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Erasures repair for decreasing monomial-Cartesian
and augmented Reed-Muller codes of high rate

Hiram H. López, Gretchen L. Matthews, Senior Member, IEEE, Daniel Valvo

Abstract—In this work, we present linear exact repair schemes
for one or two erasures in decreasing monomial-Cartesian codes
DM-CC, a family of codes which provides a framework for
polar codes. In the case of two erasures, the positions of the
erasures should satisfy a certain restriction. We present families
of augmented Reed-Muller (ARM) and augmented Cartesian
codes (ACar) which are families of evaluation codes obtained by
strategically adding vectors to Reed-Muller and Cartesian codes,
respectively. We develop repair schemes for one or two erasures
for these families of augmented codes. Unlike the repair scheme
for two erasures of DM-CC, the repair scheme for two erasures
for the augmented codes has no restrictions on the positions
of the erasures. When the dimension and base field are fixed,
we give examples where ARM and ACar codes provide a lower
bandwidth (resp., bitwidth) in comparison with Reed-Solomon
(resp., Hermitian) codes. When the length and base field are fixed,
we give examples where ACar codes provide a lower bandwidth
in comparison with ARM. Finally, we analyze the asymptotic
behavior when the augmented codes achieve the maximum rate.

Index Terms—Reed-Muller codes, codes with high rate, Carte-
sian codes, monomial codes, monomial-Cartesian codes. 2010
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I. INTRODUCTION

THE design of linear exact repair schemes for evaluation
codes began with the foundational work of Guruswami

and Wootters in which they developed a repair scheme (GW-
scheme) to efficiently repair an erasure in a Reed-Solomon
(RS) code [8]. This work served as motivation for linear
exact repair schemes for algebraic geometry codes [11] and
Reed-Muller codes [3]. In each of these instances, codes are
considered over an extension field whose elements may be
represented using subsymbols, meaning elements of a smaller
base field. Erasure recovery is accomplished using subsymbols
rather than the symbols themselves. Under certain conditions,
these new schemes require less information than standard
approaches to repair. In the distributed storage setting, this
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allows the information on a failed node to be recovered with
the information stored on the remaining nodes. In particular, a
codeword is stored so that each node stores a symbol and
recovering a failed node exactly is equivalent to fixing an
erasure in the codeword [5], [6].

An evaluation code [10] may be defined by sets of eval-
uation points and polynomials. Every codeword coordinate
of an evaluation code depends of one of the evaluation
points. Monomial-Cartesian codes(M-CC) [12] are evaluation
codes that allow for more finely-tuned polynomial sets than
RS and RM codes which employ polynomials of restricted
degrees. Decreasing monomial-Cartesian codes (DM-CC) are
a particular case of M-CC that satisfy the property that the
polynomials sets are closed under divisibility. Recently, it
was shown in [2] that families of polar codes with multi-
ple kernels can be viewed as decreasing monomial-Cartesian
codes and that any symmetric over the field channel polarizes
utilizing multikernel polar codes constructed from decreasing
monomial-Cartesian codes. This more general setting provides
the opportunity to design high rate evaluation codes that admits
a repair scheme, complementing the work done for Reed-
Muller codes [3]. We will see these new codes compare
favorably with existing families.

In particular, we introduce augmented Reed-Muller (ARM)
codes and augmented Cartesian (ACar) codes via monomial-
Cartesian codes. These augmented codes are evaluation codes
obtained when certain vectors are added to a RM code and a
Cartesian code, respectively. Thus the dimension is increased.
We develop repair schemes for one or two erasures for these
families of augmented codes. Unlike the repair scheme for two
erasures of DM-CC, the repair scheme for two erasures for
the augmented codes has no restrictions about the positions
of the erasures. Because the GW-scheme repairs a RS code
provided the code satisfies a restriction on the dimension, there
are codes and parameters for which the GW-scheme does not
apply. In this paper, we fill some of those gaps using ARM
codes. When the dimension and base field are fixed, there
are instances where ARM codes provide a lower bandwidth
in comparison with RS codes and a lower bitwidth versus
Hermitian codes. When the length and base field are fixed, we
give examples where ACar codes provide a lower bandwidth in
comparison with ARM. The repair scheme designed for ACar1
is strongly inspired by that in [3]. The challenge is adapting
the framework to support repair when the dual code has fewer
defining polynomials (than in the Reed-Muller case) while still
being able to construct valid repair polynomials. We note that
the repair polynomials utilized in [3] are products which lead
to a necessarily higher degree which makes them applicable in
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a lower-rate setting. We circumvent this by defining the repair
polynomials differently.

In Section II, we provide notation and definitions needed
for the rest of the work. This section includes the necessary
background on the families and the main properties of codes
for which we develop repair schemes: decreasing monomial-
Cartesian, augmented Reed-Muller, and augmented Cartesian
codes which are introduced in Section III. In Sections IV
and V, we develop repair schemes for one and two erasures,
respectively, on the families DM-CC (with some restrictions on
the positions of the erasures), ARM, and ACar. In Section VI,
we explain some circumstances where a particular family may
be preferable to others. Section VII concludes the paper with
a summary of the main ideas and results of the work.

II. PRELIMINARIES

Let q be a power of a prime p, Fq denote the finite field
with q elements, and K = Fqt be an extension field of Fq of
degree t = [K : Fq]. Given a linear code C of length n over
K, elements of the field extension K are called symbols and
the elements of the base field Fq are called subsymbols. As K
is an Fq-vector space, every coordinate for every vector c ∈ C
depends of t subsymbols. A repair scheme is an algorithm that
recovers any component ci of the vector c ∈ C using other
components. The bandwidth b is the number of subsymbols
that the scheme needs to download to recover an erased entry

ci. The normalized bandwidth,
⌈
b

t

⌉
, can be interpreted as

the number of symbols needed to recover the erased entry
ci. As a vector c ∈ Kn is composed of nt subsymbols,

the bandwidth rate
b

nt
represents the fraction of the vector

c that the repair scheme uses to recover the erased entry ci.
The bitwidth b log2(q) represents the number of bits that the
scheme needs to download to recover the erased entry ci.

The field trace is defined as the polynomial TrK/Fq
(x) ∈

K[x] given by

TrK/Fq
(x) = xq

t−1

+ · · ·+ xq
0

.

For the sake of convenience, we will often refer to TrK/Fq
(x)

as simply Tr(x) when the extension being used is obvious
from the context. Given a ∈ K, the field trace Tr(a) ∈ Fq .
Additionally, Tr : K → Fq is an Fq-linear map. More useful
properties of the trace function are found in Remarks 2.1
and 2.2 below. They will be necessary for the repair schemes
for decreasing and augmented codes.

Remark 2.1. [17, Definition 2.30 and Theorem 2.40] Let B =
{z1, . . . , zt} be a basis of K over Fq. Then there exists a basis
{z′1, . . . , z′t} of K over Fq , called the dual basis of B such that
Tr(ziz′j) = δij is an indicator function. For α ∈ K,

α =

t∑
i=1

Tr(αzi)z′i.

Thus, determining α is equivalent to finding Tr(αzi), for i ∈
{1, . . . , t}.

The next observation follows directly from the Rank-Nullity
Theorem.

Remark 2.2. Given α ∈ K \ {0}, consider Tr(αx) as a
function of x. Then ker(Tr(αx)) has dimension t − 1 as an
Fq-vector space.

Next, we review decreasing monomial-Cartesian codes,
setting the foundation for the augmented codes. Let R =
K[x1, . . . , xm] be the set of polynomials in m variables
over K. For a lattice point a = (a1, . . . , am) ∈ Zm

≥0,
xa denotes the monomial xa1

1 · · ·xam
m ∈ R. For ` ∈ Z≥0,

[`] := {1, . . . , `}. Given a finite set A ⊂ Zm
≥0, the subspace of

polynomials of R that are K-linear combinations of monomi-
als xa, where a ∈ A, is

L(A) = SpanK{xa : a ∈ A} ⊆ R.

