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Abstract—In this paper, we consider approaches to designing
Tanner codes to protect against symbol loss from multiple era-
sures. First, we note that Tanner codes inherit locality and avail-
ability from their inner codes, allowing one to design longer codes
with specified locality and availability. Availability is desirable in
that multiple disjoint repair groups increase the likelihood that
symbols are available to repair erased ones. Even so, particular
patterns of erasures well-distributed across the repair groups
may prevent recovery. Hence, we consider an alternative using
hierarchical locality which implements tiered recovery, where the
tier utilized depends on the number of erasures. Finally, we define
hierarchical stopping sets to characterize local message-passing
decoder failure at the various repair levels.

Index Terms—locality, hierarchical locality, Tanner codes,
message-passing decoder, stopping sets

I. INTRODUCTION

A locally recoverable code (LRC) provides erasure recovery
of a symbol by accessing only a few other symbols, so
that each coordinate has a specified recovery set. If multiple
erasures occur, an LRC may or may not be able to recover the
original codeword using these small recovery sets. Assuming
the code has minimum distance d, it can recover up to d− 1
symbols but in doing so utilizes all available symbols. For
instance, an LRC with locality r would only require r symbols
to recover a missing coordinate but if two symbols were
missing then all n−2 symbols may need to be involved in the
recovery. Hierarchical LRCs (HLRCs), introduced in [1], [2],
address this problem by providing tiers of recovery. If a single
erasure occurs, then a small number of symbols are involved
in recovery; if more, but not too many, erasures occur, then
more (but not all available) symbols are utilized.

In this paper, we harness graphical properties and inner
codes of Tanner codes to give rise to hierarchical LRCs.
Clearly, any existing LRC can be expressed as a graph-based
code; in contrast, here we begin with a graph to construct an
(H)LRC. In graph-based message-passing decoding, stopping
sets characterize decoder failure over erasure channels [3]. As
LRCs are designed for the erasure setting, we can express
message-passing decoder failure for our HLRCs in each level
of the hierarchy as specialized stopping sets within that level.
We show that the minimum size of a stopping set increases
with the size of the hierarchical repair level.

*The work of G.L. Matthews is supported in part by NSF under Grant
DMS-1855136 and in part by the Commonwealth Cyber Initiative.

The remainder of the paper is organized as follows. Section
II gives necessary background on Tanner codes and (H)LRCs.
We describe how Tanner codes can be viewed as (H)LRCs and
present locality parameters for each in Section III. Section IV
explores the connection between stopping sets of graph-based
message-passing decoders and hierarchical local recovery, and
Section V concludes the paper.

II. PRELIMINARIES

Tanner codes are graph-based codes constructed using bi-
partite graphs and shorter codes called inner codes [4]. In this
section, we review prerequisite material before considering the
use of Tanner codes in constructing (H)LRCs.

We use standard notation and terminology, letting an
[n, k, d]q code over a finite field Fq (denoted [n, k, d] when the
field is understood) be a linear code of length n, dimension k,
and minimum distance d with respect to the Hamming metric.
We define [n] := {1, . . . , n}. Given v ∈ Fnq and i ∈ [n], we
denote the ith component of v by vi.

Given an [n, k, d] code C and I := {i1, . . . , is} ⊆ [n], the
corresponding punctured code is C|I := {(ci1 , . . . , cis) : c =
(c1, . . . , cn) ∈ C}. Let C1 be an [n1, k1, d1] code and C2 an
[n2, k2, d2] code. Then the concatenated code C is comprised
of codewords obtained by placing the codewords of C1 and
C2 adjacent to each other in order. Note that the length of the
concatenated code C is n1 + n2, the dimension of C, denoted
dim(C), is at most k1 + k2, and the minimum distance of C,
denoted dmin(C), is min{d1, d2}.

