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Abstract—This paper presents secure MatDot codes, a fam-
ily of evaluation codes that support secure distributed matrix
multiplication via a careful selection of evaluation points that
exploit the properties of the dual code. We show that the secure
MatDot codes provide security against the user by using locally
recoverable codes. These new codes complement the recently
studied discrete Fourier transform codes for distributed matrix
multiplication schemes that also provide security against the user.
There are scenarios where the associated costs are the same for
both families and instances where the secure MatDot codes offer
a lower cost. In addition, the secure MatDot code provides an
alternative way to handle the matrix multiplication by identifying
the fastest servers in advance. In this way, it can determine
a product using fewer servers, specified in advance, than the
MatDot codes which achieve the optimal recovery threshold for
distributed matrix multiplication schemes.

I. INTRODUCTION

The goal of a T -secure distributed matrix multiplication
(SDMM) scheme is to transmit from a source node to a user
the product of two matrices A and B, using N servers to
release the heavy multiplication duty so that even the collusion
of T servers reveals no information about A or B to the
servers. In this paper, we are also interested in having security
against the user, which means that the final user gets no partial
information about A or B. We introduce locally recoverable
codes (also known as codes with locality) into the polynomial
code approach recently introduced in [1] to infuse security into
the scheme and at times provide speed ups or lower costs. The
core idea is using a specific set of evaluation points to allow the
dual code to play a crucial role in the multiplication process.

Consider matrices A and B defined over a finite field Fq.
Assume that A and B have been partitioned into smaller
matrices A1, . . . , AL1

and B1, . . . , BL2
, respectively, such

that the product AB depends on the products AiBj . Let
R1, . . . , RT , S1, . . . , ST be random matrices such that the size
of every Ri (resp., Si) is the same as Ai (resp., Bi). The
source node defines polynomials f(x) and g(x) to encode the
information from the matrices Ai, Ri, and Bi, Si, respectively.
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The SDMM scheme transmits to the servers the values f(αi)
and g(αi) for certain αi ∈ Fq. The servers send to the user
the product f(αi)g(αi). The user recovers the polynomial
h(x) := f(x)g(x), or part of it, which contains the desired
matrix multiplication AB. We focus on the inner product
partitioning given by A = [A1 · · ·AL] and B = [B1 · · ·BL],
such that AB = A1B1 + · · · + ALBL, where the products
AiBi have the same size.

As detailed below, the approach considered here is distinct
from that given in [2], [3], [4] in its use of locally recoverable
codes to provide security against the user (meaning the user
cannot retrieve information about the Ai’s and Bi’s or the
factors of AB) and allow for various sets of nodes (possibly
non-systematic) to aid in the recovery of AB without revealing
the polynomial h. Each coordinate j of a locally recoverable
code C has a (small) set Rj of other coordinates such that
for each codeword c ∈ C, the jth coordinate of c depends
only on the entries in the positions Rj . The set Rj is called
a recovery set for j. Hence, combinations of recovery sets
may be used to uncover AB rather than relying only on
systematic nodes as done in [2], [3], [4]. This feature is a
primary motivation to use locally recoverable codes and is one
novel aspect of the new scheme. In terms of security, several
schemes using polynomial codes have been proposed in the
literature. For instance, in [1], [5], the authors assume that the
source node and the user are the same, so both have access to
the matrices Ai’s and Bi’s. There is extensive work on coded
matrix multiplication; see [6], [7], [8], [9], [10], [11], [12].

