
Secure MatDot codes for secure distributed matrix
multiplication

Hiram H. López
Department of Mathematics and Statistics

Cleveland State University
Cleveland, Ohio 44115

Email: h.lopezvaldez@csuohio.edu

Gretchen L. Matthews
Department of Mathematics

Virginia Tech
Blacksburg, VA 24061

Email: gmatthews@vt.edu

Daniel Valvo
Department of Mathematics

Virginia Tech
Blacksburg, VA 24061

Email: vdaniel1@vt.edu

Abstract—The recently introduced MatDot codes achieve the
optimal recovery threshold for distributed matrix multiplication
schemes. This paper presents secure MatDot codes, a family of
codes that support secure distributed matrix multiplication via
a careful selection of evaluation points. Because of the threshold
optimality on MatDot codes, there is no scheme where the user
can recover AB after any S − 1 servers have finished where
S is the recovery threshold. However, under certain conditions,
the secure MatDot code has the property that the user can
also recover the matrix multiplication using less than S selected
servers. Thus, the secure MatDot code adds an alternative
way to compute the matrix multiplication by identifying the
fastest servers in advance. The discrete Fourier transform codes
have been recently studied as distributed matrix multiplication
schemes that provide security against the user. We show that
the secure MatDot codes may also provide protection against the
user. We offer scenarios where the discrete Fourier transform
code cannot be applied, but the secure MatDot may be utilized.

I. INTRODUCTION

The goal of a T -secure distributed matrix multiplication
(SDMM) scheme is to transmit from a source node to a user
the product of two matrices A and B, using N servers to
release the heavy multiplication duty so that even if T servers
collude, no information about A or B is revealed.

In this paper, we employ locally recoverable codes (also
known as codes with locality) in the polynomial code approach
recently introduced in [1]. The core idea is the following.
Consider matrices A and B defined over a finite field Fq.
Assume that A and B have been partitioned into smaller
matrices A1, . . . , AL1

and B1, . . . , BL2
, respectively, such

that the product AB depends of the products AiBj . Let
R1, . . . , RT , S1, . . . , ST be random matrices such that the size
of every Ri (resp., Si) is the same as Ai (resp., Bi). The
source node defines polynomials f(x) and g(x) to encode the
information from the matrices Ai, Ri, and Bi, Si, respectively.
The SDMM scheme transmits to the servers the values f(αi)
and g(αi) for certain αi ∈ Fq. The servers send to the user
the product f(αi)g(αi). The user recovers the polynomial
h(x) := f(x)g(x), or part of it, which contains the desired

The work of Hiram H. López was supported in part by the AMS–Simons
Travel Grant. The work of Gretchen L. Matthews was supported in part by
NSF under Grant DMS-1855136 and in part by the Commonwealth Cyber
Initiative. (Corresponding author: Hiram H. López.)

matrix multiplication AB. We focus on the inner product
partitioning given by A = [A1 · · ·AL], and B = [B1 · · ·BL],
such that AB = A1B1 + · · · + ALBL, where the products
AiBi have the same size.

In terms of security, several schemes using polynomial
codes have been proposed in the literature. For instance, in [2],
[1], the authors assume that the source node and the user are
the same, so both have access to the matrices Ai’s and Bi’s. Of
course, there is extensive work on coded matrix multiplication,
including [3], [4], [5], [6], [7], [8], [9].

This paper defines the secure MatDot codes. We consider
codes that are T -secure with T > 0; the source node differs
from the user. We say in this case that the scheme provides
security against the user to mean the user cannot get any
information about the matrices Ai’s, Bi’s, A, or B from any
collection of T servers. We also consider the case where the
source node, the servers, and the user have access to the
matrices. This may represent the user using their servers to
multiply A and B. Here, T = 0, and the source node equals
the user. In this context, the MatDot codes developed in [10]
outperform Polynomial codes [1] and the Algorithm-Based
Fault Tolerance algorithm [11]. Even more, MatDot codes
achieve the optimal recovery threshold, which is the minimum
number of successful (non-delayed, non-faulty) processing
servers required for completing the computation. We obtain an
improved way to compute AB in a MatDot code by selecting
adequate evaluation points. This alternative way depends on
the identification of the fastest servers in advance. We compare
the secure MatDot codes with the discrete Fourier transform
(DFT) code [12]. As we see in Section III, there are settings
in which the proposed secure MatDot codes can be used, but
the DFT scheme cannot be applied.

