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Multivariate Goppa codes
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Abstract—In this paper, we introduce multivariate Goppa
codes, which contain, as a particular case, the well-known
classical Goppa codes. We provide a parity check matrix for
a multivariate Goppa code in terms of a tensor product of
generalized Reed-Solomon codes. We prove that multivariate
Goppa codes are subfield subcodes of augmented Cartesian codes.
By showing how this new family of codes relates to a tensor
product of generalized Reed-Solomon codes and augmented
codes, we obtain information about the parameters, subcodes,
duals, and hulls of multivariate Goppa codes. We see that in
some instances, the hulls of multivariate Goppa codes (resp.,
tensor product of generalized Reed-Solomon codes) are also
multivariate Goppa codes (resp. tensor product of generalized
Reed-Solomon codes). We utilize the multivariate Goppa codes
to obtain entanglement-assisted quantum error-correcting codes
and to build families of long LCD, self-dual, or self-orthogonal
codes.

Index Terms—Goppa codes, augmented Cartesian codes, ten-
sor products of Reed-Solomon codes, quantum error-correcting
codes, LCD, self-dual, self-orthogonal. 2010 Mathematics Subject
Classification. Primary 94B05; Secondary 11T71, 14G50.

I. INTRODUCTION

GOPPA codes were introduced in 1971 by V. D. Goppa
[13], [14] using a polynomial g(x), called a generator

polynomial, over the finite field Fq with q elements. Properties
of a Goppa code are tied to those of the generator polynomial.
For instance, such codes have minimum distance at least
deg(g)+1. Many Goppa codes have parameters exceeding the
Gilbert bound. Moreover, Goppa codes have efficient decoding
algorithms. The McEliece cryptosystem, of current interest as
the basis for one of the only remaining candidates in the NIST
Post-Quantum Cryptography Standardization [1], [4] process,
employs Goppa codes [27]. Goppa codes can be viewed from
several different perspectives, each giving a window into their
capabilities. We generalize Goppa codes to a multivariate case
in this work.

Consider g ∈ Fqt [x] := Fqt [x1, . . . , xm] and the Carte-
sian product S := S1 × · · · × Sm ⊆ Fm

qt of non-empty
subsets S1, . . . , Sm ⊆ Fqt . Enumerate the elements of S =
{s1, . . . , sn} ⊆ Fm

qt . Assume that g(si) 6= 0 for all i ∈ [n]
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and that g can be expressed as a product g = g1 · · · gm, where
gi ∈ Fqt [xi]. The multivariate Goppa code is

Γ(S, g) :=

{
c ∈ Fn

q :

n∑
i=1

ci∏m
j=1(xj − sij)

= 0 mod g(x)

}
,

where c = (c1, . . . , cn) and si := (si1, . . . , sim) ∈ S. Taking
m = 1, we obtain the Goppa codes as in [3], [13], [14].
Setting m = t = 1 gives the codes considered in [12]. It
is worth noting that Γ(S, g) is a code over Fq of length n
given by | S | where S ⊆ Fm

qt ; thus, n ≤ qtm. Hence,
allowing larger values of t and m provides longer codes over
the same field, compared with either classical Goppa codes
or generalized Reed-Solomon (GRS) codes. Said differently,
smaller alphabets may be used to produce codes of a given
length by allowing larger values of t and m. As we will see in
Corollary 10, taking larger values of m allows one to obtain
codes of the same lengths over the same field with potentially
larger dimensions.

To study multivariate Goppa codes, we may use two families
of codes that appeared recently in the literature. Generalized
Reed-Solomon codes via Goppa codes were studied by Y. Gao,
Q. Yue, X. Huang, and J. Zhang in [12], and augmented
Cartesian (ACar) codes, a family of evaluation codes that was
introduced in [22], [24]. Both families will be reviewed in
Section III.

In Section IV, to present a full picture of multivariate Goppa
codes similar to that of classical Goppa codes, we will prove
the following representations.

(Theorem 8) Parity check matrix. If T(S, g) is the tensor
product of generalized Reed-Solomon codes via Goppa
codes, then

Γ(S, g) = (T(S, g)⊥)q.

If T is a generator matrix of T(S, g), then

Γ(S, g) = {c ∈ Fn
q : T cT = 0}.

(Theorem 14) Subfield subcode. If ACar(S, g) is an
augmented Cartesian code, then

Γ(S, g) = ACar(S, g)q.

(Corollary 15) The dual. If tr (T (S, g)) is the trace of
the code T (S, g), then

Γ(S, g)⊥ = tr (T (S, g)) .

Moreover, these observations provide information on the basic
parameters of the multivariate Goppa code Γ(S, g). Examples
that demonstrate the results are provided throughout Sec-
tion IV.

In Section V, we study subcodes, intersections, and hulls
of multivariate Goppa codes. Each of these objects depends
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on the polynomial g in Fqt [x] used to define the multivariate
Goppa code. As a byproduct of this effort, we also obtain
results for the tensor products of generalized Reed-Solomon
codes via Goppa codes and augmented Cartesian codes. In
Section VI, we design quantum, LCD, self-orthogonal, and
self-dual codes from multivariate Goppa codes and tensor
products of generalized Reed-Solomon codes via Goppa codes.
One of the main contributions in Section VI is an algorithm to
find LCD, self-orthogonal, and self-dual codes. This approach
is different from that given in [12], which requires that the
size of the field always bounds the length of the code;
this restriction is not needed in this paper, meaning longer
codes over smaller alphabets can be defined via the tools
introduced in this paper. Even more, the results of Section VI
enable a single set of defining polynomials to produce a
family of codes with different lengths over a certain field
(cf. [12, Theorem 2.6]). We provide examples near the end
of Section VI to demonstrate the constructions of families
of long entanglement-assisted quantum error-correcting codes,
LCD codes, self-orthogonal, and self-dual codes. Finally, a
summary is given as a conclusion in Section VII.

II. CONCLUSION

This paper defined multivariate Goppa codes that gener-
alize the classical Goppa codes. Similar to classical Goppa
codes, they are described via a parity check matrix and as
subfield subcodes of a family of evaluation codes. In particular,
we showed that the tensor product of generalized Reed-
Solomon codes via Goppa codes leads to a parity check
matrix whose kernel restricted to the base field yields the
multivariate Goppa codes. We also proved that multivariate
Goppa codes are subfield subcodes of augmented Cartesian
codes. These perspectives provided information about the code
parameters as well as their hulls. Consequently, we obtained
q-ary entanglement-assisted quantum error-correcting codes,
LCD, self-orthogonal, and self-dual codes. We leave it as an
exercise for the interested reader to translate the results in this
paper to expurgated subcodes of multivariate Goppa codes.

III. PRELIMINARIES

This section develops the background that will be useful
in this paper. Subsection III-A introduces the notation to be
used throughout. More information about coding theory can be
found in [20], [25], [30]. Subsections III-B and III-C review
particular code constructions that will provide insight into the
multivariate Goppa codes. References for vanishing ideals and
related algebraic concepts used in this work are [8], [10], [19],
[31].

A. Notation

As usual, an [n, k, d] code over a field Fqt is a code of length
n, dimension k, and minimum distance d := min{| supp(c)| :
0 6= c ∈ C}, where supp(c) denotes the support of c, that is,
the set of all non-zero coordinates of c. A generator matrix
for C is any matrix whose row span is C. Given v ∈ Fn

qt , we

denote the entry in its ith coordinate by vi where i ∈ [n]. The
dual of C is

C⊥ :=
{
w ∈ Fn

qt : w · c = 0 ∀c ∈ C
}

;

that is, the dual is taken with respect to the Euclidean inner
product. The hull of C is Hull(C) := C ∩ C⊥. The code C
is linear complementary dual (LCD) [26] if Hull(C) = {0},
self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥.

The set of m× n matrices over Fqt is denoted Fm×n
qt . The

Kronecker product of matrices A = [aij ] ∈ Fr×s
qt and B ∈

Fm1×m2

qt is the matrix that can be expressed in block form as

A⊗B :=


a11B a12B · · · a1sB
a21B a22B · · · a2sB

...
...

...
ar1B ar2B · · · arsB

 ∈ Frm1×sm2

qt .

Given a generator matrix G1 of a code C1 and a generator
matrix G2 of a code C2, the code C1 ⊗ C2 is defined as the
code whose generator matrix is G1 ⊗ G2. Given a positive
integer k ∈ Z+, Fqt [x]<k denotes the set of polynomials in
indeterminate x of degree less than k.

For a lattice point a ∈ Nm, xa = xa1
1 · · ·xam

m denotes
the corresponding monomial in Fqt [x] where N is the set of
nonnegative integers. The graded-lexicographic order ≺ on
the set of monomials of Fqt [x] is defined as xa1

1 · · ·xam
m ≺

xb11 · · ·xbmm if and only if
∑m

i=1 ai <
∑m

i=1 bi or
∑m

i=1 ai =∑m
i=1 bi and the leftmost non-zero entry in (b1−a1, . . . , bm−

am) is positive. The ideal generated by f1, . . . , fr ∈ Fqt [x] is
denoted (f1, . . . , fr) ⊆ Fqt [x]. The subspace of polynomials
of Fqt [x] that are Fqt -linear combinations of monomials xa ∈
Fqt [x], where a ∈ A ⊆ Nm, is denoted by L(A), i.e.