Let S = S1 × · · · × Sm ⊆ Km be a Cartesian product,
where every Si ⊆ K has ni := |Si| > 0, and n := |S|. We
will assume that n1 ≤ · · · ≤ nm. Enumerate the elements of
S: s1, . . . , sn. The monomial-Cartesian code associated with
S and A is given by

C(S,A) = {evS(f) : f ∈ L(A)} ⊆ Kn,

where evS(f) = (f(s1), . . . , f(sn)) . From now on, we
assume that the degree of each monomial M ∈ L(A) in xi
is less than ni. Then the length and rate of the monomial-
Cartesian code C(S,A) are given by |S| and |A||S| , respectively
[12, Proposition 2.1].

The dual of C(S,A), denoted by C(S,A)⊥, is the set of all
α ∈ Kn such that α ·β = 0 for all β ∈ C(S,A), where α ·β
is the ordinary inner product in Kn. The dual code C(S,A)⊥

was studied in [12] in terms of the vanishing ideal of S and
in [15] in terms of the indicator functions of S.

It is useful to focus on the case where the monomial set
L(A) is closed under divisibility, meaning L(A) satisfies the
property that if M ∈ L(A) and M ′ divides M, then M ′ ∈
L(A). In this case, the code C(S,A) is called a decreasing
monomial-Cartesian code.

According to [2, Theorem 3.3], the dual of a de-
creasing monomial-Cartesian code is monomially equiva-
lent to a decreasing monomial-Cartesian code. For com-
pleteness, we now give a proof. The key step is to ob-
serve that if the monomial set L (A) is closed under di-
visibility, then its complement in S, the monomial set
L
(
A{
S

)
, is also closed under divisibility, where A{

S ={
(n1 − 1− a1, . . . , nm − 1− am) ∈ Zm

≥0 : a /∈ A
}
. Indeed,

consider M a monomial in L(A{
S) and M ′ a monomial

dividing M . Then, M = xα and M ′ = xα
′

for some
α = (n1 − 1 − a1, . . . , nm − 1 − am) and α′ = (n1 −
1 − a′1, . . . , nm − 1 − a′m) where a = (a1, . . . , am) /∈ A
and a′ = (a′1, . . . , a

′
m) is such that a′1 ≥ a1, . . . , a

′
m ≥ am.

Thus xa divides xa
′
. Then, because L (A) is closed under

divisibility, if a′ ∈ A that would imply a ∈ A as well, a
contradiction. Hence, a′ /∈ A, implying α′ ∈ A{

S . Therefore,
M ′ = xα

′ ∈ L(A{
S), so L(A{

S) is closed under divisibility.
Now, given s ∈ S, define the nonzero element

λs =

 m∏
i=1

∏
s′i∈Si\{si}

(si − s′i)

−1

∈ K.
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For f in K[x1, . . . , xm], take the residues vector

ResS(f) = (λs1f(s1), . . . , λsnf(sn)) .

As L (A) is closed under divisibility, by [12, Theorem 2.7]
we have that

C(S,A)⊥ = SpanK

{
ResS (xa) : a ∈ A{

S

}
= {(λs1f(s1), . . . , λsnf(sn)) : f ∈ L(A{

S)}.

Taking DS = diag (λs1 , . . . , λsn) to be the n × n diagonal
matrix with λsi in position (i, i) and 0 in any other position,
the last equation implies that

C(S,A)⊥ = DS C(S,A{
S), (1)

which means the dual of a decreasing monomial-Cartesian
code is monomially equivalent to a decreasing monomial-
Cartesian code.

A Cartesian code, introduced in [7] and then independently
in [14], is defined by

Car(S, k) = C(S,ACar(k)),

where ACar(k) = {a ∈ Zm
≥0 : ai ≤ ni−1,

∑m
i=1 ai ≤ k}. By

Equation (1), the dual of the Cartesian code Car(S, k) is given
by Car(S, k)⊥ = DS Car(S, k⊥), where k⊥ =

∑m
i=1(ni−1)−

k − 1.
Observe that if S = Km, the Cartesian code Car(S, k) is the

Reed-Muller code RM(Km, k). The dual code RM(Km, k)⊥

has been extensively studied in the literature. See for in-
stance [3], [4], [9], where it is shown that the dual of a RM
code is another RM code.

III. AUGMENTED CODES

In this section, we define the augmented Cartesian codes for
which we will provide repair schemes in the following section.
Augmented Cartesian codes generalize the augmented Reed-
Muller codes considered in [13]. Keeping the notation from
the previous sections, we describe two families below.

A. Augmented Cartesian codes 1

An augmented Cartesian code 1 (ACar1 code) over K =
Fqt is defined by

ACar1(S,k) = C(S,ACar1(k)),

where k = (k1, . . . , km), with 0 ≤ ki ≤ ni − qt−1, and

ACar1(k) =

m∏
i=1

{0, . . . , ni − 1} \
m∏
i=1

{ki, . . . , ni − 1} .

An augmented Cartesian code 1 is shown in Example 3.1. The
condition that 0 ≤ ki ≤ ni − qt−1 for all i ∈ {1,m} will be
utilized later to guarantee that certain polynomials are in the
appropriate dual codes.

Example 3.1. Take K = F17. Let S1, S2 ⊆ K with n1 =
|S1| = 6 and n2 = |S2| = 7. The code ACar1(S1×S2, (2, 2))
is generated by the vectors evS1×S2

(M), where M is a
monomial whose exponent is a point in Figure 1 (a). The
dual code ACar1(S1×S2, (2, 2))⊥ is generated by the vectors

A1

1

2

3

4

5

6

0

A2

1 2 3 4 5

(a)

A2

6

5

4

3

2

1

0
A1

5 4 3 2 1

(b)
Fig. 1. The code ACar1(S1 × S2, (2, 2)) in Example 3.1 with K = F17

is generated by vectors of the form evS1×S2
(M), where M is a mono-

mial whose exponent is a point in (a). Points corresponding to monomials
with exponents in

∏m
i=1 {ki, . . . , ni − 1} are indicated by ◦. The dual

code ACar1(S1 × S2, (2, 2))⊥ is generated by the vectors of the form
ResS1×S2 (M), where M is a monomial whose exponent is a point in (b).

ResS1×S2
(M), where M is a monomial whose exponent is a

point in Figure 1 (b).

When ki = k ≤ qt − qt−1 for all i ∈ [m] and
S = Km, the augmented Cartesian code 1 ACar1(S,k) is
called an augmented Reed-Muller code 1, which is denoted by
ARM1(Km, k). An augmented Reed-Muller code 1 is shown
in Example 3.2.

Example 3.2. Take K = F7. The code ARM1(K2, 2) is
generated by the vectors evK2(M), where M is a mono-
mial whose exponent is a point in Figure 2 (a). The dual
ARM1(K2, 2)⊥ is generated by the vectors evK2(M), where
M is a monomial whose exponent is a point in Figure 2 (b).

K

1

2

3

4

5

6

0

K

1 2 3 4 5 6

(a)

K

6

5

4

3

2

1

0
K

6 5 4 3 2 1

(b)
Fig. 2. The ARM1(K2, 2) code in Example 3.2 with K = F7 is
generated by the vectors of the form evK2 (M), where M is a monomial
whose exponent corresponds to a point in (a). Points corresponding to
monomials with exponents in

∏m
i=1 {ki, . . . , ni − 1} are indicated by ◦.

ARM1(K2, 2)⊥ is generated by the vectors of the form evK2 (M), where
M is a monomial whose exponent corresponds to a point in (b).

In Figure 2, the monomials that define RM(K2, 2) may
be seen as those under the diagonal in ARM1(K2, 2). The
monomial diagram for any Reed-Muller code will restrict the
allowable monomials under some diagonal excluding many
monomials along or near the edges, resulting in codes with
lower dimensions and rates. This explains why ARM1 codes
have higher rates than their associated Reed-Muller codes.
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The next result is relevant for developing the repair scheme
for ACar1(S,k).

