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Abstract—Polar codes use an explicit channel model, so the
precise nature of the communication channel determines if and
when polarization occurs. In practice, communication channels
typically have memory which affects the probability of error in
nearby symbols. In this paper, we extend existing results to show
polarization for the more general family of information regular
processes and define a growth rate for promptness. We then
show that information regular processes with linear promptness
polarize and provide an example with practical applications for
which the rate of polarization is very slow.

Index Terms—channel memory, mixing processes, polar codes

I. INTRODUCTION

Polar codes, first described in [1] by Arikan, achieve channel
capacity using a process known as polarization. An invertible
kernel matrix acts on communication channels to produce
synthetic channels with modified capacities. The generator
matrix formed by repeatedly tensoring the kernel matrix with
itself produces synthetic channels with capacities converging
to {0, 1}. The asymptotic rate of convergence as the length N
of the codeword grows is O(2−N

β

) for all β < 1
2 [2].

This polarization process acts directly on communication
channels, offering considerable flexibility in design. Not only
can polar codes be adjusted to specific communication chan-
nels, but this modification is essential to their construction. It
is unsurprising that polar codes have expanded from binary
discrete memoryless channels [1] to arbitrary finite fields [3],
[4], [5], [6], generalized memoryless channels [7], [8], [9], and
specific instances of channel memory [10], [11], [12]. It was
only in 2018 that a general framework for channel memory
was developed [13], [14]. These papers demonstrate that there
is a periodic data source which does not polarize, a specialized
family of Markov processes polarize quickly, and the slightly
broader family of ψ∗-mixing processes polarize.

Many communication channels of practical interest exhibit
some form of channel memory, so it is important to know
what types of memory are compatible with polar codes. The
literature provides some insight but falls short of a classifi-
cation. We focus on the large space of relatively unstudied
processes which are aperiodic but not ψ∗-mixing with the goal
of clarifying what sorts of channel memory permit polariza-
tion. Specifically, we extend Şaşoğlu’s polarization proofs to
apply to the broader family of information regular processes
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and construct an information regular process which does not
polarize quickly. A complication in this analysis is the long,
adjacent blocks acted on by the Arikan kernel, since strong
mixing processes are best suited for widely separated blocks.
We partially overcome this limitation by defining a promptness
growth rate. Our work has applications to communication in
the presence of possibly prolonged transmission outages, but
our primary goal is to better understand when channel memory
is incompatible with the polarization process.

Section II contains the necessary background. In Section III,
we prove polarization of information regular processes with
linear promptness and related results. Section IV explicitly
constructs an information regular process which is not ψ∗-
mixing and shows that the rate of polarization need not be
fast. Closing remarks are in Section V.

II. BACKGROUND

Let (X,Y ) be processes with memory, where X represents
a source and Y is the estimation of an encoding of X received
from a communication channel. We use Xi ∈ {0, 1}, but the
approach readily extends to prime alphabets using ideas from
[14, Appendix B]. We assume that Xi may depend on Xi−1

1

and that Yi can depend both on Y i−11 and on Xi
1. This is a

flexible model, encompassing common issues such as burst
noise, intersymbol interference, and a broad family of data
sources. Our discussion will focus on how flexible this model
can be made without sacrificing polarization.

Since X is discrete, we use the complete Kolmogorov model
described, among other places, in [15, Section 1.1]. This σ-
algebra is generated by the cylinder sets

[anm] = {x ∈ X∞ : xi = ai ∀i ∈ {m, . . . , n}}

where m,n ∈ Z and X∞ is the set of all infinite sequences on
X . We use the notation σ(T cb ) to indicate the sub σ-algebra
generated by [anm] where b ≤ m,n ≤ c. Except for a few
temporary refinements, this σ-algebra will be used throughout.

Even though there are a number of strong mixing conditions
which satisfy a partial ordering [16] (see also [17]), most have
not been applied to polar codes. We summarize existing results
in the context of this framework.

Shuval showed polarization and fast polarization for finite-
state, aperiodic, irreducible hidden Markov (FAIM) processes
in [14]. FAIM processes represent channel memory using a
hidden additional state sequence S, with the condition that



(Xj+1, Yj+1, Sj+1) is allowed to depend only on (Xj , Yj , Sj).
The state Sj uses a finite alphabet, and for any a, b ∈ S there
is an N0 such that PrSj ,Sj+N (a, b) > 0 for all N > N0.