Definition 1 (Tanner Codes). Let G = (L∪̇R,E) be a
bipartite graph where the nodes in L have degrees C :=
{c1, . . . , cn} such that |L| = n and nodes in R have degrees
D := {d1, . . . , dm} such that |R| = m. The Tanner code
T (G, {C1, . . . , Cm}) over Fq is defined as follows:

T (G, {C1, . . . , Cm}) = {c : c|N(j) ∈ Cj ∀j ∈ [m]} ⊆ Fnq ,

where the neighborhood N(j) is the set of nodes adjacent to
the jth node in R.

We assume that c1 ≤ c2 ≤ . . . ≤ cn and d1 ≤ d2 ≤ . . . ≤
dm. Moreover, Cj ⊆ Fdj

q for all j ∈ [m]. It is possible that for
some j, k ∈ [m], j 6= k, dj = dk but Cj 6= Ck.

Throughout the paper, we will refer to nodes in L as
variable nodes and nodes in R as check nodes. The properties
of T (G, {C1, . . . , Cm}) depend both on the underlying graph



and the choice of inner codes C1, . . . , Cm. Recall that the girth
of a graph G, denoted g(G), is the minimum length of a cycle
contained within the graph. Because a Tanner code is derived
from a bipartite graph, its girth must be even.

The notion of locality was first introduced in [5]. Locally
recoverable codes (LRCs) allow recovery of any erased code-
word symbol (meaning coordinate) by accessing at most r
other surviving codeword symbols. More precisely, an (n, k, r)
LRC C over Fq encodes a message with k symbols to generate
a codeword c of length n such that each symbol ci of the
codeword can be recovered using a set of at most r other
codeword symbols. This set is called a recovery set of ci, and
r is the locality of C. Note that we may assume r ≤ k. If
there are at least a disjoint recovery sets for each i ∈ [n],
each containing at most r symbols, the code is said to have
availability a and is denoted as an (n, k, r, a) LRC. The idea
of locality has been widely explored in the literature, see e.g.
[6], [7], [8], [9].

Kamath et al. extended the definition of LRCs to (t, ρ)
locality in [10]. This extension allows for the recovery of up
to ρ−1 erasures, as described next via the notion of punctured
codes. An [n, k, d] code C is an LRC with locality (t, ρ) and
availability τ if:
• there exist punctured codes C|I1,i∪{i} , . . . , C|Iτ,i∪{i}

such that I1,i, . . . , Iτ,i ⊆ [n] \{i} ∀i ∈ [n],
• C|Ij,i∪{i} is a [|Ij,i|+ 1,≤ t,≥ ρ] code for all j ∈ [τ ],

• the set supp(C|Ij,i∪{i})\
[
∪`∈[τ ], 6̀=jsupp(C|I`,i∪{i})

]
has

dim(C|Ij,i∪{i}) linearly independent coordinates.
Note that the values of t and ρ can in general differ for

each code C|Ij,i∪{i} for all j ∈ [τ ]. However, throughout
this paper we will consider each punctured code to have the
same bounding values (t, ρ). Various approaches to correcting
multiple erasures using locality have been studied in the
literature, see e.g. [11], [12], [13]. One such approach, which
we focus on here, was the introduction of hierarchical local
recovery in [1], [2]. Hierarchical locally recoverable codes
(HLRCs) are linear codes that provide a method of multi-tier
erasure recovery; they are defined as follows.

Definition 2 (HLRCs, [1]). An [n, k, d] code C is a code
with h-level hierarchical locality having local parameters
[(t1, ρ1), . . . , (th, ρh)] if ρ1 ≥ · · · ≥ ρh, and for every
i ∈ [n], there exists a punctured recovery code Ci such that
i ∈ supp(Ci) and the following conditions hold:
• dim(Ci) ≤ t1,
• dmin(Ci) ≥ ρ1,
• Ci is a code with (h−1)-level hierarchical locality having

local parameters [(t2, ρ2), . . . , (th, ρh)].