L(A) := SpanFqt
{xa : a ∈ A} ⊆ Fqt [x].

The field trace with respect to the extension Fqt/Fq is
defined as the map

tr : Fqt → Fq

a 7→ aq
t−1

+ · · ·+ aq
0

.

Recall that given an [n, k, d] code C ⊆ Fn
qt , its subfield

subcode over Fq and its trace code are defined, respectively,
by

Cq :=
{
c ∈ C : c ∈ Fn

q

}
and

tr(C) := {(tr(c1), . . . , tr(cn)) : (c1, . . . , cn) ∈ C} .

By [25, Ch. 7. §7.], tr(C) is an [n, k∗, d∗] over Fq, where
k ≤ k∗ ≤ tk and d∗ ≤ d. According to Delsarte’s Theorem
[9, Theorem 2], C⊥q = tr

(
C⊥
)
.

B. Tensor products of generalized Reed-Solomon codes

In this subsection, we review the tensor products of gener-
alized Reed-Solomon codes via Goppa codes.

Recall that a generalized Reed-Solomon (GRS) code is
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defined by

GRS(S, k, g) :={(
g(s1)−1f(s1), . . . , g(sn)−1f(sn)

)
: f ∈ Fqt [x]<k

}
,

where g ∈ Fqt [x] and S = {s1, . . . , sn} ⊆ Fqt . A GRS code
in the particular case k = deg(g) is called a GRS code via a
Goppa code and denoted by GRS(S, g), i.e.

GRS(S, g) := GRS(S, deg(g), g).

GRS codes via Goppa codes were studied in [12]. We note
that GRS(S, k, g) is an [n, k, n − k + 1] code over Fqt with
n ≤ qt, meaning it is maximum distance separable (MDS). As
we will see in Section IV, the tensor product of generalized
Reed-Solomon codes plays an important role in the duals of
multivariate Goppa codes. In preparation, we define the tensor
product of generalized Reed-Solomon codes next.

Definition 1. Let S = S1 × · · · × Sm ⊆ Fm
qt with nj :=| Sj |

and g = g1 · · · gm ∈ Fqt [x] be such that g(s) 6= 0 for all
s ∈ S and deg(gj) ≤ nj for all j ∈ [m]. The tensor product
of generalized Reed-Solomon codes via Goppa codes is

T(S, g) :=

m⊗
j=1

GRS(Sj , gj).

Remark 2. The code T(S, g) is an [n, deg(g),
∏m

j=1(nj −
deg(gj) + 1)] code over Fqt . A generator matrix of T(S, g)
may be specified entrywise by(

g(si)
−1
sai

)
a,i
∈ Fdeg(g)×n

qt (1)

where the rows and columns are indexed by a ∈
N(deg(g1)−1)×···×(deg(gm)−1) and i ∈ [n], respectively.

Throughout the rest of the paper, we will take ni =| Si |, the
cardinality of Si where Si ⊆ Fqt , for i ∈ [m] := {1, . . . ,m} .
Moreover, when we take a polynomial g = g1 · · · gm ∈ Fqt [x],
we mean that every gi ∈ Fqt [xi]. The expression g(S) 6= 0 is
used to represent that g(s) 6= 0 for all s ∈ S.

At times, we also use as a tool a more granular version of
the codes in Definition 1. Given k = (k1, . . . , km) ∈ Zm with
0 ≤ kj ≤ nj for all j ∈ [m], the tensor product of GRS codes
is

T(S,k, g) :=

m⊗
j=1

GRS(Sj , kj , gj),

which is a [| S |,
∏m

j=1 kj ,
∏m

j=1(nj − kj + 1)] code.

Remark 3. Note that GRS(Sj , kj , gj) = {0} if and only
if kj = 0. Thus, T(S,k, g) = {0} if and only if there is
j ∈ [m] such that kj = 0. In addition, GRS(Sj , kj , gj) = Fnj

qt

if and only if kj = nj . Thus, T(S,k, g) = Fn
qt if and only if

k = (n1, . . . , nm).

C. Augmented Cartesian codes

We next review the augmented Cartesian codes recently
introduced and studied in [22] due to their local properties.

Consider S = S1 × · · · × Sm ⊆ Fm
qt , the vanishing

polynomial

Lj(xj) :=
∏
s∈Sj

(xj − s) ∈ Fqt [xj ] (2)

for each j ∈ [m], and the product

L(x) :=

m∏
j=1

L′j(xj) ∈ Fqt [x], (3)

where L′j(xj) denotes the formal derivative of Lj(xj).

Given f1, f2 ∈ Fqt [x] such that f2(S) 6= 0, we write f1
f2
∈

Fqt [x] to mean the unique polynomial whose value at s is
f1(s)
f2(s)

, for all s ∈ S, and degxj

(
f1
f2

)
< nj . Observe that this

polynomial can be constructed in the following way. Assume

that f1(si)
f2(si)

= λi, for i ∈ [n]. Let ιi be the standard indicator
function for si ∈ S. These functions ιi are linear combinations
of standard monomials and have the property that ιi(s`) = 1
when i = ` and ιi(s`) = 0 when i 6= `. See [23, Proposition
4.6 (a)] for a more detailed explanation of this fact and these
concepts. We then define f1

f2
:= λ1ι1 + · · ·+ λnιn.

Definition 4. Let S ⊆ Fm
qt and h ∈ Fqt [x] be such that h(S) 6=

0. An augmented Cartesian code (ACar code) is

ACar (S, h) :={(
h

L
(s1)f(s1), . . . ,

h

L
(sn)f(sn)

)
: f ∈ L(Ah)

}
,

where Ah :=
m∏
j=1

{0, . . . , nj − 1} \
m∏
j=1

{
nj − degxj

(h), . . . , nj − 1
}
.

One may note that ACar (S, h) is monomially equivalent to{
(f(s1), . . . , f(sn)) : degxj

(f + h) < nj for some j ∈ [m]
}
,

since the polynomial f is in L(Ah) if and only if there is j ∈
[m] such that degxj

(f) < nj − degxj
(h). At the same time,

the scaling coefficients h
L (si) in Definition 4 are important in

describing the duals.
Augmented Cartesian codes benefit from the theory devel-

oped for evaluation codes and more general monomial codes.
Together, the Cartesian product S = {s1, . . . , sn} ⊆ Fm

qt ,
lattice points A ⊆ Nm, and a polynomial h ∈ Fqt [x] such
that h(S) 6= 0, define an evaluation map

ev(S, h) : L(A)→ F|S|qt

f 7→
(
h(s1)

−1
f(s1), . . . , h(sn)

−1
f(sn)

)
.

The generalized monomial-Cartesian code associated with
S,A, and h is the image of the evaluation map
ev(S, h)(L(A)):

C(S,A, h) :={(
h(s1)

−1
f(s1), . . . , h(sn)

−1
f(sn)

)
: f ∈ L(A)

}
. (4)

It follows from [23, Theorem 5.4] that we may assume that
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degxj
(h) < nj and degxj

(f) < nj for all f ∈ L(A) and
j ∈ [m]; i.e., we consider A ⊆

∏m
i=1{0, . . . , ni − 1}. In this

case, the evaluation map ev(S, h) is injective. Thus, the length
and rate of the monomial-Cartesian code C(S,A, h) are given
by | S | and |A||S| , respectively [21, Proposition 2.1]. If m = 1

and A = {0, 1, . . . , k − 1}, then C(S,A, h) = GRS(S, k, h),
the generalized Reed-Solomon code described in Section
IV. Augmented Cartesian codes are a particular family of
decreasing monomial-Cartesian codes meaning that they are
defined by A such that if M ∈ L(A) and M ′ divides M, then
M ′ ∈ L(A) [7].

A key characteristic of the monomial-Cartesian codes is that
commutative algebra methods may be used to study them. The
kernel of the evaluation map ev(S, h) is precisely L(A)∩I(S),
where I(S) is the vanishing ideal. Thus, algebraic properties
of Fqt [x]/ (L(A) ∩ I(S)) are related to the basic parameters
of C(S,A, h). The polynomial L(x) plays an important role
in determining the dual code C(S,A, h)⊥, which was studied
in [21] in terms of the vanishing ideal of S and in [23] in
terms of the indicator functions of S.

In some of the proofs, we utilize a more general form of
an augmented Cartesian code defined by

ACar(S,k, h) := C(S,ACar(k), h),

where k = (k1, . . . , km), with 0 ≤ kj ≤ nj , and

ACar(k) :=

m∏
j=1

{0, . . . , nj − 1} \
m∏
j=1

{kj , . . . , nj − 1} .

An augmented Cartesian code is shown in Example 7. Note
that ACar(S,k, h) is monomially equivalent to the code{

(f(s1), . . . , f(sn)) : degxj
(f) < kj , for some j ∈ [m]

}
.

