, generalization of elemental paths, and equivalent ele-
mental paths.
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2.1 Elemental paths and generalized elemental paths (GEPs)

Let us consider a grid in a 3D space [26], where the grid point set is in Z3.

Definition 1 A voxel, v, is a resolution cell of a grid in a 3D space with Cartesian coordinates c(x, y, z),
and an intensity value Iv = {0, 1}. If Iv = 0, we say that the voxel is 0-voxel; on the contrary, if Iv = 1,
we say 1-voxel. Unless otherwise stated, in this work we consider 1-voxel simply as voxel.

Definition 2 We say two voxels v1 and v2 are adjacent if v1 6= v2 and v1 ∩ v2 6= φ.

With this definition, we note that there are only three configurations where two voxels obey this
condition. See Fig. 2.

Figure 2: Three types of adjacency depending of the voxel neighborhood.

Definition 3 If c1 are the coordinates of v1, c2 the coordinates of v2, and b1 = c2− c1, note that v1 and
v2 are adjacent if and only if

b1 ∈ B = {〈i, j, k〉 | i, j, k ∈ {−1, 0, 1}} \ 〈0, 0, 0〉

The set B is called a grid basis.

Definition 4 A path is a sequence of adjacent ordered voxels P = {v1, v2, · · · , vn} , such that v1 is
adjacent to v2, v2 is adjacent to v3, . . . , vn−1 is adjacent to vn. The set of vectors

PB = {b1, b2, · · · , bn−1} ⊂ B

is called basis of path P .

The paths we start to codify are called simple paths (Definition 9), which are composed by generalized
elemental paths (Definition 8).

Definition 5 If v1, v2 and v3 are ordered voxels, we say (v1, v2) is better connected than (v1, v3) if
c2 − c1, c3 − c1 ∈ B, and also, one of the following conditions is satisfied:

1. v1 is not adjacent to v3

2. if v1 is adjacent to v3, then v1 is face with v2 and v1 is edge with v3,

3. if v1 is adjacent to v3, then v1 is face with v2 and v1 is vertex with v3,

4. if v1 is adjacent to v3, then v1 is edge with v2 and v1 is vertex with v3

Definition 6 An elemental path is an ordered set of four voxels,

P = {v1, v2, v3, v4} ,

such that b1, b2, b3 ∈ B, b1 6= b2; b2 6= b3, (v1, v2) is better connected than (v1, v3) , and (v2, v3) is better
connected than (v2, v4).
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By Definition 4 the basis of P is PB = {b1, b2, b3} , and let us call it basis of the elemental path.

Definition 7 Let the elements b1, b2, b3 be called reference, support and change of P , and denote them
by ref , supp and chng, respectively.

The examples of Fig. 3 present elemental paths and non elemental paths. Note that elemental paths
agree with Def. 5 and Def. 6. Whereas the non elemental paths do not obey Def. 5 or Def. 6.

Figure 3: Example of elemental and non elemental path. Note that Def. 5 and 6 guarantee only one path
for a four voxel array.

Note that the order in which the voxels are covered is very important. A path can be covered in a
certain way to obtain elemental paths.

Of course, the paths in this paper are not necessarily composed of only elemental paths, but they can
be tried by a little more complex structures: generalized elemental paths.

Definition 8 A generalized elemental path (GEP for short) is an ordered set of m ≥ 4 voxels

P = {v1, v2, . . . , vm} ,

where b1, b2, . . . , bm−1 ∈ B, b1 6= b2; b2 = b3 = · · · = bm−2︸ ︷︷ ︸
m−3

; bm−2 6= bm−1, (v1, v2) is better connected than

(v1, v3) , and (vm−2, vm−1) is better connected than (vm−2, vm).

Something noteworthy of Definition 8 is that if refi, suppi and chngi are the vectors associated with
a GEP, then refi+1 = suppi, suppi+1 = chngi, and chngi+1 are the vectors associated to the GEP Pi+1,
i = 1, 2, · · · , k − 1.

As in Definition 7, let us call the elements b1, b2, b3 reference, support and change vectors from the
GEP and denote them by ref , supp and chng, respectively.

Of course, a GEP is an elemental path when m = 4. As GEPs examples we have Fig. 4.

A “simple path” is essentially a path composed of GEPs. The formal definition can be written as
follows:

Definition 9 A path P = {v1, . . . , vn} is called a simple path of length n if there are integersm1, · · · ,mk+1,mk+2

greater than zero, such that the basis of P is of the form

PB =
{
bm1
1 , bm2

2 , . . . , b
mk+1

k+1 , b
mk+2

k+2

}
,

and the sets

P 1
B = {b1, bm2

2 , b3} , P 2
B = {b2, bm3

3 , b4} , · · · , P kB =
{
bk, b

mk+1

k+1 , bk+2

}
(where bi 6= bi+1) are GEP basis. If these conditions are fulfilled, we call voxels v1 and vn start and final
of the path, respectively, whereas we refer to PB as basis of the simple path, or simply basis of P .

Fig. 5 shows the GEPs and the basis of a simple path.

Other concepts used trough this work are concerned with rotation transformations. We define the vox
rotation as follows.
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Figure 4: Examples of GEPs and paths that are not GEPs.

PB = {(1, 0, 1) , (1, 0, 0) , (1, 1, 0) , (1, 0, 1) , (1, 0, 0) , (1, 0, 0) , (1, 0, 0) , (1, 0, 1) , (0,−1, 1) , (0,−1, 1) , (1, 0, 0)}

=
{

(1, 0, 1) , (1, 0, 0) , (1, 1, 0) , (1, 0, 1) , (1, 0, 0)
3
, (1, 0, 1) , (0,−1, 1)

2
, (1, 0, 0)

}
Figure 5: An example of a simple path and its basis. The simple path is composed of GEPs

2.2 Rotation transformations

To achieve our objective, we use a discrete type of rotations. On the one hand, the known usual rotations
are as follows:

Definition 10 Let v = 〈vx, vy, vz〉 be a vector in R3.

We denote the usual rotations of θ degrees around the axis x, y and z by vx,θ, vy,θ, vz,θ, respectively,
and they are given by:
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i) vz,θ =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 vx
vy
vz



ii) vy,θ =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 vx
vy
vz



iii) vx,θ =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 vx
vy
vz


The following is a different rotation definition, very useful for our proposed relative encoding.

Definition 11 Let u = 〈ux, uy, uz〉 be a vector in R3.

A Vox Rotation of θ degrees around the x axis from vector u is defined by

Rotx (u, θ) = 〈ux, ty, tz〉 ,

where the angle of projection from 〈uy, uz〉 to 〈ty, tz〉 (given in counter-clockwise direction) is θ degrees.
Giving an example of this function, see the pictures of Fig. 6.

Figure 6: Rotation definitions. A projection on the plane y-z, of (a) 45 degrees, (b) 90 degrees and (c)
135 degrees.

In an analogue way, let us define the rotations around the y axis and around the z axis. Vox Rotation
of θ degrees around the y axis of vector v is given by

Roty (u, θ) = 〈tx, uy, tz〉 ,

where the angle from 〈ux, uz〉 to 〈tx, tz〉 (given in counter-clockwise direction) is θ degrees.

Vox Rotation of θ degrees around z axis of the vector u is given by

Rotz (u, θ) = 〈tx, ty, uz〉 ,

where the angle from 〈ux, uy〉 to 〈tx, ty〉 (given in counter-clockwise direction) is θ degrees.
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Definition 12 For a vector u = 〈ux, uy, uz〉 in R3, Vox Rotations of θ degrees around −x axis, around
−y axis and around −z axis are defined by

Rot−x (u, θ) = Rotx (u,−θ) ,
Rot−y (u, θ) = Roty (u,−θ) ,
Rot−z (u, θ) = Rotz (u,−θ) ,

respectively.