Proposition 3.3. The following holds for the augmented
Cartesian code 1.
(a) The dimension is

dim ACar1(S,k) =

m∏
j=1

nj −
m∏
j=1

(nj − kj).

(b) The dual is ACar1(S,k)⊥ = DS C(S,A⊥Car1(k)),

where A⊥Car1(k) =

m∏
i=1

{0, . . . , ni − ki − 1} .

Proof. (a) The statement follows immediately, because

|ACar1(k)| = |
m∏
j=1

{0, . . . , nj − 1} \
m∏
j=1

{kj , . . . , nj − 1}|

=

m∏
j=1

nj −
m∏
j=1

(nj − kj).

(b) Observe that ACar1(k){S = A⊥Car1(k). Indeed,

(n1 − 1− a1, . . . , nm − 1− am) ∈ ACar1(k){S

if and only if

(a1, . . . , am) ∈
m∏
i=1

{0, . . . , ni − 1} \ ACar1(k),

which happens if and only if

(n1 − 1, . . . , nm − 1)− (a1, . . . , am) ∈ A⊥Car1(k).

Thus, the result follows from Equation (1).

B. Augmented Cartesian codes 2

We next define a second family of high-rate Cartesian codes.
The augmented Cartesian code 2 (ACar2 code) is defined by

ACar2(S,k) = C(S,ACar2(k)),

where k = (k1, . . . , km), with 0 ≤ ki ≤ ni − qt−1, and

ACar2(k) =

m∏
j=1

{0, . . . , nj − 1} \
m⋃
j=1

Lj , with

Lj = {a : kj ≤ aj ≤ nj−1 , ai = ni−1 for all i 6= j}.

An augmented Cartesian code 2 is shown in Example 3.4.

Example 3.4. Take K = F17. Let S1 and S2 be subsets of K
with n1 = |S1| = 6 and n2 = |S2| = 7. The code ACar2(S1×
S2, (2, 5)) is generated by the vectors evS1×S2

(M), where M
is a monomial whose exponent is a point in Figure 3 (a). The
dual code ACar2(S1×S2, (2, 5))⊥ is generated by the vectors
ResS1×S2

(M), where M is a monomial whose exponent is a
point in Figure 3 (b).

When ki = k ≤ qt − qt−1 for all i ∈ [m] and
S = Km, the augmented Cartesian code 2 ACar2(S,k) is
called an augmented Reed-Muller code 2, which is denoted by
ARM2(Km, k). An augmented Reed-Muller code 2 is shown
in Example 3.5.

A1

1

2

3

4

5

6

0

A2

1 2 3 4 5

(a)

A2

6

5

4

3

2

1

0
A1

5 4 3 2 1

(b)
Fig. 3. The code ACar2(S1 ×S2, (2, 5)) in Example 3.4 with K = F17 is
generated by the vectors of the form evS1×S2

(M), where M is a monomial
whose exponent is a point in (a). Elements of L1 ∪ L2 are indicated by ◦.
The dual ACar2(S1 × S2, (2, 5))⊥ is generated by the vectors of the form
ResS1×S2

(M), where M is a monomial whose exponent is a point in (b).

Example 3.5. Take K = F7. The code ARM2(K2, 3) is
generated by the vectors evK2(M), where M is a mono-
mial whose exponent is a point in Figure 4 (a). The dual
ARM2(K2, 3)⊥ is generated by the vectors evK2(M), where
M is a monomial whose exponent is a point in Figure 4 (b).

K

1

2

3

4

5

6

0

K

1 2 3 4 5 6

(a)

K

6

5

4

3

2

1

0
K

6 5 4 3 2 1

(b)
Fig. 4. The code ARM2(K2, 3) in Example 3.5 with K = F7 is generated
by the vectors of the form evK2 (M), where M is a monomial whose
exponent corresponds to a point in (a). Elements of L1∪L2 are indicated by ◦.
The dual ARM2(K2, 3)⊥ is generated by the vectors of the form evK2 (M),
where M is a monomial whose exponent corresponds to a point in (b).

The next result is relevant for developing the repair scheme
for ACar2(S,k).

Proposition 3.6. The following holds for the augmented
Cartesian code 2.

(a) The dimension is

dim ACar2(S,k) =

m∏
i=1

ni −
m∑
i=1

(ni − ki − 1)− 1.

(b) The dual is ACar2(S,k)⊥ = DS C(S,A⊥Car2(k)), where

A⊥Car2(k) =

m⋃
j=1

L′j and

L′j = {a : 0 ≤ aj ≤ nj−kj−1 , ai = 0 for all i 6= j}.
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Proof. (a) We have that

|ACar2(k)| = |
m∏
i=1

{0, . . . , ni − 1} \
m⋃
i=1

Li|

=

m∏
i=1

ni − |
m⋃
i=1

Li|.

As
m⋂
i=1

Li = {a}, where a = (n1 − 1, . . . , nm − 1), and

(Li \ {a})
⋂

(Lj \ {a}) = ∅ for all i 6= j, then |
m⋃
i=1

Li| =

m∑
i=1

|Li \{a}|+1 =

m∑
i=1

(ni−ki−1)+1. Thus |ACar2(k)| =
m∏
i=1

ni−
m∑
i=1

(ni − ki − 1)− 1.

(b) In a similar way to the proof of Proposition 3.3, it is
not difficult to check that ACar2(k){Km = A⊥Car2(k). Thus,
the result follows from Equation (1).

IV. SINGLE ERASURE REPAIR SCHEMES

In this section, we develop a repair scheme that repairs a sin-
gle erasure of a decreasing monomial-Cartesian code C(S,A)
that satisfies the property that A ∩ Lj = ∅ for some j, where
Lj = {a : nj − qt−1 ≤ aj < nj , ai = ni− 1 for i 6= j}. As a
consequence, we obtain repair schemes for single erasures of
augmented Cartesian and Reed-Muller codes.

Theorem 4.1. Let C(S,A) be a decreasing monomial-
Cartesian code of length n such that there is j ∈ [n] with
A∩Lj = ∅. Then there exists a repair scheme for one erasure
with bandwidth at most

b = n− 1 + (t− 1)

(
n

nj
− 1

)
.

Proof. Let s∗ = (s∗1, . . . , s
∗
m) ∈ S and assume that the entry

f(s∗) of the codeword (f(s1), . . . , f(sn)) ∈ C(S,A) has
been erased. Let {z1, . . . , zt} be a basis for K over Fq. For
i ∈ [t], define the following polynomials

pi(x) =
Tr(zi(xj − s∗j ))

(xj − s∗j )

= zi + zqi (xj − s∗j )q−1 + · · ·+ zq
t−1

i (xj − s∗j )q
t−1−1.

As A ∩ Lj = ∅, (Lj)
{
S = {(0, . . . , 0, a) : 0 ≤ a < qt−1} ⊆

A{
S . Thus, for i ∈ [t], every polynomial pi(x) ∈ L((Lj)

{
S) ⊆

L(A{
S) defines an element in C(S,A)⊥ = DS C(S,A{

S).
Therefore, we obtain the t equations

λs∗pi(s
∗)f(s∗) = −

∑
S\{s∗}

λspi(s)f(s), i ∈ [t]. (2)

As pi(s∗) = zi, applying the trace function to both sides of
previous equations and employing the linearity of the trace
function, we obtain

Tr (ziλs∗f(s∗)) = −
∑
S\{s∗}

Tr (λspi(s)f(s)) , i ∈ [t].

