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Abstract. We consider a variant of the channel assignment prob-
lem in which frequencies are assigned to transmitters in a way that
avoids interference while ensuring that all frequencies within the
bandwidth are used. This is modeled as an L(2, 1)-coloring of a
graph which is no-hole and irreducible in the sense that no color
can be replaced with a smaller one. In this paper, we show that if
the network is any tree other than a star, then frequencies may be
assigned in this fashion without increasing the bandwidth; that is,
we show that for any such tree T , the inh-span of T is equal to its
span.
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1. Introduction

In this paper, we consider a variant of the channel assignment prob-

lem. The channel assignment problem [11] is to assign frequencies, or
1
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channels, to transmitters at various locations in a way that permits

interference-free communication. Frequencies assigned to neighboring

transmitters are required to be substantially different, and frequencies

assigned to pairs of transmitters which are slightly farther away are

required to be different so as to prevent interference. It was once the

case that the number of usable channels was far greater than the num-

ber of transmitters. However, this is no longer true. Hale points this

out in his seminal paper in 1980 [11], and, with the ever increasing

array of digital communication devices, the need to make wise use of

frequencies is even more important today.

The channel assignment problem can be modeled as a vertex coloring

problem for graphs. A vertex is assigned to each transmitter. Based on

the proximity of the transmitters and the power of the transmissions,

edges are placed between vertices to represent possible interference.

The frequencies are denoted by nonnegative integers 0, . . . , λ. In the

context described above, the channel assignment problem becomes that

of prescribing integer labels for vertices so that neighboring vertices

receive labels that differ by at least two while vertices with a common

neighbor have different labels. Such a coloring is called an L(2, 1)-

coloring and has been studied extensively in the literature (see [3] and

[25] for two recent surveys). The span of a graph G, denoted λ(G), is

the smallest number λ such that there is an L(2, 1)-coloring of G using

the integers 0, . . . , λ. A span coloring of G is an L(2, 1)-coloring with

largest label λ(G). Such colorings were first studied by Griggs and Yeh

where they show that

∆(T ) + 1 ≤ λ(T ) ≤ ∆(T ) + 2

for all trees T with maximum degree ∆(T ) [10, Theorem 4.1]. A poly-

nomial time algorithm to determine the span of a tree was developed

by Chang and Kuo shortly thereafter [4]. However, no simple charac-

terization of trees with span ∆(T )+1 is known (it is worth mentioning

that there has been recent work in this direction, such as [5, 16]).

Since their introduction, L(2, 1)-colorings of many other classes of

graphs have been studied, including three connected graphs and the
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hypercube [9, 10]; Cartesian products of graphs [9, 12, 13, 15, 18];

chordal graphs and interval graphs [23]; generalized Petersen graphs [1];

and direct and strong products of graphs [14, 17]. Weighted colorings

also arise in this context [20]. Algorithms to efficiently assign channels

are a related topic of study (see, for example, [2], where the focus is on

trees and interval graphs).

Other constraints may be added to the notion of L(2, 1)-coloring

to simulate practical difficulties in the channel assignment problem.

Because frequencies are typically purchased in a block, one may wish

to use all available frequencies within that block. Making use of the full

spectrum of labels available in a span coloring is akin to full coloring,

a concept defined by Fishburn and Roberts [8]. Inspired by [21] and

[22], Fishburn and Roberts [7] introduced a relaxation of a full coloring

in which all colors 0, . . . , k for some integer k (possibly different than

the span) are used. Such a coloring is said to be no-hole. Here, we

consider a more restrictive type of coloring, an inh-coloring (which

is short for irreducible no-hole coloring). An inh-coloring is a no-hole

coloring in which no color can be reduced without violating the distance

constraints. An inh-coloring ensures that no spectrum is wasted and

that each vertex is labelled with the least available frequency.

The inh-span of a graph G, denoted λinh(G), is the smallest number

k such that there is an irreducible no-hole L(2, 1)-coloring of G using

the integers 0, . . . , k. Fishburn, Laskar, Roberts, and Villalpando [6]

proved that if T is a tree that is not a star, then T is inh-colorable and

∆(T ) + 1 ≤ λinh(T ) ≤ ∆(T ) + 2.