As we can notice, when a vox rotation is carried out, vectors of the basis path may change in direction
and/or magnitude. However, while this happens, we say that the bases are equivalent (see Definition
13). Moreover, although voxel arrays are different in the shapes after rotations, we can say that they
are also equivalent (see Definition 14 below), because so are their associated bases. These concepts are
discussed in the next sub section.

2.3 Equivalent elemental paths

A new concept can be derived from rotation transformations defined above. We notice that although
different paths can have different shapes, we can get one from another, simply by doing some rotations.
When that happens, we say that the paths are equivalent. To be more precise, we have the following
definitions:

Definition 13 Two bases PB = {b1, . . . , bn} and P ′B = {b′1, . . . , b′n} of length n are equivalent if after
applying a rotation to b1, b2, . . . , bn, we obtain b′1, b

′
2, . . . , b

′
n, respectively.

With this definition, we can now tell when two paths are equivalent.

Definition 14 Two paths P1 and P2 are equivalent if their bases are.

Equivalence implies that the shape produced by three directed segments are similar, i.e they are equal
except for a deviation of less than 45 degrees.

With the vox rotations defined, we can conclude that given two elemental paths of different shapes,
they can be equivalent if their corresponding bases are equivalent.

In fact, given two equivalent elemental paths, there are projections on the planes that have the same
shape, independently of orientations and scales.

Note that if an elemental path is rotated under last definitions, and is face or edge connected, the
basis remains with the same shape in the projection perpendicular to the axis of rotation, independently
of scale. On the contrary, if the elemental path is vertex connected, the angles do not remain exactly the
same. However, there are projections on the plane that allow us to visualize the invariance in the shape
of the associated curve (bold directed segments in Fig. 7).

From example of Fig. 7, the voxel arrays of the columns (b) and (e) are equivalent. Independently
of the orientation and scale, both paths on the first row fit themselves perfectly; in particular, they have
90◦ and 135◦ of direction changes. The arrays of the second row are equivalent and have exactly the
same shapes, independently of the orientation and scale, of course. Both have 45◦ in the two changes of
directions. In the case of the third row, they are also equivalent, despite the presence of a small difference
of angcos(1/2) − angcos(1/

√
3) ' 5.3◦ in the second change direction. It can be easily verified taking

into account the voxel coordinates.
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Figure 7: Equivalent elemental paths: a vox rotation of 45◦ performed on elemental paths in column (b)
to obtain voxel arrays in column (e); (a) and (d) are the projections on the plane Z-Y of the objects in
column (b) and (e) respectively, (c) and (f) are the viewpoints on the plane Z-Y of the directed path of
columns (b) and (e), respectively.

3 Absolute and relative chain codes

By absolute chain code we understand a chain code that is produced when every change direction to be
given in the contour is dependent absolutely on the Cartesian coordinates, no matter what is the change
direction of the previous vector. On the contrary, by relative chain code we understand a chain code that
is produced when every change direction does not depend directly on the Cartesian coordinates, but on
the change produced in the last movement while covering the contour chain, i.e. “the way the previous
movement was, the way the next one will be”.

3.1 Absolute F26 coding

As it is known, F26 coding depends on the absolute Cartesian system, i.e., it is not invariant under
rotation transformations. The first codification of a simple path arises in a natural way. If we define the
elements of B as following,
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〈1, 0, 0〉︸ ︷︷ ︸
a

, 〈1, 1, 0〉︸ ︷︷ ︸
b

, 〈0, 1, 0〉︸ ︷︷ ︸
c

, 〈−1, 1, 0〉︸ ︷︷ ︸
d

, 〈−1, 0, 0〉︸ ︷︷ ︸
e

, 〈−1,−1, 0〉︸ ︷︷ ︸
f

, 〈0,−1, 0〉︸ ︷︷ ︸
g

, 〈1,−1, 0〉︸ ︷︷ ︸
h

, 〈1, 0, 1〉︸ ︷︷ ︸
i

,

〈1, 1, 1〉︸ ︷︷ ︸
j

, 〈0, 1, 1〉︸ ︷︷ ︸
k

, 〈−1, 1, 1〉︸ ︷︷ ︸
l

, 〈−1, 0, 1〉︸ ︷︷ ︸
m

, 〈−1,−1, 1〉︸ ︷︷ ︸
n

, 〈0,−1, 1〉︸ ︷︷ ︸
o

, 〈1,−1, 1〉︸ ︷︷ ︸
p

, 〈1, 0,−1〉︸ ︷︷ ︸
q

, 〈1, 1,−1〉︸ ︷︷ ︸
r

,

〈0, 1,−1)︸ ︷︷ ︸
s

, 〈−1, 1,−1〉︸ ︷︷ ︸
t

, 〈−1, 0,−1〉︸ ︷︷ ︸
u

, 〈−1,−1,−1〉︸ ︷︷ ︸
v

, 〈0,−1,−1〉︸ ︷︷ ︸
w

, 〈1,−1,−1〉︸ ︷︷ ︸
x

, 〈0, 0, 1〉︸ ︷︷ ︸
y

〈0, 0,−1〉︸ ︷︷ ︸
z

,

then, the alphabet that we use is:

F26 = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z} , (1)

and the coding is obtained when each bi is changed from PB = {b1, b2, . . . , bn−1} to its respective name
in F26. This is what we call F26 codification.

Example. Taking into account that the simple basis path of Fig. 5 is

PB = {〈1, 0, 1〉 , 〈1, 0, 0〉 , 〈1, 1, 0〉 , 〈1, 0, 1〉 , 〈1, 0, 0〉 , 〈1, 0, 0〉 , 〈1, 0, 0〉 , 〈1, 0, 1〉 , 〈0,−1, 1〉 , 〈0,−1, 1〉 , 〈1, 0, 0〉}

its F26 coding is PF26 = {i, a, b, i, a, a, a, i, o, o, a} or, simplifying the notation, the last equality can be
rewritten in a familiar string notation: SF26 = iabiaaaiooa.

3.2 Proposing a three-dimensional relative chain code (3DRC)

In this section, we propose a new method to cover a 3D discrete curve that is independent of the Cartesian
plane. What we are going to do now is to propose a relative coding, which, among other properties, like
mirroring invariance and high compression levels that we explain later, is also invariant under translation
and rotation transformations.

Because of Definition 9, a simple path is composed of GEPs, so to encode a simple path, we encode
each of its GEPs. We are going to prove that any GEP is equivalent to one element of the groups in Fig.
8.

Group 1: ref and supp make an angle of 90
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Group 2: ref and supp make an angle of less than 90

Group 3: ref and supp make an angle of more than 90

Figure 8: There are 72 possible change directions for any 3D discrete curve, divided in three groups,
depending of the angle between reference and support vector.

Note that an arbitrary GEP is not always equal to one of the elements of the groups, but performing
three vox rotations and a usual rotation, at most, we obtain that any arbitrary GEP is equivalent to one
of the elements of the groups. The following result tells us how to obtain the element of the group which
is equivalent to an arbitrary GEP; it also shows what symbol corresponds to a GEP.

Something very important to note at this moment, is that to assign a symbol to a configuration of
vectors ref, supp and chng, one should only use the norms ‖ref‖, ‖supp‖ and ‖ref − supp‖. This fact,
insignificant at first glance, is the cause for our code to be invariant under rotations.