It was shown in [14] and [15, Section III.1.b] that FAIM pro-
cesses are a subset of ψ∗-mixing processes. Şaşoğlu showed
that these processes polarize in [13], but fast polarization
has only been shown for the low entropy set. The ψ∗-
mixing condition requires that any events A ∈ σ(T 0

−∞) and
B ∈ σ(T∞n ) satisfy

Pr(A ∩B) ≤ ψ∗nPr(A)Pr(B)

where ψ∗n is a nonincreasing sequence with ψ∗n → 1. We keep
the notation as in [16] but note that [13] refers to ψ∗-mixing
as ψ-mixing.

We are interested in the more general family of information
regular processes, meaning those that satisfy

sup

I∑
i=1

J∑
j=1

Pr(Ai ∩Bj) log
(

Pr(Ai ∩Bj)
Pr(Ai)Pr(Bj)

)
≤ In

where In is a nonincreasing sequence with In → 0 and the
supremum is taken over finite partitions Ai ∈ σ(T 0

−∞) and
Bj ∈ σ(T∞n ). Our goal will be to show that these processes
polarize but that polarization need not be fast.

Our proof uses α-mixing processes [16], which are those
that satisfy the following relation for any A ∈ σ(T 0

−∞) and
B ∈ σ(T∞n ):

|Pr(A ∩B)− Pr(A)Pr(B)|≤ αn

where αn is nonincreasing and αn → 0. We will not refer
to α-mixing processes as strong mixing to avoid confusion
with the broader family of strong mixing conditions. Note that
ψ∗-mixing processes are information regular and information
regular processes are α-mixing processes [16].

Finally, all strong mixing processes are a subset of ergodic
processes, which are the strongest condition known to not
guarantee polarization. Şaşoğlu provided an example in [13]
of a periodic process which does not polarize.

The sequences described above are said to be prompt if
α0, I0, ψ

∗
0 are finite. This notion is essential, but it is not

particularly well adapted for polar codes. For a sequence cn
appearing in one of the mixing properties above, recall that
we always use events chosen from σ(T 0

−∞), σ(T∞n ). Define
the doubly indexed sequence cn,k using instead events from
σ(T 0
−k), σ(T

n+k
n ). It follows immediately that cn,k is finite,

since both subalgebras are finite. Further, the traditional cn
can be thought of as limk→∞ cn,k.

Definition 1. A sequence cn,k is said to be f(c)-prompt if
limk→∞ f(c0,k)/k = 0. The term prompt is used when c0,k is
bounded.

We will often refer to f(c) by name instead of symbolically,
so a process with logarithmic promptness is log(c)-prompt and
a process with linear promptness is c-prompt. Our analysis will
focus on logarithmic promptness for ψ∗-mixing processes and
linear promptness for information regular processes.

Next, we summarize some key properties relating to polar-
ization. The main quantity of interest is the conditional entropy
of a symbol Ui of the codeword given the previous symbols
U i−11 and the received message Y N1 . These variables are
chosen to imitate the information available to an SC decoder.
We are thus interested in H(Ui|U i−11 , Y N1 ) =∑

ui∈Ui

∑
u∈Ui−1

1

∑
y∈Y

Pr(ui, u, y) log

(
Pr(ui, u, y)∑
ui
Pr(ui, u, y)

)
.

The goal is to relate this quantity to the average entropy per
symbol in a very long codeword, defined as

HX|Y = lim
n→∞

1

N
H(XN

1 |Y N1 ).

We say that a process polarizes if the entropy of nearly all
channels converges to {0, 1}, meaning that

lim
n→∞

1

N
|{i : H(Ui|U i−11 , Y N1 ) > 1− ε}| = HX|Y

and

lim
n→∞

1

N
|{i : H(Ui|U i−11 , Y N1 ) < ε}| = 1−HX|Y .