Define the set Γ = {(s1, . . . , sm) ∈ S : sj = s∗j}.
For s ∈ Γ, we have that pi(s) = zi. For s ∈ S \ Γ,

pi(s) =
Tr(zi(sj − s∗j ))

(sj − s∗j )
. Therefore, we obtain that for i ∈ [t],

∑
S\{s∗}

Tr (λspi(s)f(s))

=
∑

Γ\{s∗}

Tr (λspi(s)f(s)) +
∑
S\Γ

Tr (λspi(s)f(s))

=
∑

Γ\{s∗}

Tr (λszif(s)) +
∑
S\Γ

Tr

(
λs

Tr(zi(sj − s∗j ))

(sj − s∗j )
f(s)

)

=
∑

Γ\{s∗}

Tr (λszif(s)) +
∑
S\Γ

Tr(zi(sj−s∗j ))Tr

(
λsf(s)

(sj−s∗j )

)
.

By Remark 2.1, λs∗f(s∗), and as a consequence, f(s∗), can
be recovered from its t independent traces Tr(ziλs∗f(s∗)),
which can be obtained by downloading:

• t subsymbols Tr (λsz1f(s)) , . . . ,Tr (λsztf(s)) , for each
s ∈ Γ \ {s∗}, and

• one subsymbol Tr

(
λsf(s)

(sj − s∗j )

)
, for each s ∈ S \ Γ.

Hence, the bandwidth is b = t(|Γ| − 1) + |S \ Γ| =

(t− 1)

(
n

nj
− 1

)
+ n− 1.

Corollary 4.2. There exist repair schemes for one erasure of
ACar1(S,k) and ACar2(S,k), each with bandwidth at most

b =

m∏
i=1

ni − 1 + (t− 1)

(
m−1∏
i=1

ni − 1

)
.

Proof. Since ki ≤ ni− qt−1 for i ∈ [m], ACar1(k)∩Lm = ∅
and ACar2(k)∩Lm = ∅, where Lm = {(n1−1, . . . , nm−1−
1, a) : nm − qt−1 ≤ a < nm}. Thus, the result follows from
Theorem 4.1.

As another consequence from Theorem 4.1, by taking S =
Km, we obtain a repair scheme for augmented Reed-Muller
codes, whose family was first introduced in [13, Theorem 2.5].

Corollary 4.3. There exists a repair scheme for one erasure
for ARM1(Km, k) and for ARM2(Km, k), each with band-
width

b = |K|m − 1 + (t− 1)(|K|m−1 − 1).

Remark 4.4. The bandwidth of the repair scheme developed
in Corollary 4.3 for augmented Reed-Muller codes is less than
the one developed in [13, Theorems 2.5 and 3.4]. This is due
to the fact that the repair polynomials used in the proofs of
[13, Theorems 2.5 and 3.4] have more zeros over S than the
repair polynomials of the proof of Corollary 4.3. Thus, the
number of subsymbols that are needed to repair an erasure is
less when we use Corollary 4.3.

This article has been accepted for publication in IEEE Transactions on Information Theory. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIT.2021.3130096

© 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



6

V. TWO ERASURES REPAIR SCHEMES

In this section, we keep the same notation as in previous
sections and develop a repair scheme that repairs two simul-
taneous erasures f(s′) and f(s∗) of C(S,A) provided the
erasure positions satisfy the property that s∗j 6= s′j . Then we
give a repair scheme that repairs two simultaneous erasures of
the augmented Cartesian and Reed-Muller codes that does not
require that the position vectors s′ and s∗ are different on a
specific component.

Theorem 5.1. Let C(S,A) be a decreasing monomial-
Cartesian code of length n such that there exists j ∈ [n] with
A ∩ Lj = ∅. Let s∗ = (s∗1, . . . , s

∗
m), s′ = (s′1, . . . , s

′
m) ∈ S

such that s∗j 6= s′j . There exists a repair scheme for the two
simultaneous erasures f(s′) and f(s∗) with bandwidth at
most

b = 2

[
n− 2 + (t− 1)

(
n

nj
− 2

)]
.

Proof. Assume that the entries f(s′) and f(s∗) of the code-
word (f(s1), . . . , f(sn)) ∈ C(S,A) have been erased. By Re-
mark 2.2, ∆j :=

{
α ∈ K : Tr

(
α(s′j − s∗j

)
= 0
}

has dimen-
sion t−1 as Fq-vector space. Let {z1, . . . , zt−1} be an Fq-basis
for ∆j and zt an element in K such that {z1, . . . , zt−1, zt} is
an Fq-basis for K. Finally, let τ be an element of ker(τ). We
are ready to define the repair polynomials. Take

pi(x) = τ
Tr
(
zi(xj − s∗j )

)(
xj − s∗j

)
and

qi(x) =
Tr
(
zi(xj − s′j)

)
(xj − s′j)

, i ∈ [t].

As A ∩ Lj = ∅, the polynomials pi(x) and qi(x) define
elements in the dual code C(S,A)⊥. Therefore, in a similar
way to the proof of Theorem 4.1, we obtain the following 2t
equations for all i ∈ [t]:

λs∗pi(s
∗)f(s∗) + λs′pi(s

′)f(s′)

= −
∑

s∈S\{s∗,s′}

λspi(s)f(s), (3)

and

λs∗qi(s
∗)f(s∗) + λs′qi(s

′)f(s′)

= −
∑

s∈S\{s∗,s′}

λsqi(s)f(s). (4)

By definition of the pi’s and qi’s, pi(s∗) = τzi and qi(s′) = zi
for i ∈ [t]. As {z1, . . . , zt−1} is an Fq-basis for ∆j , pi(s′) =
qi(s

∗) = 0 for i ∈ [t− 1], thus Equations 3 and 4 become

λs∗τzif(s∗) = −
∑

s∈S\{s∗,s′}

λspi(s)f(s), i ∈ [t− 1], (5)

λs∗τztf(s∗) + λs′ pt(s
′)f(s′) = −

∑
s∈S\{s∗,s′}

λspt(s)f(s),

(6)

λs′ zif(s′) = −
∑

s∈S\{s∗,s′}

λsqi(s)f(s), i ∈ [t− 1], (7)

λs∗qt(s
∗)f(s∗) + λs′ ztf(s′) = −

∑
s∈S\{s∗,s′}

λsqt(s)f(s).

(8)

Observe that

Tr (λs′ pt(s
′)f(s′))

= Tr

(
λs′ τ

Tr
(
zt(s

′
j − s∗j )

)
(s′j − s∗j )

f(s′)

)

= Tr
(
zt(s

′
j − s∗j )

)
Tr

(
λs′

τ

(s′j − s∗j )
f(s′)

)
.

As
τ

(s′j − s∗j )
∈ ∆j , whose Fq-basis is {z1, . . . , zt−1}, there

exist α1, . . . , αt−1 ∈ Fq such that previous equations imply
that

Tr (λs′ pt(s
′)f(s′)) = Tr

(
zt(s

′
j − s∗j )

) t−1∑
i=1

αiTr (λs′ zif(s′)) .

By Remark 2.1, the element f(s∗) can be recovered from
the t traces Tr(λs∗τzif(s∗)). Thus, from last equation, and
applying the trace function to both sides of Equations 5, 6
and 7, we get that the traces Tr(λs∗τzif(s∗)), for i ∈ [t], can
be obtained by downloading for every s ∈ S \ {s∗, s′}, the
elements Tr(λspi(s)f(s)) for i ∈ [t], and Tr(λsqi(s)f(s))
for i ∈ [t − 1]. Finally, as f(s∗) has been already recovered,
from Equation 8, we can obtain Tr(λs′ ztf(s′)), and as a
consequence f(s′), by downloading for every s ∈ S\{s∗, s′},
the elements Tr(λsqt(s)f(s)).

Therefore, both erasures f(s′) and f(s∗) can be recovered
by downloading for every s ∈ S \ {s∗, s′}, the elements
Tr(λspi(s)f(s)) and Tr(λsqi(s)f(s)) for i ∈ [t]. The band-
width is a consequence of the proof of Theorem 4.1, consider-
ing that now we need to download twice the information about
n− 2 elements, instead of only n− 1 as in Theorem 4.1.