Theorem 1. Any GEP is equivalent to an element of the set of 72 different voxel arrays in Fig. 8.

Proof.
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The main difference between an elemental path and a GEP is mainly that the GEP could be longer,
however they have the same shape and are equivalent elemental paths. So, let us first see how to encode
an elemental path. The generalized case is a consequence. Let P = {v1, v2, v3, v4} be an elemental path,
and let PB = {ref, supp, chng} be its basis. Without loss of generality, the demonstration consists of
making a usual rotation and vox rotations to the vector supp to obtain the position 〈0, 0, 1〉 and thus
we assign a symbol. The following algorithm tells us what to do for leaving this vector at the desired
position.

Let us assume that ref = 〈x1, y1, z1〉 and supp = 〈x2, y2, z2〉 ,

if ‖supp‖ = 1, let us apply to ref, supp and chng a usual rotation, /* Of course, there are six
options */

if supp = 〈1, 0, 0〉 , around the y axis of -90 degrees.

if supp = 〈−1, 0, 0〉 , around the y axis 90 degrees.

if supp = 〈0, 1, 0〉 , around the x axis 90 degrees.

if supp = 〈0,−1, 0〉 , around the x axis -90 degrees .

if supp = 〈0, 0, 1〉 , is already in the desired position and do not apply more rotations.

if supp = 〈0, 0,−1〉 , around thex axis 180 degrees.

if ‖supp‖ =
√

2, let us apply to ref, supp and chng a vox rotation of 45, /* including signs, rotation
is around one of the six perpendicular directions: */

if x2 = 0, around 〈y2, 0, 0〉 ,
if y2 = 0, around 〈0, z2, 0〉 ,
if z2 = 0, around 〈0, 0, x2〉 ,

and we return to the case when ‖supp‖ = 1.

if ‖supp‖ =
√

3, apply to ref, supp and chng a vox rotation of 45,/* there are three options */

if ‖ref‖ = 1, around ref,

if ‖ref‖ =
√

2,

if ‖ref − supp‖ = 1, around ref − supp,
if ‖ref − supp‖ =

√
5,

if x1 = x2, around 〈x1, 0, 0〉 ,
if y1 = y2, around 〈0, y1, 0〉 ,
if z1 = z2, around 〈0, 0, z1〉 ,

if ‖ref‖ =
√

3,

if ‖ref − supp‖ = 2, around (ref − supp) /‖ref − supp‖,
if ‖ref − supp‖ =

√
8,

if x1 = x2, around 〈x1, 0, 0〉 ,
if y1 = y2, around 〈0, y1, 0〉 ,
if z1 = z2, around 〈0, 0, z1〉 ,

and we return to the case when ‖supp‖ =
√

2.

A time that supp = 〈0, 0, 1〉 proof is almost ready. So, if θ is the angle that goes from 〈x1, y1, 0〉
to the projection 〈1, 0, 0〉, applying to ref, supp and chng a vox rotation of −θ around z, we obtain
ref = 〈1, 0, z1〉 , supp = 〈0, 0, 1〉, and thus ref, supp and chng have the form of some element of the
basis. The symbol that accompanies such an element is the symbol corresponding to the elemental path
P . We know that z1 ∈ {−1, 0, 1} (three elements) and chng ∈ B \ {〈0, 0, 1〉 , 〈0, 0,−1〉} (24 vectors); for
this reason, 3× 24 = 72, plus y symbol, there are 73 symbols generated.

11



if z1 = 0, ref and supp make an angle of 90 degrees, and Group 1 is obtained

if z1 = −1, ref and supp make an angle of less than 90 degrees, and Group 2 is obtained

if z1 = 1, ref y supp make an angle of more than 90 degrees, and Group 3 is obtained

Everything is now in the behavior of chng. Depending on this vector, we chose the corresponding symbol.
The symbol associated to chng in Group 1, Group 2 or Group 3, is the corresponding symbol to the
elemental path P .

We introduce the symbol y to be used to label a path that has no changes of direction. Thus, if
P = {v1, v2, · · · , vm} is a GEP, with m > 4, its GEP is of the form PB =

{
b1, b

m−3
2 , b3

}
, so, the code to

be associated to the GEP P is
γ = yy · · · y︸ ︷︷ ︸

m−4

α, (2)

where α is the symbol associated to the vectors ref, supp, chng of P.

2

Depending on the configuration reached by ref, supp and chng, we assign a symbol, and Theorem
1 tells us that we have 72 possible direction changes to represent any 3D discrete curve.

The example given in Fig. 9 shows how to assign a symbol to an elemental path. As can be seen, the
symbol path is p.

Figure 9: A set of discrete rotations has to be performed to obtain a symbol in a four-voxel array.

4 Coding and decoding

In this section, we consider paths in graphs. However, by observing their voxel reconstruction through
the paths with no loops, we particularly consider trees. We then explain how to decode the 3DRC chain
codes.

4.1 Coding a simple path

Once we know how to assign a symbol to an elemental path or to a GEP, we now encode a simple path.

Theorem 2 The code of a simple path P = {v1, v2, . . . , vn} is of the form:

yy · · · y︸ ︷︷ ︸
m1−1

γ∗1γ2 · · · γk yy · · · y︸ ︷︷ ︸
mk+2−1

, (3)

where, γ∗1 is the coding of the first GEP P 1, and γi is the symbol associated to the GEP P i, i = 2, 3, · · · , k.

Proof.

By Definition 9 we know that a basis of a simple path P is of the form

PB =
{
bm1
1 , bm2

2 , . . . , b
mk+1

k+1 , b
mk+2

k+2

}
, (4)
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where the sets

P 1
B = {b1, bm2

2 , b3} , P 2
B = {b2, bm3

3 , b4} , · · · , P kB =
{
bk, b

mk+1

k+1 , bk+2

}
(5)

are GEP bases, Theorem 1 tells us how to associate a symbol to a GEP.

To reduce the 72 symbols, the first GEP that appears deserves a special treatment. Moreover, decoding
plays a very important role, so it is necessary to obtain exactly the same form of this path, and to achieve
this, we use the Lemma 1.

After obtaining the necessary information of P 1, as indicated by the Lemma 1, the code associated
with the simple path P is

yy · · · y︸ ︷︷ ︸
m1−1

γ∗1γ2 · · · γk yy · · · y︸ ︷︷ ︸
mk+2−1

(6)

where

γ∗1 is the coding of the first GEP P 1 (Lemma 1), and

γi is the symbol associated to the GEP P i, i = 2, 3, · · · , k (Theorem 1)

2

Lemma 1. The coding of the first GEP of a simple path is of the form γ∗1 = N yy · · · y︸ ︷︷ ︸
n−4

αN1N2N3N4,

where N and Ni are integers, y is the code to go straight ahead, and α is one of the symbols of Fig. 8.

Proof. Let us assume that P1 = {v1, v2, . . . , vm} , is the first GEP to be codified, and let P 1
B ={

b1, b
m−3
2 , b3

}
be the GEP basis of P1.

If ‖supp‖ <
√

3 we write N4 = 0,

otherwise it means that ‖supp‖ =
√

3. After using part of the algorithm of Theorem 1 when ‖supp‖ =√
3, following our method we should do a vox rotation of 45, so, ‖supp‖ =

√
2,.

if vox rotation was around x, we write N4 = 1.

if vox rotation was around −x, we write N4 = 2.

if vox rotation was around y, we write N4 = 3.

if vox rotation was around −y, we write N4 = 4.

if vox rotation was around z, we write N4 = 5.

if vox rotation was around −z, we write N4 = 6.