We say that the rate of polarization is fast if for all β < c,
we can set ε = 2−N

β

. For our purposes, c = 1
2 . Note that

our definitions focus solely on the polarization of individual
symbols. It is also common to consider the successful recovery
of the entire low entropy set, which we leave to future work.

The inclusion of channel memory requires considerable
caution regarding the relative locations of different channels,
so we introduce some further notation to simplify our indexing.

Note that GN =

[
1 1
1 0

]⊗ logN

is the polar code generator

matrix, and BN is the bit reversal permutation matrix . Let

UN1 = XN
1 BNGN , V N1 = X2N

N+1BNGN

represent the adjacent blocks combined in a polarization step,
and let

Qi = (U i−11 , Y N1 ), Ri = (V i−11 , Y 2N
N+1)

represent the conditioning used in decoding.

III. POLARIZATION

Our first goal is to better understand what sorts of channel
memory support polarization. To do so, we first demonstrate
that the results in [13, Lemma 8, Lemma 9] apply under
weaker mixing and promptness conditions.

Lemma 1. Suppose that Xi, Yi are information regular pro-
cesses with linear promptness. Then, as N →∞ and for any
ε > 0, the following conditions are met for a fraction of indices
i which converges to 1:

I(Ui;Vi|Qi, Ri) < ε,

I(Ui;Ri|Qi) < ε,

and
I(Vi;Qi|Ri) < ε.



Proof. Since Xi, Yi have linear promptness,

I(UN1 , Y
N
1 ;V N1 , Y 2N

N+1) ≤ I0,N .

We then expand this expression as follows

I0,N ≥ I(UN1 , Y
N
1 ;V N1 , Y 2N

N+1)
≥ I(UN1 ;V N1 , Y 2N

N+1|Y N1 )

=
∑N
i=1 I(Ui;V

N
1 , Y 2N

N+1|Y N1 , U i−11 )

=
∑N
i=1 I(Ui;Ri, V

N
i |Qi)

≥
∑N
i=1 I(Ui;Ri|Qi) + I(Ui;Vi|Qi, Ri).

A sum of 2N positive terms is bounded by I0,N , so the fraction
of terms larger than

√
I0,N/N is bounded by

√
I0,N/N . Both

expressions converge to 0 by linear promptness of Xi, Yi, so
the first two inequalities hold. To show the third inequality, we
repeat the above calculation with the block order reversed.

Lemma 2. Any process X which has logarithmic promptness
in the sense of ψ∗-mixing processes has linear promptness in
the sense of information regularity.

Proof. Let A ∈ σ(T 0
−∞) and B ∈ σ(T∞n ) be arbitrary events.

Since X has logarithmic promptness, we know that

Pr(A ∩B) ≤ ψ∗0,kPr(A)Pr(B)

and
logψ∗0,k ≥ log

Pr(A ∩B)

Pr(A)Pr(B)
.

Substituting into the definition of information regular pro-
cesses, we have

I0,k ≤ sup

I∑
i=1

J∑
j=1

Pr(Ai ∩Bj) logψ0,k = logψ∗0,k.

Substituting into the promptness conditions gives

lim
k→∞

I0,k
k
≤ lim
k→∞

logψ∗0,k
k

= 0.

Lemma 3. Suppose that Xi, Yi are α-mixing processes. For
all ε > 0, there exists N0 so that for N > N0 and
any {0, 1}-valued function f with associated events Ai =
f(XiN

(i−1)N+1, Y
iN
(i−1)N+1) the following relation is satisfied

PrA1
(1) ∈ (ε, 1− ε)⇒ PrA1,A2

(1, 0) > δ(ε) =
ε2

4
.

Proof. Our proof generalizes [13, Lemma 10] to the weaker
condition that

Pr(A ∩B) ≤ Pr(A)Pr(B) + αi

for some sequence αi → 0. Using stationarity and the memory
model, we have

2PrA1,A2(1, 0) = PrA1,A2(1, 0) + PrA2,A3(1, 0)
≥ PrA1,A2,A3(1, 0, 0)

+PrA1,A2,A3
(1, 1, 0)

= PrA1,A3
(1, 0)

= PrA1
(1)− PrA1,A3

(1, 1)
≥ PrA1(1)(1− PrA3(1))− αN
≥ ε2 − αN .