This paper is organized as follows. This section concludes
with preliminaries. Section II centers on the new code family.
Examples are found in Section III, followed by a conclusion
in Section IV

Preliminaries. We now define terms and helpful notation.
Let Fq be the finite field with q elements. The set of matrices
with entries in Fq of size a×b is denoted by Fa×b

q . A symbol
is an element in Fq. The following are important definitions
for an SDMM scheme. The Upload Cost is the total number of

symbols that the scheme requires to be uploaded to all of the
servers. The Download Cost is the total number of symbols
that the scheme requires to be transmitted from all the servers
to the user to calculate AB. The Download Rate is the ratio
of the number of symbols contained in the result AB to the
number of symbols the scheme requires to be downloaded, i.e

ac
Download Cost . The Total Cost is the total number of symbols
the scheme requires to be uploaded or downloaded in the
entire process of calculating AB, i.e., the upload cost plus the
download cost. The Total Rate R is the ratio of the number
of symbols of information contained in the result AB to the
total cost, i.e., R = ac

Total Cost .

The MatDot and secure MatDot codes rely on Reed-
Solomon codes. The Reed-Solomon code over Fq with evalu-
ation set S = {a1, . . . , an} ⊆ Fq and degree k ∈ Z+ is

RS(S, k) := {(f(a1), . . . , f(an)) | f ∈ Fq[x]<k}

where Fq[x]<k := {f ∈ Fq[x] : deg(f) < k}. Write ev(f) :=
(f(a1), . . . , f(an)). If S = Fq , the code is denoted RS(k).

Recall the dual of a code C ⊆ Fn
q is

C⊥ := {b ∈ Fn
q | a · b = 0, for all a ∈ C} ⊆ Fn

q .

Note that RS(k)⊥ = RS(n − k). It is convenient to write
[n] := {1, . . . , n}.

II. SECURE MATDOT CODES

We define a T -secure SDMM scheme referred to as the
secure MatDot code, inspired by the MatDot codes developed
in [10], and the locally recoverable codes considered by
Tamo and Barg [13]; see also [14]. For the rest of the
section, assume that q ≥ 3L + 2T − 1. We also consider
that A and B are matrices with inner product partitionings
A = [A1 · · ·AL] ∈ Fa×b

q and Bᵀ = [Bᵀ
1 · · ·B

ᵀ
L] ∈ Fc×b

q so
that AB = A1B1 + · · ·+ ALBL. Enumerate the elements of
the field Fq = {a1, . . . , an}, so n := q.

Theorem 2.1. Take F1 := {a1, . . . , aL} ⊆ Fq and a polyno-
mial H ∈ Fq[x]<n−2L−2T+1 such that H(a) = α ∈ Fq \ {0}
for all a ∈ F1. Define U := {ai ∈ Fq : H(ai) 6= 0}\F1. Con-
sider there are N = n− L servers, which are indexed by the
field elements aL+1, . . . , an. Then there is a T -secure SDMM
scheme, called the secure MatDot code, which determines the
product AB ∈ Fa×b

q by downloading the information from
either the servers indexed by U, or any 2L+ 2T − 1 servers.

Proof. Consider polynomials f, g ∈ Fq[x] such that f(ai) =
Ai and g(ai) = Bi, for i ∈ [L]; and f(ai) = Ri−L and
g(ai) = Si−L, for i ∈ [T + L] \ [L], where Ri ∈ Fa×b

qt and
Si ∈ Fb×c

qt are matrices chosen independently and at random
and deg f = deg g = L + T − 1. Set h(x) := f(x)g(x). As
deg(h) = 2L + 2T − 2, ev(h) ∈ RS(2L + 2T − 1). For all
i ∈ [L], h(ai) = f(ai)g(ai) = AiBi. Hence,

h(a1) + · · ·+ h(aL) = A1B1 + · · ·+ALBL = AB.

Therefore, AB may be determined by finding the sum∑L
i=1 h(ai). For i ∈ [n]\[L], upload f(ai) and g(ai) to server

ai. Notice that for any i ∈ [L], if any server had access to f(ai)
or g(ai) it would have access to some information about A or
B, namely, Ai or Bi. By [15, Lemma 2], the information in
the N servers is T -secure, meaning no T servers can collude
to obtain any information about A or B.