This paper defines the secure MatDot codes, a T -SDMM
scheme, which provides security against the user. An SDMM
scheme provides security against the user when the user
cannot get any information about the matrices Ai’s, Bi’s, A,
or B from any collection of T servers. The fact that the
secure MatDot scheme ensures no T servers can collude to
reveal information about A or B relies on [18]. As we prove
in Theorem 2.3, the secure MatDot codes provide security
against the user by relying on specified servers. We compare
the secure MatDot codes with the discrete Fourier transform
(DFT) code [13] and improve MatDot by taking non-systemic
nodes besides the classical systematic nodes. To the best of
our knowledge, only DFT, which is a T -SDMM scheme that



provides security against the user. We will highlight examples
that show that when the new scheme and the DFT can be
used, our scheme provides a lower cost. In Corollary 2.7, we
give conditions where the secure MatDot and the DFT codes
have similar associated costs. Example 3.3 presents a setting in
which the proposed secure MatDot codes can be used, but the
DFT scheme could not be applied because of the restriction on
the number of servers, which must divide q− 1. Relaxing the
condition on the number of servers is possible, but it results
in the cost of DFT is greater than the secure MatDot codes.
Remark 3.4 shows a scenario where DFT could not be applied
because we would need as many servers as the field size, but
the MatDot codes avoid that restriction.

We also consider in this paper the case where the source
node, the servers, and the user have access to the matrices.
This may represent the user using their servers to multiply A
and B. In this context, the MatDot codes developed in [14]
outperform Polynomial codes [1] and the Algorithm-Based
Fault Tolerance algorithm [15]. Even more, MatDot codes
achieve the optimal recovery threshold, which is the minimum
number of successful (non-delayed, non-faulty) processing
servers required for completing the computation. We obtain an
improved way to compute AB in a MatDot code by selecting
adequate evaluation points. This alternative way depends on
the identification of the fastest servers in advance.

This paper is organized as follows. This section concludes
with preliminaries. Section II centers on the new code family.
Examples are found in Section III, followed by a conclusion
in Section IV

Preliminaries. Let Fq be the finite field with q elements
and F∗q := Fq \ {0}. The set of matrices with entries in Fq of
size a× b is denoted by Fa×b

q . A symbol is an element in Fq.
The Upload Cost is the total number of symbols the scheme
requires to upload to all servers. The Download Cost is the
total number of symbols the scheme must transmit from all
the servers to the user to calculate AB. The Total Cost is the
upload cost plus the download cost.

The Reed-Solomon code over Fq with evaluation set S =
{a1, . . . , an} ⊆ Fq and degree k ∈ Z+ is

RSq(S, k) := {(f(a1), . . . , f(an)) | f ∈ Fq[x]<k}

where Fq[x]<k := {f ∈ Fq[x] : deg(f) < k}. Write ev(f) :=
(f(a1), . . . , f(an)). If S = Fq , the code is denoted RSq(k).

Recall the dual of a code C ⊆ Fn
q is

C⊥ := {b ∈ Fn
q | a · b = 0, for all a ∈ C} ⊆ Fn

q .

Note that RSq(k)
⊥ = RSq(n−k). We write [n] := {1, . . . , n}.

II. SECURE MATDOT CODES

We define a T -secure SDMM scheme referred to as the
secure MatDot code, inspired by the MatDot codes developed
in [14], and the locally recoverable codes considered by Tamo
and Barg [16]; see also [17]. From now on, assume that q ≥
3L + 2T − 1. We also consider that A and B are matrices

with inner product partitionings A = [A1 · · ·AL] ∈ Fa×b
q and

Bᵀ = [Bᵀ
1 · · ·B

ᵀ
L] ∈ Fc×b

q so that Ai ∈ Fa× b
L

q , Bi ∈ F
b
L×c
q ,

and AB = A1B1 + · · · + ALBL. Enumerate the elements of
the field Fq = {a1, . . . , an}, so n := q.

Theorem 2.1. Take F1 := {a1, . . . , aL} ⊆ Fq and a poly-
nomial H ∈ Fq[x]<n−2L−2T+1 such that H|F1

= α ∈ F∗q .
Define U := {ai ∈ Fq : H(ai) 6= 0} \ F1. Consider there
are N = n − L servers, which are indexed by the field
elements aL+1, . . . , an. Then, there is a T -secure SDMM
scheme, called the secure MatDot code, which determines the
product AB ∈ Fa×b

q by downloading the information from
either the servers indexed by U, or any 2L+ 2T − 1 servers.