The proof is completed by choosing N0 large enough that
αN < ε2

2 for all N > N0.

We are now ready to state two polarization results which
apply the above lemmas

Theorem 4. Polarization is achieved when Xi, Yi are infor-
mation regular processes with linear promptness.

Proof. The proof consists of substituting Lemmas 1 and 3 into
Şaşoğlu’s argument for ψ∗-mixing processes. For the sake of
brevity, we summarize the key elements in the proof to show
where these lemmas are used.

The approach in [13, Theorem 1] is to bound the change in
entropy introduced by each source of channel memory. First,
[13, Lemma 7] demonstrates that for any stationary process,
the entropies Hn = H(Ui|U i−11 , Y N1 ) converge to some limit.
Channel memory might affect this limit through the joint
distribution over adjacent blocks Ui, Vi or collusion via the
conditioning Qi, Ri. The first of these concerns is removed in
[13, Lemma 8], which shows that when Lemma 1 holds, we
may use marginal distributions for U, V with negligible loss.
Collusion in the conditioning is then shown in [13, Lemma 10]
to be always imperfect when Lemma 3 holds. Finally, [13,
Lemma 12] combines these results to reduce the proof of
convergence to a classic result for the memoryless case.

Theorem 4 allows for an assignment of entropy to each
part of the communication process and demonstrates that the
total entropy polarizes. The next result may be easier to use
in practice.

Corollary 5. Polarization is achieved when Xi, Yi are α-
mixing and logarithmically prompt in the sense of ψ∗-mixing
processes.

IV. INTERMITTENT OUTAGES

In the last section, we showed that information regular pro-
cesses with linear promptness polarize. We now demonstrate
that the rate of polarization might be arbitrarily slow using
the following construction, inspired by a renewal process in
[15, § III.1.c] whose k-blocks converge slowly in frequency.

Definition 2. Let w = {wi} be a sequence satisfying
ŵ =

∑∞
i=1 wi ≤

1
8 . Let βi = iwi and further suppose that∑∞

i=1 βi =
1
4 . An outage is a process Xw which independently

combines the following blocks: the 0 symbol occurring with
probability 1

4 , the 1 symbol occurring with probability 1
2−2ŵ,

and two 1 symbols separated by a block of i 0 symbols
occurring with probability wi for each i ≥ 1.

We start by constructing outages explicitly using a tech-
nique from probability theory known as cutting and stacking,
described in [18] and [15, § I.10]. Consider a unit interval
partitioned into the subinterval

[
0, 12
)

labelled 1 and the
subinterval

[
1
2 , 1
]

labelled 0. Recall that wi is the probability
that an arbitrary Xk is the first in a block of exactly i zero
symbols and the measure of each block is βi. To simplify the



construction, let C = [0, 2ŵ)∪( 34 , 1] and R = [2ŵ, 34 ]. We will
apply cutting and stacking to these two intervals separately.

The role of C is to provide a source of 0 blocks to be used
in the stacking of R. In the ith round of cutting and stacking,
we form a subinterval of measure βi into a column of zeros
with height i, capped with two blocks of ones of width wi.
The resulting column is transferred to R and the remainder of
C is left for future steps.

The role of R is to apply independent cutting and stacking
to 0, 1, and the blocks constructed from C. We start by defining
a virtual column C∗ ∈ R of measure ŵ to represent future
output from C. In each round of cutting and stacking, we
apply independent cutting and stacking to R, ignoring any
step involving C∗. We then add the column Ci of length i+2
from C, replace part of the virtual C∗ with Ci, and reapply
the operations from earlier rounds which pertain to Ci. The
indirect approach to R is necessary since we cannot construct
all of the Ci at once, so we need to independently combine
columns which have not been constructed yet.

0

0

0

0

0

0
0 0

01

1

1

1

1

1
1 1

1

Fig. 1. An illustration of the cutting and stacking process

Theorem 6. An outage is a stationary, prompt, information
regular process.