Theorem 5.2. There exists a repair scheme for ACar1(S,k)
that repairs two simultaneous erasures f(s′) and f(s∗) with
bandwidth at most

b = 2

[
m∏
i=1

ni − 1 + (t− 1)

(
m−1∏
i=1

ni − 1

)]
.

Proof. As s∗ 6= s′, there is j ∈ [m] such that s∗j 6= s′j .
The condition ki ≤ ni − qt−1 on the definition of augmented
Cartesian code 1 implies that ACar1(k)∩Lj = ∅, where Lj =
{(a1, . . . , am) : nj − qt−1 ≤ aj < nj , ai = ni−1 − 1 for i 6=
j}. Thus, the result follows from the proof of Theorem 5.1
and the fact that the length of the augmented Cartesian code
1, n =

∏m
i=1 ni, is given by the cardinality of the Cartesian

set S.

Theorem 5.3. There exists a repair scheme for ACar2(S,k)
that repairs two simultaneous erasures f(s′) and f(s∗) with
bandwidth at most

b = 2

[
m∏
i=1

ni − 1 + (t− 1)

(
m−1∏
i=1

ni − 1

)]
.

Proof. As s∗ 6= s′, there is j ∈ [m] such that s∗j 6= s′j .
By Remark 2.2, ker(Tr) has dimension t − 1 as Fq-vector
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space. Let {z1, . . . , zt−1} be an Fq-basis for ker(Tr) and zt
an element in K such that {z1, . . . , zt−1, zt} is an Fq-basis
for K. Then we define the repair polynomials

pi(x) = z1

Tr

(
zi(xj − s∗j )

s′j − s∗j

)
xj − s∗j
s′j − s∗j

and

qi(x) =

Tr

(
zi(xj − s′j)
s∗j − s′j

)
xj − s′j
s∗j − s′j

, i ∈ [t].

By definition of augmented Cartesian code 2, ki ≤ ni− qt−1,
for i ∈ [m], thus the polynomials pi(x) and qi(x) define
elements in the dual code ACar2(S,k)⊥. Observe that the
polynomials pi’s and qi’s have the property that pi(s∗) = z1zi
and qi(s′) = zi for i ∈ [t]. By definition of the zi’s, pi(s′) =
z1Tr(zi) = 0 and qi(s

∗) = Tr(zi) = 0, for i ∈ [t − 1]. In
addition, observe that

Tr (λs′ pt(s
′)f(s′)) = Tr (λs′ z1Tr(zt)f(s′))

= Tr (zt) Tr (λs′ z1f(s′)) .

Following the lines of the proof of Theorem 5.1, we obtain that
both erasures f(s′) and f(s∗) can be recovered by download-
ing for every s ∈ S \ {s∗, s′}, the elements Tr(λspi(s)f(s))
and Tr(λsqi(s)f(s)) for i ∈ [t]. Therefore, the result follows
from the proof of Theorem 5.1 and the fact that the length of
the augmented Cartesian code 2, n =

∏m
i=1 ni, is given by

the cardinality of the Cartesian set S.

Remark 5.4. Given certain circumstances, it is possible to
extend the repair scheme described above for two erasures to
three erasures and beyond. This extension may be seen as anal-
ogous to the extension to three erasures in the Reed-Solomon
case developed in [16]. In particular, such a repair scheme
for three erasures which all differ on the same coordinate j,
s∗, s′, and s̃ begins with finding the kernels of the following
maps:

Tr(z(s′j − s∗j )),Tr(z(s′j − s̃j)),Tr(z(s∗j − s̃j)).

Then, similar to the two erasure case, repair polynomi-
als {p1, . . . , pt}, {q1, . . . , qt}, and {r1, . . . , rt} can be con-
structed which each evaluate to a basis element {z1, . . . , zt}
at the associated erased coordinates s∗, s′, and s̃ respectively.
The basis chosen will be an extension of the basis for intersec-
tion of the three kernels. This choice of basis combined with
the properties of the trace function will guarantee that each
repair polynomial will evaluate to 0 at their non-associated
erased coordinates, on all but two i. However, on these
remaining i, the repair polynomials will evaluate to an element
in the span of the outputs of other repair polynomials. This
will create a system of equations which can be solved given the
output of two polynomials on these remaining i. For example,
pt−1(s′) and pt(s̃) would be enough given the appropriate

repair polynomial definitions. Under particular circumstances,
such as t | char(K), these two outputs can be determined from
the remaining nodes, and therefore produce Tr(pi(s)f(s)),
Tr(qi(s)f(s)), and Tr(ri(s)f(s)) at each erased coordinate
for all i′s. Then, a typical linear exact repair scheme can
proceed from there to fix all three erasures.

VI. COMPARISONS AND EXAMPLES

The GW-scheme [8, Theorem 1] has the following parame-
ters on the Reed-Solomon code RS(K, k): length n ≤ |K|, di-
mension k and bandwidth n−1. Recall that the bandwidth rep-
resents the number of subsymbols needed to repair a symbol.
We can also note its normalized bandwidth is

⌈
n−1
t

⌉
. Proposi-

tion 3.3 and Corollary 4.3 give the following parameters for the
repair scheme on the augmented Reed-Muller code 1 (ARM1-
scheme): length n = |K|m, dimension |K|m−(qt−k)m and
bandwidth |K|m − 1 + (t − 1)(|K|m−1 − 1). We summarize
this information, along with the parameters of the augmented
Cartesian codes and Hermitian codes from [11, Theorem 13],
in Table I.

It is clear that in general, the bandwidth and normalized
bandwidth of the ARM1-scheme may be much larger than
their counterparts in the GW-scheme, but the dimension and
the length are also much larger. We now compare both schemes
when the dimension and the base field Fq are the same.

Assume m divides t and t = mt∗. The GW-scheme
and the ARM1-scheme repair the codes RS(Fqt , k) and
ARM1(Fm

qt∗
, k) when the dimensions are at most qt−qt−1 and

qt − qt−m, respectively. An advantage of the ARM1(Fm
qt∗
, k)

comes when a code with dimension k∗ between qt−qt−1 and
qt− qt−m is required. The restriction on the dimension of the
GW-scheme implies that to employ an RS code, it must utilize
an alphabet of size qt+1 to achieve dimension k∗. However,
as the dimension of the code ARM1(Fm

qt∗
, k) can be up to

qt−qt−m, there are values between qt−qt−1 and qt where we
can still use ARM1(Fm

qt∗
, k), whose bandwidth can be lower.

We show this in the following example.

Example 6.1. Assume that a code of dimension k∗ = 648 over
a field of characteristic 3 is required. Observe that 36 − 35 =
486 < k∗ < 36 = 729. Over the field of size 36, there is a
Reed-Solomon code with dimension 648, but the GW-scheme
is not applicable. Indeed, the requirement that the dimension
is at most n − qt−1 = 486 is not satisfied. To resolve this,
a larger field such as one of size 37 = 2187 may be used.
Given that the GW-scheme requires the dimension to be at
most n − qt−1, the RS code length must then be bounded
below by 648 + qt−1 = 1377, meaning the bandwidth is at
least 1376. The code ARM1(F2

33 , 18) has dimension k∗ = 648
and according to Corollary 4.3, bandwidth b = |K|m − 1 +
(t − 1)(|K|m−1 − 1) = 272 − 1 + (2)(27 − 1) = 780. As a
consequence, when a code of dimension 648 is required, the
specifications for each family are as in Table 6.1.