Proof. Consider polynomials f, g ∈ Fq[x] such that f(ai) =
Ai and g(ai) = Bi, for i ∈ [L]; and f(ai) = Ri−L and
g(ai) = Si−L, for i ∈ [T + L] \ [L], where Ri ∈ Fa×b

q and
Si ∈ Fb×c

q are matrices chosen independently and at random
and deg f = deg g = L + T − 1. Set h(x) := f(x)g(x). As
deg(h) = 2L + 2T − 2, ev(h) ∈ RSq(2L + 2T − 1). For all
i ∈ [L], h(ai) = f(ai)g(ai) = AiBi. Hence,

h(a1) + · · ·+ h(aL) = A1B1 + · · ·+ALBL = AB.

Therefore, AB may be determined by finding the sum∑L
i=1 h(ai). For i ∈ [n]\[L], upload f(ai) and g(ai) to server

ai. Notice that for any i ∈ [L], if any server had access to f(ai)
or g(ai) it would have access to some information about A or
B, namely, Ai or Bi. By [18, Lemma 2], the information in
the N servers is T -secure, meaning no T servers can collude
to obtain any information about A or B.

Next, to determine the sum
∑L

i=1 h(ai), consider the poly-
nomial H(x) ∈ Fq[x]<n−(2L+2T−1). As RS(n− 2L− 2T +
1) = RS(2L+ 2T − 1)⊥, we obtain

0 =

n∑
i=1

h(ai)H(ai) =

L∑
i=1

h(ai)H(ai) +

n∑
i=L+1

h(ai)H(ai).

Thus, by isolating the sum of interest,
L∑

i=1

h(ai)H(ai) = −
n∑

i=L+1

h(ai)H(ai).

Recall that H(ai) = α 6= 0 for all ai ∈ F1. Therefore,

AB =

L∑
i=1

h(ai) =
−1
α

n∑
i=L+1

h(ai)H(ai).

We obtain a T -secure SDMM scheme that finds AB using |U |
of the N = n− L servers.

Alternatively, as deg(h) = 2L + 2T − 2, the values of
h(x) at any 2L+2T − 1 elements of the field determines the
polynomial h(x). Thus, the transmission from any 2L+2T−1
servers to the user finds h(x), and the sum

∑L
i=1 h(ai).

We can now calculate the secure MatDot codes costs.



Lemma 2.2. Given the setup in Theorem 2.1, the T -secure
MatDot codes have the following costs:

Upload = (n− L)
(
ab

L
+
bc

L

)
and

Download =

{
|U |ac in case (i)

(2L+ 2T − 1) ac in case (ii),

where (i) happens when the servers indexed by U finish before
any 2L+ 2T − 1 servers, and (ii) otherwise.

Proof. The secure MatDot codes require the source node to
transmit f(ai) and g(ai) to server ai for all i ∈ {L+1, . . . , n}.
Hence (n− L)(abL + bc

L ) elements of Fq must be transmitted
in the upload phase. For the download phase. In the secure
MatDot code, h(ai) = f(ai)g(ai) must be transmitted to the
user from each ai ∈ U = {ai ∈ Fq : H(ai) 6= 0}\F1, or from
any 2L+ 2T − 1 other servers. Thus, the result follows.

Observe that, in general, the MatDot codes and the secure
MatDot codes provide no security against the user because
the source node uploads the information to the N = n −
L servers. Thus, the user will have enough information to
recover the polynomial h(x) = f(x)g(x) and the products
AiBi, obtaining thus partial information about the matrices A
and B. As we prove now, the secure MatDot codes provide
security against the user when we do not use all the servers.