For an HLRC as in Definition 2, we refer to the recovery
codes Ci with parameters (tj , ρj) as belonging to the jth level
of hierarchy. Up to ρj − 1 erasures can be corrected using
the jth level of hierarchy based on the minimum distance.
Notice that to fully exploit the hierarchical structure, we
should choose the highest index of a level such that correction
is possible with a code in that level (thus minimizing the

dimension of the recovery code); as a result, level j may be
used to correct between ρj+1 and ρj − 1 erasures. The notion
of availability can be extended to HLRCs as follows.

Definition 3 (HLRCs with availability). An [n, k, d] code
C is code with a h-level hierarchical locality having local
parameters [(t1, ρ1), . . . , (th, ρh)] and availability τ1, . . . , τh
if the following conditions hold.
• C is an (t1, ρ1) LRC with availability τ1.
• Each of the punctured codes C|Ij1,i∪{i} ∀j1 ∈ [τ1]

is a (h − 1)-level HLRC having local parameters
[(t2, ρ2), . . . , (th, ρh)] and availability τ2, . . . , τh.

In the next section, we explore the (hierarchical) locality and
availability properties of Tanner codes when the inner codes
are chosen to have locality properties of their own.

III. TANNER CODES FOR (HIERARCHICAL) RECOVERY

In this section, we show how Tanner codes can be consid-
ered as (H)LRCs when the inner codes are chosen to be locally
recoverable codes. In both subsections, we consider a Tanner
code T := T (G, {C1, . . . , Cm}) over the finite field Fq . Let `1
be the number of distinct elements of C, and let xij ∈ L denote
a node of degree ci, i ∈ [`1], so that j ∈ [ni], where ni is
the number of nodes of degree ci. Denote the neighborhood of
xij by N(S) = {yij1, . . . , yijci}, and let the code associated
with yij` be denoted Cij` for all 1 ≤ ` ≤ ci. On the other
hand, let mi denote the number of distinct check nodes in R
of degree di. Notice that it is possible that yij` = yi′j′`′ for
some (i, j, `) 6= (i′, j′, `′); it is of course important that in this
case, Cij` = Ci′j′`′ .

A. Tanner codes as LRCs

We begin the study of Tanner codes as LRCs with repair
sets by considering locality properties with a single erasure.

Theorem 1. For each xij ∈ L, let Cij` be an (dij`, kij`, rij`)
LRC with availability aij` for all 1 ≤ ` ≤ ci.

1) If g(G) = 4, T has locality r and availability a given by

r = max
(i,j)

min
` s.t.

yij`∈N(xij)

{rij`}

a = min
(i,j)

max
` s.t.

yij`∈N(xij), rij`≤r

{aij`}.

2) If g(G) ≥ 6, T has locality r and availability a given by

r = max
(i,j,`)

{rij`}

a = min
(i,j)

ci∑
`=1

aij`.

Proof. 1) Let g(G) = 4 and consider an erased node xij
for some i ∈ [`1] and j ∈ [ni]. The most efficient
way to recover xij is to access the neighbor yij` such
that the associated inner code Cij` has minimum local-
ity: min

` s.t. yij`∈N(xij)
{rij`}. To ensure that any choice of



erased node can be recovered, we maximize over all
possible i, j pairs, yielding the result.
The number of disjoint sets of size at most r
that can then recover the erased node xij is

max
` s.t. yij`∈N(xij), rij`≤r

{aij`}. The availability must ap-

ply to the recovery of any erasure, so we minimize over
all possible i, j pairs, yielding the result.

2) Now, let g(G) ≥ 6. Since there are no 4-cycles in G, none
of the repair groups of xij associated with different yij`’s
intersect. Thus, we may increase availability significantly
by taking the locality r to be a maximum over the
neighboring rij`’s. Consider the erased node xij and its
neighboring set N(S) = {yij1, . . . , yijci}. Again due
to the lack of 4-cycles, xij can now be repaired using∑ci
`=1 aij` disjoint repair groups of size at most r. We

again minimize over all i, j pairs, yielding the result.
�

We now extend the above results to the case of multiple
erasures, so that the set of erased nodes is given by S =
{xi1j1 , . . . , xisjs}, where |S| = s ≤ c1 and any pair of erased
nodes shares at most one common neighbor in R. If the girth of
T is at least 6, then this last condition is guaranteed; in graphs
of girth 4 it remains possible to have such a set S, though
not every erasure set of size s ≥ 2 will have this property.
The neighborhood of S is equal to N(S) =

⋃s
`=1N(xi`j`), a

union that is not necessarily disjoint.