Next, to determine the sum
∑L

i=1 h(ai), consider the poly-
nomial H(x) ∈ Fq[x]<n−(2L+2T−1). As RS(n− 2L− 2T +
1) = RS(2L+ 2T − 1)⊥, we obtain

0 =

n∑
i=1

h(ai)H(ai) =

L∑
i=1

h(ai)H(ai) +

n∑
i=L+1

h(ai)H(ai).

Thus, by isolating the sum of interest,
L∑

i=1

h(ai)H(ai) = −
n∑

i=L+1

h(ai)H(ai).

Recall that H(ai) = α 6= 0 for all ai ∈ F1. Therefore,

AB =

L∑
i=1

h(ai) =
−1
α

n∑
i=L+1

h(ai)H(ai).

We obtain a T -secure SDMM scheme that finds AB using |U |
of the N = n− L servers.

Alternatively, as deg(h) = 2L + 2T − 2, the values of
h(x) at any 2L+2T − 1 elements of the field determines the
polynomial h(x). Thus, the transmission from any 2L+2T−1
servers to the user finds h(x), and the sum

∑L
i=1 h(ai).

It is important to highlight differences and similitudes
of Theorem 2.1 with related schemes. The following result
justifies the name secure MatDot codes.

Corollary 2.2. The threshold of the T -secure MatDot codes
is 2L+2T −1. In particular, if T = 0, we obtain the MatDot
codes, whose threshold is 2L − 1. In this case, the secure
MatDot codes will determine AB at least as fast as the MatDot
codes. In particular, the secure MatDot codes are faster if the
servers indexed by U finish before than any 2L− 1 servers.

Proof. By Theorem 2.1, the T -secure MatDot codes recover
AB when any 2L + 2T − 1 servers have finished. Thus, the
threshold is 2L + 2T − 1. If T = 0, we see that the T -
secure MatDot codes are the same as the MatDot codes by
construction.

The MatDot codes recover AB when any 2L − 1 servers
finish by construction. By the proof of Theorem 2.1, we see
that the secure MatDot code retrieves AB when either the
servers indexed by U, or any 2L− 1 servers finish.

Remark 2.3. Each server may take a different time to cal-
culate and transmit. Thus, just because the secure MatDot
codes contact fewer servers when |U | < 2L − 1 does not
imply the scheme will calculate the product AB faster. The
MatDot codes are faster if the servers indexed by U finish

before any 2L − 1 servers. Thus, identifying the |U | fastest
servers beforehand would guarantee that the secure MatDot
codes are faster than the MatDot codes.

Corollaries 2.6 and 2.7 give instances where the secure
MatDot codes are potentially faster than the MatDot codes.
We prove that if L divides q or divides q − 1, then there are
secure MatDot codes that determine the sum AB potentially
faster than any MatDot code with the same setup.

We can now calculate the upload, download, and total costs
of the secure MatDot codes.

Lemma 2.4. Given the setup in Theorem 2.1, the T -secure
MatDot codes have the following costs:

Upload =
(n
L
− 1
)
(ab+ bc),

Download =

{
|U |ac
L in case (i)

(2L+2T−1)ac
L in case (ii),

and Total Cost=(n
L
− 1
)
(ab+ bc) +

{
|U |ac
L in case (i)

(2L+2T−1)ac
L in case (ii).

where (i) happens when the servers indexed by U finish before
any 2L+ 2T − 1 servers, and (ii) otherwise.

Proof. First, we will determine the upload cost. Recall, that
the secure MatDot codes require the source node to transmit
f(ai) and g(ai) to server ai for all i ∈ {L+1, . . . , n}. Hence
(n − L)(abL + bc

L) elements of Fq must be transmitted in the
upload phase. Therefore,

Upload Cost = (n− L)
(
ab

L
+
bc

L

)
=
(n
L
− 1
)
(ab+ bc).

Next, we consider the download phase. In the secure MatDot
code, h(ai) = f(ai)g(ai) must be transmitted to the user from
each ai ∈ U = {ai ∈ Fq : H(ai) 6= 0} \ F1, or from any
2L+ 2T − 1 other servers. Thus,

Download =

{
|U |ac
L in case (i)

(2L+2T−1)ac
L in case (ii).

The Total Cost is a consequence of the previous cost calcula-
tions.

A. Security against the user

Observe that, in general, the MatDot codes and the secure
MatDot codes provide no security against the user. This
happens because the source node uploads the information to
the N = n − L servers. Thus, the user will have enough
information to recover the polynomial h(x) = f(x)g(x) and
the products AiBi, obtaining thus partial information about
the matrices A and B. As we prove now, the secure MatDot
codes may provide security against the user in some instances.

