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Abstract

The power domination number of a graph is the minimum number of
vertices required to monitor the graph. Here, the notion of monitoring
is given by a set of rules for power system monitoring where vertices
model Phasor Measurement Units (PMU) in a power network. In this
paper, we consider the failed power domination number of a graph G,
γfp(G), a recently introduced graph parameter. Any set of vertices of G
whose cardinality is greater than γfp(G) will dominate the graph. The
failed power domination number also allows one to consider PMU (or
node) failure. Indeed, any set of γfp(G) + i + 1 vertices will monitor
the network even in the presence of i node failures. We establish the
failed power domination number for products of paths and cycles including
square grids, tori, and hypercubes and provide bounds for the failed power
domination number of square cylinders.

1 Introduction

The power domination number γp(G) of a graph G is the smallest number of
vertices that can monitor the graph. Introduced by Haynes, Hedetniemi, Hedet-
niemi, and Henning [5], power domination is now a well-studied concept and one
of many vertex domination problems. Here, vertices in a power dominating set
correspond to Phasor Measurement Units (PMUs) in a power network. The
power domination number is motivated by applications where PMUs are expen-
sive, so minimizing the number needed is important for cost savings. In general,
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placement of the PMUs is crucial, meaning that not every collection of γp(G)
vertices will be power dominating. Thus, clever placement of γp(G) the PMUs
may be required to monitor the network. While the setting described here is
in terms of power networks, the concept applies more broadly to any system
in which nodes are selected to monitor the network in such a way that their
neighbors are monitored and a propagation rule allow for each of these nodes
to monitor a neighbor precisely when it has exactly one presently unmonitored
neighbor.

This notion is formalized as follows. Let G be a simple graph with vertex set
V (G) and edge set E(G). The closed neighborhood of a set of vertices S ⊆ V ,
N [S], is the set S together with all vertices adjacent to vertices in S. Given
S ⊆ V (G), the set of monitored vertices at the i-th step of propagation, P i(S),
are defined as follows for i ≥ 0 :

1. P 0(S) = N [S]

2. P i+1(S) = P i(S) ∪ {w : {w} = N [v]\P i(S) for some v ∈ P i(S)}.

Let P∞(S) := ∪∞
i=0P

i(S). The set S is said to be a power dominating set if
and only if P∞(S) = V (G), and the power domination number of G is

γp(G) := min {|S| : S is a power dominating set of G} .

In this paper, we consider how large a set of vertices can be that still fails to
monitor the network. The failed power domination number γfp(G) of a graph G
was introduced by Glasser, Jacob, Lederman, and Radziszowki in [4] to capture
this quantity. In [4], they prove that the computation of γfp(G) is NP-hard,
consider graphs which realized the extreme values of γfp(G), and determine
γfp(G) for complete bipartite graphs G = Km,n, ladder graphs G = Km□P2,
and products G = Km□Pn.

Understanding the failed power domination number of a family of graphs
is important, because any set of vertices whose cardinality is greater than γfp
will dominate the graph regardless of which vertices are selected. The failed
power domination number also allows a shift of focus from minimizing cost to
preventing network failure. It allows the guarantee of network monitoring even
in situations where nodes may go offline, so to speak, and are no longer able to
provide monitoring. The failed power domination number of a graph is relevant
to PMU placement because this number determines the minimum number of
PMUs that are needed to monitor the network regardless of placement as well
as the minimum number required to guarantee that the network is monitored
even if some nodes fail to provide monitoring.

This paper is organized as follows. Section 2 provides the necessary back-
ground and notation to be used throughout this work. Section 3 contains results
on the failed power domination number of grids, cylinders, and tori; and those
for hypercubes are found in Section 4. The paper concludes with a summary
and open problems in Section 5.
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2 Preliminaries

This section includes background material on failed domination as well as no-
tation that will be used in the paper.

Definition 1. A set S ⊆ V (G) is a failed power dominating set of a graph
G if P∞(S) ̸= V (G). The failed power domination number of G, γfp(G), is
the maximum cardinality achieved by a set of vertices which is not a power
dominating set of G, meaning

γfp(G) := max {|S| : S is not a power dominating set of G} .