Proof. Stationarity follows from the use of cutting and stack-
ing. The remaining conditions can be checked in three cases.
Two nonintersecting blocks X0

−k, X
n+k
n of length k may both

lie completely in the same zero block, at least one may inter-
sect the boundary, or there may not be a zero block intersecting
both intervals. These events, which we label C1, C2, C3, are
not included in the σ-algebra since they use intermediate states
of C andR from the construction of X . There are several ways
to proceed, but the simplest is to temporarily extend our σ-
algebra so C1, C2, C3 are basis elements.

The last case, C3, is the easiest to check. If there is no
zero block intersecting both X0

−k, X
n+k
n , then the two blocks

are independent. Therefore, for any events A ∈ σ(T k1 ) and
B ∈ σ(Tn+kn ) we have that

Pr(A ∩B ∩ C3) log
(

Pr(A∩B∩C3)
Pr(A∩C3)Pr(B∩C3)

)
= Pr(A ∩B ∩ C3) log

(
Pr(A∩B|C3)Pr(C3)

Pr(A|C3)Pr(B|C3)Pr(C3)2

)
= Pr(A ∩B ∩ C3) log

(
1

Pr(C3)

)
.

Note that this function is bounded and approaches 0 as Pr(C3)
approaches {0, 1}.

In the first case, C1, X0
−k and Xn+k

n have fixed values
as subsets of a zero block, so Pr(A), P r(B) ∈ {0, 1}. This

means that Pr(A ∩ C1), P r(B ∩ C1), P r(A ∩ B ∩ C1) ∈
{0, P r(C1)}. We exclude events with zero probability for now,
and note that the others satisfy

Pr(A ∩B ∩ C1) log
(

Pr(A∩B∩C1)
Pr(A∩C1)Pr(B∩C1)

)
= Pr(A ∩B ∩ C1) log

(
1

Pr(C1)

)
.

To show the second case, C2, suppose wlog that the zero
block starts at index i and ends at index n+ `. We allow the
cases i < 0 or ` > k so the block need not terminate inside
both X0

−k and Xn+k
n . We know that any events A ∈ σ(T k0 ) and

B ∈ σ(Tn+kn ) can be represented as a union of cylinder sets
A = ∪rAr and B = ∪rBr. Each of these sets can be split at
the indices i, ` to form Ar = A1,r∩A2,r and Br = B1,r∩B2,r

where A1,r ∈ σ(T i−10 ), A2,r ∈ σ(T ki ), B1,r ∈ σ(Tn+`n ),
B2,r ∈ σ(Tn+kn+`+1). Let A1 = ∪rA1,r and define A2, B1, B2

similarly. By construction, A2,r, B1,r are events defined over
a zero block, so A2,r ∩ C2, B1,r ∩ C2 ∈ {∅, C2}. Therefore,

A ∩ C2 = ∪r(A1,r ∩A2,r ∩ C2) ∈ {∅, A1 ∩ C2}
B ∩ C2 = ∪r(B1,r ∩B2,r ∩ C2) ∈ {∅, B2 ∩ C2}

A ∩B ∩ C2 ∈ {∅, A1 ∩B2 ∩ C2}.
Applying these substitutions, and recalling that A1, B2 are
independent, we have reduced this case to C3.

This technique directly extends from events over k-blocks to
arbitrary events in σ(T 0

−∞), σ(T∞n ) if we extend the unions in
the second case to include countable intersections of cylinder
sets. We therefore need only combine the joint probabilities
in C1, C2, C3 to demonstrate information regularity. In the
calculations that follow, the events with zero probability which
were excluded earlier are inserted in each sum over Ci
immediately prior to its elimination. By the log-sum inequality,∑

Ci
Pr(Ci) log

(
1

Pr(Ci)

)
=
∑
Ai,Bi,Ci

Pr(Ai ∩Bi ∩ Ci) log
(

1
Pr(Ci)

)
≥
∑
Ai,Bi,Ci

Pr(Ai ∩Bi ∩ Ci) log
(

Pr(Ai∩Bi∩Ci)
Pr(Ai∩Ci)Pr(Ai∩Ci)

)
≥
∑
Ai,Bi

Pr(Ai ∩Bi) log
(

Pr(Ai∩Bi)∑
Ci
Pr(Ai∩Ci)Pr(Bi∩Ci)

)
≥
∑
Ai,Bi

Pr(Ai ∩Bi) log
(

Pr(Ai∩Bi)
Pr(Ai)Pr(Bi)

)
.