Remark 5. Observe that ACar(S,k, h) = Fn
qt if and only if

kj = nj for some j ∈ [m]. In addition, ACar(S,k, h) = {0}
if and only if k = 0.

Because of the previous remark, there are instances where
ACar(S,k, h) may be one of the trivial spaces {0} or Fn

qt .
In these cases, the basic parameters are also trivial. For
the case when ACar(S,k, h) is nontrivial, we find the basic
parameters in the following result. Note that items (i) and (ii)
are consequences of [22] with some minor observations, but
we add a short proof for completeness.

Lemma 6. The augmented Cartesian code ACar(S, h) is an
[n, n− deg(h),min{degxj

(h) + 1 : j ∈ [m]}] code over Fqt .
Moreover, ACar(S,k, h) has the following basic parameters

(i) Length n =| S | .
(ii) Dimension k =

∏m
j=1 nj −

∏m
j=1(nj − kj).

(iii) Minimum distance d = min {nj − kj + 1}j∈[m] .

The dual of the augmented Cartesian code is

ACar(S,k, h)⊥ = C
(
S,A⊥Car(k),

L

h

)
,

where A⊥Car(k) :=
∏m

j=1 {0, . . . , nj − kj − 1} .

Proof. The length of the code is apparent from the def-
inition. Since ACar(S,k, h) is monomially equivalent to

ACar(S,k, 1), we can assume that h = 1 for (ii) and (iii).
Then (ii) is proven in [22, Proposition 3.3]. To prove (iii), note
that according to Remark 5, we may assume k 6= 0. Observe

that B =

{
xn1−1
1 · · ·xnm−1

m

x
nj−kj

j

: kj > 0

}
is a generating set of

ACar(S,k, h). Thus, the result follows from [7, Theorem 3.9
(iii)]. Finally, the dual is a consequence of the proof of the
case h = 1, given in [22, Proposition 3.3], and [7, Theorem
3.3].

Example 7. Let S1, S2 ⊆ F17 with n1 =| S1 |= 6 and n2 =|
S2 |= 7. The code ACar(S1×S2, (2, 2), 1) is generated by the
vectors ev(S1 × S2, 1)(M), where M is a point in Figure 1
(a). The dual code ACar(S1 × S2, (2, 2), 1)⊥ is generated by
the vectors of the form ev(S1 × S2, L)(M), where M is a
monomial associated with a point in Figure 1 (b).

Z≥0
1
2
3
4
5
6

0

Z≥0

1 2 3 4 5

(a)

Z≥0
6
5
4
3
2
1

0Z≥0
5 4 3 2 1

(b)

Fig. 1: (a) Evaluation monomials of the code ACar(S1 ×
S2, (2, 2), h) described in Example 7. (b) Evaluation mono-
mials of the dual code ACar(S1 × S2, (2, 2), h)⊥.

IV. PROPERTIES OF MULTIVARIATE GOPPA CODES

As is the case for the classical Goppa codes, multivariate
Goppa codes have natural descriptions in terms of their parity-
check matrices as well as via subfield subcodes of known
codes. In the following two subsections, we illuminate these
two points of view and use them to determine the properties
of the multivariate Goppa codes.

A. Description of multivariate Goppa codes by parity check
matrices

This subsection shows that a tensor product of generalized
Reed-Solomon codes via Goppa codes provides a parity check
matrix for a multivariate Goppa code. Consequently, we can
give bounds for the dimension of a multivariate Goppa code. In
addition, the trace of a tensor product supplies a representation
for the dual of a multivariate Goppa code.

To relate multivariate Goppa codes to the tensor product in
Definition 1, observe that given any two polynomials p(x1) =
p`x

`
1 + · · ·+ p1x1 + p0 = (x`1, . . . , x1, x

0
1) · (p`, . . . , p1, p0) ∈

Fqt [x1] and q(x2) = qkx
k
2+· · ·+q1x2+q0 = (xk2 , . . . , x2, x

0
2)·

(qk, . . . , q1, q0) ∈ Fqt [x2], we may abuse notation and write

p(x1)q(x2) =(
(x`1, ..., x

0
1)T ⊗ (xk2 , ..., x

0
2)T
)T (

(p`, ..., p0)T ⊗ (qk, ..., q0)T
)
.
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In addition, if s ∈ Fqt , then, modulo q(x2), the following
equations are valid

1

(x2 − s)
=

(−1)

q(s)

(q(x2)− q(s))
(x2 − s)

= (5)

(xk−12 , ..., x02)


qk 0 · · · 0
qk−1 qk · · · 0

...
...

...
...

q1 q2 · · · qk

 (s0, ..., sk−1)T . (6)

We come to one of the main results of this section, which
represents a multivariate Goppa code in terms of a tensor
product of GRS codes.

Theorem 8. Given a multivariate Goppa code Γ(S, g),

Γ(S, g) = {c ∈ Fn
q : T cT = 0},

where T is a generator matrix of T(S, g); that is,

Γ(S, g) = (T(S, g)⊥)q,

a subfield subcode of the dual of a tensor product of general-
ized Reed-Solomon codes via Goppa codes.

Proof. According to (1), the code T(S, g) is generated by the
vectors(

sa1
g(s1)

, . . . ,
san
g(sn)

)
= (7)(

sa1
11 · · · s

am
1m

g1(s11) · · · gm(s1m)
, . . . ,

sa1
n1 · · · sam

nm

g1(sn1) · · · gm(snm)

)
,

where for i ∈ [n], si = (si1, . . . , sim) ∈ Fm
qt and 0 ≤ aj <

deg(gj) for j ∈ [m].

The proof consists of verifying that the elements in Γ(S, g)
are orthogonal to the vectors shown in Equation (7). We
proceed by induction on m. Consider the case m = 1. Assume
g(x) = γ0+γ1x+ · · ·+γkxk. Equation (6) implies that if c =

(c1, . . . , cn) ∈ Γ(S, g) and γ :=


γk 0 · · · 0
γk−1 γk · · · 0

...
...

...
...

γ1 γ2 · · · γk

,

then
n∑

i=1

ci
(x− si)

=

n∑
i=1

−ci
g(si)

(xk−1, ..., x0) (γ) (s0i , ..., s
k−1
i )T

= (xk−1, ..., x0) (γ)

n∑
i=1

−ci
g(si)

(s0i , ..., s
k−1
i )T (8)

= 0 mod g(x). (9)

Observe that the polynomial in (8) has degree k − 1. As
deg(g) = k, Equation (9) implies that the coefficients of the
polynomial given in Equation (8) are zero. Hence, we see that

(γ)


1

g(s1)
1

g(s2)
· · · 1

g(sn)
s1

g(s1)
s2

g(s2)
· · · sn

g(sn)

...
...

...
...

sk−1
1

g(s1)
sk−1
2

g(s2)
· · · sk−1

n

g(sn)

 (c1, ..., cn)T = 0.

As the matrix γ is invertible, after we multiply both sides

of previous equation by the inverse of this matrix γ, we see
that the element c ∈ Γ(S, g) is orthogonal to the vectors(
sa1
1

g(s1)
, . . . ,

sa1
n

g(sn)

)
, where 0 ≤ a1 < k = deg(g). These

are the vectors that appear in Equation (7) when m = 1.
Now we focus on the case m = 2. Assume deg(g1) =

k1 and deg(g2) = k2. Define the column vectors
X1 := (xk1−1

1 , . . . , x01)T , X2 := (xk2−1
2 , . . . , x02)T , Si1 :=

(s0i1, . . . , s
k1−1
i1 )T , and Si2 := (s0i2, . . . , s

k2−1
i2 )T to easy

notation. By Equation (6), there exist invertible matrices A and
B, that depend of the coefficients of g1 and g2, respectively,
such that

n∑
i=1

ci
(x1 − si1)(x2 − si2)

=

n∑
i=1

ci
g1(si1)g2(si2)

(X1 ⊗X2)
T

(A⊗B) (Si1 ⊗ Si2)

= (X1 ⊗X2)
T

(A⊗B)
n∑

i=1

ci
g(si)

(Si1 ⊗ Si2)

= 0 mod g(x).

As degx1
(g) = k1 and degx2

(g) = k2, the previous equation
implies

(A⊗B)

n∑
i=1

ci
g(si)

(Si1 ⊗ Si2) = 0.

Multiplying both sides by the inverse (A⊗B)
−1
, we finally

obtain
n∑

i=1

ci
g(si)

(Si1 ⊗ Si2) = 0.

We conclude that if c ∈ Γ(S, g), then
c ·

(
s
a1
11 s

a2
12

g1(s11)g2(s12)
, . . . ,

s
a1
n1s

a2
n2

g1(sn1)g2(sn2)

)
= 0, where

0 ≤ aj < kj = deg(gj), for j ∈ [2]. These are the
vectors that appear in Equation (7), for m = 2. For the
general case, observe that following the steps of the case
m = 2, we see that

∑n
i=1

ci∏m
j=1(xj−sij) = 0 mod g(x)

implies that

n∑
i=1

ci
g(si)




1
si1
...

sk1−1
i1

⊗ · · · ⊗


1
sin

...
skn−1
in


 =


0
0
...
0

 .