Observe that the normalized bandwidth, which may be
viewed as the number of symbols needed to repair a symbol,
is smaller for the RS code. Indeed, every symbol is heavier
in the RS case than in the ARM1 case, meaning a symbol
equates to 7 subsymbols in the RS setting rather than 1 symbol
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Code over Fqt Restrictions Dimension Bandwidth
of length n
RS
(
Fqt , k

)
k ≤ n ≤ qt

k n−1
[8, Theorem 1] k < qt−qt−1

RM(Fm
qt
, k) n = qtm (m+k

k

) (
m
√
n−1

)
(t−blogq( m

√
n−k−1)c)

[3, Theorem III.1] k < qt−1
ARM1(Fm

qt
, k) n = qtm

n−( m
√
n−k−1)m n−1 + (t−1)(n(1−1/t)−1)

Corollary 4.3 k < qt−qt−1

ARM2(Fm
qt
, k) n = qtm

n−m( m
√
n−k−2)−1 n−1 + (t−1)(n(1−1/t)−1)Corollary 4.3 k < qt−qt−1

m < t, (m, p) = 1

ACar1(S,k) n1 ≤ · · · ≤ nm ≤ qt

n−
m∏

j=1

(nj−kj−1) n−1+(t−1)
(

n

nm
−1
)

Corollary 4.2 n =

m∏
i=1

ni ≤ qtm

0 ≤ ki ≤ ni−qt−1

ACar2(S,k) n1 ≤ · · · ≤ nm ≤ qt

n−
m∑
i=1

(ni−ki−2) n−1+(t−1)
(

n

nm
−1
)

Corollary 4.2 n =

m∏
i=1

ni ≤ qtm

0 ≤ ki ≤ ni−qt−1

Hermitian qt = r2, some r

m−
r(r−1)

2
(n−1)

(
log qt−` log q

) 1

log q
[11, Theorem 13] n = r3

m ≤ n+r(r−1)−2
−(q`−1)(r+1)

TABLE I
EACH CODE IS DEFINED OVER Fqt WITH BASE FIELD Fq . FOR THE HERMITIAN CASE, THE TERM 1

log q
APPEARS HERE AND NOT IN [11, THEOREM 13]

BECAUSE THE BITWIDTH FOR THIS PAPER, IS CALLED BANDWIDTH IN THAT PAPER.

Family Scheme Base Code over Length Bandwidth Normalized
field the field bandwith

RS GW F3 F37 1377 1376 197

ARM1 Corollary 4.3 F3 F33 729 780 260

TABLE II
SPECIFICATIONS AND COMPARISONS OF CODES WITH DIMENSION 648
OVER FIELDS OF CHARACTERISTIC 3 AS DESCRIBED IN EXAMPLE 6.1

corresponding to 3 subsymbols in the analogous ARM1 one.
Hence, we see that the bandwidth (number of subsymbols
needed to repair a symbol) is lower in the ARM1 case whereas
the normalized bandwidth is not.

Notice that applying the result in Corollary 4.3 to repair an
erasure of ARM1(F2

33 , 18) gives a bandwidth of 780 whereas
using [13, Theorem 2.5], the bandwidth is 837 [13, Example
4.1].

We can go further. As the following example shows, there
are some values between qt−qt−1 and qt where an augmented
Cartesian code may have better parameters than an augmented
Reed-Muller code.

Example 6.2. Assume that a code of dimension k∗ = 621
over a field of characteristic 3 is required. Observe that
36 − 35 = 486 < k∗ < 36 = 729. As we explained in
Example 6.1, we can use a Reed-Solomon code and the GW-
scheme, but the RS code length must then be bounded below
by 648 + qt−1 = 1377, meaning the bandwidth is 1376 and
the normalized bandwidth is 197.

Next, we consider whether we can use an augmented
Reed-Muller code. Following the lines of Example 6.1, the

code ARM1(F2
33 , 17) has dimension 629, bandwidth 780, and

normalized bandwidth 260. If we decrease the parameter k
from 17 to 16, we will obtain a code of dimension less than
621. If we increase t or m, the bandwidth will increase.
Decreasing m from 2 to 1 yields a RS code, so the only
possible option is to reduce t. Over F32 , in order to have
dimension 621, we need m = 3. In this case, according
to Proposition 3.3, the dimension of ARM1(F3

32 , 5) = 665.
By Corollary 4.3, the bandwidth is 808 and the normalized
bandwidth is 404.

Now take q = 3, t = 3,m = 2, S1 = F33 and S2 = F∗33 =
S1 \ {0} . By Proposition 3.3, the dimension of ACar1(S1 ×
S2, (17, 18)) = (26)(27)−(9)(9) = 621. Using Corollary 4.2,
we obtain that the bandwidth of ACar1(S1 × S2, (17, 18)) is
(26)(27)− 1 + (2)(26− 1) = 621− 1 + 2(25) = 670 and thus
the normalized bandwidth is 224. As a summary, when a code
of dimension 621 is required, the specifications for each family
are as in Table 6.2. Observe that the normalized bandwidth,

Family Scheme Base Code over Length Bandwidth Normalized
field the field bandwith

RS GW F3 F37 1377 1376 197

ARM1 Corollary 4.3 F3 F33 729 780 260

ACar1 Corollary 4.2 F3 F33 702 670 224

TABLE III
SPECIFICATIONS AND COMPARISONS OF CODES WITH DIMENSION 621
OVER FIELDS OF CHARACTERISTIC 3 AS DESCRIBED IN EXAMPLE 6.2

which can be seen as the number of symbols needed to repair
a symbol, is smaller for the RS codes. Just as in Example 6.1,
every symbol is heavier in the RS case than in the ACar1 case,
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with a symbol representing 7 subsymbols in the RS case as
opposed to 3 subsymbols in the ACar1 setting). Hence, despite
the normalized bandwidth being smaller for the RS code, the
bandwidth (meaning number of subsymbols needed to repair
a symbol) is smaller for the ACar1 code.

The ARM1-scheme may be compared with other repair
schemes in the literature, such as the repair scheme for
algebraic geometry codes [11].

Example 6.3. By Corollary 4.3, the augmented code
ARM1(F3

23 , 3) has length 512, dimension 448 and bitwidth
log2 q(b) = |K|m − 1 + (t − 1)(|K|m−1 − 1) = 83 − 1 +
(2)(82−1) = 637. Whereas using the Hermitian code and the
RS code in [11, Example 14], we the observe the comparisons
given in Table 6.3.

Code Base Code over Length Dimension Bitwidthfield the field
Hermitian F23 F26 512 448 3(511) = 1533[11, Example 14]

RS F23 F29 512 448 3(511) = 1533[11, Example 14]
ARM1

(
F3
23

, 3
)

F2 F23 512 448 637
Corollary 4.3

TABLE IV
SPECIFICATIONS AND COMPARISONS OF CODES CONSIDERED IN

EXAMPLE 6.3

Note that using Corollary 4.3 to repair an erasure of
ARM1(F3

23 , 3) gives a bandwidth of 637 whereas using [13,
Theorem 2.5] provides the bitwidth is 847 [13, Example 4.2].

We now compare augmented Reed-Muller and Cartesian
codes when the length and the field Fqt are both fixed.

Example 6.4. Assume that an augmented code of length
n > 8 over the field F23 is required. The smallest aug-
mented Reed-Muller code with length greater than 8 is the
code ARM1(F2

23 , k), where 0 ≤ k ≤ 4. The bandwidth is
b = |K|m−1+(t−1)(|K|m−1−1) = 82−1+(2)(8−1) = 77
and the normalized bandwidth is d77/3e = 26. The smallest
augmented Cartesian code with length greater than 8 is the
code ACar1(S1 × S2, (k1, k2)), where n1 = |S1| = 4,
n2 = |S2| = 8, k1 = 0 and 0 ≤ k2 ≤ 4. The bandwidth
is b =

∏m
i=1 ni − 1 + (t− 1)

(∏m−1
i=1 ni − 1

)
= (4)(8)− 1 +

(2)(4−1) = 37 and the normalized bandwidth is d37/3e = 13.