Since this bound is finite for n = 0, the process is prompt.
To show that the bound converges to 0, recall that the width
of very long zero blocks converges to 0. So, when n is large
Pr(C3) → 1 and Pr(C1), P r(C2) → 0. Since each term
in the bound approaches 0 when Pr(Ci) is close to {0, 1},
In → 0 and the process is information regular.

Proposition 7. An outage Xw is not ψ∗-mixing unless there
is an n0 for which wn ≤ c2−an for all n > n0 and fixed a, c.

Proof. Let the events A ∈ σ(T 0
−k) and B ∈ σ(T kn ) represent

blocks of k zeros. We have three cases to examine. Each
symbol in the intervals can be zero independently, the intervals
can be contained in separate zero blocks, or one zero block
might contain both intervals.

Suppose that a zero block of length n starting at index 1
contains the interval Xi+k

i . Containment requires 1 ≤ i ≤



n − k, and each of these values occurs with probability wn.
Therefore, the probability that a block of length k is contained
in any zero block is given by

ck =

∞∑
i=k

(i− k)wi.

Recalling from the definition of Xw that k independent zeros
occur with probability 2−2k, substituting this expression gives

Pr(A) = Pr(B) = ck + 2−2k

Pr(A ∩B) = (ck − cn+2k + 2−2k)2 + cn+2k ≥ cn+2k

We can now bound ψn as

ψn ≥
Pr(A ∩B)

Pr(A)Pr(B)
≥ cn+2k

(ck + 2−2k)2
.

If we assume that ck ≥ wk+1 is not bounded by a2−bk for
large k, then we can find a large k satisfying ck > 2−2k and
so the fraction is bounded as a function of n when cn+2k ≤
ac2k for some constant a. This recurrence relation describes an
exponential function, so wn+1 ≤ cn ≤ c2−an.

Proposition 8. Suppose the process Xw is used to construct
a binary erasure channel in the following way: if (Xw)i = 0
then insert an erasure, otherwise transmit the input symbol.
A memoryless binary source X is then transmitted over this
channel. By appropriate choice of (Xw) and for any sequence
αi → 0, we can ensure

lim
N→∞

1

N
|{i : H(Ui|U i−11 , Y N1 ) < αN}| < 1−H(X|Y ).

Proof. We start by examining the conditions under which a
codeword of length N is entirely erased. In the first case,
we might have N independent erasures, which occurs with
probability 2−2N . In the second case, a block of length N is
entirely contained in a zero block. For this to happen, the start
of the code must be at least N symbols before the end of the
zero block, which occurs with probability

∑∞
i=N (i−N)wi.

Substituting these probabilities, we can bound the entropy as

H(Ui|U i−11 , Y N1 ) ≥ PrY N1 (eN )H(Ui|U i−11 , Y N1 = eN )

= H(X)
(
2−2N +

∑∞
i=N (i−N)wi

)
.

H(X) is fixed and wi can be chosen so that
∑∞
i=N (i−N)wi

decays arbitrarily slowly, so an outage Xw exists with

lim
N→∞

1

N
|{i : H(Ui|U i−11 , Y N1 ) < αN}| = 0 < 1−H(X|Y ).

The example in Proposition 8 has a useful physical inter-
pretation, which motivates the name “outage.” Suppose the
source X is encoded and then transmitted over a wire. In
addition to the usual memoryless transmission errors, the wire
is occasionally damaged and some time elapses before it can
be repaired. Then wi is the probability that communication is
disrupted starting at time t and

∑
βi =

1
4 is the probability

that a particular symbol is disrupted in this manner. We have
demonstrated that polarization occurs when both transmitter

and receiver are oblivious to arbitrarily long outages, but that
the asymptotic rate depends heavily on the distribution of
outages with different lengths.

V. CONCLUSION

We have demonstrated that information regular processes
with linear promptness polarize, allowing the use of entropy
to describe every part of the communication process. In
addition, we constructed an information regular process which
models transmission over a communication channel suffering
from occasional lengthy outages. Finally, we showed that this
example is not ψ∗-mixing and that the distribution of outages
affects the rate of polarization.
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