From this fact, we conclude that if c ∈ Γ(S, g), then c is
orthogonal to the vectors that appear in Equation (7).

The following example considers a classical Goppa code
and a multivariate Goppa code defined over the same field.

Example 9. First, let ω be a primitive element of S := F∗9
and g := x3 ∈ F9[x]. The classical Goppa code Γ(S, g) is
given by

Γ(S, g) =
{
c ∈ F8

3 : T cT = 0
}
,

where T is a generator matrix of the generalized Reed-
Solomon code GRS(S, g). Note that this GRS(S, g) code is
an [8, 3, 6] evaluation code over F9 generated by the vectors
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F9
ω1ω2ω3ω4ω5ω6ω7ω8

(a) Evaluation points

Z≥0
0 1 2 3 4 5 6

(b) Evaluation monomials

Fig. 2: The generalized Reed-Solomon code GRS(S, g),
whose evaluation points and evaluation monomials are shown
in (a) and (b), respectively, defines a parity check matrix for
the classical Goppa code Γ(S, g) described in Example 9.

0

F9

ω1
ω2
ω3
ω4
ω5
ω6
ω7
ω8

F9
ω1ω2ω3ω4ω5ω6ω7ω8

(a) Evaluation points

0

Z≥0

1
2
3
4
5
6

Z≥0
1 2 3 4 5 6

(b) Evaluation monomials

Fig. 3: The tensor product T(S, g), whose evaluation points
and evaluation monomials are shown in (a) and (b), respec-
tively, defines a parity check matrix for the multivariate Goppa
code Γ(S, g) described in Example 9.

(
f(ω1)
g(ω1) , . . . ,

f(ω8)
g(ω8)

)
, where f is a polynomial in F9[x] of

degree less than 3. The evaluation points and the evaluation
monomials of the GRS(S, g) code are represented in Figure 2
(a) and (b), respectively. Using the coding theory package [2]
for Macaulay2 [17], and Magma [5], we obtain that Γ(S, g)
is an [8, 4, 4] code over F3.

Now, let ω be a primitive element of S1 := F∗9, g1 := x4 ∈
F9[x], S2 :=

{
ω1, ω2, ω3, ω4

}
, g2 := (y − ω5)(y − ω6)(y −

ω7) ∈ F9[y], and g := g1g2. The multivariate Goppa code
Γ(S, g) is given by

Γ(S, g) =
{
c ∈ F32

3 : T cT = 0
}
,

where T is a generator matrix of the tensor product T(S, g) =
GRS(S1, g1) ⊗ GRS(S2, g2). Let s1, . . . , s32 be the points
of the set S1 × S2. This tensor product T(S, g) is a
[32, 12, 10] evaluation code over F9 generated by the vectors(

f(s1)
g(s1)

, . . . , f(s32)
g(s32)

)
, where f is a polynomial in F9[x, y] with

degx(f) < 4 and degy(f) < 3. The evaluation points and
evaluation monomials are represented in Figure 3 (a) and
(b), respectively. Using the coding theory package [2] for
Macaulay2 [17], and Magma [5], we obtain that Γ(S, g) is
a [32, 14, 5] code over F3.

Recalling that Γ(S, g) =
(
T(S, g)⊥

)
q
, as shown in Theo-

rem 8, we obtain the following consequences.

Corollary 10. The multivariate Goppa code Γ(S, g) has
length n =| S | and dimension k satisfying n − tdeg(g) ≤
k ≤ n − deg(g). Moreover, the dual is the trace code of a
tensor product of generalized Reed-Solomon codes via Goppa

codes, specifically,

Γ(S, g)⊥ = tr(T(S, g)).

Example 11. Assume F∗32 = 〈a〉 is the multiplicative group
of the finite field F32 . Take S1 = S2 =

{
ai : i ∈ [8]

}
and

g1 = g2 = x2 + a. Using the coding theory package [2] for
Macaulay2 [17], and Magma [5], we obtain that Γ(S, g) is
a [64, 56, 4] code over F3, which has parameters matching
the best known linear code of length 64 and dimension
56 over this field [15]. If we were to restrict ourselves to
taking m = 1, then 64 ≤ qt = 3t requires t ≥ 4 to
obtain a code of length 64. Furthermore, 4 = deg(g) + 1
implies deg(g) = 3. Consequently, in the case m = 1, we
cannot obtain a comparable code with dimension exceeding
64− 4 deg(g) = 64− 12 = 52.

In the following subsection, we will gain another perspective
on the multivariate Goppa codes. It will allow us to round
out Corollary 10 by describing the minimum distance of the
multivariate Goppa codes.

B. Multivariate Goppa codes as subfield subcodes of aug-
mented codes

This section shows that every multivariate Goppa code is a
subfield subcode of an augmented Cartesian code. This valu-
able property allows us to determine a bound on the minimum
distance of the multivariate Goppa codes and establishes the
necessary results for determining hulls in Section V.

We now show that the dual of tensor product of GRS codes
is an augmented Cartesian code.

Theorem 12. The dual of a tensor product of generalized
Reed-Solomon codes via Goppa codes is an augmented Carte-
sian code. More precisely, T(S,k, g)⊥ = ACar

(
S,k′, Lg

)
,

where k′ := (n1 − k1, . . . , nm − km). In particular,

T(S, g)⊥ = ACar (S, g) .

Proof. By Lemma 6, the dual of the augmented Cartesian code
ACar

(
S,k′, Lg

)
is C(S,A⊥Car(k), g), where A⊥Car(k) =∏m

j=1 {0, . . . , kj − 1} . Observe that C(S,A⊥Car(k), g) is gen-
erated by the vectors(

sa1
g(s1)

, . . . ,
san
g(sn)

)
=(

sa1
11 · · · s

am
1m

g1(s11) · · · gm(s1m)
, . . . ,

sa1
n1 · · · sam

nm

g1(sn1) · · · gm(snm)

)
,

where for i ∈ [n], si = (si1, . . . , sim) , and for j ∈ [m],
0 ≤ aj < kj . The result follows from the fact that these
vectors also generate T(S,k, g).

The particular case T(S, g)⊥ = ACar (S, g) is obtained
when we take kj = deg(gj), for j ∈ [m].

Example 13. Let ω be a primitive element of S1 := F∗9,
g1 := x4 ∈ F9[x], S2 :=

{
ω1, ω2, ω3, ω4

}
, g2 := (y−ω5)(y−

ω6)(y − ω7) ∈ F9[y], and g := g1g2. Let s1, . . . , s32 be the
points of the set S1 × S2. The tensor product T(S, g) is a
[32, 12, 10] evaluation code over F9 generated by the vectors

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2022.3201692

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



ACCEPTED FOR PUBLICATION AT IEEE TRANSACTIONS ON INFORMATION THEORY 7

0

F9

ω1
ω2
ω3
ω4
ω5
ω6
ω7
ω8

F9
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(a) Evaluation points

0

Z≥0

1
2
3
4
5
6

Z≥0
1 2 3 4 5 6 7

(b) Evaluation monomials

Fig. 4: The augmented Cartesian code ACar (S, g), whose
evaluation points and evaluation monomials are shown in (a)
and (b), respectively, is the dual of the tensor product T(S, g)
described in Example 13.

(
f(s1)
g(s1)

, . . . , f(s32)
g(s32)

)
, where f ∈ F9[x, y] is a polynomial with

degx(f) < 4 and degy(f) < 3. The evaluation points and
monomials are represented in Figure 3 (a) and (b), respectively.

By Theorem 12, T(S, g)⊥ = ACar (S, g). The augmented
Cartesian code ACar (S, g) is an evaluation code over F9 gen-
erated by the vectors

(
(gf)(s1)
L(s1)

, . . . , (gf)(s32)
L(s32)

)
, where f is a

polynomial in F9[x, y] with degx(f) < 4 or degy(f) < 1. The
evaluation points and evaluation monomials are represented
in Figure 4 (a) and (b), respectively. Using the coding theory
package [2] for Macaulay2 [17], and Magma [5], we obtain
that ACar (S, g) is a [32, 20, 4] code over F9.

Theorem 14. The multivariate Goppa code Γ(S, g) is a
subfield subcode of an augmented Cartesian code. Specifically,

Γ(S, g) = ACar (S, g)q .

Proof. By Theorem 12, ACar (S, g)
⊥

= T(S, g). Observe
that if H is a parity check matrix of a code C ⊆ Fn

qt , then
Cq =

{
c ∈ Fn

q : Hc⊥ = 0
}
. Thus, the result follows from

Theorem 8.

The point of view given in Theorem 14 reveals additional
information about the parameters of the multivariate Goppa
codes, complementing Corollary 10.

Corollary 15. The multivariate Goppa code Γ(S, g) has the
following basic parameters.

(i) Length n =| S | .
(ii) Dimension k satisfying n− tdeg(g) ≤ k ≤ n− deg(g).