We say that a vertex v ∈ V (G) is power dominated by S if and only if
v ∈ P∞(S); if S is clear from the context, we simply say that v is power
dominated. A set is said to be stalled if P 0(S) = P∞(S). We use the terms
monitor and power dominate interchangeably. These ideas are illustrated in the
next example.

Example 1. Let G be the graph in Figure 1. Consider S = {a}. Then P 0(S) =
{a, b, c}, being the closed neighborhood of a. Then d is power dominated by {c},
and P 1(S) = {a, b, c, d} = P∞(S) = V (G) \ {e, f, g}. Thus, S is a failed
power dominating set since P∞(S) ̸= V (G). On the other hand, T = {b}
is a power dominating set as P 0(T ) = {a, b, c, e, f} and P 1(T ) = V (G) as
N [c] \ P 0(T ) = {d} and N [f ] \ P 0(T ) = {g}.

We claim that γfp(G) = 3. Notice that W := {a, c, d} is a failed power
dominating set of G. Indeed, P 0(W ) = {a, b, c, d} = P∞(W ) ̸= V (G) as |
N [b] \ P 0(W ) |= 2. Thus, γfp(G) ≥ 3.

To verify that γfp(G) ≤ 3, consider U ⊆ V (G) that is a failed power dom-
inating set. Notice that b /∈ U ; otherwise, {b} being a power dominating set
would force U to also be power dominating. If b /∈ N [U ], then |U | ≤ 2. It
remains to consider the situation in which b ∈ N [U ], meaning at least one of
the vertices a, c, e, f ∈ U . If a ∈ U , then e, f, g /∈ U as otherwise U is a power
dominating set. Thus, U ⊆ {a, c, d}. Suppose that a /∈ U . If c ∈ U , then g /∈ U
(otherwise U is a power dominating set); we may also rule out the case where
e, f ∈ U as then U would be a power dominating set. Hence, U ⊆ {c, d, e} or
U ⊆ {c, d, f}. Suppose now that a, c /∈ U . If e ∈ U , then either U ⊆ {d, e}
or U ⊆ {e, f, g} as it is not possible that d ∈ U along with f ∈ U or g ∈ U .
In the remaining case, U ⊆ {d, f, g}. We conclude that |U | ≤ 3, proving that
γfp(G) = 3.

Not every set of vertices with cardinality 3 is a failed power dominating set,
as {a, b, c} illustrates. However, every set of 4 vertices is power dominating.

Because the failed power domination number is the maximum number of
vertices that fail to form a power dominating set, any set of γfp(G) + 1 vertices
is a power dominating set of G, meaning any set of γfp(G) + 1 vertices can
monitor G. Hence,

• any set of γfp(G) + 1 PMUs can monitor the network;
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Figure 1: A graph G with γfp(G) = 3, in which {a, c, d} is a failed power
dominating set while {a, b, c} is not

• any set of γfp(G)+ 2 PMUs can monitor the network even in the event of
a single PMU failure; and

• any set of γfp(G)+ i+1 PMUs can monitor the network even in the event
of i node failures.

This can be seen in Example 1. Any set of 4 vertices of G can monitor
the network, and the largest failed power dominating set has size 3. Moreover,
given any collection of 5 vertices of G, omitting any one of them leaves 4 vertices
which are guaranteed to be a power dominating set as γfp(G) = 3. This allows
for a single vertex to fail to provide monitoring and yet the entire network is
still monitored.

Notation. The set of nonnegative integers is denoted N, and the set of
positive integers is written as Z+. Given n ∈ Z+, [n] := {1, 2, . . . , n}. All
graphs considered in this paper are simple graphs. Given a graph G and vertices
u, v ∈ V (G), uv denotes the edge incident with u and v. For n ∈ Z+, the path
on n vertices is denoted Pn, and the cycle on n vertices is denoted Cn. Given
two graphs G and H, G□H denotes their Cartesian (or box) product, meaning
V (G□H) = V (G) × V (H) and (u, v)(u′, v′) ∈ E(G□H) if and only if u = u′

and vv′ ∈ E(H) or uu′ ∈ E(G) and v = v′.

3 Grids, cylinders, and tori

In this section, we consider the failed power domination numbers of grids, cylin-
ders, and tori. These graphs have a common vertex set

Vmn = [m]× [n]

where m,n ∈ Z+, and we will see that they share a key property with respect
to failed power domination.