Theorem 2. For each xij ∈ L, let Cij` be an (dij`, kij`, rij`)
LRC with availability aij` for all 1 ≤ ` ≤ ci. Then T has
locality equal to

r = s max
(i,j,`)

{rij`}.

Furthermore,
1) If g(G) = 4, T has availability given by

a = min
(i,j,`)

{aij`}.

2) If g(G) ≥ 6, T has availability given by

a = min
(i,j,`)

{(ci − s+ 1)aij`} .

Proof. Consider the set of erased nodes S such that |S| =
s ≤ c1 and the intersection of the neighborhoods of any
two elements in S has size at most one. The most efficient
way to recover xij would be to access its neighbor yij` such
that the associated inner code Cij` has minimum locality.
Unfortunately, there is no guarantee that another node in
this repair group does not also belong to S. However, there
are at least ci − (s − 1) ≥ 1 neighbors of xij that have
no other elements of S in its neighborhood. Thus, at most

max
` s.t. yij`∈N(xij)

{rij`} other nodes need to be contacted to

repair xij . To ensure that every erased node can be recovered,
we maximize this over all i ∈ [`1] and j ∈ [ni].

1) Let g(G) = 4. The number of disjoint sets that can
recover a single erased node xij for some i ∈ [`1] and j ∈
[ni] is at least min`{aij`}. The collection of s erasures is

then recovered using s (not necessarily disjoint) recovery
sets, each of size at most max

(i,j)
max

` s.t. yij`∈N(xij)
{rij`}. By

taking unions comprised of one repair group per bit, we
will have at least a = min

(i,j,`)
{aij`} repair groups of size

at most r = s max
(i,j,`)

{rij`} for the set S.

2) Now, let g(G) ≥ 6, and consider the erased node xij
for some i ∈ [`1] and j ∈ [ni] and its neighboring set
N(xij) = {yij1, . . . , yijci}. Since G has no 4-cycles,
none of the repair groups of xij associated with yij` in-
tersect with the repair groups of yij`′ , for all ` 6= `′ ∈ [ci].
Recall that at least ci − s+ 1 of xij’s neighbors are not
adjacent to any other element of S. This means that xij
can be repaired using at least (ci − s + 1)min`{aij`}
different repair groups of size at most max

(i,j,`)
{rij`}. As

before, by taking unions comprised of one repair group
per bit, we will have at least a = min

(i,j,`)
(ci− s+1){aij`}

repair groups of size at most s max
(i,j,`)

{rij`} for the set S.

�

From the previous two results, we can see that in the case
of s erasures, the best that can be guaranteed by exploiting the
inner code LRC structure is that the size of a repair set for
the erasures increases a full s-fold from the size of a repair
group for a single erasure in a girth ≥ 6 graph. This motivates
the study of Tanner codes as HLRCs for the case of multiple
erasures.

B. Tanner codes as HLRCs

Next, we show that Tanner codes may be viewed as HLRCs
with h = 2 or 3 levels by presenting results on the parameters
of h particular choices of recovery code level construction (see
the proofs of Theorems 3 and 4, respectively).

Theorem 3. Let the inner code Ci := (di, ki, δi) of Tan-
ner code T be an LRC with locality parameters (ti, ρi)
and availability τi for all i ∈ [m]. Then T is an HLRC
with 3-level hierarchical locality with locality parameters
[(t̃1, ρ̃1), (t̃2, ρ̃2), (t̃3, ρ̃3)], where

(t̃1, ρ̃1) =

(
max
(i,j)

ci∑
`=1

kij`, min
u∈[m]

δu

)
,

(t̃2, ρ̃2) =

(
max
u∈[m]

ku, min
u∈[m]

δu

)
,

(t̃3, ρ̃3) =

(
max
u∈[m]

tu, min
u∈[m]

ρu

)
.