(iii) Minimum distance d ≥ min {deg(gj) + 1}j∈[m] .

Moreover, the dual of a multivariate Goppa code is the trace
code of a tensor product of generalized Reed-Solomon codes
via Goppa codes, specifically,

Γ(S, g)⊥ = tr(T(S, g)).

Proof. Given Corollary 10, it only remains to consider the
minimum distance of Γ(S, g). By Theorem 14 and Lemma 6
(iii), d ≥ min {deg(gj) + 1}j∈[m] .

V. SUBCODES, INTERSECTIONS, AND HULLS

This section builds on the relationships between multivariate
Goppa codes, tensor products of GRS codes, and augmented
Cartesian codes to determine subcodes, intersections, and
hulls. We will get the desired structures by defining sets
of polynomials with certain conditions. In the next section,
these results will be critical to constructing entanglement-
assisted quantum error-correcting codes as well as LCD, self-
orthogonal, and self-dual codes.

First, the following result helps identify subcodes of Goppa
codes, augmented Cartesian codes, and the tensor product of
generalized Reed-Solomon codes via Goppa codes based on
the defining polynomials.

Proposition 16. Let g = g1 · · · gm, g′ = g′1 · · · g′m ∈ Fqt [x]
be such that g(S) 6= 0 6= g′(S). Then the following hold:
(i) T(S, g) ⊆ T(S, gg′).

(ii) Γ(S, gg′) ⊆ Γ(S, g).
(iii) ACar (S, gg′) ⊆ ACar (S, g) .

Proof. (i) By Equation (4) and the definition of a GRS code,

T(S, g)

=

{(
f(s1)

g(s1)
, . . . ,

f(sn)

g(sn)

)
: degxj

(f) < deg(gj)

}
=

{(
(fg′)(s1)

(gg′)(s1)
, . . . ,

(fg′)(sn)

(gg′)(sn)

)
: degxj

(f) < deg(gj)

}
⊆
{(

f ′(s1)

(gg′)(s1)
, . . . ,

f ′(sn)

(gg′)(sn)

)
: degxj

(f ′) < deg(gjg
′
j)

}
= T(S, gg′).

(ii) By (i), tr (T(S, g)) ⊆ tr (T(S, gg′)) . Thus, the result
follows from Theorem 8.

(iii) This fact follows immediately from (i) and Theorem 12.

Next, we see that the intersection of multivariate Goppa
codes is again a multivariate Goppa code. In addition to gen-
eralizing [12, Theorem 3.1] to multiple variables, the following
result demonstrates that for the intersection of generalized
Reed-Solomon codes via Goppa codes to be of the same
type, it is only required that the sum of the degrees of the
defining polynomials is bounded above. It is worth comparing
this condition to that specified in [12, Theorem 3.1], which
requires that the two polynomials are related to one another in
a particular way, going beyond an assumption on their degrees
alone.

Theorem 17. Let g = g1 · · · gm, g′ = g′1 · · · g′m ∈ Fqt [x] be
such that g(S) 6= 0 6= g′(S) and deg(gjg

′
j) ≤ nj , for j ∈ [m].

Then the following hold:
(i) T(S, g) ∩ T(S, g′) = T(S, gcd(g, g′)).

(ii) Γ(S, g) ∩ Γ(S, g′) = Γ(S, lcm(g, g′)).
(iii) ACar (S, lcm(g, g′)) ⊆ ACar (S, g) ∩ ACar (S, g′)

⊆ ACar (S, g) + ACar (S, g′) = ACar (S, gcd(g, g′)) .

Proof. For j ∈ [m], define gcdj := gcd(gj , g
′
j) ∈ Fqt [xj ]

and lcmj := lcm(gj , g
′
j) ∈ Fqt [xj ]. Observe that gcd :=

gcd(g, g′) = gcd1 · · · gcdm and lcm := lcm(g, g′) =
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lcm1 · · · lcmm . There are p, p′, t, t′ ∈ Fqt [x] such that g =
p gcd, g′ = p′ gcd, lcm(g, g′) = gt and lcm(g, g′) = g′t′.

(i) By Proposition 16 (i),

T(S, gcd) ⊆ T(S, p gcd) = T(S, g)

and
T(S, gcd) ⊆ T(S, p′ gcd) = T(S, g′).

Thus T(S, gcd) ⊆ T(S, g) ∩ T(S, g′). Now take c ∈
T(S, g) ∩ T(S, g′). There are f, f ′ ∈ Fqt [x] such that for
j ∈ [m],degxj

(f) < degxj
(g),degxj

(f ′) < degxj
(g′), and

c =

(
f(s1)

g(s1)
, . . . ,

f(sn)

g(sn)

)
=

(
f ′(s1)

g′(s1)
, . . . ,

f ′(sn)

g′(sn)

)
. (10)

Observe that g′f − gf ′ ∈ I(S). As degxj
(g′f − gf ′) ≤

max
{

degxj
(g′f),degxj

(gf ′)
}

< degxj
(gg′) ≤ nj , then

g′f = gf ′. This implies that g′

gcdf = g
gcdf

′. As g′

gcd and g
gcd

share no common factors, g
gcd | f. Hence, there is r ∈ Fqt [x]

such that f = r g
gcd . Thus, g′f = r gg′

gcd = r lcm, due to the
fact that lcm gcd = gg′. As lcm | g′f,

degxj

(
g′f

lcm

)
= degxj

(g′) + degxj
(f)− degxj

(lcm)

= degxj
(gcd) + degxj

(lcm)− degxj
(g) + degxj

(f)

− degxj
(lcm) = degxj

(gcd)− degxj
(g) + degxj

(f)

< degxj
(gcd),

where the inequality holds because degxj
(f) < degxj

(g).
Equations (10) imply

c =

(
(g′f)(s1)

(lcm gcd)(s1)
, . . . ,

(g′f)(sn)

(lcm gcd)(sn)

)

=


(

g′f
lcm

)
(s1)

gcd(s1)
, . . . ,

(
g′f
lcm

)
(sn)

gcd(sn)

 .

Since degxj

(
g′f
lcm

)
< degxj

(gcd), we obtain that c ∈
T(S, gcd).

(ii) By Proposition 16 (ii),

Γ(S, lcm) = Γ(S, tg) ⊆ Γ(S, g)

and

Γ(S, lcm) = Γ(S, t′g′) ⊆ Γ(S, g′).

We conclude that Γ(S, lcm) ⊆ Γ(S, g) ∩ Γ(S, g′). If c ∈
Γ(S, g) ∩ Γ(S, g′), then

n∑
i=1

ci∏m
j=1(xj − sij)

= 0 mod g(x)

and
n∑

i=1

ci∏m
j=1(xj − sij)

= 0 mod g′(x).

Thus,
n∑

i=1

ci∏m
j=1(xj − sij)

= 0 mod lcm(g, g′)(x), which

means that c ∈ Γ(S, lcm(g, g′)).
(iii) By Proposition 16 (iii),

ACar (S, lcm) = ACar(S, tg) ⊆ ACar(S, g)

and

ACar(S, lcm) = ACar(S, t′g′) ⊆ ACar(S, g′).

This means that ACar(S, lcm) ⊆ ACar(S, g)∩ACar(S, g′). By
(i) and [25, Ch. 1. §8.], T(S, g)⊥+ T(S, g′)⊥ = T(S, gcd)⊥.
Thus, Theorem 12 implies

ACar (S, g) ∩ ACar (S, g′)
⊆ ACar (S, g) + ACar (S, g′) = ACar (S, gcd(g, g′)) .

This completes the proof.

Example 18. Let S1 = S2 :=
{
ω1, . . . , ω6

}
, where ω is a

primitive element of F∗9, and S := S1 × S2. Consider the
polynomials g1 := x2(x − ω7), g2 := y3, g′1 := x2(x −
ω8), g′2 := y(y − ω7)(y − ω8) ∈ F9[x, y]. Define g := g1g2
and g′ := g′1g

′
2. As deg(gjg

′
j) = 6 for j ∈ [2], by Theorem 17

we have that

T(S, g) ∩ T(S, g′) = T(S, gcd(g, g′))

and
Γ(S, g) ∩ Γ(S, g′) = Γ(S, lcm(g, g′)),

where gcd(g, g′) = x2y and lcm(g, g′) = x2(x − ω7)(x −
ω8)y3(y − ω7)(y − ω8).

Let (pis
a
i )a,i ∈ Fk×n

qt and (tis
a
i )a,i ∈ Fk×n

qt be two
generator matrices of the same GRS code, where the rows and
columns are indexed by 0 ≤ a < k and i ∈ [n], respectively.
In [12, Lemma 2.5], the authors described a property that these
matrices should satisfy. Specifically, if k ≤ n

2 , then for i ∈ [n],
pi = λti, where λ ∈ F∗qt . When k = n, it is clear that the
relation pi = λti is not valid anymore. Indeed, in this case,
for any coefficients pi, ti, both matrices (pis

a
i )a,i ∈ Fk×n

qt and
(tis

a
i )a,i ∈ Fk×n

qt generate the full space Fn
qt . The following

result extends [12, Lemma 2.5] to more variables and changes
the restriction from k ≤ n

2 to k < n. This result will be
helpful in characterizing when the dual of a tensor product of
generalized Reed-Solomon codes via Goppa codes is of the
same form.