Theorem 2.3. Assume that |U | < 2T+2L−1 in Theorem 2.1.
If the source uses only the servers indexed by U, rather than
all the n−L servers, the secure MatDot codes provide security
against the user with the following costs:

Upload = |U |
(
ab

L
+
bc

L

)
and Download = |U |ac.

Proof. By the proof of Theorem 2.1, the user will be able
to recover AB =

∑L
i=1 h(ai) using only the servers indexed

by U. As |U | < 2T + 2L − 1, the user will not be able to
recover h(x) = f(x)g(x). Thus, the user has access only to
AB, rather than the components AiBi.

We can construct the polynomials f and g from the proof
of Theorem 2.1 via Lagrange interpololation [19]. As U ⊆
Fq\F1, for every element u in U , we have that h(u) is a linear
combination with nonzero constants of the elements AiBj ,
AiSj , RiBj , and RiSj . Thus, the element h(u) is not leaking
information about Ai or Bi.

Remark 2.4. Recall N represents the number of servers. Mital
et al. use the N -th roots of the unity of Fq to define the DFT
codes [13] with the following cost:

Upload = N

(
ab

L
+
bc

L

)
.

The DFT codes give security against the user providing N |
q − 1 and N = L+ 2T.

If the number of servers is fixed, we see in Section III
instances where the DFT codes may not be utilized because
of the restriction that N | q − 1. But if we allow to easy the
restriction on the number of servers, the secure MatDot costs
are lower than the DFT costs.

It is important to highlight differences and similitudes
of Theorem 2.1 with related schemes. The following result
justifies the name secure MatDot codes.

Corollary 2.5. The threshold of the MatDot codes is 2L+2T−
1. If T = 0, we obtain the MatDot codes, whose threshold is
2L − 1. The secure MatDot codes determine AB as fast as
the MatDot codes, and faster when |U | < 2L− 1 and servers
indexed by U finish before any 2L− 1 servers.

Proof. By Theorem 2.1, the T -secure MatDot codes recover
AB when any 2L + 2T − 1 servers have finished. Thus, the
threshold is 2L + 2T − 1. If T = 0, we see that the T -
secure MatDot codes are the same as the MatDot codes by
construction.

The MatDot codes recover AB when any 2L − 1 servers
finish by construction. By the proof of Theorem 2.1, we see
that the secure MatDot code retrieves AB when either the
servers indexed by U, or any 2L− 1 servers finish.

Remark 2.6. The secure MatDot codes are faster if the
servers indexed by U finish before any 2L− 1 servers. Thus,
identifying the |U | fastest servers beforehand would guarantee
that the secure MatDot codes are faster than the MatDot codes.

A. Explicit constructions

Notice that constructing a secure MatDot code depends
entirely on finding H polynomials with small support, i.e.,
many zeros. The paper follows a few specific constructions
of H in various circumstances. It is important to remark that
there are more constructions. See, for instance, [16], [20], [21].

Corollary 2.7. Assume N = 2T +L. If L | N − 1, L | q− 1,
and N | q− 1, then the secure MatDot codes and DFT codes
have the same costs.

Proof. Consider N − 1 = (r − 1)L, for some integer r.
Let F1 be the set of L-th roots of the unitity in Fq and
F1, . . . , Fr, . . . , F q−1

L
the multiplicative cosets of F1. Define

U := F2 ∪ . . . ∪ Fr ∪ {0} and the annulator polynomial

H(x) :=

q−1
L∏

j=r+1

∏
ai∈Fj

(x− ai).

As H|F1 = α ∈ F∗q , deg(H) =
(
q−1
L − r

)
L = q − 1− rL =

n− 2L− 2T , and U = {ai ∈ Fq : H(ai) 6= 0} \ F1, then we
can apply Theorem 2.1. Note that |U | < 2T + 2L − 1. So
we obtain security against the user by Theorem 2.3. Finally,
as |U | = N , the costs from the secure MatDot code and the
DFT codes are the same by Remark 2.4 and Theorem 2.3.