This is reminiscent of the earlier mentioned result of Griggs and Yeh on

the span of trees. In fact, it has been conjectured that λinh(T ) = λ(T )

for all trees other than stars [24, Conjecture 8]. In this paper, we prove

this conjecture. This provides an alternate proof of the full colorability

of trees (cf. [8]) and shows that it is possible to minimize bandwidth

while guaranteeing that no band is wasted and no frequency can be

lowered.
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This paper is organized as follows. Section 2 includes notation and

preliminaries on inh-coloring. Section 3 contains lemmas used in the

proof of the main result which is featured in Section 4. The paper

concludes with open problems given in Section 5.

2. Preliminaries

Given two vertices u, v ∈ V (G) of a graph G, d(u, v) denotes the

distance between them, meaning the number of edges in a shortest

path between u and v. The edge joining two adjacent vertices u and v

is denoted by {u, v} or simply uv. The path on n vertices is denoted by

Pn. The closed neighborhood (resp., open neighborhood) of a vertex u

is denoted N [u] (resp., N(u)).

Definition 2.1. An L(2, 1)-coloring of a graph G is a vertex coloring

f : V (G)→ Z+ ∪ {0} such that

(1) |f(u)− f(v)| ≥ 2 for all uv ∈ E(G), and

(2) |f(u)− f(v)| ≥ 1 if d(u, v) = 2.

The span of an L(2, 1)-coloring f is spanf := max {f(v) : v ∈ V (G)}.
The span of a graph G is

λ(G) := min {spanf : f is an L(2, 1)-coloring of G} .

An L(2, 1)-coloring of G whose span is equal to the span of G is called

a span coloring.

Definition 2.2. An L(2, 1)-coloring f : V (G) → {0, 1, 2, . . . , k} of a

graph G is a no-hole coloring provided f is surjective for some integer

k.

The notion of no-hole coloring is related to that of a full coloring.

Definition 2.3. A no-hole coloring f is called a full coloring if and

only if spanf = λ(G).

A graph may have a no-hole coloring but not be full-colorable. For

example, consider C6, the cycle on six vertices. Note that the span of

C6 is λ(C6) = 4 [10, Proposition 3.1]. Because C6 has six vertices, a full
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coloring of C6 would require that two vertices have the same label, say

a. However, every other vertex is adjacent to one of those two vertices.

As a result, no vertex may be labelled a± 1 which creates a hole at at

least one of a±1. Thus, C6 is not full-colorable. However, 0, 3, 1, 4, 2, 5

will give a no-hole coloring as shown in Figure 1.

0

3

1

4

5

2

Figure 1. A no-hole coloring of C6.

Next, we define the notion of irreducibility.

Definition 2.4. An L(2, 1)-coloring f of a graph G is called reducible

if there exists another L(2, 1)-coloring g of G such that g(u) ≤ f(u)

for all vertices u ∈ V (G) and there exists a vertex v ∈ V (G) such that

g(v) < f(v). Otherwise, f is said to be irreducible.

Every graph has an irreducible L(2, 1)-coloring. In fact, the following

is true.

Lemma 2.5. [19, Theorem 1] Given any graph G, there is an irre-

ducible L(2, 1)-coloring f of G such that the span of f equals λ(G).

An inh-coloring of a graph G is an L(2, 1)-coloring of G which is both

no-hole and irreducible. A graph G is said to be inh-colorable provided

G has an inh-coloring. While every graph has an irreducible L(2, 1)-

coloring, not all graphs are inh-colorable. For example, the star K1,n

fails to have a no-hole coloring and thus is certainly not inh-colorable.

There are graphs which fail to be inh-colorable for other reasons. For

example, the graph shown in Figure 2 is not inh-colorable because every

no-hole coloring is reducible. In [6], a number of graphs are shown to
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be inh-colorable, including paths other than P2 and P3, cycles of length

greater than four, and all trees other than stars. Most graphs with a

single cycle and hex graphs with at least five rows and at least five

columns are also inh-colorable [19].

Figure 2. An example of a graph in which every no-
hole coloring is reducible.

3. Lemmas

This section consists of lemmas used in the proof of the main result.

Some of these results are recalled from the literature, while others are

proved here.