Lemma 19. Let f, F ∈ Fqt [x] be such that f(S) 6=
0 6= F (S). Take j∗ ∈ [m] and a non-negative integer
k < n. Define k := (n1, . . . , nj∗−1, k, nj∗+1, . . . , nm). Then,
degxj∗

(
F
f

)
= 0 if and only if

T(S,k, f) = T(S,k, F ).

Proof. (⇒) Assume degxj∗

(
F
f

)
= 0. Recall ev(S, f)(h) =(

h(s1)
f(s1)

, . . . ,
h(sn)
f(sn)

)
. Take ev(S, f)(h) ∈ T(S,k, f). Then

degxj∗
(h) < k. As degxj∗

(
F
f

)
= 0, we have that

degxj∗

(
hF

f

)
< k, which means that ev(S, F )(hF

f ) ∈
T(S,k, F ). Thus, ev(S, f)(h) = ev(S, F )(hF

f ) ∈
T(S,k, F ). Now take ev(S, F )(h) ∈ T(S,k, F ). Then
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degxj∗
(h) < k. As degxj∗

(
f
F

)
= degxj∗

(
F
f

)
= 0, we have

that degxj∗

(
h f
F

)
< k, which means that ev(S, f)(h f

F ) ∈
T(S,k, f). Thus, ev(S, F )(h) = ev(S, f)(h f

F ) ∈ T(S,k, f).

(⇐) Assume T(S,k, f) = T(S,k, F ). As
ev(S, f)(1), . . . , ev(S, f)(xk−1j∗ ) ∈ T(S,k, f) = T(S,k, F ),

there are λ`p ∈ Fqt [x], with p, t ∈ {0, . . . , k − 1}, such that

ev(S, f)(1) = ev(S, F )(λ00 + λ01xj∗ + · · ·+ λ0k−1x
k−1
j∗ ),

ev(S, f)(xj∗) = ev(S, F )(λ10 + λ11xj∗ + · · ·+ λ1k−1x
k−1
j∗ ),

...

ev(S, f)(xk−1j∗ ) = ev(S, F )(λk−10 + · · ·+ λk−1k−1x
k−1
j∗ ),

where degxj
(λ`p) < nj for j ∈ [m]\{j∗} and degxj∗

(λ`p) = 0
for all p, t ∈ {0, . . . , k−1}. Observe that for every r ∈ [k−1],

ev(S, f)(xrj∗) = ev(S, f)(1 · xrj∗) =

ev(S, F )((λ00 + λ01xj∗ + · · ·+ λ0k−1x
k−1
j∗ ) · xrj∗).

Thus, for every r ∈ [k − 1],

ev(S, F )((λ00 + λ01xj∗ + · · ·+ λ0k−1x
k−1
j∗ ) · xrj∗) =

ev(S, F )(λr0 + λr1xj∗ + · · ·+ λrk−1x
k−1
j∗ ),

which means that

(λ00 + λ01xj∗ + · · ·+ λ0k−1x
k−1
j∗ ) · xrj∗ =

λr0 + λr1xj∗ + · · ·+ λrk−1x
k−1
j∗ mod I(S).

Define hr := (λ00 + λ01xj∗ + · · ·+ λ0k−1x
k−1
j∗ ) · xrj∗ and h′r :=

λr0 + λr1xj∗ + · · · + λrk−1x
k−1
j∗ . Recall that the generators of

the vanishing ideal I(S) have degree nj respect to xj , for
j ∈ [m]. As degxj

(λ`p) < nj and degxj
(hr), degxj

(h′r) < nj
for r ∈ [k − 1] and j ∈ [m] \ {j∗}. We can also see that
degxj∗

(h′r) < k < nj∗ for r ∈ [k − 1]. Thus, in order to be
able to compare hr and h′r, we just need to know degxj∗

(hr).

As degx∗j
(h1) = k < nj∗ , h1 = h′1. Thus, λ0k−1 = 0. As

λ0k−1 = 0, degx∗j
(h2) = k < nj∗ . This implies that h2 = h′2.

Thus, λ0k−2 = 0. By induction, we see that λ0k−1 = λ0k−2 =
· · · = λ02. As a consequence, degx∗j

(hk−1) = k < nj∗ . Thus,
hk−1 = h′k−1, which means that λ01 = 0. We conclude that
ev(S, f)(1) = ev(S, F )(λ00). Then, F

f = λ00, from which we

get that degxj∗

(
F
f

)
= 0.

Observe that the condition degxj∗

(
F
f

)
= 0 means that

there is an element p(x) in Fqt [x] such that degxj∗
(p) = 0

and p(si) = F (si)
f(si)

, which happens if and only if F − pf ∈
I(S). When m = 1, p = λ ∈ Fqt . Since deg(F − λf) < n,
F = λf. Thus, for the case m = 1, i.e. only one variable, if
T(S, k, f) = T(S, k, F ) and k < n, then F = λf, which is
[12, Lemma 2.5] without the restriction k ≤ n

2 .

By Remark 3, if T(S, g) is one of the trivial spaces {0}
or Fn

qt , then the dual is also a tensor product of generalized
Reed-Solomon codes via Goppa codes. We have the following
result for the case when T(S, g) is nontrivial.

Theorem 20. Given g = g1 · · · gm ∈ Fqt [x], there exists f =
f1 · · · fm ∈ Fqt [x] such that

T(S, g)⊥ = T(S, f)

if and only for some j∗ ∈ [m] the following hold:

(i) deg(fj∗gj∗) = nj∗ ,
(ii) deg(fj) = deg(gj) = nj , for all j ∈ [m] \ {j∗}, and

(iii) degxj∗

(
fg
L

)
= 0.

Proof. By Theorem 12, we just need to check that T(S, f) =
ACar(S, g) if and only if (i)-(iii) are valid. By Defini-
tion 4, ACar (S, g) = ACar

(
S,kg, Lg

)
, where kg =

(n1 − deg(g1), . . . , nm − deg(gm)) . Thus, we will prove that
T(S, f) = ACar

(
S,kg, Lg

)
if and only if (i)-(iii) are true.

Denote the j-th standard vector in Fm
qt by ej .

(⇐) Assume (i)-(iii). By (iii), degxj∗

(
L
fg

)
=

degxj∗

(
fg
L

)
= 0. There is p(x) ∈ Fqt [x] such that

degxj∗
(p) = 0 and p(si) = L(si)

(fg)(si)
. Then L(si)

g(si)
= (fp)(si),

which means that degxj∗

(
L
g

)
= degxj∗

(f) = deg (fj∗) .

By (ii), kg = (0, . . . , nj∗ − deg(gj∗), . . . , 0)) =
(nj∗ − deg(gj∗)) ej∗ . Using (i), kg = deg(fj∗)ej∗ . Thus,
due to Definition 4, ACar

(
S,kg, Lg

)
is generated by the

vectors
(

sa
1

L
g (s1)

, . . . ,
sa
n

L
g (sn)

)
, where 0 ≤ aj < nj , for all

j ∈ [m] \ {j∗}, and 0 ≤ aj∗ < deg(fj∗). We conclude
that for k := (n1, . . . , nj∗−1,deg(fj∗), nj∗+1, . . . , nm),
ACar

(
S,kg, Lg

)
= T

(
S,k, Lg

)
. By (ii) T (S,k, f) =

T(S, f). Combining (iii) and Lemma 19, we obtain
ACar

(
S,kg, Lg

)
= T

(
S,k, Lg

)
= T (S,k, f) = T(S, f).

(⇒) Assume T(S, f) = ACar
(
S,kg, Lg

)
, where

kg = (n1 − deg(g1), . . . , nm − deg(gm)) . By Remark 3,
as T(S, f) is nontrivial, then deg(gj) > 0, for
j ∈ [m]. According to the proof of Lemma 6 (iii),

B =

{
xn1−1
1 · · ·xnm−1

m

x
deg(gj)
j

: j ∈ [m]

}
is a generating set

of ACar
(
S,kg, Lg

)
. By Definition 1, there is a unique

generating monomial for T(S, f), meaning a monomial
xa ∈ Fqt [x] such that xb divides xa if and only if
ev(S, f)(xb) is in T(S, f). This means that the augmented
code ACar

(
S,kg, Lg

)
has a unique generating monomial,

and it should be one of the elements in B. Thus, there is

j∗ ∈ [m] such that M :=
xn1−1
1 · · ·xnm−1

m

x
deg(gj∗ )
j∗

is the generating

monomial for both T(S, f) and ACar
(
S,kg, Lg

)
. As M is

a generating monomial of T(S, f), then deg(fj) = nj , for
all j ∈ [m] \ {j∗}, and deg(fj∗) = nj∗ − deg(gj∗). As M
is a generating monomial of ACar

(
S,kg, Lg

)
, then kg =

(0, . . . , nj∗ − deg(gj∗), . . . , 0) , which implies deg(gj) = nj ,
for all j ∈ [m]\{j∗}. Thus, (i)-(ii) are valid and T(S,k, f) =

T(S, f) = ACar
(
S,kg, Lg

)
= T

(
S,k, Lg

)
, where k :=

(n1, . . . , nj∗−1,deg(fj∗), nj∗+1, . . . , nm). By Lemma 19, (iii)
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is also true.