Corollary 2.8. Suppose q = pt and L ≤ p. There are secure
MatDot codes where the user downloads data from either

p

(⌊
2L+ 2T − 1

p

⌋
+ 1

)
− L

fixed servers, or any 2L+ 2T − 1 servers.

Proof. The field Fq = {a1, . . . , an} has a subfield, say F1 :=
{a1, . . . , ap}, isomorphic to Fp. Consider the additive cosets
of F1 in Fq: F1, F2, . . . , FM , where M := q

p . These cosets
partition Fq. Set ` := b 2L+2T−1

p c+ 1 and

H(x) :=

M∏
j=`+1

∏
ai∈Fj

(x− ai).

We claim that H satisfies the criteria in Theorem 2.1, meaning
H ∈ Fq[x]<n−2L−2T+1 and H(ai) = α for some α ∈ Fq\{0}
for all i ∈ [p]. Indeed,

deg(H) = (M − `)|F1| =
(
q

p
−
⌊
2L+ 2T − 1

p

⌋
− 1

)
p

< q − 2L− 2T + 1,

since all cosets have the same cardinality. By [16, Proposition
3.2 ], for any j ∈ [M ], there is a polynomial hj such that
hj(a) = 0 for all a ∈ Fj and hj(a) = α ∈ Fq for all a ∈ Fi.
Then, H is the product of some of these hj’s. To be more

precise, H = h`+1 · · ·hM . Hence, H(x) =

M∏
j=`+1

∏
ai∈Fj

(x −

ai) is constant on F1. Observe that (x − ai) does not divide
H(x) for any i ∈ [L]. Thus, H(ai) 6= 0 for any ai ∈ F1.
Therefore, H(x) is non-zero and constant on F1.

Recall U = {ai ∈ Fq : H(ai) 6= 0} \ F1. Note in this
instance the zeros of H are apparent, so

U = {ai ∈ Fj | 1 ≤ j ≤ `} \ {a1, . . . , aL}.

Thus, the user downloads data from

|U | = p

(⌊
2L+ 2T − 1

p

⌋
+ 1

)
− L

fixed servers or any 2L+ 2T − 1 servers.

Remark 2.9. Previous result applies if L ≤ d, where d | q or
d | q − 1. We illustrate now the case when d | q − 1.

Corollary 2.10. Assume L ≤ d, where d | q − 1. There are
secure MatDot codes where the user downloads data from

d

(⌊
2L+ 2T − 1

d

⌋
+ 1

)
− L+ 1

fixed servers or any 2L+ 2T − 1 servers.

Proof. As d | q − 1, there exists a subgroup F1 of the cyclic
group Fq \ {0} of size |F1| = d. The proof follows the same
lines as the proof of Corollary 2.8.

III. EXAMPLES

This section gives comparative examples of the secure
MatDot, the DFT, and the MatDot codes.

Consider the case where we want to multiply the matrices
A and B with entries in F43, security T = 2, with the help
of 7 servers. Assume that A = [A1A2A3] and B = [B1B2B3]
such that AB = A1B1 + A2B2 + A3B3. Let R1 and R2 be
random matrices with entries in F43 of size as Ai. Let S1 and
S2 be random matrices with entries in F43 of size as Bi.

Example 3.1. (DFT codes) Let α7, α
2
7, . . . , α

7
7 be the 7-th

roots of the unity in F43. Define the polynomials

f(x) := A1 +A2x+A3x
2 +R1x

3 +R2x
4, and

g(x) := B1 +B2x
−1 +B3x

−2 + S1x
−5 + S2x

−6.

For i ∈ {1, . . . , 7}, the source node uploads to the server
Pi the elements f(αi) and g(αi). The server computes
f(αi)g(αi). When a server finishes, it sends the data to the
user. By [13, Section III], the user recovers the matrix AB after
receiving the 7 symbols f(αi)g(αi). Note that the user cannot
recover the polynomial h(x) = f(x)g(x), as the information
of the 7 symbols is not enough.