Theorem 2.5. Assume that |U | < 2T+2L−1 in Theorem 2.1.
If the source uses only the servers indexed by U, rather than
all the n − L servers, the T -secure MatDot codes provide
security against the user.

Proof. By the proof of Theorem 2.1, the user will be able
to recover AB =

∑L
i=1 h(ai) using only the servers indexed

by U. As |U | < 2T + 2L − 1, the user will not be able to
recover h(x) = f(x)g(x). Thus, the user has access only to
AB, rather than the components AiBi.

Recall N is the number of servers. Yu et al. use the N -th
roots of the unity of Fq to define the discrete Fourier transform
(DFT) codes [12]. The DFT codes give security against the
user providing N divides q−1 and N = L+2T. In Section III,
we see instances where the DFT codes can not be applied, but
the secure MatDot codes can.

B. Explicit constructions

Notice that constructing a low communication rate secure
MatDot code depends entirely on finding H polynomials with
small support, i.e., many zeros. The paper follows a few
specific constructions of H in various circumstances.

Corollary 2.6. Suppose q = pt and L ≤ p. There are T -secure
MatDot codes where the user downloads data from either

p

(⌊
2L+ 2T − 1

p

⌋
+ 1

)
− L

fixed servers, or any 2L + 2T − 1 servers. The up-
load cost is (nL − 1)(ab + bc). The download cost is(
p
(
b 2L+2T−1

p c+ 1
)
− L

)
acL−1 if the fixed servers finish

before any 2L + 2T − 1 servers, or (2L+ 2T − 1) acL−1

otherwise.

Proof. The field Fq = {a1, . . . , an} has a subfield, say F1 :=
{a1, . . . , ap}, isomorphic to Fp. Consider the additive cosets
of F1 in Fq: F1, F2, . . . , FM , where M := q

p . These cosets
partition Fq. Set ` := b 2L+2T−1

p c+ 1 and

H(x) :=

M∏
j=`+1

∏
ai∈Fj

(x− ai).

We claim that H satisfies the criteria in Theorem 2.1, meaning
H ∈ Fq[x]<n−2L−2T+1 and H(ai) = α for some α ∈ Fq\{0}
for all i ∈ [p]. Indeed,

deg(H) = (M − `)|F1| =
(
q

p
−
⌊
2L+ 2T − 1

p

⌋
− 1

)
p

< q − 2L− 2T + 1,

since all cosets have the same cardinality. By [13, Proposition
3.2], for any j ∈ [M], there is a polynomial hj such that
hj(a) = 0 for all a ∈ Fj and hj(a) = α ∈ Fq for all a ∈ Fi.
Then, H is the product of some of these hj’s. To be more

precise, H = h`+1 · · ·hM . Hence, H(x) =

M∏
j=`+1

∏
ai∈Fj

(x −

ai) is constant on F1. Observe that (x − ai) does not divide
H(x) for any i ∈ [L]. Thus, H(ai) 6= 0 for any ai ∈ F1.
Therefore, H(x) is non-zero and constant on F1.

By Theorem 2.1, the secure MatDot codes determine AB
using n−L servers with an upload cost of (nL − 1)(ab+ bc).
Recall U = {ai ∈ Fq : H(ai) 6= 0}\F1. Note in this instance
the zeros of H are apparent, so

U = {ai ∈ Fj | 1 ≤ j ≤ `} \ {a1, . . . , aL}.

If the servers indexed by U finish first than any 2L+ 2T − 1
servers, the download cost is

|U |ac
L

= (`p− L) ac
L

=

(
p

(⌊
2L+ 2T − 1

p

⌋
+ 1

)
− L

)
ac

L
.

Otherwise, the download cost is (2L+2T−1)ac
L .

Previous result applies if L ≤ d, where d divides either q
or q − 1. We illustrate now the case when d divides q − 1.

Corollary 2.7. Assume L ≤ d, where d divides q − 1. There
are T -secure MatDot codes where the user downloads data
from either

d

(⌊
2L+ 2T − 1

d

⌋
+ 1

)
− L+ 1

fixed servers, or any 2L+ 2T − 1 servers.

Proof. As d divides q − 1, there exists a subgroup F1 of the
cyclic group Fq \ {0} of size |F1| = d. The proof follows the
same lines as the proof of Corollary 2.6.