According to [6], all trees other than stars are inh-colorable. The

proof of this result shows that greedily coloring a tree T 6= K1,n provides

an inh-coloring with ∆(T ) + 1 or ∆(T ) + 2 colors; that is,

∆(T ) + 1 ≤ λinh(T ) ≤ ∆(T ) + 2.

Combining the results of [6] and [10, Proposition 3.1], we immediately

see that λinh(Pn) = λ(Pn) for all n 6= 2, 3. Hence, in the following we

restrict our attention to trees with maximum degree at least 3.

Let T be a tree of maximum degree ∆ ≥ 3 that is not a star. We

will show that λinh(T ) = λ(T ). Note that if λ(T ) = ∆ + 2, then the

result follows immediately. Note that in any span coloring of T the

only possible colors for a maximum degree vertex v are 0 and ∆ + 1.

Moreover, the only possible colorings of the closed neighborhood of v

are

f(v) = 0 and {f(u) : u ∈ N(v)} = [2,∆ + 1]
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and

f(v) = ∆ + 1 and {f(u) : u ∈ N(v)} = [0,∆− 1] .

2

3

0

∆(G)

∆(G) + 1

Figure 3. The standard star coloring.

0

1 ∆(G) - 2

∆(G) - 1

∆(G) + 1

Figure 4. The dual star coloring.

A coloring of the former type is called the (standard) star coloring

and is illustrated in Figure 3. A coloring of the latter type is called the

dual star coloring and is illustrated in Figure 4.

The next result shows that if both 0 and ∆(G) + 1 are used to color

maximum degree vertices in a span coloring, then the inh-span and

the span of G are equal. As a result, if G has two maximum degree

vertices which are adjacent or within distance two of one another, then

λinh(G) = λ(G). This allows us to restrict our attention to trees T

in which the distance between any two maximum degree vertices is at

least three.

Lemma 3.1. [19, Proposition 1] For any graph G of maximum degree

∆ with λ(G) = ∆ + 1, if there exists a span coloring f and two vertices

u and v of degree ∆ such that f(u) = 0 and f(v) = ∆ + 1, then

λinh(G) = λ(G).
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We next prove a similar result for vertices of degree ∆(G) − 1 that

will be useful in the proof of the main result.

Lemma 3.2. Let G be a graph of maximum degree ∆ satisfying λ(G) =

∆ + 1. Suppose that f is a span coloring of G with f(v) = 0 for some

maximum degree vertex v. If G has a vertex u of degree d(u) = ∆− 1

such that f(u) ∈ [3,∆], then λinh(G) = λ(G).

Proof. Suppose G is a graph of maximum degree ∆ satisfying λ(G) =

∆ + 1 with a span coloring f such that f(v) = 0 for some maximum

degree vertex v and f(u) ∈ [3,∆] for some vertex u of degree d(u) =

∆− 1. The neighbors of u are colored

[0,∆ + 1] \ {f(u), f(u)± 1} .

In particular, there is a neighbor v′ of u such that f(v′) = 1.

Suppose that f is reducible. Then there exists an L(2, 1)-coloring f ′

such that f ′(x) ≤ f(x) for all vertices x ∈ V (G). The coloring f ′ may

be chosen so that it is irreducible. Note that f ′ (N [v]) = [0,∆ + 1]\{0}.
In addition, f ′(v′) = 1 since f ′(v′) ≤ f(v′) = 1 and v′ is distance two

from u which is colored f ′(u) ≤ f(u) = 0. Therefore, f ′ is an irreducible

no-hole coloring of G with span ∆ + 1. �

Notice that if f is an irreducible span coloring of a graph G with

λ(G) = ∆(G) + 1, then the irreducibility of f places strong restrictions

on the colors of vertices throughout G. In particular, the following fact

(which is used repeatedly in the proof of Theorem 4) follows immedi-

ately from the irreducibility of f .

Lemma 3.3. Suppose that f is an irreducible span coloring of a graph

G with λ(G) = ∆(G)+1 and f(v) = 0 for some maximum degree vertex

v. Then f is no-hole or each vertex u of G satisfies the following:

• If f(u) = 2 then u is adjacent to a vertex colored 0.