Example 3.2. (Secure MatDot codes with security against the
user) Let F∗43 = {a1, . . . , a42} be the multiplicative group of
F43 and F1 := {a1, a2, a3} the 3-rd roots of the unity in F43.
Assume a43 := 0 ∈ F43 and F1, . . . , F14 are the multiplicative
cosets of F1. Define the polynomials f(x) and g(x) such that

f(ai) = Ai, f(a4) = R1, f(a5) = R2,

g(ai) = Bi, g(a4) = S1, and g(a5) = S2, for i ∈ {1, 2, 3}.

The source node uploads to server Pi the elements f(ai+3)
and g(ai+3), for i ∈ {1, . . . , 6}, and the elements f(a43) and
g(a43) to server P7. Every server computes f(ai)g(ai). When
a server finishes, it sends the data to the user. Note that f(x)
and g(x) have degree 4. Thus h(x) := f(x)g(x) has degree
8 and (h(a1), . . . , h(a43)) ∈ RS43(9). Define

H(x) :=

14∏
i=4

∏
a∈Fi

(x− a).

As deg(H(x)) = 33, the vector (H(a1), . . . ,H(a43)) is an
element of RS43(34), which is the dual of RS43(9). Thus, we
have

∑43
i=1 h(ai)H(ai) = 0. Observe that H(a10) = · · · =

H(a42) = 0. Moreover, α := H(a1) = H(a2) = H(a3) ∈
F43 since the Fi’s are the cosets of F1 ⊆ F∗43. Thus,

A =

3∑
i=1

AiBi =

3∑
i=1

f(ai)g(ai) =

3∑
i=1

h(ai)

= − 1

α

(
9∑

i=4

h(ai)H(ai) + h(a43)H(a43)

)
.

Consequently, the user recovers A after receiving the 7 sym-
bols from the servers.



The DFT codes utilized in Example 3.1 and the secure Mat-
Dot codes constructed in Example 3.2 provide security against
the user. In both cases, the user cannot recover the matrices
AiBi as the information downloaded from the 7 servers is not
enough to interpolate the polynomial h(x) = f(x)g(x). In
addition, the associated costs of the two codes are the same.

Example 3.3 presents a scenario where the secure MatDot
codes can be used, but the DFT scheme cannot be applied.
If we decide to relax the condition on the number of servers,
then the cost of DFT is greater than the secure MatDot codes.

Example 3.3. Suppose we want to multiply the matrices A
and B with entries in F19, security T = 2, with the help of 7
servers. Assume that A = [A1A2A3] and B = [B1B2B3] such
that AB = A1B1+A2B2+A3B3. As 7 - 18, F19 has no 7-th
roots of the unity and we cannot use DFT codes. As F19 has
the 3-rd roots of the unity, we can follow the same procedure
as Example 3.2 to use the secure MatDot codes. The upload
cost is 7

3 (ab+ bc). If we relax the condition on the number
of servers, then we can use the DFT codes with N = 6. As
T = 2 and N = L + 2T , then L = 2. By Remark 2.4, the
upload cost for the DFT code is 6

2 (ab+ bc).

Remark 3.4. Note that if q = 2t and q − 1 is a prime, for
instance, q = 32, then the DFT could not be applied because
we would need as many servers as the size of the field. By
Remark 2.9, we can use secure MatDot codes because there
are groups of order 2` in Fq , for all ` ≤ t.

Suppose now we want to multiply the matrices A and B
with entries in F9 using 9 servers. Assume that A = [A1A2A3]
and B = [B1B2B3] such that AB = A1B1 +A2B2 +A3B3.

Example 3.5. (MatDot codes) Consider

f(x) := A0+A1x+A2x
2, g(x) := B0+B1x+B2x

2 ∈ F9[x].