Once ‖supp‖ =
√

2, if we assume supp = 〈x2, y2, z2〉 , taking θ1 as the angle that goes from the
projection 〈x2, y2, 0〉 to 〈1, 0, 0〉 with 0 ≤ θ1 < 360, we have:

Rotz (supp, θ1) = 〈1, 0, z2〉 , (7)

and taking θ2 as the angle that goes from the projection 〈1, 0, z2〉 to 〈0, 0, 1〉 , with 0 ≤ θ2 < 360, we have:

Roty (Rotz (supp, θ1) , θ2) = Roty (〈1, 0, z2〉 , θ2) = 〈0, 0, 1〉 . (8)

So, we write:
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ref := Roty (Rotz (ref, θ1) , θ2) ,

supp := Roty (Rotz (supp, θ1) , θ2) = 〈0, 0, 1〉 ,
chng := Roty (Rotz (chng, θ1) , θ2) .

Finally we make again a vox rotation around z to obtain some element of the basis. If now we assume
that ref = 〈u1, u2, u3〉 , taking θ3 like the angle that goes from the projection 〈u1, u2, 0〉 to 〈1, 0, 0〉, with
0 ≤ θ3 < 360, we have that

Rotz (ref, θ3) = 〈1, 0, u3〉 , (9)

so, we make

ref := Rotz (ref, θ3) = 〈1, 0, z1〉
supp := Rotz (supp, θ3) = 〈0, 0, 1〉
chng := Rotz (chng, θ3)

From this procedure, we conclude that vectors ref, supp, chng belong to some vector basis N, with
N = 1, N = 2 or N = 3. So, the code associated to the first GEP P 1 (and thus to the basis of the GEP
P 1
B =

{
b1, b

m−3
2 , b3

}
) of the simple path is

γ∗1 = N yy · · · y︸ ︷︷ ︸
n−4

αN1N2N3N4 (10)

where

α is the symbol associated to the new (after rotations) ref, supp, chng vectors,

N1 = θ1/45,

N2 = θ2/45,

N3 = θ3/45.

2

4.2 Decoding a simple path

In the previous sections, we found how to encode any simple path. Now, we will focus on the inverse
problem, i.e., given a code, how do we recover the sequence of voxels that compose a simple path?

It should be noted that given a chain code

yy · · · y︸ ︷︷ ︸
m1

γ∗1γ2 · · · γk yy · · · y︸ ︷︷ ︸
mk+2

(11)

we obtain the basis path again, and the simple path should be recovered.

As we mentioned in the previous section, the first elemental path of the simple path plays a very
important role in the encoding, because we start from it.

Theorem 3. Decoding γ∗1 , we obtain the first GEP.

Proof. We take vectors ref, supp and chng depending on the symbol γ of the N group of Fig. 8.

As numbers N1, N2 and N3 arise in the coding, we now simply do
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ref := Rotz (Roty (Rotz (ref,−θ3) ,−θ2) ,−θ1)

supp := Rotz (Roty (Rotz (supp,−θ3) ,−θ2) ,−θ1)

chng := Rotz (Roty (Rotz (chng,−θ3) ,−θ2) ,−θ1)

where

θ1 = N1 ∗ 45, θ2 = N2 ∗ 45, θ3 = N3 ∗ 45, (12)

and if N4 6= 0, we do not rotate vectors ref, supp and chng anymore. On the contrary, we make a vox
rotation of −45 to the redefined ref, supp and chng,

if N4 = 1, we make a rotation around x

if N4 = 2, we make a rotation around −x

if N4 = 3, we make a rotation around y

if N4 = 4, we make a rotation around −y

if N4 = 5, we make a rotation around z

if N4 = 6, we make a rotation around −z

Thus, we obtain three vectors of the basis path: b1 := ref, b2 := supp and b3 := chng. However, since
γ∗1 = N yy · · · y︸ ︷︷ ︸

m

αN1N2N3N4, (Eq. 10), our basis of the GEP is

P =
{
b1, b

m+1
2 , b3

}
. (13)

Taking m2 = m+ 1, P becomes
P = {b1, bm2

2 , b3} . (14)

2

Now that we have the decoding of the first GEP, the rest is easy.

Theorem 4. A chain code of the form yy · · · y︸ ︷︷ ︸
m1

γ∗1γ2 · · · γk yy · · · y︸ ︷︷ ︸
mk+2

can be decoded to obtain the original

simple path.

Proof. Since we know how to decode γ∗1 , we start to form our simple basis path. By Theorem 2, γ∗1
has been associated with the following simple basis path:

P = {b1, bm2
2 , b3} . (15)

The coding starts with yy · · · y︸ ︷︷ ︸
m1−1

, this means that the start of the path is a straight line; thus, P becomes

P = {bm1
1 , bm2

2 , b3} . (16)

The rest of the γ′is tell us the path that the simple basis path must follow. By (2), γ2 is of the form
γ2 = yy · · · y︸ ︷︷ ︸

h

α Taking m3 = h + 1, and by Eq. (2), P becomes P = {bm1
1 , bm2

2 , bm3
3 } . Let ref = b2 and

supp = b3. By the algorithm of Theorem 1, there are rotations r1, r2, r3, r4 such that

r4 (r3 (r2 (r1 (ref))) = 〈1, 0, z1〉 (17)

r4 (r3 (r2 (r1 (supp)))) = 〈0, 0, 1〉 (18)
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Figure 10: Simple path. Gray face voxels: first GEP.

PB = {〈1,−1, 0〉 , 〈1, 1, 1〉 , 〈1, 0, 0〉 , 〈1, 0, 1〉 , 〈1, 0, 0〉 , 〈1, 0, 0〉 , 〈1, 0, 0〉 ,
〈1, 0, 0〉 , 〈1, 0, 0〉 , 〈1, 1, 1〉 , 〈1, 0, 0〉 , 〈1, 1, 1〉 , 〈1, 1, 1〉 , 〈1, 1, 1〉 , 〈1, 1, 1〉 ,
〈1, 1,−1〉 , 〈1, 1, 0〉 , 〈1, 0,−1〉 , 〈1,−1, 0〉 , 〈1, 0, 0〉 , 〈1,−1,−1〉 , 〈1, 0, 0〉} .

if z1 = 0, let chng be the vector of change associated to the symbol α in basis 1

if z1 = 1, let chng be the vector of change associated to the symbol α in basis 2

if z1 = −1, let chng be the vector of change associated to the symbol α in basis 3

The new element of the simple basis path is

b4 = −r1 (−r2 (−r3 (−r4 (ref)))) , (19)

and thus P becomes

P = {bm1
1 , bm2

2 , bm3
3 , b4} . (20)

Taking ref = b3 and supp = b4, we obtain b5, and continuing this way we arrive to the basis of the
elemental path:

P =
{
bm1
1 , bm2

2 , bm3
3 , · · · , bmk+1

k+1 , bk+2

}
. (21)

Finally, since the coding ends with yy · · · y︸ ︷︷ ︸
mk+2−1

, once again, by Eq. (2), the basis of the elemental path

that we look for is

P =
{
bm1
1 , bm2

2 , bm3
3 , · · · , bmk+1

k+1 , b
mk+2

k+2

}
. (22)

2

We already know how to encode and decode simple paths. Let us see the next example:

Example. What is the code of the simple path given in Fig. 10?