Recall that the m × n grid Gm×n, cylinder Cm×n, and torus Tm×n have
vertex set Vmn with edge sets as follows:

E(Gm×n) = {(i, j)(i, j+1) : i ∈ [m], j ∈ [n−1]}∪{(i, j)(i+1, j) : i ∈ [m−1], j ∈ [n]},
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E(Cm×n) = E(Gm×n) ∪ {(1, j)(m, j) : j ∈ [n]},
and

E(Tm×n) = E(Cm×n) ∪ {(i, 1)(i, n) : i ∈ [m]}.
Alternatively, we may consider these graphs as products: Gm×n = Pm□Pn,
Cm×n = Cm□Pn, and Tm×n = Cm□Cn. In such a graph G we set the notation

Rowr(G) := {r} × [n]

and
Colc(G) := [m]× {c}

for r ∈ [m] and c ∈ [n] and refer to these sets of vertices as a row and col-
umn respectively. For convenience, we set Rowr(Gm×n) = Colc(Gm×n) =
Colc(Cm×n) = ∅ for r /∈ [m] and c /∈ [n]. Moreover, for Rowr(Cm×n) and
Rowr(Tm×n), we consider the indices as r (mod m); similarly, we take the index
to be c (mod n) in Colc(Cm×n). In addition, we use the adjective square to refer
to grids, cylinders, and tori where m = n.

Lemma 2. Consider a graph G which is a grid, cylinder, or torus. If S is
a failed power dominating set of G, then for all i ∈ [m] and for all j ∈ [n],
Rowi(G), Colj(G) ⊈ S. Moreover, for all t ∈ N there exists i ∈ [m−1] such that
Rowi(G), Rowi+1(G) ⊈ P t(S). Similarly, for all t ∈ N there exists j ∈ [n − 1]
such that Colj(G), Colj+1(G) ⊈ P t(S).

Proof. Let G be anym×n grid, cylinder, or torus with vertex set Vmn = [m]×[n]
and failed power dominating set S.

Suppose there exists r ∈ [m] such that for Rowr(G) ⊆ P t(S). Consider
the smallest such t. If t = 0, then Rowr−1(G) ∪ Rowr+1(G) ⊆ P 1(S). Then
Rowr+2(G) ∪ Rowr−2(G) ⊆ P 2(S). This pattern continues until P∞(S) =
P k(S) = V (G) for some k ∈ Z+. Hence, t > 0, demonstrating that Rowr(G) ⊆
P 0(S). A similar argument applies in the situation where Colc(G) ⊆ P t(S) for
some c ∈ [n] and t ∈ N.

Suppose Rowr(G), Rowr+1(G) ⊆ P t(S) for some t ∈ N and r ∈ [m − 1].
Then in P t−1(S), there is a vertex whose only neighbor outside of P t−1(S) is
(r, j) for some j ∈ [n]. Moreover, every vertex in Rowr(G) has at most one
neighbor outside of P t(S). Thus, Rowr−1(G) ∪ Rowr+1(G) ⊆ P t+1(S). This
will continue so that there exists k ∈ N such that P k(S) = P∞(S) = V (G).
A similar argument applies in the situation where Colc(G), Colc+1(G) ⊆ P t(S)
for some c ∈ [n] and t ∈ N.

According to Lemma 2, a failed power dominating set of a grid, cylinder,
or torus cannot contain a set that power dominates two consecutive rows or
columns of vertices of G. This will be useful in determining the failed power
domination number for these families of graphs.

Theorem 3. The failed power domination number of the square grid Gn×n with
n ≥ 2 is

γfp(Gn×n) = (n− 1)(n− 2).
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Proof. We begin by showing that γfp ≥ (n− 1)(n− 2). Let

S = {(i, j) : i ≥ j + 2 or j ≥ i+ 2},

so that S includes all vertices except those on the main diagonal and the two
diagonals next to it. Then |S| = n2−n−2(n−1) = n2−3n+2 = (n−1)(n−2).
We claim that S is not a power dominating set.