• If f(u) ≥ 3 then either u is adjacent to a vertex colored 0 or u

is adjacent to a vertex colored 2 (or both).

The next result enables us to restrict our consideration to trees in

which every leaf is adjacent to a maximum degree vertex.
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Lemma 3.4. Let G be an inh-colorable graph of maximum degree ∆

with λinh(G) = ∆ + 1. Let v ∈ V (G) be a vertex of degree at most

∆− 2. Let G+ denote the graph with vertex set V (G+) := V (G) ∪ {u}
and edge set E(G+) := E(G) ∪ {uv}. Then

λinh(G+) = λinh(G).

In particular, if the graph G− obtained from G by deleting every leaf

that is not adjacent to a vertex of maximum degree is inh-colorable with

λinh(G−) = ∆ + 1, then λinh(G) = ∆ + 1.

Proof. Suppose that f is an inh-coloring of G of span ∆ + 1. We claim

that f can be extended to an inh-coloring of G+ using no additional

colors. The set of colors available for u among [0,∆ + 1] is

Au := [0,∆ + 1] \ ({f(v), f(v)± 1} ∪ {f(x) : x ∈ V (G), d(x, v) = 1})

which has cardinality

|Au| ≥ ∆ + 2− (3 + d(v)) ≥ 1.

Define a coloring f+ of G+ by f+(x) := f(x) for all x ∈ V (G) and

f+(u) := min {a : a ∈ Au}. Then f+ is an inh-coloring of G+ of small-

est possible span, namely ∆ + 1. �

As a corollary, we see that we may restrict our attention to trees

with at least two vertices of maximum degree.

Corollary 3.5. Let T be a tree of maximum degree ∆ that is not a

star. If T has only one maximum degree vertex then λinh(T ) = ∆ + 1.

Proof. Suppose that T has a unique maximum degree vertex u. Root

T at u. Since T is not a star, u has at least one neighbor, say v1, that

has at least one descendant, say w. The subtree induced by N [u]∪{w}
has an inh-coloring of span ∆ + 1: color N [u] with the standard star

coloring, being sure to color v1 as ∆ + 1, and color w as 1. Repeated

application of Lemma 3.4 allows adding and coloring of vertices one by

one to obtain an inh-coloring of T having span ∆ + 1. �
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4. Main result

In this section, we build upon the material in the previous sections

to prove that the inh-span of a tree is equal to its span, provided the

tree is not a star.

Consider a tree T that is not a star with ∆ := ∆(T ) ≥ 3. Assume

λ := λ(T ) = ∆+1. According to Lemma 2.5, T has an irreducible span

coloring. Suppose that each irreducible span coloring has a hole, and

let f be such a coloring. Without loss of generality, we may assume that

f(v) 6= 1 for all vertices v ∈ V (T ); that is, we may assume that f has

a hole at 1. (Otherwise, take the dual of f and reduce if necessary to

obtain an irreducible span coloring.) We will show that f can be altered

slightly to produce an inh-coloring of T , yielding a contradiction.

By Corollary 3.5 and Lemma 3.1, we may assume there are at least

two maximum degree vertices and that any two distinct maximum de-

gree vertices u and v of T have d(u, v) ≥ 3. If every leaf that is not

adjacent to a vertex of maximum degree were removed, then we obtain

a graph that is still inh-colorable (in particular it would contain N [u],

N [v] and the path connecting u and v). If we can show that this new

graph has inh-span ∆+1 then by Lemma 3.4 the desired result follows.

Hence we may assume that every leaf of T is adjacent to a vertex of

maximum degree.

We are now ready to prove the main result.

Theorem 4.1. For any tree T that is not a star,

λ(T ) = λinh(T ).

Proof. Root T at a vertex u of maximum degree. Given a vertex r ∈
V (T ), let Tr denote the subtree of T rooted at r. Suppose that v

is a maximum degree vertex with d(u, v) as large as possible. Then

f(v) = 0, and all children of v are leaves. For convenience, set y := p(v),

x := p(y), and w := p(x). Since y is not of maximum degree, any

child v′ of y has a child, and this child must be a leaf, making v′

maximum degree. However, it is impossible for v′ to be of maximum
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degree because d(v′, v) = 2. Therefore v is the only child of y, and so

d(y) = 2.

