PUBLICATIONS

  • H. López and G. L. Matthews, Multivariate Goppa codes, IEEE Transactions on Information Theory, to appear

  • H. H. López, G. L. Matthews and D. Valvo, Secure MatDot codes for secure distributed matrix multiplication, 2022 IEEE Information Theory Workshop (ITW), to appear

  • G. L. Matthews and A. W. Murphy, Norm-trace-lifted codes over binary fields, IEEE International Symposium on Information Theory (ISIT), 2022, to appear

  • A. Beemer, R. Kshirsagar, and G. L. Matthews, Graph-based codes for hierarchical recovery, IEEE International Symposium on Information Theory (ISIT), 2022, to appear

  • H. H. López, G. L. Matthews and D. Valvo, Erasures repair for decreasing monomial-Cartesian and augmented Reed-Muller codes of high rate, IEEE Transactions on Information Theory, vol. 68, no. 3, pp. 1651-1662, 2022, doi: 10.1109/TIT.2021.3130096.

  • G. L. Matthews and S. Timmel, Polar Coding for Information Regular Processes, 11th International Symposium on Topics in Coding (ISTC), 2021, pp. 1-5, doi: 10.1109/ISTC49272.2021.9594250.

  • G. L. Matthews, A. W. Murphy, and W. Santos, Fractional decoding of codes from Hermitian codes, IEEE International Symposium on Information Theory (ISIT), 2021, pp. 515-520, doi: 10.1109/ISIT45174.2021.9518028.

  • E. Camps, H. López, G. L. Matthews, and E. Sarmiento, Polar decreasing monomial-Cartesian codes, IEEE Transactions on Information Theory, vol. 67, no. 6, pp. 3664-3674, 2021, doi: 10.1109/TIT.2020.3047624.

  • H. López, G. L. Matthews, and D. Valvo, Augmented Reed-Muller codes of high rate and erasure repair, IEEE International Symposium on Information Theory (ISIT), 2021, pp. 438-443, doi: 10.1109/ISIT45174.2021.9517854.

  • G. L. Matthews, D. Skabelund, and M. Wills, Triples of rational points on the Hermitian curve and their Weierstrass semigroups, Journal of Pure and Applied Algebra, Volume 225, Issue 8, 2021. doi: 10.1016/j.jpaa.2020.106623

  • H. López, B. Malmskog, G. L. Matthews, F. Piñero-González, and M. Wootters, Hermitian-lifted codes, Designs Codes and Cryptography vol 89 (2021), 497–515. doi: 10.1007/s10623-020-00836-6.

  • A. Allen, K. Blackwell, O. Fiol, R. Kshirsagar, B. Matsick, G. L. Matthews, and Z. Nelson, Twisted Hermitian codes, Mathematics special issue "Algebra and Its Applications", vol. 9, no. 1, 2021. doi: 10.3390/math9010040

  • K. Benson, J. Bolkema, K. Haymaker, C. Kelley, S. Kingan, G. L. Matthews, and E. Nastase, Analysis of termatiko sets in measurement matrices. In: Ferrero D., Hogben L., Kingan S.R., Matthews G.L. (eds) Research Trends in Graph Theory and Applications. Association for Women in Mathematics Series, vol 25. Springer, Cham., 2021. doi: 10.1007/978-3-030-77983-2_3.

  • D. Ferrero, L. Hogben, S. Kingan, and G. L. Matthews (eds), Research Trends in Graph Theory and Applications. Association for Women in Mathematics Series, vol 25. Springer, Cham., 2021.

  • E. Camps, H. López, G. L. Matthews, and E. Sarmiento, Monomial Cartesian codes closed under divisibility, Finite Fields and their Applications, Proceedings of the 14th International Conference on Finite Fields and their Applications (2020), 199–208.

  • C. X. Kang, G. L. Matthews, and J. D. Peachey, On Laplacian monopoles, Australasian Journal of Combinatorics Volume 77(3) (2020), Pages 383–397.