Remark 21. Observe that the condition degxj∗

(
fg
L

)
= 0

means that there is an element p(x) in Fqt [x] such that
degxj∗

(p) = 0 and p(si) = fg(si)
L(si)

; which happens if and
only if fg − pL ∈ I(S). Thus, given g, we can find f and p
that satisfy fg−pL ∈ I(S) and the conditions of Theorem 20
using the coding theory package [2] for Macaulay2 [17] or
Magma [5].

Example 22. Let a be a primitive element of F∗9, S1 :={
0, 1, a, a7

}
, and S2 :=

{
0, a2, a6

}
. Define the polynomials

f1 := x + 1, g1 := 2x3 + a5x2 + a5x + 1, and f2 := g2 :=
y3 + a2y2 + y + a6. Note the following.

(i) deg(f1g1) = 4 = |S1|.
(ii) deg(f2) = deg(g2) = |S2| = 3.

Also, f1g1 = 2L′1 + 2L1 and f2g2 = 2L′2 + pL2, where
p(x) = y3 + a6y2 + a2. Then, f1f2g1g2 − pL ∈ I(S) and by
Remark 21,

(iii) degx1

(
f1f2g1g2

L

)
= 0.

Thus, by Theorem 20, T(S, g1g2)⊥ = T(S, f1f2).

In [12], the authors used Goppa codes (the case t = m = 1)
to prove that the intersection of specific GRS codes is also
a GRS code. As a consequence, they determine the hulls of
specific generalized Reed-Solomon codes. Our focus is slightly
different here, but taking the particular case t = m = 1 allows
us to recover those results. More generally, the hull of a tensor
product of generalized Reed-Solomon codes via Goppa codes
is also a tensor product of generalized Reed-Solomon codes
via Goppa codes, and the hull of a multivariate Goppa code
contains a multivariate Goppa code (with equality when t =
1). More precisely, we have the following result.

Corollary 23. Let S ⊆ Fm
qt , g and f be as in Theorem 20.

Then the following hold.

(i) Hull (T(S, g)) = T(S, gcd(f, g)) = Hull (ACar(S, g)) .
(ii) Γ(S, lcm(f, g)) ⊆ Hull (Γ(S, g)) , with equality when

t = 1.

Proof. (i) By Theorem 12 and Theorem 20, T(S, f) =
T(S, g)⊥ = ACar(S, g) and T(S, g) = T(S, f)⊥ =
ACar(S, f). Thus, the result is a consequence of Theorem 17
(i).

(ii) By the proof of (i), T(S, g) = T(S, f)⊥ =
ACar(S, f). By Corollary 10, Γ(S, g)⊥ = tr (T(S, g)) =
tr (ACar(S, f)) ⊇ Γ(S, f). Thus, Hull (Γ(S, g)) = Γ(S, g) ∩
Γ(S, g)⊥ ⊇ Γ(S, g) ∩ Γ(S, f) = Γ(S, lcm(g, f)), where the
last equation holds due to Theorem 17 (ii). When t = 1,
ACar(S, f) = Γ(S, f), so tr (ACar(S, f)) = Γ(S, f).

Using the conditions in Theorem 20, we can also conclude
that the dimension of the hull of a tensor product of general-
ized Reed-Solomon codes via Goppa codes is

dim (Hull (T(S, g)))

= dim (T(S, gcd(f, g))) = deg (gcd(f, g)) , (11)

and the dimension of the hull of the multivariate Goppa code
is lower bounded by

dim (Hull (Γ(S, g)))

≥dim (Γ(S, lcm(f, g)))≥n− tdeg (lcm(f, g)) , (12)

with equality when t = 1.

VI. QUANTUM, LCD, SELF-ORTHOGONAL AND
SELF-DUAL CODES

In this section, we design q-ary entanglement-assisted quan-
tum error-correcting codes as well as LCD, self-orthogonal,
and self-dual codes from multivariate Goppa codes and tensor
products of generalized Reed-Solomon codes via Goppa codes
relying on the hulls found in the previous section.

Entanglement-assisted quantum error-correcting codes
(EAQECCs), introduced in [6], utilize entangled qubits as an
enabling mechanism that allows for any linear code to be used
to construct a quantum error-correcting code. These codes are
a departure from constructions that employ self-dual codes.
Below we use the standard notation [[n, k, d; c]]q code to
mean a q-ary EAQECC that encodes k qubits into n qubits,
with minimum distance d, and c required entangled qubits.
K. Guenda, S. Jitman, and A. Gulliver [18], building on the
work of M. M. Wilde and T. A. Brune [32], showed that the
necessary entanglement could be captured by the dimension
of the hull of the linear code used. In particular, they prove
the following.

Lemma 24. [18, Corollary 3.2] Given an [n, k, d] code C
over Fq , there exist EAQECCs with parameters

[[n, k− dim (Hull(C)) , d, n− k− dim (Hull(C))]]q and

[[n, n− k − dim (Hull(C)) , d(C⊥), k − dim (Hull(C))]]q.

The lemma above can be coupled with information gained
about the hulls of multivariate Goppa codes and tensor prod-
ucts of generalized Reed-Solomon codes via Goppa codes in
the previous section to produce EAQECCs, as shown in the
following result.

Proposition 25. Let S ⊆ Fm
qt , g and f be as in Theorem 20.

Then the code T(S, g) gives rise to EAQECCs with parameters

[[n, deg (g)−deg (gcd) ,deg(fj∗)+1; deg (f)−deg (gcd)]]qt

and

[[n, deg (f)−deg (gcd) ,deg(gj∗)+1; deg (g)−deg (gcd)]]qt ,

where gcd := gcd(g, g′). The code Γ(S, g) gives rise to
EAQECCs with parameters

[[n,≤ t(deg(lcm) + deg(g))− n,≥ deg(fj∗) + 1;

≤ tdeg (lcm)− deg (g)]]q and

[[n,≤ tdeg (lcm)− deg (g) ,≥ deg(gj∗) + 1;

≤ t(deg(lcm) + deg(g))− n]]q,

where lcm := lcm(g, g′), and equalities in the parameters of
the codes when t = 1.
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Proof. The first pair of quantum codes is a consequence of
Lemma 24, Remark 2, and Equation (11). The second pair
of quantum codes follows from Lemma 24, Corollary 15, and
Inequality (12).

Note that when t = 1, meaning S ⊆ Fm
q , the two pairs

of q-ary entanglement-assisted quantum error-correcting codes
presented in Proposition 25 coincide. Indeed, when t = 1,
Corollary 10 implies Γ(S, g)⊥ = tr(T(S, g)) = T(S, g),
which means that T(S, g) = Γ(S, f) and T(S, f) = Γ(S, g).

An [[n, k, d; c]]q EAQECC satisfies the Singleton
Bound [16]:

k ≤ c+ max {0, n− 2d+ 2} ,
k ≤ n− d+ 1,

k ≤ (n− d+ 1)(c+ 2d− 2− n)

3d− 3− n
if d− 1 ≥ n

2
,

where 0 ≤ c ≤ n− 1. The code attaching this bound is called
an MDS EAQECC. As a consequence of Proposition 25, we
recover [12, Theorem 4.5].

Corollary 26. Let S ⊆ Fm
q , g and f be as in Theorem 20.

Then the code T(S, g) gives rise to an MDS EAQECC.

Proof. This is a consequence of Proposition 25.

Besides the MDS EAQECCs, another significant conse-
quence of Proposition 25 is the construction of families of
EAQECCs of length n over Fq , with n > q.

Example 27 (Family of long EAQECCs). Assume F∗32 = 〈a〉.
Take S1 :=

{
0, 1, a, a7

}
and S2 :=

{
1, a6

}
. Define the poly-

nomials f1 := ax+1, g1 := x3+a6x2+1, f2 := x2+a2x+2,
and g2 := x2 + a2. Then

f1g1 = 2L′1 + aL1 and f2g2 = a2L′2 + pL2,

where p(x) = x2 + a7x + a. Then, for every m ≥
0, define the polynomials in m + 1 variables f :=
f1(x)f2(x1) · · · f2(xm), g := g1(x)g2(x1) · · · g2(xm) ∈
F9[x1, . . . , xm]. Since gcd(f, g) = 1, deg (f) = 2m, and
deg (g) = 3 · 2m, by Proposition 25 there exists a [[4 ·
2m, 2m, 4; 3 · 2m]] EAQECC over F9. Note that when m = 0,
this is an MDS EAQECC over F9. Larger values of m give
rise to longer codes (of length 2m+2) over F9 that are not
MDS but have a known gap to the Singleton Bound.

