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Abstract. We consider ways in which multipoint algebraic geom-
etry codes may be viewed as subcodes of the more traditionally
studied one-point codes. Examples are provided to illustrate the
impact of choices made on this embedding.

1. Introduction

An m-point algebraic geometry (AG) code is constructed by evaluat-
ing functions which are allowed to have poles at m specified points on
a curve X over a finite field. While Goppa’s construction [6] certainly
encompasses multipoint codes, most subsequent work has focused on
the one-point case. While multipoint codes can have better parame-
ters than comparable one-point codes on the same curve [13], one-point
codes are certainly better understood. Recently, there has been more
work on multipoint codes [1, 2, 8, 9, 10, 11]. Here, we see that mul-
tipoint codes may be viewed as subcodes of the more traditionally
studied one-point codes and illustrate the impact of choices made on
this embedding.

Notation. Let X be a smooth, projective, absolutely irreducible
curve of genus g over a finite field F. The divisor of a rational function
f on X will be denoted by (f). Given a divisor A on X defined over
F, let L(A) be the set of rational functions f on X defined over F with
divisor (f) ≥ −A together with the zero function. The dimension of
L(A) as an F-vector space is denoted by `(A). Clearly, if A ≤ B for
divisors A and B on X, then L(A) ⊆ L(B).

Given distinct F-rational points P1, . . . , Pn, Q1, . . . , Qm on X, set
D := P1 + · · ·+ Pn and G := a1Q1 + · · ·+ amQm where ai ≥ 0. Then

CL(D, G) = {(f(Q1), f(Q2), . . . , f(Qn)) : f ∈ L(G)}
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is sometimes called an m-point code. We do not require the divisor D
to be supported by all F-rational points that are not in the support of
G. Excellent references for algebraic geometry codes include [7, 14, 15].

2. Embedding a multipoint code in a one-point code

Consider the multipoint code CL(D, G) from above. Since the field
F is finite, the group of divisor classes of degree zero has finite order.
Hence, there exists a rational function f with divisor

(f) = b2Q2 + · · ·+ bmQm − b1Q1

where bi ≥ ai for all 2 ≤ i ≤ m and b1 =
∑m

i=2 bi. Multiplication by f
induces an isomorphism of Riemann-Roch spaces

L (
∑m

i=1 aiQi) → L ((a1 + b1) Q1 − (
∑m

i=2 (bi − ai) Qi))
h 7→ fh

which gives rise to an isometry of codes

CL

(
D,

m∑
i=1

aiQi

)
∼= CL

(
D, (a1 + b1) Q1 −

(
m∑

i=2

(bi − ai) Qi

))
.

As a consequence, the m-point code CL (D, G) is isometric to a subcode
of the one-point code CL (D, (a1 + b1) P1).

3. Examples

While the existence of the function f above is guaranteed by the fact
that the class number of X is finite, this may not be that helpful in
finding the most appropriate function. To illustrate the effects of the
choice of f , we consider the following two examples.

Example 3.1. Consider the Hermitian curve X defined by yq + y =
xq+1 over Fq2 . Set G := 2(q + 1)P∞ +

∑
βq+β=0 P0β, and let D be the

sum of all other Fq2-rational points on X. Since the class number of X
is (q + 1)(q2 − q), there exists a function f such that

(f) = (q + 1)(q2 − q)
∑

βq+β=0

P0β − q(q + 1)(q2 − q)P∞.

Multiplication by f gives

fL(G) = L
(
(q4 − q2 − 2q − 2) P∞ − (q3 − q − 1)

∑
βq+β=0 P0β

)
⊆ L ((q4 − q2 − 2q − 2) P∞) .

Therefore, the (q + 1)-point code CL(D, G) is isometric to a subcode
of the one-point code CL (D, (q4 − q2 − 2q − 2) P∞). The dimension of

superspace is ` ((q4 − q2 − 2q − 2) P∞) = q4 − 3q2

2
− 3q

2
− 1 while the
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dimension of the original vector space is `(G) = 9. Therefore, while
CL(D, G) ⊆ CL(D, (q4 − q2 − 2q − 2) P∞), it is difficult to glean infor-
mation about CL(D, G) by studying the larger code.

It may be possible to find a more appropriate function f . Given any
Fq2-rational point Pab on X, the rational function τab := y−b−aq(x−a)
has divisor (τab) = (q + 1) Pab−(q + 1) P∞ [12]. Hence, a natural choice
for the function f would be f =

∏
βq+β=0 τ0β. This gives

fL(G) = L

(q2 + 3q + 2
)
P∞ − q

∑
βq+β=0

P0β

 ⊆ L
((

q2 + 3q + 2
)
P∞
)
.

Here, the difference in dimensions of the Riemann-Roch spaces is much
smaller as `

((
q2 + 3q + 2

)
P∞
)

= q2

2 + 7q
2 + 3.

Taking f = x gives xL(G) = L ((3q + 2) P∞). Now, we can see
that CL(D, G) ∼= CL (D, (3q + 2) P∞) ; that is, the (q + 1)-point code
CL(D, G) is isometric to the one-point code CL (D, (3q + 2) P∞). There-
fore, the exact parameters of CL(D, G) can be determined [16]. From
this, one may conclude that there is no need to consider the possibly
more complicated (q +1)-point code since it is isometric to a one-point
code. Note that not all multipoint codes are isometric to one-point
codes [13].

Example 3.2. Again, let X be defined by yq +y = xq+1 over Fq2 . Let c
be a positive integer, and fix an Fq2-rational point Pab on X with a 6= 0.
Set G = cP∞ + (q + 2)Pab +

∑
βq+β=0, β 6=0 P0β +

∑
βq+β=aq+1, β 6=b Paβ,

and take D to be the sum of all other Fq2-rational points.
Taking f = τ 2

ab

∏
βq+β=0,β 6=0 (y − β)

∏
βq+β=aq+1,β 6=b (y − β) yields

fL(G) = L
((

2q2 + 2q + c
)
P∞ − qPab − A

)
⊆ L

((
2q2 + c− 2

)
P∞
)

where A := q
∑

βq+β=0, β 6=0 P0β +
∑

βq+β=aq+1, β 6=b

∑
βq+β=αq+1, α 6=a Pαβ.

This is a bit troubling as the subcode we are interested in is defined
by the Riemann-Roch space of a divisor supported by many points.
In particular, bases for this Riemann-Roch space are not known for
arbitrary q. Moreover, the supports of A and D have points in common.
While this could corrected by redefining D, it changes the code length.
In effect, this would require that one consider in advance the supports
of the principal divisors in question to even know the code length. In
light of this, we instead multiply by x (x− a) τab to obtain

x (x− a) τabL(G) = L ((3q + c + 1) P∞ − P00) .

Bases for the associated Riemann-Roch space and for the code may
now be determined as in [12].
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4. Conclusion

The idea of studying subcodes of one-point codes is not a new one
(see, for instance, [3, 4, 5, 7]). The thrust of our approach is that
improved bounds on the parameters are known for certain multipoint
codes, enabling one to identify subcodes with good parameters. Then,
viewing a multipoint code C as a subcode of a one-point code C ′ may
provide additional insight into C. Moreover, it may yield a simplified
decoding algorithm for C, a topic to be addressed in another paper.
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