  • F. Piñero and G. L. Matthews, Codes with locality from cyclic extensions of Deligne-Lusztig curves, Designs Codes and Cryptography (2020). doi: 10.1007/s10623-020-00767-2

  • H. López, G. L. Matthews, and I. Soprunov, Monomial-Cartesian codes and their duals, with applications to LCD codes, quantum codes, and locally recoverable codes, Designs Codes and Cryptography (2020). doi: 10.1007/s10623-020-00726-x

  • H. López-Valdez, F. Manganiello, and G. L. Matthews, Affine Cartesian codes with complementary duals, Finite Fields and their Applications, Volume 57, 2019, 13-28. doi: 10.1016/j.ffa.2019.01.004

  • G. L. Matthews and Y. Wang, Quantum Resistant Public Key Encryption Scheme HermitianRLCE. In: Baldi M., Persichetti E., Santini P. (eds) Code-Based Cryptography. CBC 2019. Lecture Notes in Computer Science, vol 11666. doi: 10.1007/978-3-030-25922-8_1

  • S. E. Anderson, A. Johnston, G. Joshi, G. L. Matthews, C. Mayer, and E. Soljanin, Service Capacity Region of Content Access from Erasure Coded Storage, 2018 IEEE Information Theory Workshop (ITW), November 2018. doi: 10.1109/ITW.2018.8613504.

  • K. Haymaker, B. Malmskog, and G. L. Matthews, Locally repairable codes from fiber products of maximal curves, Locally repairable codes from fiber products of maximal curves, Advances in Mathematics of Communication 12(2018), no. 2, 317-336. doi: 10.3934/amc.2018020.

  • M. Aktas, S. E. Anderson, A. Johnston, G. Joshi, S. Kadhe, G. L. Matthews, C. Mayer, and E. Soljanin, On the Service Capacity Region of Accessing Erasure Coded Content, 2017 55th Annual Allerton Conference on Communication, Control, and Computing, to appear.

  • A. Barg, K. Haymaker, E. W. Howe, G. L. Matthews, A. Várilly-Alvarado, Locally recoverable codes from algebraic curves and surfaces, pp. 95–127 in: Algebraic Geometry for Coding Theory and Cryptography (E. W. Howe, K. E. Lauter, and J. L. Walker, eds.), Springer, Cham, 2017.

  • Bannister, G. L. Matthews, and A. Simpson, Cracking Her Codes: Understanding Shared Technology Resources as Positioning Artifacts for Power and Status in CSCL Environments, International Journal of Computer-Supported Collaborative Learning 12 (2017), 1556-1607.

  • S. Gao, F. Knoll, F. Manganellio, and G. L. Matthews, Codes for distributed storage from 3-regular graphs, Discrete Applied Mathematics 229 (2017) no 10, 82-89..

  • G. L. Matthews, Distance colorings of hypercubes from Z2Z4-linear codes, Discrete Applied Mathematics 217 (2017), no. 2, 356–361.

  • S. Anderson and G. L. Matthews, Stopping sets of Hermitian codes, IEEE Transactions on Information Theory 62 (2016), no. 11, 6304 - 6314.

  • W. Kositwattanarerk and G. L. Matthews, Pseudocodewords of Parity-Check Codes Over Fields of Prime Cardinality, IEEE Transactions on Information Theory 60 (2014), no. 9, 5215 – 5227.

  • S. Anderson and G. L. Matthews, Exponents of polar codes using algebraic geometric code kernels, Designs, Codes and Cryptography 73 (2014), no. 2, 699-717.

  • G. L. Matthews and J. D. Peachey, Small bias sets from extended norm-trace codes, Contemporary Mathematics 579 (2012), 143-152.

  • W. Kositwattanarerk and G. L. Matthews, Lifting the fundamental cone and enumerating the pseudocodewords of a parity-check code, IEEE Transactions on Information Theory (Special issue on Facets of Coding Theory: From Algorithms to Networks) 57 (2011), no. 2, 898-909.

  • N. Drake and G. L. Matthews, Minimum distance decoding of general algebraic geometry codes via lists, IEEE Transactions on Information Theory 56 (2010), no. 9, 4335-4340.

  • G. L. Matthews and J. D. Peachey, Minimal generating sets of Weierstrass semigroups of certain m-tuples on the norm-trace function field, Contemporary Mathematics 518 (2010), 315-326.

  • N. Drake and G. L. Matthews, Parameter choices and a better bound on the list size in the Guruswami-Sudan algorithm for algebraic geometry codes, Designs, Codes, and Cryptography 54 (2010), no. 2, 181-187.