The advantage of the larger dimension allowed by aug-
mented codes can play an important role when a fixed rate
is desired. By Table I, the maximum k for which RS(K, k)
admits the repair scheme given in [8, Theorem 1] is k∗ =
qt−qt−1, which is the same than the dimension. As the length
is qt, the rate is upper bounded by 1 − 1

q . In a similar way,
by Table I, the maximum k for which ARM1(Km, k) admits
the repair scheme given in Corollary 4.3 is k∗ = qt − qt−1.
In this case, the dimension is qtm−q(t−1)m. As the length is
qtm, the rate is upper bounded by 1 − 1

qm . This means that
with the augmented codes, we can achieve rates and it is not
possible with the RS codes. See the following example.

Example 6.5. Assume that a code over the base field F2 and
rate at least 0.875 is required. The maximum k for which

RS(F2t , k) admits the repair scheme given in [8, Theorem 1]
is k∗ = 2t − 2t−1, which is the same than the dimension. As
the length is 2t, the maximum rate is 2t−2t−1

2t = 1− 1
2 , which is

less than 0.875. However, the augmented code ARM1(F3
22 , 2)

code has length 26 = 64 and dimension 64− = 26 − (22 −
2)3 = 26 − 23 = 56 yielding a rate 0.875. Further, since
2 ≤ 22 − 2, the augmented code ARM1(F3

22 , 2) will admit a
linear exact repair scheme with bandwidth 78 and normalized
bandwidth 39.

The ARM codes will have greater repair bandwidth than
the RM codes as q increases. However, the expression of
the bandwidth makes it difficult to immediately appreciate
the improvement in rate gained by implementing the ARM
codes. Figure 5 illustrates the rate versus the repair bandwidth
of the repair schemes of RM(F3

54 , k), ARM1(F3
54 , k), and

ARM2(F3
54 , k), for all values of k where the repair schemes

developed in [8, Theorem 1] and Corollary 4.3 can be applied.
The same figure demonstrates that RM codes admit repair
schemes with much lower bandwidth than the ARM. However,
it also reveals that the ARM codes have significantly higher
rates, increasing from at most 0.2 to more than 0.99. Actual
values can be found in Examples 6.6 and 6.7.

Fig. 5. Rate versus the repair bandwidth of the repair schemes of RM(F3
54

, k),
ARM1(F3

54
, k), and ARM2(F3

54
, k), for all values of k where the repair

schemes developed in [8, Theorem 1] and Corollary 4.3 can be applied.

Example 6.6. Let q = 5, t = 4, and m = 3. The
maximum k for which RM(Km, k) admits the repair scheme
given in [3, Theorem III.1] is 623. The maximum k for
which ARM1(Km, k) and ARM2(Km, k) admit the repair
scheme given in Corollary 4.3 is 499. The code RM(Km, 623)
has rate 0.167, bandwidth 2496, and normalized bandwidth
624. The code ARM1(Km, 499) has rate 0.992, band-
width 245312496, and normalized bandwidth 61328124. The
code ARM2(Km, 499) has rate 0.999998468, bandwidth
245312496, and normalized bandwidth 61328124.

Example 6.7. The maximum k for which RM(F5
27 , k) admits

the repair scheme given in [3, Theorem III.1] is 126. The
maximum k for which ARM1(F5

27 , k) and ARM2(F5
27 , k)

admit the repair scheme given in Corollary 4.3 is 63. The
code RM(F5

27 , 126) has rate 0.009002376, bandwidth 889,
and normalized bandwidth 127. The code ARM1(F5

27 , 62)
has rate 0.96975, bandwidth 35970351097, and normalized
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bandwidth 5138621586. The code ARM2(F5
27 , k) has rate

0.999999991, bandwidth 35970351097, and normalized band-
width 5138621586.

The previous examples support the same conclusion. Reed-
Muller codes admit repair schemes with superior bandwidth
but have massively inferior rates when compared with the
augmented codes.

Remark 6.8. Observe that we can also compare with a clas-
sical repair scheme using the dual code. Let C be a code and
assume C⊥ has minimum distance δ⊥. Let c = (c1, . . . , cn)
be an element in C and d = (d1, . . . , dn) in C⊥. The equation∑n

j=1 cjdj = 0 implies that if the entry ci is lost, the entry di
is nonzero, and the weight of d is δ⊥, then the entry ci can be
recovered by downloading (δ⊥ − 1) symbols. In other words,
the bandwidth of the classical scheme is (δ⊥ − 1)t.

For instance, we can focus now on the RS codes. By Table I,
the maximum k for which the RS(Fqt , k) code of length
n = qt admits the repair scheme given in [8, Theorem 1] is
k∗ = qt − qt−1. Thus the minimum distance of the dual code
RS(Fqt , k

∗)⊥ is δ⊥ = qt−qt−1+1. As RS(Fqt , k
∗) is an MDS

code, for every i ∈ [n], there is an element d = (d1, . . . , dn)
in RS(Fqt , k

∗)⊥ such that di is nonzero, and the weight of d
is δ⊥. Thus, the classical repair scheme can be applied, and
the bandwidth is (δ⊥ − 1)t = (qt − qt−1)t. It is not difficult
to check that this number is larger than or equal to qt − 1,
the bandwidth of the GW repair scheme, if and only if t > 1.

As a consequence, for a RS(Fqt , k), as long as t > 1, the
repair scheme given in [8, Theorem 1] has a better bandwidth
than the classical repair scheme using the dual code.

For the augmented codes, a deeper analysis is needed. First,
the minimum distance δ⊥ of the dual code is required. As the
dimension of an augmented code is large, it may not be the
case that for every i ∈ [n], there exists an element b in the dual
such that bi is nonzero and the weight of b is δ⊥. Assuming
that such element exists, a comparison of the bandwidths may
be undertaken.

For instance, by Example 6.1, the code ARM1(F2
33 , 18)

has bandwidth 780. Using the Coding Theory Package for
Macaulay2 [1], the minimum distance of the dual code
ARM1(F2

33 , 18)⊥ is 324. Thus, the bandwidth of the classical
repair scheme using the dual code would be (323)3 = 969.

A. Maximum rates and asymptotic behavior

Focusing on the improved rate, here we study the asymp-

totic behavior of the rate and the bandwidth rate
b

nt
, which

represents the fraction of the codeword that is needed by the
repair scheme to recover the erased symbol. We continue with
the notation K = Fqt .

Reed-Solomon. The maximum k for which RS(K, k) ad-
mits the repair scheme given in [8, Theorem 1] is k∗ =
qt − qt−1. In this case, dimK RS(K, k) = qt − qt−1 and the

bandwidth at k∗ is b∗ = (qt − 1). Thus,

lim
t→∞

dimK RS(K, k)

n
= lim

t→∞

qt − qt−1

qt

= lim
t→∞

qt(1− 1
q )

qt
= 1− 1

q
,

and

lim
t→∞

Bandwidth
tn

= lim
t→∞

qt − 1

tqt
= lim

t→∞

1

t
= 0.

Reed-Muller. The maximum k for which RM(Km, k)
admits the repair scheme given in [3, Theorem III.1] is k∗ =

qt−2. In this case, dimK RM(Km, k∗) =

(
m+ qt − 2

qt − 2

)
and

bandwidth at k∗ is b∗ = (qt − 1)t. Thus,

lim
t→∞

dimK RM(Km, k∗)

n
= lim

t→∞

(
m+ qt − 2

qt − 2

)
qtm

= lim
t→∞

(m+ qt − 2)!

(qt − 2)! m! qtm

= lim
t→∞

(qt−2+1) · · · (qt−2+m)

m! qtm

=
1

m!
,

and

lim
t→∞

Bandwidth
tn

= lim
t→∞

(qt − 1)t

tqtm
= lim

t→∞

qt − 1

qtm
= 0.