Table I shows that by puncturing the dual of multivariate
Goppa codes, we can improve the minimum distance or the
dimension of some of the best-known EAQECCs recently
published by L. Sok [29]. Other recent related work appears
in [11], [28].

Using the results of Section V, we now give conditions to
find families of codes that are LCD, self-orthogonal, or self-
dual.

Corollary 28. Let S ⊆ Fm
qt , g and f be as in Theorem 20.

Then the following hold.
(i) T(S, g) is LCD if there exists j ∈ [m] with gcd(fj , gj) ∈

Fqt .
(ii) T(S, g) is self-orthogonal if g divides f .

(iii) T(S, g) is self-dual if f = g.

S g(x, y)
Puncturing Γ(S, g)⊥ Parametersthe following entries

F8 × {a1, a2}
(
x3 + x+ a

)
(y) {8, . . . , 15} [[8, 2, 6; 6]]8

F8 × {a1, a2}
(
x3 + x+ a

)
(y) {10, . . . , 16} [[9, 2, 7; 7]]8

F8 × {a1, a2}
(
x3 + x+ a

)
(y) {11, . . . , 16} [[10, 2, 8; 8]]8

F8 × {a1, a2}
(
x3 + x+ a

)
(y) {12, . . . , 16} [[11, 2, 9; 9]]8

F16 × {a1, a2}
(
x3 + a

)
(y) {19, . . . , 32} [[18, 2, 16; 16]]16

F16 × {a1, a2}
(
x3 + a

)
(y) {21, . . . , 32} [[20, 2, 18; 18]]16

F16 × {a1, a2}
(
x3 + a

)
(y) {23, . . . , 32} [[22, 2, 20; 20]]16

F16 × {a1, a2}
(
x4 + x2 + ax+ a2

)
(y) {26, . . . , 32} [[25, 3, 21; 20]]16

F16 × {a1, a2}
(
x4 + x2 + ax+ a2

)
(y) {28, . . . , 32} [[27, 3, 23; 24]]16

F16 × {a1, a2}
(
x4 + x2 + ax+ a2

)
(y) {30, . . . , 32} [[29, 3, 25; 26]]16

F16 × {a1, a2}
(
x4 + x2 + ax+ a2

)
(y) {32} [[31, 3, 27; 28]]16

F25 × {a1, a2, a3}
(
x4 + a

)
(y) {60, . . . , 75} [[59, 3, 53; 56]]25

F49 × {a1, . . . , a4}
(
x4 + a

)
(y) {168, . . . , 196} [[167, 3, 159; 164]]49

F49 × {a1, . . . , a4}
(
x4 + a

)
(y) {175, . . . , 196} [[174, 3, 166; 171]]49

TABLE I: New EAQECCs. For every row, we assume that
F∗q = 〈a〉.

(iv) Γ(S, g) is LCD if t = 1 and degxj
(lcm(f, g)) ≥ nj for

all j ∈ [m].
(v) Γ(S, g) is self-orthogonal if t = 1 and f divides g.

(vi) Γ(S, g) is self-dual if t = 1 and f = g.

Proof. (i) By Theorem 12 and Theorem 20, T(S, f) =
T(S, g)⊥ = ACar(S, g) and T(S, g) = T(S, f)⊥ =
ACar(S, f). Thus, the result is a consequence of Theorem 17
(i).

(ii) By the proof of (i), T(S, g) = T(S, f)⊥ =
ACar(S, f). By Corollary 10, Γ(S, g)⊥ = tr (T(S, g)) =
tr (ACar(S, f)) ⊇ Γ(S, f). Thus, Hull (Γ(S, g)) = Γ(S, g) ∩
Γ(S, g)⊥ ⊇ Γ(S, g) ∩ Γ(S, f) = Γ(S, lcm(g, f)), where the
last equation holds because of Theorem 17 (ii).

(iii) If f = g, then g = gcd(f, g) = lcm(f, g) = f . Thus,
(iii) is a consequence of (ii).

(iv) By Corollary 23,

Hull (Γ(S, g)) = Γ(S, lcm(f, g)) = ACar(S, lcm(f, g)).

If degxj
(lcm(f, g)) ≥ nj for all j ∈ [m],

then T(S, lcm(f, g)) = Fn
qt by Remark 3. Thus,

ACar(S, lcm(f, g)) = T(S, lcm(f, g))⊥ = {0} by
Theorem 12.

(v) and (vi) Note that when t = 1, Γ(S, g) = ACar(S, g).
So, Γ(S, g)⊥ = T(S, g). Thus, (v) and (vi) are consequences
of (ii) and (iii), respectively.

Corollary 28 gives a simple path (with some help from the
coding theory package [2] for Macaulay2 [17] or Magma [5])
to find codes with a large length that are LCD, self-orthogonal,
or self-dual codes. The key steps are the following.

1) Give sets S1, S2 ⊆ Fqt of cardinalities n1 and n2,
respectively.

2) Define Li :=
∏

s∈Si
(x − s) ∈ Fqt [x]. Find the formal

derivatives L′i.
3) Find f1, g1 ∈ Fqt [x] such that f1g1 = λ1L

′
1 +β1L1, with

λ1, β1 ∈ Fqt .
4) Find f2, g2, p ∈ Fqt [x] such that f2g2 = λ2L

′
2 + pL2,

with deg(p) = n2.

Then the codes T(S, g1g2,m) and Γ(S, g1g2,m), where
g2,m := g2(x1) . . . g2(xm), have both length n1nm2 . As m is
independent of steps (1)-(4), codes with different lengths can
be derived after the appropriate polynomials have been found.
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Observe that this is a different approach than given in [12]. An
immediate difference is that using GRS codes, the length of the
code is always bounded by the size of the field. This restriction
is not presented in the tensor product. Even more, the results
of Section 5 enable a single set of defining polynomials to
produce a family of codes with different lengths over a certain
field (cf. [12, Theorem 2.6]). We show this in the following
examples.

Example 29 (Family of long LCD codes). Assume F∗32 = 〈a〉.
Take S1 :=

{
0, 1, a, a7

}
and S2 :=

{
1, a5, a7

}
. Define the

polynomials f1 := x + 1, g1 := 2x3 + a5x2 + a5x + 1, and
f2 := g2 := x3 + ax2 + 2x. Then

f1g1 = 2L′1 + 2L1 and f2g2 = a2L′2 + pL2,

where p(x) = x3 + a5x2 + a2x + a6. Then, for ev-
ery m ≥ 0, define the polynomial in m + 1 variables
g := g1(x)g2(x1) · · · g2(xm). As gcd(f1, g1) = 1, by Corol-
lary 28 (i), the tensor product T(S, g) is a [4 ·3m, 3m+1] LCD
code over F9.

Example 30 (Family of long self-orthogonal codes). Assume
F∗32 = 〈a〉 . Take S1 := {0, 1, 2, a} and S2 :=

{
1, a5, a7

}
.

Define the polynomials f1 := ax3 + 2x2 + a7x + a, g1 :=
a2x+ 1, and f2 := g2 := x3 + ax2 + 2x. Then

f1g1 = L′1 + a3L1 and f2g2 = a2L′2 + pL2,

where p(x) = x3 + a5x2 + a2x + a6. Then, for every
m ≥ 0, define the polynomial in m + 1 variables g :=
g1(x)g2(x1) · · · g2(xm). As g1 divides f1 and g2 divides f2,
by Corollary 28 (ii), the tensor product T(S, g) is a [4·3m, 3m]
self-orthogonal code over F9.

Example 31 (Family of long self-dual codes). Assume F∗32 =
〈a〉 . Take S1 :=

{
a, a2, a3, a5, a6, a7

}
and S2 :=

{
1, a5, a7

}
.

Define the polynomials f1 := g1 := x3 + 2x + 2 and f2 :=
g2 := x3 + ax2 + 2x. Then

f1g1 = L′1 + L1 and f2g2 = a2L′2 + pL2,

where p(x) = x3 + a5x2 + a2x + a6. Then, for every
m ≥ 0, define the polynomial in m + 1 variables g :=
g1(x)g2(x1) · · · g2(xm). As g1 = f1, and g2 = f2, by
Corollary 28 (iii), the tensor product T(S, g) is a [6·3m, 3m+1]
self-dual code over F9.

VII. CONCLUSION

This paper defined multivariate Goppa codes that gener-
alize the classical Goppa codes. Similar to classical Goppa
codes, they are described via a parity check matrix and as
subfield subcodes of a family of evaluation codes. In particular,
we showed that the tensor product of generalized Reed-
Solomon codes via Goppa codes leads to a parity check
matrix whose kernel restricted to the base field yields the
multivariate Goppa codes. We also proved that multivariate
Goppa codes are subfield subcodes of augmented Cartesian
codes. These perspectives provided information about the code
parameters as well as their hulls. Consequently, we obtained
q-ary entanglement-assisted quantum error-correcting codes,
LCD, self-orthogonal, and self-dual codes. We leave it as an

exercise for the interested reader to translate the results in this
paper to expurgated subcodes of multivariate Goppa codes.
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