To answer this question, we have to identify the GEPs of the path and then use Theorem 1. The
first is in gray in Fig. 10. To encode the first GEP, let us use Lemma 1; in addition, we verify that
we perform, at most, 4 rotations to encode a GEP. Visiting the GEPs of the curve we can find the code
associated to Figure 10 is: 1j8711jiyyyypiiyyyjipkjji.
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To decode, we have to identify the first GEP and then use Theorem 4, which builds the basis P
of the simple path we are decoding. The first GEP is 1j8711, and the information that it contains as
follows,

1︸︷︷︸
N

j︸︷︷︸
symbol

8︸︷︷︸
N1

7︸︷︷︸
N2

1︸︷︷︸
N3

1︸︷︷︸
N4

(23)

So, we start with GEP j of group 1 of Fig. 8.

4.3 Avoiding loops

Despite curve-skeletons could have loops, we can try them as trees.

Let us start by defining a loop in trajectories of voxels.

Definition 15 A loop is a path P = {v1, v2, · · · , vn} in which v1 is adjacent to vn.

We do not only consider loops, but also paths which contain loops.

Definition 16 A path-1-loop is a set of connected voxels P in which a subset, say P 1, forms a loop. Also
the set P \ P 1 has no another loop. In this case we say P has 1 hole.

Example given in Fig. 11 is a path-1-loop.

Figure 11: A path-1-loop. Note that in P 1 = {v5, v6, v7, v8, v9, v10} and in P \ P 1 =
{v1, v2, v3, v4, v11, v12, v13}. There are no more loops.

In general, a path-s-loop is a path with s different holes:

Definition 17 A path-s-loop is a connected set of voxels P in which s subsets of P , say P 1, · · · , P s,
different between them (do not close the same region in R3), form a loop (each of them). In addition, in
the set P \

⋃
P i there is no other loop. In this case we say P has s holes.

Example. Fig. 12 presents a path-2-loop.

In this case

P 1 = {v5, v6, v7, v8, v9, v10} is a loop

P 2 = {v14, v15, v16, v17, v18, v19, v19, v20, v21} is a loop

In P \
(
P 1
⋃
P 2
)

= {v1, v2, v3, v4, v9, v11, v12, v13, v22, v23, v24, v25} there are no more loops.

Although visually a loop appears, an advantage to work with voxel representation is that a path can
be tried it as a tree. For example the shape of Fig. 13 can be seen as a tree in Fig. 12(a).
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Figure 12: Example of path-2-loops

Figure 13: 3D trees: (a) A tree associated to a set of the connected voxels of Fig. 12, (b) a directed tree.
The black face voxel indicates the starting node, whereas gray face voxels its first GEP.

4.4 Coding trees

We encoded 3D tree objects. In his work, Bribiesca [13] considers trees whose branches are formed solely
by voxels that are connected by faces. As a natural generalization to his work, the branches of the trees
which we consider now consist of connected voxel faces, edges and vertices. Just as in theory of graphs
[30], we have that the number of edges of a graph is equal to the number of nodes less one.

For starting position, consider the number of directed paths in a graph with nl leaves. Of course,
there are nl(nl− 1) different directed paths. Choose the largest directed path. Finally chose the starting
position of the leaf corresponding to the first letter in the lexicographical order.

For the codification of this type of structures, let us use two more symbols: “(”, and “)”, we also
provide the following definitions, and the algorithm that comes later.

The first definition of this section helps us to know what path to take when we find ourselves in a
node; the lexicographical order.

Definition 18 Lexicographical ordering (<lex). Let Y1, Y2 be two characters.

Y1 <lex Y2 iff 0 < Ascii(Y2)−Ascii(Y1).

Ascii(Y ) represents the Ascii code of the character Y.

For next definitions, to slightly shorten the notation, let us write “v is face” instead “v is face con-
nected”. Analogously for edge and vertex.

Definition 19 Let us denote as Ady(v) the number of voxels adjacent to v that have not been visited.
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In the following definition, we see when a voxel is representing a node of a tree. One would think that
if a tree is been visiting, as soon as we reach a voxel whose Ady(v) ≥ 2, it would mean that we are at a
node, but this is not the case, while a voxel has Ady(v) = 2, sometimes we will not consider v a node.
The reason for these conditions is simple. If a voxel is adjacent to two others, in such a way that one is
face and the other is edge (or vertex), it is because we cannot traverse the face first and then the edge
(vertex).

Definition 20 Let us assume Ady (v) = 2 and v1 y v2 are non visited voxels adjacent to v. If v1 is
adjacent to v2, and also

1. v is face with v1 and v is edge with v2, or

2. v is edge with v1 and v is vertex with v2, or

3. v is face with v1 and v is vertex with v2,

therefore v does not represent a node of the tree, and the next voxel to visit is v1. In any other case, if
Ady (v) ≥ 2 and does not hold any of the above conditions, then we say that v is a node.

The algorithm for encoding trees shall be as follows:

step 1) Choose a voxel with Adj (v) = 1 (starting node). Use the voxels to follow the starting node to form
the first GEP and encode it using Lemma 1. Save supp and chng and delete the first GEP of the
tree, except the last voxel, and call it voxel v1. If v1 is a node, go to step 3; otherwise go step 2.

step 2) Go to the next voxel and name it v2, re-define ref := supp, supp := chng and chng := c2 − c1,
where c1 and c2 are the center of v1 and v2, respectively. Delete v1 and re-name v2 as v1. Encode
using ref, supp and chng. If v1 is a node, go to step 3; if there is not a next voxel (call v1 final
node) go to step 4; otherwise go to step 2.

step 3) Type an open parenthesis in the code “(” and save v1, ref and sup in a list L. The rest of voxels
should have a code in the sense of Definition 18. Go to step 2.

step 4) If there are no more voxels, finish. Otherwise type in the code a closed parenthesis “)” and take v1,
ref and supp as the last in the list L. Delete this information in L. If the current v1 remains as a
node, go to step 3. Otherwise go to step 2.

4.5 Decoding trees

Once we know how to encode a tree, the decoding is almost immediate. The algorithm to decode trees
is as following.

step 1) Start decoding as if it were a simple path.

step 2) Continue decoding as if it were a simple path, if there is an open parenthesis, go to step 3. If there is
a closed parenthesis, go to step 4. If there are no more characters in the code, decoding is finished.

step 3) Save the coordinates of the last created voxel, and of the current vectors ref and supp in a list L .
Go to step 2.

step 4) Return to the last voxel in the list L, and consider that the current vectors ref and supp are also
the last introduced in list L. Delete this information from L. Go to step 2.

5 Invariant under transformations

The proposed 3DRC code has several interesting properties. In this section, we demonstrate that the
proposed code is invariant under translation, rotation and mirror transformations.
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5.1 Invariant under translation transformations

When any curve is rigidly moved from one place S to another S′, the coordinates of the voxels change in
the following way, v′ = v + α, where α represents the displacement of the coordinates.

However, the 3DRC code remains invariant, since, despite making such displacement, the basis path
remains unchanged, i.e., P ′B = PB. Because of this, exactly the same code is built before or after carrying
out a translation of the discrete curve.

5.2 Invariant under rotation transformations

Corollary 1 3DRC code is invariant under rotation transformations.

Proof. Demonstration of this corollary follows from Theorem 1 and Definition 8, and if we apply the
rotations given by Definition 11 in which a change of direction by a GEP in the 3D Euclidean space is
given, not by Cartesian coordinates, but by reference and support vectors, independently whether they
are oriented in the discrete 3D space. 2

As an example, consider Fig. 14.

Figure 14: A Simple path rotated around the axis: (a) Original path, (b) rotated around axis Z, (c)
rotated around axis Y, and (d) rotated around axis X.