Suppose that (i, j) ∈ S. Then the neighbors of (i, j) are {(i + 1, j), (i −
1, j), (i, j+1), (i, j− 1)}, and either i ≥ j+2 or j ≥ i+2. In the case i ≥ j+2,
(i+1, j) ∈ S and (i, i− 1) ∈ S. Additionally, (i, j+1), (i− 1, j) ∈ S if and only
if i ̸= j +2. In the case j ≥ i+2, (i− 1, j) ∈ S and (i, j +1) ∈ S. Additionally,
(i, j − 1), (i+ 1, j) ∈ S if and only if j ̸= i+ 2. This indicates that there exists
neighbors of (i, j) that are not in S only if i = j + 2 or j = i+ 2. This leads to
the conclusion that

P 0(S) = S ∪ {(i, j) : i = j + 1 or j = i+ 1}.

For an arbitrary (i, j) ∈ P 0(S)\S, either i = j + 1 or j = i+ 1. It follows that
if (i, j) ∈ P 0(S)\S, then (i, j) has exactly two neighbors in V \P 0(S), namely
(i, i) and (j, j). This implies that no additional vertices in V (Gn) can be power
dominated, so P∞(S) = P 0(S) which means that this is a stalled set. Note that
(1, 1) ∈ P∞(S) which confirms that S is a failed power dominating set. Hence,
γfp(Gn) ≥ (n− 1)(n− 2).

Next, we will show that γfp < (n− 1)(n− 2)+ 1. Consider S ⊆ V (Gn) such
that |S| ≥ n2 − 3n+ 3. Note that |V (Gn) \ S| ≤ 3n− 3, so there are at least 3
rows and columns with more than n− 3 vertices in S. According to Lemma 2,
if | Rowr(G) ∩ S |≤ n− 1 or | Colc(G) ∩ S |≤ n− 1 for some r ∈ [m] or c ∈ [n],
then S is a power dominating set.

Suppose each row and column of G have no more than n − 2 vertices in S.
Then there must be 3 rows and 3 columns with n−2 vertices in S while the rest
have at least n − 3 vertices in S. If | Rowr(G) ∩ S |= n − 2, then Rowr(G) ∩
(V (G) \ S) = {(r, 1), (r, 2)} or Rowr(G) ∩ (V (G) \ S) = {(r, n− 1), (r, n)} as
otherwise Rowr(G) ⊆ P 0(S) as each vertex in Rowr(G) ∩ S would have a
neighbor on that same row which is an element of S. Therefore, vertices
(1, 2), (2, 1), (2, 2) ∈ P 0(S) which means that Col2(G) ⊆ P 0(S). It follows that
vertex (1, 1) ∈ P 1(S). Consequently, Col1(G) ⊆ P 1(S) and Col2(G) ⊆ P 1(S).
By Lemma 2, S is a power dominating set. Thus, γfp(G) < n2 − 3n + 3. It
follows that γfp(G) = (n− 1)(n− 2).

Example 2. Consider the 10 × 10 grid G10×10 as in Figure 2. Elements of
S = {(i, j) ∈ [10] × [10] : i ≥ j + 2 or j ≥ i + 2} are the blue vertices, and the
pink vertices are the neighbors of S. Hence, the set of the blue and pink vertices
is precisely P 0(S). Notice that for all v ∈ P 0(S), | N [v] \ P 0(S) |∈ {0, 2}. As
a consequence, P 0(S) = P∞(S) = [10] × [10] \ {(i, i) : i ∈ [10]} and the white
vertices are never power dominated.
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Figure 2: The 10×10 grid G10×10 along with a maximal failed power dominating
set S = {(i, j) ∈ [10]× [10] : i ≥ j + 2 or j ≥ i+ 2}

One might wish to compare the power domination and failed power domi-
nation number for square grids. According to [3],

γp(Gn×n) =

{⌈
n+1
4

⌉
if n ≡ 4 (mod 8)

⌈n
4 ⌉ otherwise.

While smart choice of
⌈
n+1
4

⌉
vertices yields a power dominating set of Gn×n,

there are subsets of vertices of cardinalities up to (n− 1)(n− 2) which fail to be
power dominating sets. Taking n = 10 as in Example 1 reveals γp(G10×n) = 3
whereas γfp(G10×n) = 72, indicating that a clever choice of 3 vertices provides
monitoring of the network but there are sets of 72 sets of vertices which fail to
monitor the network.

Next, we consider failed power domination for cylinders.

Proposition 4. The failed power domination number of the square cylinder
Cn×n with n ≥ 3 satisfies

γfp(Cn×n) ≥ n2 − 6n+ 10.