Furthermore, the HLRC has availability τ̃1 = 1, τ̃2 =
min
j

cj , τ̃3 = min
u∈[m]

τu if g(G) ≥ 6 and availability τ̃1 =

1, τ̃2 = 1, τ̃3 = min
u∈[m]

τu if g(G) = 4.

Proof. Let xij denote an erased node. Consider the code
comprised of xij and all variable nodes distance 2 from xij
(i.e. all neighbors of neighbors of xij); this is a punctured
code relative to T . The dimension of this concatenated code



is bounded above by
∑ci
`=1 kij` and its minimum distance is

equal to min
`∈[ci]

δij`. The result for the 1st level of hierarchy

follows from maximizing the upper bound and minimizing
the lower bound on minimum distance over all elements of L.
For the 2nd level of hierarchy, consider the set of inner codes
associated with neighbors of erased node xij . Each of these
inner codes is a punctured code obtained from the 1st level
concatenated code associated with xij , the dimension of each
is bounded above by max

u∈[m]
ku, and the minimum distance of

each is bounded below by min
u∈[m]

δu. The 3rd level of hierarchy

is associated with the locality of each of the inner codes.
In particular, the recovery codes of each inner code are the
punctured codes obtained from the inner code. The dimension
of each of these punctured codes is at most max

u∈[m]
tu and the

minimum distance is at least min
u∈[m]

ρu. Regardless of g(G),

the availability at the 1st level of hierarchy is 1 because a
single repair code at this level consists of all (distance 2)
variable node neighbors of an erased node. When g(G) ≥ 6,
availability at the 2nd level of hierarchy is minj cj , since
any inner code associated with any neighbor of an erased
node can be used for recovery and the neighborhoods of
the check node neighbors of an erased node are pairwise
disjoint. The availability at the 3rd level of hierarchy in this
case is τ̃3 = min

u∈[m]
τu because we may only look at repair

codes that exist within a particular 2nd level repair code per
Definition 3. Thus, the availability is given by the minimum
availability of an inner code LRC. Now, suppose g(G) = 4.
The availability at the 2nd level of hierarchy is 1 because the
inner code associated with any neighbor of an erased node
can be used for recovery, but we can no longer guarantee
that the neighborhoods of these check nodes are disjoint. The
availability at the 3rd level of hierarchy is again min

u∈[m]
τu. �

We can also consider T as an HLRC with two levels of
repair codes, as described in the next theorem. The two level
recovery offers an advantage in terms of availability over the
three level recovery above given g(G) ≥ 6. The availability
in the 2nd level (3rd level of three tier recovery) is larger due
to the larger punctured codes (the 1st level) containing the
2nd level. This means that we can simultaneously access the
locality of any inner code in the neighborhood of the erased
symbol. It is always ideal to eliminate small cycles in graph-
based codes and hence the improvement in availability for
Tanner codes based on graphs with g(G) ≥ 6 is meaningful.

Theorem 4. Let the inner code Ci := (di, ki, δi) of Tan-
ner code T be an LRC with locality parameters (ti, ρi)
and availability τi for all i ∈ [m]. Then T is an HLRC
with 2-level hierarchical locality with locality parameters
[(t̃1, ρ̃1), (t̃2, ρ̃2)], where

(t̃1, ρ̃1) =

(
max
`∈[m]

ci∑
`=1

kij`, min
u∈[m]

δu

)

(t̃2, ρ̃2) =

(
max
u∈[m]

tu, min
u∈[m]

ρu

)
Furthermore, the HLRC has availability τ̃1 = 1, τ̃2 =

min
(i,j)

ci∑
`=1

τij` if g(G) ≥ 6 and availability τ̃1 = 1, τ̃2 =

min
u∈[m]

τu if g(G) = 4.