Assume F9 = {a1, . . . , a9}. For i ∈ {1, . . . , 9}, upload f(ai)
and g(ai) to the server Pi. The server computes f(ai)g(ai).
When a server finishes, it sends the data to the user. Ash(x) :=
f(x)g(x) has degree 4, the user interpolates h(x), and then
recovers the values AiBi, after the first 5 servers have finished.

The number 5 is optimal and cannot be improved. There
is no scheme where the user can recover AB after any 4
servers have finished. The following example shows that if we
can identify the 3 fastest servers in advance, we can obtain
AB after these 3 servers have finished. We remark this is
an alternative way to compute AB. Thus, AB can also be
calculated if any other 5 servers end before the 3 fastest
servers.

The next example highlights the use of non-systematic
nodes.

Example 3.6. (Secure MatDot codes) Assume that F3 =
{a1, a2, a3}, and F9 = {a1, . . . , a9}, where {a4, a5, a6} =
1 + F3, and {a7, a8, a9} = 2 + F3. In other words, the sets
{a1, a2, a3}, {a4, a5, a6}, and {a7, a8, a9} are the cosets of

F3 ⊆ F9. Consider that servers P7, P8 and P9 are the fastest.
Define the polynomials f(x) and g(x) such that

f(a1) = A1, f(a2) = A2, f(a3) = A3, and
g(a1) = B1, g(a2) = B2, g(a3) = B3.

For i ∈ {1, . . . , 9}, upload to server Pi the elements f(ai)
and g(ai). The server computes f(ai)g(ai). When a server
finishes, it sends the data to the user. Note that the polynomials
f(x) and g(x) have degree 2 each. Thus h(x) := f(x)g(x) has
degree 4. This means that the vector (h(a1), . . . , h(a9)) is an
element of the [9, 5] RS code over F9. Define the polynomial

H(x) := (x− a4)(x− a5)(x− a6).

Note that the vector (H(a1), . . . ,H(a9)) is an element of
the [9, 4] RS code over F9, which is the dual of the [9, 5]
RS code over F9. Thus,

∑9
i=1 h(ai)H(ai) = 0. Note that

H(a4) = H(a5) = H(a6) = 0. Moreover, α1 := H(a1) =
H(a2) = H(a3), α2 := H(a7) = H(a8) = H(a9) ∈ F9 since
{a1, a2, a3}, {a4, a5, a6}, and {a7, a8, a9} are the cosets of
F3 ⊆ F9. Thus,

A =

3∑
i=1

AiBi =

3∑
i=1

f(ai)g(ai) =

3∑
i=1

h(ai)

= −α2

α1

9∑
i=7

h(ai)H(ai).

Consequently, the user recovers A when either the three
servers P7, P8, and P9, or any 5 other servers have finished.

Observe that the upload costs for the MatDot and the secure
MatDot codes utilized in Examples 3.5 and 3.6 are the same. If
the three fastest servers finished first as expected, the download
cost for the secure MatDot code is less than the MatDot code
download cost. In the worst-case scenario where there is a
delay for one of the fastest servers, the download costs for the
MatDot and the secure MatDot codes are the same.

Remark 3.7. Note that for an arbitrary L, the polynomials f
and g in the MatDot scheme will have degree L− 1. Hence,
h(x) = f(x)g(x) will have degree 2L − 2 and therefore the
user will need to contact 2L − 1 servers to interpolate. In
particular, the information from any 2L − 1 servers will be
enough to determine AB. Hence, if each server transmits h(ai)
as soon as computing, the MatDot scheme will be as fast as
the fastest 2L− 1 servers to compute and transmit.

IV. CONCLUSION

This paper introduces secure MatDot codes by utilizing
locally recoverable codes in the MatDot construction. The
secure MatDot codes provide security against the user when
the source uses specific servers. The secure MatDot codes
return the product faster than the original MatDot scheme
when particular servers finish first. Advantages of the new
scheme over DFT are considered, though a full investigation
of the complexities remains.
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