The original code of the path is:

S = 1m6780yjipahnjloykpnopl,

whereas the codes of the path rotated around X, Y and Z axis are: Sx = 1m2740yjipahnjloykpnopl,
Sy = 1m7660yjipahnjloykpnopl, and Sz = 1m4780yjipahnjloykpnopl, respectively.

By Lemma 1, the first GEP has to be chosen from the groups of elements in Fig. 8. As can be seen,
code symbols are the same, except possibly the four numbers after the first symbol. As explained in
Lemma 1, there is a group of rotations to go from an arbitrary orientation of the first GEP to a single
element of Fig. 8. So, the code is determined in a unique way, independently of orientation.

5.3 Invariant under mirror transformations

Another property of the proposed code is its invariance under mirror transformations.
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Symbol s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12

A a b c d e f g h i j k l
AM a h g f e d c b i p o n

Symbol s13 s14 s15 s16 s17 s18 s19 s20 s21 s22 s23 s24
A m n o p q r s t u v w x
AM m l k j q x w v u t s r

Table 1. Interchangeable symbols when mirror transformation occurs.

A mirror transformation is carried out when the coordinates of the curve mirror in the system S′

relate to the system S in the following way: v′(x′, y′, z′) = v(x, y,−z). In this case, the mirror is the
X-Y plane. On the other hand, if v′(x′, y′, z′) = v(x,−y, z), the mirror is the X-Z plane. And, if
v′(x′, y′, z′) = v(−x, y, z), the mirror is the Y-Z plane. The following theorem arises.

Theorem 5. The 3DRC code is invariant under mirror transformations through X-Y, Z-Y and Z-X
planes.

Proof.

When a curve is reflected on any of planes X-Y, Y-Z or Z-X, a mirror transformation given by the
coordinates of the voxels comes out. In the case of transformation of mirror under the plane X-Y,
coordinates x, y remain the same, but z′ = −z. Under X-Z, we have that x and z are equal, but y′ = −y;
and in the case of mirror under Y-Z, we have x′ = −x. It is easy to see that when any element of the
Fig. 8 is taken, some other element is its reflection. Thus, for example, when the element labeled by the
symbol ’b’ is reflected on any of the three mentioned planes, the reflection corresponds to the element
labeled by the symbol ’h’. This analysis can be done with each of the elements of Fig. 8. The outcome
can be seen in Table 1, i.e., the invariant set to make 3DRC the same under mirror transformation can
be obtained by the assignments given in Table 1.

Note that only six of the 24 symbols remain the same in the mirror transformation. The symbols are:
a,e,i,m,q, and u. The rest have to be interchangeable as Table 1 suggests.

This transformation table is valid when the object is reflected on the X-Y, Y-Z or X-Z planes. 2

See Fig. 15 for an example of mirror invariance.

Figure 15: An irregular curve reflected on planes X-Y, Y-Z and X-Z.

The chain code of the curve in Fig. 15 is: S =1m6780yjipahnjloykpnopl. When reflected on the X-Y
plane, the chain code becomes: Sz= 1m6540ypijablpnkyojlkjn. When reflected on the X-Z plane, the
chain code becomes: Sy = 1m2780ypijablpnkyojlkjn. Finally, if the original curve is reflected on the
Y-Z plane, the chain code is: Sx = 1m6780ypijablpnkyojlkjn. By taking into account the assignments of
Table 1, we can easily verify that the original S code is invariant under these mirror transformations.
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6 Applications and comparison with other codes

In this section we present two applications that can be carried out to solve problems of the real world:
representations of curve-skeletons and, also, representations of Digital Elevation Models (DEMs). On the
other hand we discuss the advantage of our proposed 3DRC code regarding the most utilized in literature:
5OT and F26.

6.1 Curve-skeletons

As can be observed from the nature of 3D chain codes, these are one-dimensional (1D) structures suitable
to represent tridimensional curves. On the other hand, curve-skeletons are, also, 1D representations of
3D objects. Research in 3D curve-skeleton tackle two general problems: find robust algorithms to obtain
curve-skeleton representations and propose similarity measures for object based recovery.

The extraction, analysis and use of curve-skeletons is a very active field in computer vision [33]. A
vast number of papers have been written about curve-skeleton representations for real applications to
different kind of problems, including, among others: virtual navigation, registration, morphing, scientific
analysis, classification, inverse kinematics [46], or for applications in virtual colonoscopies [34] and virtual
endoscopies [35]. In animation, there is a vast number of articles, to mention a few: [36], [37], [38] and
[39].

In fact, there is no a unique curve-skeleton algorithm for general 3D object applications, but to solve
specific problems by using particular data sets.

Also, curve-skeletons have been used to establish measures of similarity for 3D shapes [41, 42, 43, 51].

Many papers have presented algorithms to obtain, as far as possible, the best curve-skeletons that
work as appropriate descriptors of voxelized objects in order to preserve the original topology by thinning,
deleting and pruning algorithms [47, 48], or by using the mesh data and obtaining point clouds [49, 50].
There are other efforts to preserve original shape [52] as much as possible.

An application of our chain code in 3D curve-skeleton representation can be achieved. Most of the
papers above-mentioned, utilize voxel data to represent the curve-skeletons, and the different algorithms
are applied over such information. An alternative is to utilize our proposed 3D chain code. Whereas
the other representations employ complicated relationships between neighbor voxels, our propose method
consider symbolic representation which handles local data and takes care of the curve-skeleton shape.
Every discrete movement along the curve is encoded by one of the 25 symbols of the 3DRC code. This
information is an alternative to voxel representation. Therefore, knowing symbol distribution, either in
the whole or in the different parts of the curve-skeleton, its shape can be interpreted.

Fig. 16 shows a sample of human and animal-like models that can be used to make shape analysis
or to find similarity measures, whereas Fig. 17 shows other kind of 3D models, representing manu-
factured objects, that can be also classified in terms of their shapes and topology. There are many
websites to download 3D models, see for example the Stanford Computer Graphics Laboratory site:
http://graphics.stanford.edu/data/.

To test our method, we used the curve-skeletons of the 3D above-mentioned objects. In our work, we
used a free access voxelizer and skeletonizer [40]. The voxelizer is called binvox, whereas the skeletonizer is
called thinvox. Binvox uses the count method and parity of Nooruddin and Turk ray [44], who presented
a way to manipulate polygonal models and convert them to volumetric representations. Once volumetric
objects are obtained, the thinning algorithm is applied. Thinvox supports the directional thinning method
described by Klmn Palgyi and Attila Kuba [45].

Fig. 18 presents an example of a Lion curve-skeleton object and the other representation proposed
here: its chain code. On the other hand, Fig. 19 shows both, an example of an animal and a manufactured-
like curve-skeletons. We applied our method on 10 different 3D models to obtain their curve-skeletons,
as shown in Table 2, which contains the sizes, in terms of the number of rows, columns and slices the
binary files require, and number of voxels obtained in the skeletonization.
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Figure 16: A sample of 3D models.

Our proposal code is well sounded as a new alternative to represent curve-skeletons, because the
information given represents faithfully the shape, we consider the code as a descriptor or as a “word”.
From example, it can be read from the code, all the digital straight lines contained, also the nodes
(articulated parts) by reading the parenthesis symbols.

Tables 3 and 4, rich in information about object shape, present symbol frequencies. From Table 3 and
4 can be obtained, also, symbol probabilities, the number of nodes of the curve-skeletons and histograms
to be compared in order to look for similarity measures. A further work could exploit this kind of data
by considering parts of the objects, for example those between nodes, matching symbols, look for discrete
straight lines, and so forth. Next section gives an example of shape analysis of this kind of codes.