  • G. L. Matthews, On Weierstrass semigroups of some triples on norm-trace curves, Lecture Notes in Computer Science 5557 (2009),146-156.

  • G. L. Matthews, Viewing multipoint codes as subcodes of one-point codes, Grobner Bases, Coding, and Cryptography, RISC Book Series (Springer, 2009), 399-402.

  • G. L. Matthews, Frobenius numbers of generalized Fibonacci semigroups, Combinatorial Number Theory, 117-124, de Gruyter, Berlin, 2009.

  • R. C. Laskar, G. L. Matthews, B. Novick and J. Villalpando, On irreducible no-hole L(2,1) coloring of trees, Networks 53 (2009), no. 2, 206-211.

  • J. L. Kim and G. L. Matthews, Quantum error-correcting codes from algebraic curves, in Advances in Algebraic Geometry Codes, Series on Coding Theory and Cryptology (World Scientific, 2008), vol. 5; E. Martinez-Moro, C. Munuera, and D. Ruano, eds.; 419-444.

  • R. E. Jamison and G. L. Matthews, On the acyclic chromatic number of Hamming graphs, Graphs and Combinatorics 24 (2008), 349-360.

  • R. E. Jamison and G. L. Matthews, Acyclic colorings of products of cycles, Bulletin of the Institute of Combinatorics and its Applications 54 (2008), 59-76.

  • G. L. Matthews and R. S. Robinson, A variant of the Frobenius problem and generalized Suzuki semigroups, Combinatorial Number Theory, 363-369, de Gruyter, Berlin, 2007.

  • R. E. Jamison, G. L. Matthews, and J. Villalpando, Acyclic colorings of products of trees, Information Processing Letters 99 (2006), no. 1, 7-12.

  • H. Maharaj and G. L. Matthews, On the floor and the ceiling of a divisor, Finite Fields and their Applications 12 (2006), no. 1, 38-55.

  • M. A. Coleman, N. Drake, and G. L. Matthews, Codes from a quotient of the Hermitian curve attaining the designed distance, Congressus Numerantium 182 (2006), 161-170.

  • R. E. Jamison and G. L. Matthews, Distance k colorings of Hamming graphs, Congressus Numerantium 183 (2006), 193-202.

  • G. L. Matthews, Weierstrass semigroups and codes from a quotient of the Hermitian curve, Designs, Codes and Cryptography 37 (2005), no. 3, 473-492.

  • G. L. Matthews and T. W. Michel, One-point codes using places of higher degree, IEEE Transactions on Information Theory 51 (2005), no. 4, 1590-1593.

  • G. L. Matthews, On integers nonrepresentable by a generalized arithmetic progression, Topics in Combinatorial Number Theory, DIMITIA ITI 261, 2005, 143-148.

  • G. L. Matthews, Some computational tools for estimating the parameters of an algebraic geometry code, Contemporary Mathematics 381 (2005), 119-126.

  • H. Maharaj, G. L. Matthews, and G. Pirsic, Riemann-Roch spaces for the Hermitian curve with applications to algebraic geometry codes and low-discrepancy sequences, Journal of Pure and Applied Algebra 195 (2005), 261-280.

  • G. L. Matthews, Codes from the Suzuki function field, IEEE Transactions on Information Theory 50 (2004), no. 12, 3298-3302.

  • G. L. Matthews, On numerical semigroups generated by generalized arithmetic sequences, Communications in Algebra 32 (2004), no. 9, 3459-3469.

  • G. L. Matthews, The Weierstrass semigroup of an m-tuple of collinear points on a Hermitian curve, Lecture Notes in Computer Science 2948 (2004), 12-24.

  • D. E. Dobbs and G. L. Matthews, On a question of Wilf concerning numerical semigroups, International Journal of Commutative Rings 2 (2003), no. 4, 195- 204.

  • G. L. Matthews, On triply-generated telescopic semigroups and chains of semigroups, Congressus Numerantium 154 (2002), 117-123.

  • D. E. Dobbs and G. L. Matthews, On comparing two chains of numerical semigroups and detecting Arf semigroups, Semigroup Forum 63 (2001), no. 2, 237-246.

  • G. L. Matthews, Weierstrass pairs and minimum distance of Goppa codes, Designs, Codes and Cryptography 22 (2001), no. 2, 107-121.