Proof. We consider the two cases depending on the parity of n and provide a
failed power dominating set in each case.

First, consider the case where n ≥ 4 is an even integer. Let

S′ =

(i, j) :

n
2 − i+ 3 ≤ j ≤ n

2 + i− 1 if 2 ≤ i ≤ n
2 ,

i− n
2 + 1 ≤ j ≤ 3n

2 − i− 1 if n
2 + 1 ≤ i ≤ n− 1


and

C =

(i, j) :
j ≤ n−2−2i

2 or j ≥ n+6+2i
2 if 1 ≤ i ≤ n−4

2 ,

j ≤ −n−6+2i
2 or j ≥ 3n+6−2i

2 if n+6
2 ≤ i ≤ n


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For n = 4, let S = S′; when n ≥ 6, let S = S′ ∪ C. Clearly, S ⊆ V (Cn×n).
Notice that |S| = n2 − 6n+ 10.

We claim that S is a failed power dominating set. To see this, note that the
neighbors of C that are not elements of S are elements of

C1 =

(i, j) :
j = n−2i

2 or j = n+4+2i
2 if 1 ≤ i ≤ n−4

2 ,

j = −n−4+2i
2 or j = 3n+4−2i

2 if n+6
2 ≤ i ≤ n

 ,

and the neighbors of S′ that are not elements of S are elements of

S′
1 =

(i, j) :
j = n−2i+4

2 or j = n+2i
2 if 1 ≤ i ≤ n−4

2 ,

j = −n+2i
2 or j = 3n−2i

2 if n+6
2 ≤ i ≤ n

 .

Hence, P 0(S) = S∪C1∪S′
1. It follows that for (i, j) ∈ P 0(S)\S, either (i, j) ∈ C1

or (i, j) ∈ S′
1. In either case, every such vertex will have two neighbors that are

not elements of P 0(S). Therefore, P∞(S) = P 0(S).
One may see that (1, n

2 ) ∈ V (Cn×n) \P∞(S) as its neighbors are (1, n
2 − 1),

(1, n
2 +1), (2, n

2 ) none of which are elements of S. Indeed, the elements of S on
Row1(Cn×n) are (1, j) with j ≤ n

2 − 2 or j ≥ n
2 + 4, and those on Row1(Cn×n)

are (2, j) with j ≤ n
2 − 3 or j ≥ n

2 + 5. This confirms that S is a failed power
dominating set, so γfp(Cn×n) ≥ n2 − 6n+ 10 for even n ≥ 4.

Next, consider the case where n ≥ 3 is an odd integer. Let

S′ =

{
(i, j) : for i = n+1

2 ± k, 2 + k ≤ j ≤ n− 1− k} for k ∈ {0} ∪
[
n− 3

2

]}
and

C =

(i, j) :
j ≤ n−3−2i

2 or j ≥ n+5+2i
2 if 1 ≤ i ≤ n−5

2 ,

j ≤ −n−5+2i
2 or j ≥ 3n+7−2i

2 if n+7
2 ≤ i ≤ n

 .

For n ≤ 5, let S = S′; when n ≥ 7, let S = S′∪C. Notice that |S| = n2−6n+10.
The neighbors of C that are not elements of S are elements of

C1 =

(i, j) :
j = n−1−2i

2 or j = n+7+2i
2 if 1 ≤ i ≤ n−5

2

j = −n−7+2i
2 or j = 3n+7−2i

2 if n+5
2 ≤ i ≤ n

 ,

and the neighbors of S′ that are not elements of S are elements of

S′
1 =

(i, j) :

j = n+1±2i
2 for 1 ≤ i ≤ n+1

2

j = (n+1)±(2n−2i)
2 for n+1

2 ≤ i ≤ n

 .

Hence, P 0(S) = S∪C1∪S′
1. It follows that for (i, j) ∈ P 0(S)\S, either (i, j) ∈ C1

or (i, j) ∈ S′
1. In either case, every such vertex will have two neighbors that are

not in P 0(S). Therefore P∞(S) = P 0(S).
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One may see that (1, n−1
2 ) ∈ V (Cn×n)\P∞(S) as its neighbors are (1, n−1

2 −
1), (1, n−1

2 +1), and (2, n−1
2 ), none of which are elements of S. It follows that S

is a failed power dominating set, so γfp(Cn) ≥ n2 − 6n+ 10 for odd n ≥ 3.