Augmented Reed-Muller 1. The maximum k for
which ARM1(Km, k) admits the repair scheme given
in Corollary 4.3 is k∗ = qt − qt−1. In this case,
dimK ARM1(Km, k∗) = qtm−q(t−1)m and bandwidth at k∗

is b∗ = |K|m − 1 + (t− 1)(|K|m−1 − 1). Thus,

lim
t→∞

dimK ARM1(Km, k∗)

n
= lim

t→∞

qtm−q(t−1)m

qtm
= 1− 1

qm
,

and

lim
t→∞

Bandwidth
nt

= lim
t→∞

qtm − 1 + (t− 1)(qt(m−1) − 1)

tqtm

= lim
t→∞

[
qtm − 1

tqtm
+

(t− 1)(qt(m−1) − 1)

tqtm

]
= 0.

Augmented Reed-Muller 2. The maximum k for
which ARM2(Km, k) admits the repair scheme given
in Corollary 4.3 is k∗ = qt − qt−1. In this case,
dimK ARM2(Km, k∗) = qtm−m(qt−1−1)−1 and bandwidth
at k∗ is b∗ = |K|m − 1 + (t− 1)(|K|m−1 − 1). Thus,

lim
t→∞

dimK ARM2(Km, k∗)

n

= lim
t→∞

qtm−mqt−1 +m− 1

qtm

= lim
t→∞

[
1− m

qt(m−1)+1
+
m− 1

qtm

]
= 1,
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and

lim
t→∞

Bandwidth
nt

= lim
t→∞

qtm − 1 + (t− 1)(qt(m−1) − 1)

tqtm

= lim
t→∞

[
qtm − 1

tqtm
+

(t− 1)(qt(m−1) − 1)

tqtm

]
= 0.

Augmented Cartesian Codes. The maximum k∗ for which
ACar1(S,k∗) admits the repair scheme given in Corollary 4.2
is k∗i = ni − qt−1. In this case, dim ACar1(S,k∗) =∏m

j=1 nj −
∏m

j=1(nj − kj) and bandwidth at k∗ is b∗ =∏m
i=1 ni − 1 + (t− 1)

(∏m−1
i=1 ni − 1

)
. Thus,

lim
t→∞

Bandwidth
nt

= lim
t→∞

∏m
i=1 ni − 1 + (t− 1)(

∏m−1
i=1 ni − 1)

t
∏m

i=1 ni

= lim
t→∞

∏m
i=1 ni − 1

t
∏m

i=1 ni
+
t− 1

t

(∏m−1
i=1 ni∏m
i=1 ni

− 1∏m
i=1 ni

)

= lim
t→∞

∏m
i=1 ni − 1

t
∏m

i=1 ni
+
t− 1

t

(
1

nm
− 1∏m

i=1 ni

)
.

In the case where nm = O(t), we have that this limit is 0.
Now we will discuss the limit of the rate of an Augmented

Cartesian Code 1 as the extension degree t approaches infinity
through examples. We will find that varying the Cartesian
evaluation set will result in augmented Cartesian codes with
rate limits varying between 0 and 1 − 1

qm , even when taking
the maximum allowable values for the kj .

Example 6.9. Suppose we are in the case when the evaluation
set S = S1×· · ·×Sm is such that nj = qt−1+1 for all j ∈ [m].
Consider the augmented Cartesian 1 code ACar1(S,k∗) with
maximum rate. This happens when k∗ = 1. The limit of the
rate of this code as t approaches infinity is

lim
t→∞

dimK ACar1(S,1)

n
= lim

t→∞

∏m
i=1 ni −

∏m
i=1(ni − ki)∏m

i=1 ni

= lim
t→∞

(qt−1+1)m−(qt−1)m

(qt−1 + 1)m
= 0.

Example 6.10. Suppose we are in the case when the eval-
uation set S = S1 × · · · × Sm is such that ni = qt−1 for
i ∈ [m − 1] and nm = 2qt−1. Consider the augmented
Cartesian 1 code ACar1(S,k∗) with maximum rate. This
happens when k∗i = 0 for i ∈ [m − 1] and k∗m = qt−1. The
limit of the rate of this code as t approaches infinity is

lim
t→∞

dimK ACar1(S,k)

n
= lim

t→∞

∏m
i=1 ni −

∏m
i=1(ni − ki)∏m

i=1 ni

=

(
lim
t→∞

1−
∏m

i=1 q
t−1

2
∏m

i=1 q
t−1

)
= 1− 1

2
=

1

2
.

Example 6.11. Lastly, consider the case when |S| = Km. As
this is an augmented Reed-Muller code, we obtain

lim
t→∞

dimK ACar1(S,k)

n
= lim

t→∞

qtm−q(t−1)m

qtm
= 1− 1

qm
.

A similar situation happens with the augmented Cartesian
codes 2. We summarize these findings in Table V. Note each
code in Table V will have identical bandwidth rate ( b

nt ) as
the field extension t gets large. In particular, for each code
b
nt tends toward 0 as t approaches infinity. Importantly, this
means that the fraction of subsymbols in an entire codeword
that need to be transmitted to repair one erased symbol tends
to 0 even in the newly introduced ACar1, ACar2, ARM1, and
ARM2 codes.

Code Dimension lim
t→∞

Rate
b∗

t

RS(K,max) qt − qt−1 1−
1

q
qt−1

t

RM(Km,max)
(m+ qt − 2

qt − 2

) 1

m!
qt − 1

ARM1(Km,max) qtm−q(t−1)m 1−
1

qm
qt(m−1)( q

t−1
t

+ 1)− 1

ARM2(Km,max) qtm−m(qt−1−1)−1 1 qt(m−1)( q
t−1
t

+ 1)− 1

ACar1(S,max)
m∏

j=1

nj − qm(t−1) [0, 1]
∏m−1

i=1 ni(
nm−1

t
+ 1)− 1

ACar2(S,max)
m∏
i=1

ni −m(qt−1 − 1)− 1 [0, 1]
∏m−1

i=1 ni(
nm−1

t
+ 1)− 1

TABLE V
ASYMPTOTIC BEHAVIOR OF THE RS, RM, ARM1 AND ARM2, WHEN

EACH ACHIEVES THE MAXIMUM DIMENSION SO THE ASSOCIATED REPAIR
SCHEME CAN BE APPLIED. OBSERVE THAT BY THE DISCUSSION ABOVE,

FOR EACH FAMILY OF CODES, limt→∞
b∗

nt
→ 0, WHICH MEANS THAT THE

FRACTION OF A CODEWORD THAT NEED TO BE TRANSMITTED TO REPAIR
ONE ERASED SYMBOL TENDS TO 0, EVEN FOR THE AUGMENTED CODES.

As expected, the augmented codes, which were designed to
maximize the rate of the code, have a higher repair bandwidth
as well, due to the trade-off between the rate of a code and
the bandwidth of its associated repair scheme. In the end,
neither of these schemes is objectively better than the other.
Any potential user should opt to use the scheme that best
deals with the parameter most important to their application,
whether that be one that requires high rate codes or one that
requires low bandwidth recovery.

VII. CONCLUSIONS

In this paper, we introduce a new family of evaluation
codes, called augmented Cartesian codes, along with repair
schemes for single and certain multiple erasures. They can be
designed to have higher rate than their traditional counterparts
and include as a special case augmented Reed-Muller codes.
In some circumstances, these repair schemes may have lower
bandwidth and bitwidth than comparable algebraic geometry
codes (such as Reed-Solomon or Hermitian codes). There are
parameter ranges in which repairing Reed-Solomon codes may
not be available, such as dimension between qt − qt−1 and
qt over Fqt . In some cases, augmented Reed-Muller codes
may be designed along with repair schemes for single or pairs
of erasures. More generally, we can use augmented Cartesian
codes to provide high-rate codes with repair schemes for single
erasures and certain pairs of erasures in those settings where
the augmented Reed-Muller codes are not.
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[13] H. H. López, G. L. Matthews and D. Valvo, Augmented Reed-Muller
Codes of High Rate and Erasure Repair, Proceedings of the IEEE, (2021),
to appear.
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