If f(y) /∈ {∆,∆ + 1} and f(x) 6= ∆ + 1, then we can modify f

to be irreducible and no-hole by maintaining the coloring f for all

s ∈ V (T ) \ V (Tv) and dual star coloring N [v]. Hence, either

(i) f(y) ∈ {∆,∆ + 1} or

(ii) f(x) = ∆ + 1.

Note that in case (i), f(x) = 2 since otherwise Ty could be recolored

so that f(y) = 1 and v could be dual star colored, producing an inh-

coloring of T with ∆ + 1 colors.

We will make repeated use of the fact that if it were possible to

recolor x with an integer a ∈ [3,∆], then Tx could be recolored as

follows. Available colors for the children of x would be

[0,∆ + 1] \ {f(w), a, a± 1}.

This allows y to be colored as 1, N [v] to be dual star colored, and

a maximum degree child of x to be star colored (since 0 fails to be

available only if f(w) = 0 which does not happen if x has such a

child), producing an inh-coloring with λ+ 1 colors.

We claim that if w has a child c and f(c) /∈ {2,∆ + 1} then f(c) = 0

and c is of maximum degree. To see this, assume that w has a child c

with f(c) ∈ [3,∆]. Since c has no maximum degree grandchild, either

c is a leaf or it has a single maximum degree child and is of degree

2. If c is a leaf then we can interchange the colors of x and c and

recolor Tx as indicated in the paragraph above. Hence c must have a

maximum degree child, say g, and the degree of c is 2. Furthermore,

f(w) ∈ {2,∆+1}; otherwise, we can recolor c with 1 and dual star color

N [g]. In either situation we may interchange the colors of x and c, star

coloring N [g], and recoloring Tx as indicated above. This establishes

our claim.

Recall that if there is an integer a ∈ [3,∆] available for recoloring x,

then Tx can be recolored in the manner previously described. Thus,

(1) [3,∆] ⊆ {f(w), f(w)± 1, f(p(w))}.
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If f(w) = 0, then (1) implies ∆ = 3 and f(p(w)) = 3. Therefore

d(p(w)) = ∆ − 1 and Lemma 3.2 now applies. Hence, f(w) 6= 0. If

f(w) = 2, then (1) implies ∆ = 4 = f(p(w)) and f(x) = 5. Note

that by Lemma 3.3, w must have a maximum degree child. Here, an

inh-coloring of T with ∆ + 1 colors may be obtained by recoloring Tw

as follows: set f(w) = 1, f(x) = 3, f(y) = 5, dual star color the

maximum degree child of w and its neighborhood, and star color N [v].

Thus f(w) 6= 2. If f(w) = ∆ + 1, then f(x) = 2, f(y) = ∆ = 4, and

f(p(w)) = 3. Here, an inh-coloring of T with ∆ + 1 colors may be

obtained by recoloring Tw as follows: set f(w) = 1, f(x) = 4, f(y) = 2,

and dual star color N [v] as well as the neighborhood of a maximum

degree child of w if there is one. Thus, f(w) 6= ∆ + 1.

We conclude that f(w) ∈ [3,∆]. Reset f(x) to 1. The children

of x can now be recolored using colors from [3,∆ + 1] \ {f(w)} and

each grandchild of x given either the dual star or star coloring. If x

has a maximum degree child, it can be dual star colored. If all of the

grandchildren of x are dual star colored, then (after possibly reducing

f(x) to 0) f is an inh-coloring. If at least one of grandchild of x is

star colored, then f(x) cannot be reduced and f is an inh-coloring (as

f(x) = 1). Therefore, T has an inh-coloring with ∆ + 1 colors. �

5. Open problems

In this paper, we have considered inh-colorings of trees. It was pre-

viously known that all trees other than stars are inh-colorable [6].

However, there are many other classes of graphs for which the inh-

colorability is not known. For instance, while many grid graphs are

inh-colorable as are hypercubes of small dimensions, it is not known

whether all such graphs are have an inh-coloring. More generally, are

all bipartite graphs inh-colorable? It remains an open problem to char-

acterize all inh-colorable graphs.
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