Proof. The proof follows from the proof of Theorem 3 by
letting the 1st level of that result be the 1st level of this result,
and the 3rd level of that result be the 2nd level of this result.
Notice that the availability at the previous 3rd level, now 2nd

level, has increased for the case g(G) ≥ 6. This is because
now we may take all inner LRC repair codes within the entire
concatenated 1st level code, and are not limited to a single
inner code. In the case where g(G) ≥ 6, the neighborhoods
of the check node neighbors of an erased node are pairwise
disjoint and each recovery code of each inner code LRC can
be considered. �

IV. STOPPING SETS & LOCAL RECOVERY

A significant advantage of giving graph-based codes an
(H)LRC structure is the opportunity to implement graph-
based message-passing decoding algorithms, which have low
implementation complexity when operating on sparse graphs.
Over an erasure channel, a so-called peeling decoder, which
iteratively “peels off” erasures by contacting neighboring
check nodes, is used [14]. Stopping sets of Tanner codes
where each inner code is a simple parity-check (e.g. in the
case of low-density parity-check codes) are patterns that cause
iterative decoder failure over an erasure channel [3]. Formally,
a stopping set is a subset S of variable nodes such that
every check node adjacent to S is adjacent to at least two
elements of S; since every word of weight two is a codeword
in a parity-check code, stopping sets completely characterize
erasure patterns where a peeling decoder will get stuck. In
the case where each check node acts as its own (nontrivial)
inner code on a subset of variable nodes (i.e. Tanner codes),
the definition of stopping sets generalizes. Several previous
works take the generalization of “two” to be dmin(C), where
C is an inner code [15]. However, it is not necessarily the
case that every word of weight dmin(C) is a codeword, and
thus some such erasure patterns remain correctable with this
definition. Hence for our application we adopt the following:

Definition 4. Consider a Tanner code with graph G =
(L∪̇R,E). A generalized stopping set is a nonempty subset
S ⊆ L of variable nodes such that the support of the variable
nodes in S adjacent to any check node i contains the support
of a codeword of Ci, the inner code at check node i.

Notice that a codeword whose values are erased at a
generalized stopping set could be corrected by each adjacent
inner code in at least two distinct ways; hence, the peeling
decoder will be stuck. Conversely, if the peeling decoder gets
stuck, the erased set must form a generalized stopping set.
In the case of our 3-level graph-based HLRCs, we define



hierarchical stopping sets in order to characterize message-
passing decoder failure at each level.

Definition 5. 1) A 3rd level stopping set is a nonempty
subset S of variable nodes that is contained within a
single inner code Ci such that the restriction to each repair
code of the LRC Ci contains the support of a codeword
of that repair code.

2) A 2nd level stopping set is a nonempty subset S of
variable nodes contained within the neighborhood of a
single check node such that S contains the support of
a codeword of the associated inner code (i.e. S is a
generalized stopping set within a single inner code of
the 2nd level of the HLRC).

3) A 1st level stopping set is a nonempty subset S of
variable nodes contained within a concatenated code
associated with the 1st level of the HLRC such that the
intersection of S with the neighborhood of each check
node of the concatenated code contains the support of
a codeword of the associated inner code (i.e. S is a
generalized stopping set within a single concatenated
code of the 1st level of the HLRC).

One important parameter of a given graphical representation
G of a code C is the minimum size of a stopping set,
smin(G): fewer than smin(G) erasures are guaranteed to be
correctable by the peeling decoder. This value is referred to as
the stopping distance or stopping number of the representation
[16]–[18]. Considering that the support of any codeword of C
must form a stopping set in any representation, we observe
that smin(G) ≤ dmin(C). Importantly, the inequality may
be strict. The fact that a peeling decoder is being used is
paramount: stopping sets indicate where iterative decoders
fail, not necessarily where any decoder would fail. This is
comparable to the failure of local recovery not necessarily
implying failure of global recovery in an LRC.