Of course, in literature there are other ways to work with 3D objects, particularly if they are so
irregular that skeleton is not suggested to be used. This is the case for Digital Elevation Models (DEM).

6.2 Digital Elevation Model Data (DEM)

Some papers analyse and study elevation models by considering triangulated meshes [54, 55]. DEM is an
ordered array which represents the spatial distribution elevations over some datum in a landscape [53].

From a DEM, Fig. 20(a) presents a 3DMesh from a DEM data, of the volcano called Iztacćıhuatl
which is located in the Mexico Valley area. A voxelization process was carried out. It consists of filling
the elevation data of DEMs by voxels. We employed 523 972 voxels to obtain a solid object (see Fig. 20
(b)). On the other hand, in Fig. 21 we can appreciate both, the 5OT and 3DRC chain implementations.

Visually speaking, representing DEMs is better with either F26 or 3DRC chains than with 5OT, as
can be appreciated in Fig. 21. The former give a more soften relief than the given by 5OT. Fig. 22
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Object size voxels

Bed 33 ×113× 104 341
Bench 44 ×29× 122 996
Boss 19 ×38× 40 99

Bunny 72 ×116× 64 439
Dragon 51 ×84× 121 566
Happy 36 ×121× 43 547
Lion 121 ×103× 31 365

Schaap 39 ×73× 89 231
Trice 47 ×122× 24 293
Wheel 108 ×42× 106 653

Table 2. Sizes and number of voxels of the curve-skeletons

symbol \Object Bed Bench Boss Bunny Dragon Happy Lion Schaap Trice Wheel

a 70 7 2 10 11 12 26 16 2 62
b 2 7 5 25 18 9 71 10 0 19
c 5 19 0 16 37 35 42 4 0 50
d 14 5 12 34 29 19 71 2 12 17
e 17 7 0 36 10 9 16 0 25 14
f 1 11 7 20 12 18 2 0 41 20
g 3 55 0 4 18 49 0 0 69 30
h 5 7 1 13 21 26 15 5 31 13
i 39 6 4 18 19 30 8 35 6 28
j 14 3 4 4 15 13 9 6 2 8
k 14 8 12 9 61 28 8 6 0 40
l 15 2 8 14 23 18 18 5 7 11

m 20 6 6 32 25 13 11 27 19 18
n 8 6 8 10 12 15 0 8 9 3
o 17 4 8 16 32 35 1 8 5 46
p 10 3 3 24 14 14 4 12 8 7
q 31 4 0 6 22 21 5 14 1 12
r 6 1 0 3 8 7 6 7 0 14
s 2 10 7 20 16 28 10 24 2 66
t 7 4 6 9 11 19 18 3 8 8
u 2 8 2 15 20 14 9 0 12 10
v 4 3 1 12 22 11 1 0 14 9
w 1 5 1 5 29 29 1 2 11 60
x 6 0 0 4 17 14 6 5 2 8
y 25 586 1 29 46 37 2 30 4 62
z 2 188 0 50 17 22 3 1 2 17
( 10 26 4 15 31 34 10 4 15 25
) 10 26 4 15 31 34 10 4 15 25

lF26 360 1017 106 468 627 613 383 238 322 702

Table 3. Frequency of F26 symbols.
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symbol \Object Bed Bench Boss Bunny Dragon Happy Lion Schaap Trice Wheel

a 13 7 1 31 22 21 7 20 4 20
b 5 6 0 5 14 15 1 1 3 13
c 0 2 0 1 5 5 1 0 1 3
d 0 1 1 1 1 2 1 0 1 0
e 2 1 2 1 0 2 1 0 1 0
f 0 1 0 1 3 1 0 0 0 1
g 2 2 0 2 2 1 2 0 0 0
h 1 4 1 4 8 8 3 4 4 4
i 83 34 20 81 120 105 85 49 72 151
j 15 17 12 37 61 49 32 15 24 43
k 16 19 16 31 41 43 28 7 18 41
l 7 6 2 8 15 15 3 5 9 15

m 13 14 2 13 18 21 10 4 12 22
n 2 4 1 8 11 16 3 4 7 12
o 17 11 6 30 37 40 24 11 14 36
p 25 11 8 25 75 50 19 16 23 40
q 2 0 0 0 0 0 0 0 0 2
r 1 3 0 1 2 1 2 0 1 0
s 0 0 0 0 0 0 0 0 0 0
t 0 0 0 0 0 0 0 0 0 0
u 0 0 0 0 1 0 0 0 0 0
v 1 0 0 0 0 0 0 0 0 0
w 0 0 0 0 0 0 0 0 0 0
x 1 1 0 0 1 0 0 1 0 2
y 132 819 24 156 127 148 139 91 96 245
( 10 26 4 15 30 34 10 4 15 25
) 10 26 4 15 30 34 10 4 15 25

l3DRC 358 1015 104 466 624 611 381 236 320 700

Table 4. Frequency of 3DRC symbols.
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Figure 17: Example of 3D models corresponding to manufactured objets.

(a) (b)
2i8770jiiyyyyyojjiiiiiyiiyiiyyiiiiiyyyyymyipoyykoiyoiiaiyyyl(ai(gkiiiyyiohyjkjiikjoiyyjyiyyyyymiyoiyykippyyiypypi)ioyyyy

kiyykiyyyyyyyyyyyyyyyyyyyyyyy(kmyyiyiyyyi(jyyyymiopyijimikiyyoiyyyyijkkmjykon(inoi(je)r)oji)pojjoppkjyjkyyykiyyykiyy
iimjkkkopjjnpy)omaiyiyyyyyyyyyyyoiyliyyyy(gyjii(jjipyliy)pck)pa(roiyyyjyiiibiy)yiiyiiyyyyyyy(dp)ikji)mophaiajikiooij

yjyjkykoppiyymiyyykiyokjkjiiiahjkp

(c)

Figure 18: Example of Lion curve-skeleton: (a) voxelized, (b) its tree vector skeleton, and c) its chain
code.

presents two different viewpoints of the 3DRC chain. Observe in Fig. 23 that straight parts of the terrain
is better represented by 3DRC than 5OT code. Whereas only one symbol, y, is needed in 3DRC, 5OT
uses twice the number of symbols if a digital straight line is inclined 45 degrees.
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Figure 19: Curve-skeletons: (a) voxelized, (b) chain tree.

Chain code can be used to codify the shape of terrains, for example the relief of mountains can be
quantified with symbol representation. Chain codes can be used in the analysis of the terrain to obtain
a better quantification of its shape. They can be utilized like an object signature, i.e., when specialists
read this code, for example, geologists, civil engineers, agriculturists, and so forth, depending the region
of interest, a piece of “word” can tell how the shape of the region is. Fig. 24 shows the 3DRC code
for the first three slices of the volcano “Iztaccihuatl”. See the first contour slice from Fig. 22 (b). For
example, flat regions, or those with no many changes, have a high probability of y’s. See Fig. 25, where
the first slice (right front of Fig. 22(b)) is coded by 3DRC. As the code suggests, the straight lines are
coded by the ’y’ symbol. Every change in slice is represented by the consecutive symbols oc. When an
analysis is wanted to be made, a set of symbols can be inspected to know the nature of the shape. The
regions with high changes of slops, are determined with symbols a,e and q.

Of course, detailed analysis of the relief should be studied when a combination of such symbols is
made with others, like i’s and m’s.

6.3 Redundancy in information

Another interesting property of chain codes is their redundancy in information. As can be seen from
previous results, the probability of each symbol to appear in chain codes is different. For example,
symbol ’y’ is highly probable to appear in the sample objects.