Remark 2.8. There are more constructions for the polynomial
H(x). See, for instance, [16].

III. EXAMPLES

This section gives comparative examples of the MatDot,
the secure MatDot, and the DFT codes. The DFT codes
provide security against the user provided that the field Fq

contains the N -th roots of the unity. The DFT codes are
used in Example 3.4. As we showed in Theorem 2.5, there
are instances where the secure MatDot codes also provide
security against the user. The secure MatDot codes with
security against the user are utilized in Example 3.5. The
associated costs of the DFT and the secure MatDot codes used
in Examples 3.4 and 3.5 are the same. Example 3.6 presents
a scenario where the proposed secure MatDot codes can be
used, but the DFT scheme cannot be applied.

First, consider the case where we want to multiply the
matrices A and B with entries in F9 using 9 servers. Assume
that we have the inner product partitions A = [A1A2A3] and
B = [B1B2B3] such that AB = A1B1 +A2B2 +A3B3.

Example 3.1. (MatDot codes) Define the following polyno-
mials in F9[x].

f(x) := A0 +A1x+A2x
2 and g(x) := B0 +B1x+B2x

2.

Assume F9 = {a1, . . . , a9}. For i ∈ {1, . . . , 9}, upload the
elements f(ai) and g(ai) to the server Pi. The server computes
f(ai)g(ai). When a server finishes, it sends the data to the
user. As the polynomial h(x) := f(x)g(x) has degree 4, the
user interpolates the polynomial h(x), and as a consequence,
recovers the values AiBi, after the first 5 servers have finished.

The number 5 is optimal and cannot be improved. There
is no scheme where the user can recover AB after any 4
servers have finished. The following example shows that if we
can identify the 3 fastest servers in advance, we can obtain
AB after these 3 servers have finished. We remark this is
an alternative way to compute AB. Thus, AB can also be
calculated if any other 5 servers end before the 3 fastest
servers.

Example 3.2. (Secure MatDot codes) Assume that F3 =
{a1, a2, a3}, and F9 = {a1, . . . , a9}, where {a4, a5, a6} =
1 + F3, and {a7, a8, a9} = 2 + F3. In other words, the sets
{a1, a2, a3}, {a4, a5, a6}, and {a7, a8, a9} are the cosets of
F3 ⊂ F9. Consider that servers P7, P8 and P9 are the fastest.
Define the polynomials f(x) and g(x) such that

f(a1) = A1, f(a2) = A2, f(a3) = A3, and
g(a1) = B1, g(a2) = B2, g(a3) = B3.

For i ∈ {1, . . . , 9}, upload to server Pi the elements f(ai)
and g(ai). The server computes f(ai)g(ai). When a server
finishes, it sends the data to the user. Note that the polynomials
f(x) and g(x) have degree 2 each. Thus h(x) := f(x)g(x) has
degree 4. This means that the vector (h(a1), . . . , h(a9)) is an
element of the [9, 5] RS code over F9. Define the polynomial

H(x) := (x− a4)(x− a5)(x− a6).

Note that the vector (H(a1), . . . ,H(a9)) is an element of the
[9, 4] RS code over F9, which is the dual of the [9, 5] RS code
over F9. Thus, we have (i) below is valid.

(i)
∑9

i=1 h(ai)H(ai) = 0.
(ii) H(a4) = H(a5) = H(a6) = 0.

(iii) α1 := H(a1) = H(a2) = H(a3) ∈ F9.
(iv) α2 := H(a7) = H(a8) = H(a9) ∈ F9.

Note that (ii) comes from the definition of H(x). (iii) and
(iv) come from the definition of H(x) and the fact that
{a1, a2, a3}, {a4, a5, a6}, and {a7, a8, a9} are the cosets of
F3 ⊂ F9.

Combining previous properties of H(x), we have

A =

3∑
i=1

AiBi =

3∑
i=1

f(ai)g(ai) =

3∑
i=1

h(ai)

= −α2

α1

9∑
i=7

h(ai)H(ai).

Consequently, the user recovers A when either the three
servers P7, P8, and P9, or any 5 other servers have finished.
The number 5 comes from Example 3.1.