Example 3. Consider the 6×6 cylinder C6×6 as in the left-hand side of Figure
3. Elements of S = S′ ∪ C are the blue vertices, and the pink vertices are
the neighbors of elements of S. Hence, the set of blue and pink vertices is
precisely P 0(S). It is easy to see that P∞(S) = P 0(S). Indeed, for v ∈ P 0(S),
| N [v] \ P 0(S) |̸= 1. We can also confirm that (1, 3) /∈ P∞(S). Similarly, the
odd case is illustrated by the 7×7 cylinder C7×7 in the right-hand side of Figure
3.

Figure 3: The 6 × 6 cylinder C6×6 on the left and the 7 × 7 cylinder C7×7 on
the right with maximal failed power dominating sets highlighted in blue

While one can verify that γfp(Cn) ≤ n(n−3), it remains an open question to
determine a tight upper bound for the failed domination number of a cylinder.

It is interesting to compare the power domination number and the given
bound on the failed power domination number for cylinders. According to [6]
(see also [1]), the power domination number of the n × n cylinder Cn×n with
n ≥ 3 is

γp(Cn×n) =

{⌈
n+1
4

⌉
if n ≡ 4 (mod 8)⌈

n
2

⌉
otherwise.

whereas Proposition 4 shows γfp(Cn×n) ≥ n2 − 6n + 10. Taking n = 6 (resp.,
n = 7) as in Example 3 yields γp(C6×6) = 3 (resp., γp(C7×7) = 4) while
γfp(C6×6) ≥ 10 (resp., γfp(C7×7) ≥ 17).

Next, we consider failed power domination for tori.

Theorem 5. The failed power dominating number of the square torus Tn×n

with n ≥ 4 is
γfp(Tn×n) = n(n− 3).
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Proof. We begin by showing that γfp(Tn×n) ≥ n(n− 3). Let

S = {(i, j) ∈ [n]× [n] : j ̸= i− 1 (mod n), j ̸= i− 2 (mod n), j ̸= i− 3 (mod n)}.

Note that in each row of Tn×n, there are three consecutive vertices, meaning
that form a P3, which are not elements of S, and |S| = n(n− 3).

One can verify that

P 0(S)\S = {(i, j) : j = i− 3 (mod n) or j = i− 1 (mod n)}

and P 0(S) = {(i, j) : j ̸= i− 2 (mod n)}; therefore,

V (Tn×n)\P 0(S) = {(i, j) : j = i− 2 (mod n)}.

Let (i, j) ∈ P 0(S)\S. Notice that (i, j) has exactly two neighbors in the
set V (Tn×n)\P 0(S), namely (i, (j + 1) (mod n)) and ((i − 1) (mod n), j). This
implies that P∞(S) = P 0(S) which means that this is a stalled set. Note that
(1, n − 1) ∈ V (Tn×n) \ P∞(S). Thus, S is a failed power dominating set, and
γfp(Tn×n) ≥ n(n− 3).

Next, we will show that γfp < n(n−3)+1. Consider S ⊆ V (Tn×n) such that
|S| = n2−3n+1 = n(n−3)+1. Suppose that S is not a power dominating set.
According to Lemma 2, for all i ∈ [n] Rowi(Tn×n) ⊈ S and for all t ∈ N and
i ∈ [n− 1] Rowi(Tn×n), Rowi+1(Tn×n) ⊈ P t(S). Thus, there exists at least one
row RowiTn×n such that S contains at least n − 2 of its vertices. Since every
vertex in the row is adjacent to two other vertices in that row, it follows that
every vertex in the row is adjacent to a vertex in S; that is, RowiTn×n ⊆ P 0(S).
In addition, for all r ∈ [n]\{i}, | Rowr(Tn×n)∩P 0(S) |≤ 1. Suppose (i−1, j) /∈
P 0(S) for some j ∈ [n]. Then Rowi−1Tn×n ∩S = {i− 1}× [n] \ {j− 1, j, j+1},
since | Rowi−1Tn×n ∩ S |= n − 3. Thus, (i − 1, j − 1), (i − 1, j + 1) ∈ P 0(S).
If (i− 1, j) ∈ P 0(S), then S is a power dominating set by Lemma 2. Similarly,
(i+1, j) ∈ P 0(S). Note that (i± 2, n− 1) /∈ P 0(S). Continuing in this fashion,
we see that V (Tn×n) \ P 0(S) ⊆ Colj−1(Tn×n) ∪ Colj(Tn×n). An application
of Lemma 2 yields P∞(S) = V (Tn×n) which is a contradiction. As a result,
γfp(Tn×n) < n(n− 3) + 1. We conclude that γfp(Tn×n) = n(n− 3).