Theorem 5. Let smin(Gj) denote the minimum size of a jth

level stopping set for j ∈ [3], and let ρi denote the minimum
distance of the LRC inner code Ci. Then,

min
i
ρi ≤ smin(G3) ≤ smin(G2)

= min
i
dmin(Ci) ≤ smin(G1)

Proof. Any 2nd level stopping set associated with inner code
Ci has weight lower bounded by dmin(Ci), and a minimum
weight codeword of Ci is a 2nd level stopping set. In other
words, smin(G2) = mini dmin(Ci). Consider a minimum
2nd level stopping set S; by the above argument, |S| =
mini dmin(Ci). Let j be a minimizer, so that S is contained in
the neighborhood of Cj and |S| = dmin(Cj). By definition, S
forms the support of a codeword of LRC Cj , so the intersection
of S with any repair code of Cj must either be empty or must
contain at least ρj elements by the definition of the minimum
distance of the repair code. Thus, S forms a 3rd level stopping
set, and smin(G3) ≤ |S| = smin(G2). For the lower bound on
smin(G3), notice that the intersection of any 3rd level stopping

set associated with LRC inner code Cj with each repair code of
Cj must be a codeword of the repair code. Thus, the minimum
distance of a repair code of Cj , ρj , gives a lower bound on
the stopping set size. We then minimize over all inner codes.
Finally, consider a minimum 1st level stopping set S, and the
intersection of S with the neighborhood of some check node
yj that is adjacent to a vertex in S. Call this subset S′. By
definition of a 1st level stopping set, it must be the case that S′

contains the support of a codeword of Cj , where Cj the inner
code associated with yj ; in other words, S′ is a 2nd level
stopping set. Then, smin(G2) ≤ |S′| ≤ |S| = smin(G1). �

Remark 1. Notice that dmin(C), where C is the code defined
by the entire Tanner graph, gives an upper bound on smin(G1)
since the support of any codeword of C restricted to any
concatenated code (such that the result is nonempty) must
result in codewords at each of the constituent inner codes.

Remark 2. A natural question is when the inequalities of The-
orem 5 are met with equality. First observe that the collection
of 2nd level stopping sets is contained in the collection of
3rd level stopping sets: any codeword of an inner code Ci
satisfies each of the repair groups of Ci. Strict set inclusion
occurs exactly when the repair codes do not completely define
Ci (i.e. when more checks beyond the repair code checks
are needed). If the repair codes do define the code, we have
smin(G3) = smin(G2); otherwise the inequality may be strict.
Next, consider a 1st level stopping set S of size smin(G1),
and suppose smin(G1) = mini dmin(Ci). Then the intersection
of S with the neighborhood of each constituent check node
of its associated concatenated code must be equal to S. As
long as c1 > 1, this can only occur if mini dmin(Ci) = 1 or
g(G) = 4. Otherwise, smin(G2) < smin(G1).

Recall that we iteratively correct erasures in an HLRC
using increasingly larger repair codes within the graph, i.e.
by decreasing the level index. Increasing the size of repair
code needed for correction is detrimental in terms of locality,
but may be necessary if a higher number of erasures must
be corrected. Theorem 5 and Remark 2 imply that decreasing
the level index of an HLRC from a Tanner code does not
decrease the number of correctable erasures, and in fact can
give an erasure correction advantage in many cases, even when
restricting to a message-passing peeling decoder.

V. CONCLUSION

In this paper, we study local erasure recovery in Tanner
codes. We provide bounds on the locality and availability of
Tanner codes when the inner codes are locally recoverable
codes. Moreover, we show that in this setting the Tanner
codes allow hierarchical local recovery. This analysis results in
insights about the behaviour of tiered stopping sets of Tanner
code HLRCs.

We are currently comparing our bounds on the locality
and availability of Tanner codes where the underlying inner
codes are LRCs with bounds on the locality and availability
of existing (H)LRC constructions.
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