We compared the redundancy of information in F26 and 3DRC codes, and to do so, we calculate the
frequency of occurrence of the symbols. For the case of curve-skeletons Table 3 shows the frequency of
appearance of the symbols of F26 code, while Table 4 shows the frequency of the symbols of 3DRC. For
Bench curve-skeleton note that symbol ’y’ (vector 〈0, 0, 1〉 of F26) appears with high frequency, regarding
the others; this is because this object has a lot of straight line segments. According to the theory of
information [31], the entropy of a signal, in this case resulting of a string of symbols, can be obtained
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Figure 20: A 3D object: (a) “Iztaccihuatl” volcano modeled by a 3D mesh, (b) its voxelized version.
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Figure 21: “Iztaccihuatl” volcano represented by chain codes: (a) 5OT chain code, (b)3DRC chain code.
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Figure 22: Two different views (a) and (b) of the “Iztaccihuatl” volcano coded by our proposed 3DRC
chain.
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Figure 23: A DEM data: “Iztaccihuatl” volcano, (a) 5OT chain representation; (b)3DRC representation.

Figure 24: The 3DRC code of the first three slices of “Iztaccihuatl” volcano .
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Figure 25: The first slice of “Iztaccihuatl” volcano coded by 3DRC.

from Eq.(24).

L = −
lcode∑
i=1

(pi)log(pi), (24)

where L is the entropy of a chain, pi the probability of its symbols, and lcode its length.

Fig. 26 shows the distribution of probabilities for each code. As can be observed, the greater part of
the distribution of 3DRC frequencies is taken by five symbols: ’y’, ’i’, ’j’, ’k’, and ’p’, which represent
75% of the total, while F26 frequencies are more evenly distributed by most of its symbols: 19 of them
represent 75% of the total number of frequencies: ’y, ’d’, ’g’, ’a’, ’c’, ’f’, ’i’,’m ’,’s ’, ’k’, ’e’, ’b’, ’h’, ’l’,
’q’,’n ’,’t ’, ’u’ and ’v’. A simple calculation shows the entropy of each code. So, given the above equation,
L3DRC = 3.03 bits/symbol, whereas LF26 = 4.35 bits/symbol.

Therefore, F26 spends more bits per symbol in memory storage than 3DRC. One of the compression
algorithms, without loss of information, frequently used in the literature is the Arithmetic [32]. By
applying such an algorithm to the resulted chains, to save the information of each one of the compared
codes, we have obtained the amount of memory, in bits. Table 4 shows the length (number of symbols)
of the chain codes, and the bits required to store the chains, after applying arithmetic algorithm. Note
that the average efficiency of 3DRC, regarding F26, is 23%.

On the other hand, using information of the irregular sample given by the volcano, coding with
different algorithms, also result in different memory storage efficiency. In Table 5 it is shown some
important parameters due to the compared methods. F26 uses the shortest length to codify the object,
almost the same like 3DRC. In fact, 3DRC needs one five more symbols in the start of the code, because
of rotation operations required and one less symbol due to the first change a relative code is not required.
Also, it can be seen that entropies of 5OT and 3DRC are similar, however, the number of bits required
for 3DRC is 10.7% fewer than 5OT, and 36.1% fewer than F26.
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Figure 26: Symbol probabilities for the different codes, F26 and 3DRC, respectively.

6.4 Discussion

The 5OT code introduced by Bribiesca in 2000 [13] is used to represent face connected discrete curves.
In fact, we have already compared 5OT with F26 [29]. In that paper, we compared 5OT with three types
of curves: cube-filling Hilbert curves, lattice knots and arbitrary curves. For Hilbert and lattice knots,
we found better compression of 5OT over the F26 code. The route followed by F26 was given by its six
orthogonal directions. So, a subset of six symbols from the 26 was utilized. On the contrary, in the case
of arbitrary curves, the 26 symbols from F26 were statistically utilized. To compare it with 5OT, a set
of emerging voxels was implemented, i.e. a set of 0-voxels were turned on to cause a face connectivity
compare with 5OT. Of course, this constitutes more processing time. Even more, if a set of voxels being
traversed represent a straight line segment, repeated assignments of reference vectors have to be done to
compute the change vector. On the contrary, fewer assignments are required by the 3DRC for reference
and support vector controls.

However, with our method, it is not necessary to turn on the 0-voxels; with our proposed code, we
naturally follow the face, edge and vertex connected curve.

This fact is very important, because when 0-voxels are turned on to obtain a face connectivity and
encode using 5OT, and to decode, it is not known which voxels were turned on, thus recover same shape
is difficult, unless keep the information of what 0-voxels were turned on. It takes more consuming time
processing. This important issue does not arises with our method.

As can be seen from the 24 relative symbols, there is a subset given by {a, g, c, e}group1 ∪ {y} that
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Object length F26(bits) 3DRC(bits) Efficiency

Bed 360 1713 1310 0.2353
Bench 1017 2620 1696 0.3527
Boss 106 592 514 0.1318

Bunny 468 2342 1724 0.2639
Dragon 627 3152 2440 0.2259
Happy 613 3092 2384 0.229
Lion 383 1700 1339 0.2124

Schaap 238 1138 878 0.2285
Trice 322 1451 1238 0.1468
Wheel 702 3350 2389 0.2869

Average 471.3636 2066.0909 1571.909 0.2313

Table 5. Compressing chain codes using Arithmetic coding.

Code Length Entropy Bits
F26 50444 2.1323 110425
5OT 58728 1.0861 78937

3DRC 50448 1.175 70474

Table 6. Comparison of 3D chain codes.

corresponds to the known code: 5OT = {1, 2, 3, 4} ∪ {0}. So, as a corollary of our method, we have that
5OT ⊂ 3DRC.

Another advantage of the 3DRC code is that its shape is closer to the actual voxelized curve than
that obtained from turning on voxels and represented by 5OT.

About sensitive to noise, any chain code is formulated to represent one-dimensional curves. These may
code the noise depending on the original data obtained and the algorithms that were used on the original
source data. In the case of the skeletons, it was mentioned that there is a vast literature for the best
descriptors, including smooth curve-skeletons, with the lowest possible noise. For example, graph-based
representations of point clouds tackle the problem of noise [49] or the geometry contraction process based
on an iterative implicit smoothing operation can be used [56].

On the other hand, noise that may appear in the digital elevation models comes from the process of
scanning the terrain elevations. However, the chain code represent most faithfully the information of the
shape of the land on the basis of the database that have been utilized.

7 Conclusions and further work

We have found a new code for three-dimensional paths. This code is invariant under translation, rotation
and mirror transformations. Also, we have codified skeletons, even if there are loops, we have found a
method to codify them as trees. In addition, the chains that are generated to represent trees in three
dimensions, contain less redundancy than F26. Since the entropy generated by an absolute code is greater,
we found that 3DRC is more efficient than existing codes in 3D.

More interesting properties of the proposed code can be found, such as the performance of parentheses,
which indicate the existence of nodes in the tree associated with the skeleton. The nodes here can be seen
as important information about the shape of the object; therefore, they can be seen also as descriptors
of the object. Future work should analyze this case in detail and consider it as a feature of objects to
establish measures of similarity.

We have used curve-skeletonization as part of the process to reach chain coding. A future work should
find pattern of symbols to identify noise, in order to help the curve-skeleton smoothing.
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To give quantitative measures of the DEMs shapes, a further work most consider the relationships
between symbols and circularities, slops and corners, than help “read” the code, like a signature of the
object, that permit take decisions about the region of the terrain studied by specialists. Further work
should try with matrix symbols if attending neighbor slice vicinities to analyze the regions of terrains.
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