Observe that the upload costs for the MatDot and the secure
MatDot codes utilized in Examples 3.1 and 3.2 are the same. If
the three fastest servers finished first as expected, the download
cost for the secure MatDot code is less than the MatDot code
download cost. In the worst-case scenario where there is a
delay for one of the fastest servers, the download costs for the
MatDot and the secure MatDot codes are the same.

Remark 3.3. Note that for an arbitrary L, the polynomials f
and g in the MatDot scheme will have degree L− 1. Hence,
h(x) = f(x)g(x) will have degree 2L − 2 and therefore the
user will need to contact 2L − 1 servers to interpolate. In
particular, the information from any 2L − 1 servers will be
enough to determine AB. Hence, if each server transmits h(ai)
as soon as computing, the MatDot scheme will be as fast as
the fastest 2L− 1 servers to compute and transmit.

A. Security against the user

Consider the case where we want to multiply the matrices
A and B with entries in F43, security T = 2, with the help
of 7 servers. Assume that we have the inner product partitions
A = [A1A2A3] and B = [B1B2B3] such that AB = A1B1 +
A2B2+A3B3. Let R1 and R2 be random matrices with entries
in F43 of size as Ai. Let S1 and S2 be random matrices with
entries in F43 of size as Bi.

Example 3.4. (DFT codes) Let α7, α
2
7, . . . , α

7
7 be the 7-th

roots of the unity in F43. Define the polynomials

f(x) := A1 +A2x+A3x
2 +R1x

3 +R2x
4, and

g(x) := B1 +B2x
−1 +B3x

−2 + S1x
−5 + S2x

−6.

For i ∈ {1, . . . , 7}, the source node uploads to the server
Pi the elements f(αi) and g(αi). The server computes
f(αi)g(αi). When a server finishes, it sends the data to the
user. By [12, Section III], the user recovers the matrix AB after
receiving the 7 symbols f(αi)g(αi). Note that the user cannot
recover the polynomial h(x) = f(x)g(x), as the information
of the 7 symbols is not enough.

Example 3.5. (Secure MatDot codes with security against the
user) Let F∗43 = {a1, . . . , a42} be the multiplicative group of
F43 and F1 := {a1, . . . , a3} the 3-rd roots of the unity in F43.
Assume a43 := 0 ∈ F43 and F1, . . . , F14 are the cosets of
F1 ⊂ F∗43. Define the polynomials f(x) and g(x) such that

f(a1) = A1, f(a2) = A2, f(a3) = A3, f(a4) = R1,

f(a5) = R2, g(a1) = B1, g(a2) = B2, g(a3) = B3

g(a4) = S1, and g(a5) = S2.

The source node uploads to server Pi the elements f(ai+3)
and g(ai+3), for i ∈ {1, . . . , 6}, and the elements f(a43)
and g(a43) to server P7. Every server computes f(ai)g(ai).
When a server finishes, it sends the data to the user. Note
that the polynomials f(x) and g(x) have degree 4 each. Thus
h(x) := f(x)g(x) has degree 8. This means that the vector
(h(a1), . . . , h(a43)) is an element of the [43, 9] RS code over

F43. Define the polynomial

H(x) :=

14∏
i=4

∏
a∈Fi

(x− a).

As deg(H(x)) = 33, the vector (H(a1), . . . ,H(a43)) is an
element of the [43, 34] RS code over F43, which is the dual
of the [43, 9] RS code over F43. Thus, we have (i) below is
valid.

(i)
∑43

i=1 h(ai)H(ai) = 0.
(ii) H(a10) = · · · = H(a42) = 0.

(iii) α := H(a1) = H(a2) = H(a3) ∈ F43.

Observe that (ii) comes from the definition of H(x). (iii)
is valid because of the definition of H(x) and the fact that
the Fi’s are the cosets of F1 ⊂ F∗43. Combining previous
properties of H(x), we have

A =

3∑
i=1

AiBi =

3∑
i=1

f(ai)g(ai) =

3∑
i=1

h(ai)

= − 1

α

(
9∑

i=4

h(ai)H(ai) + h(a43H(a43))

)
.

Consequently, the user recovers A after receiving the 7
symbols from the servers.

The DFT codes utilized in Example 3.4 and the secure Mat-
Dot codes constructed in Example 3.5 provide security against
the user. In both cases, the user cannot recover the matrices
AiBi as the information downloaded from the 7 servers is not
enough to interpolate the polynomial h(x) = f(x)g(x). In
addition, the associated costs of the two codes are the same.

Example 3.6 presents a scenario where the proposed secure
MatDot codes can be used, but the DFT scheme cannot be
applied.

Example 3.6. Consider the case where we want to multiply
the matrices A and B with entries in F19, security T = 2,
with the help of 7 servers. Assume that we have the inner
product partitions A = [A1A2A3] and B = [B1B2B3] such
that AB = A1B1 +A2B2 +A3B3. As 7 does not divide 18,
the field F19 has no 7-th roots of the unity. So we cannot
use DFT codes. As the field F19 has the 3-rd roots of the
unity. We can follow the same procedure as Example 3.5 to
use the secure MatDot codes. The associated costs are exactly
the costs of Example 3.5.

IV. CONCLUSION

This paper introduces secure MatDot codes by utilizing
locally recoverable codes into the MatDot construction. They
allow users to access the product AB of two matrices over
a finite field while obtaining no information about A or B.
Under some conditions, they return the product using fewer
than the number of servers required by the original MatDot
scheme. In addition, secure MatDot applies in some settings
where the DFT codes do not.

REFERENCES

[1] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Polynomial codes:
An optimal design for high-dimensional coded matrix multiplication,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, ser. NIPS’17. Red Hook, NY, USA: Curran
Associates Inc., 2017, p. 4406–4416.

[2] W.-T. Chang and R. Tandon, “On the capacity of secure distributed ma-
trix multiplication,” in 2018 IEEE Global Communications Conference
(GLOBECOM), 2018, pp. 1–6.

[3] G. Joshi, Y. Liu, and E. Soljanin, “On the delay-storage trade-off
in content download from coded distributed storage systems,” IEEE
Journal on Selected Areas in Communications, vol. 32, no. 5, pp. 989–
997, 2014.

[4] M. Aliasgari, J. Kliewer, and O. Simeone, “Coded computation against
processing delays for virtualized cloud-based channel decoding,” IEEE
Transactions on Communications, vol. 67, no. 1, pp. 28–38, 2019.

[5] A. Severinson, A. Graell i Amat, and E. Rosnes, “Block-diagonal
and lt codes for distributed computing with straggling servers,” IEEE
Transactions on Communications, vol. 67, no. 3, pp. 1739–1753, 2019.

[6] H. Yang and J. Lee, “Secure distributed computing with straggling
servers using polynomial codes,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 1, pp. 141–150, 2019.

[7] U. Sheth, S. Dutta, M. Chaudhari, H. Jeong, Y. Yang, J. Kohonen,
T. Roos, and P. Grover, “An application of storage-optimal matdot codes
for coded matrix multiplication: Fast k-nearest neighbors estimation,” in
2018 IEEE International Conference on Big Data (Big Data), 2018, pp.
1113–1120.

[8] H. Akbari-Nodehi and M. A. Maddah-Ali, “Secure coded multi-party
computation for massive matrix operations,” IEEE Transactions on
Information Theory, vol. 67, no. 4, pp. 2379–2398, 2021.

[9] M. Kim, H. Yang, and J. Lee, “Private coded matrix multiplication,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp.
1434–1443, 2020.

[10] S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and
P. Grover, “On the optimal recovery threshold of coded matrix mul-
tiplication,” IEEE Transactions on Information Theory, vol. 66, no. 1,
pp. 278–301, 2020.

[11] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518–528, 1984.

[12] N. Mital, C. Ling, and D. Gunduz, “Secure distributed matrix compu-
tation with discrete fourier transform,” 2021.

[13] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Transactions on Information Theory, vol. 60, no. 8, pp. 4661–
4676, 2014.

[14] A. Barg, I. Tamo, and S. Vlăduţ, “Locally recoverable codes on algebraic
curves,” IEEE Transactions on Information Theory, vol. 63, no. 8, pp.
4928–4939, 2017.

[15] R. A. Machado, R. G. L. D’Oliveira, S. E. Rouayheb, and D. Heinlein,
“Field trace polynomial codes for secure distributed matrix multiplica-
tion,” in 2021 XVII International Symposium ”Problems of Redundancy
in Information and Control Systems” (REDUNDANCY), 2021, pp. 188–
193.

[16] G. Micheli, “Constructions of locally recoverable codes which are
optimal,” IEEE Transactions on Information Theory, vol. 66, no. 1, pp.
167–175, 2020.

	Introduction
	Secure MatDot codes
	Security against the user
	Explicit constructions

	Examples
	Security against the user

	Conclusion
	References