Example 4. Figure 4 shows a 6×6 torus in which the blue vertices are precisely
the elements of S = {(i, j) : j ̸= i − 1 (mod n), j ̸= i − 2 (mod n), and j ̸=
i − 3 (mod n)}, and the set of blue and pink vertices is precisely P 0(S). The
white vertices are never power dominated. Here, we see that up to half of the
vertices of T6×6 may fail to power dominate the network. However, any choice
of 19 vertices will provide monitoring of the network.

It is interesting to compare the power domination and failed power domi-
nation numbers for tori. According to [6] (see also [1]), the power domination
number of the n× n cylinder Tn×n with n ≥ 3 is

γp(Tn×n) =

{⌈
n+1
2

⌉
if n ≡ 2 (mod 4)⌈

n
2

⌉
otherwise.
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Figure 4: The 6 × 6 torus T6×6 along with the maximal failed dominating set
S = {(i, j) : j ̸= i− 1 (mod 6), j ̸= i− 2 (mod 6), and j ̸= i− 3 (mod 6)}

whereas Proposition 5 shows γfp(Tn×n) = n(n−3). Considering the 6×6 torus
as in Example 4, we see that γp(Tn×n) = 4 whereas γfp(Tn×n) = 18. This
indicates that a smart choice of vertices allows the network to be monitored
with only 4 vertices, yet there are configurations of up to 18 vertices that fail
to do so.

4 Hypercubes

In this section, we turn our attention to failed power domination for hypercubes.
Fix n ∈ Z+. The n-dimensional hypercube is

Qn := Pn
2 = P2□ · · ·□P2︸ ︷︷ ︸

n

.

It is convenient to set up some notation to describe Qn in terms of its vertex set
and edge set. Let F2 := {0, 1}. Consider Fn

2 := {(u1, . . . , un) : ui ∈ F2∀i ∈ [n]}.
Given u, v ∈ Fn

2 , the distance between them is

d(u, v) :=| {i ∈ [n] : ui ̸= vi} |,

and the weight of u is

wt(u) :=| {i ∈ [n] : ui ̸= 0} |,

meaning the number of nonzero coordinates of u. The vertices of weight 1 are
represented by the standard basis vector expressions ei := (0, . . . , 0, 1, 0, . . . , 0)
which have a single nonzero entry in the ith component. Then Qn has vertex
set

V (Qn) = Fn
2
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and edge set
E(Qn) = {uv : d(u, v) = 1} ,

meaning u, v ∈ V (Qn) are adjacent if and only if there exists = i ∈ [n] such
that ui ̸= vi and uj = vj for all j ∈ [n] \ {i}.

Proposition 6. For n ≥ 3, γfp(Qn) = 2n −
(
n
2

)
− n− 1.

Proof. First, we will show that γfp(Qn) ≥ 2n −
(
n
2

)
− n− 1. Let

S := {v ∈ Fn
2 : wt(v) ≥ 3} .

We claim that S is not a power dominating set for Qn. To see this, note that

P 0(S) = {v ∈ F2 : wt(v) ≥ 2} .

For any v ∈ P 0(S), v = ei+ ej for some distinct i, j ∈ [n]. Then N [v]\P 1(S) =
{ei, ej} which implies that P 2(S) = P 1(S). Thus,

P∞(S) = {v ∈ Fn
2 : wt(v) ≥ 2} ⫋ V (Qn),

and S is not a power dominating set for Qn. Consequently,

γfp(Qn) ≥| S |= 2n −
(
n

2

)
− n− 1.

Next, we will prove that γfp(Qn) < 2n−
(
n
2

)
−n. To this end, consider S ⊆ Fn

2

such that |S| ≥ 2n −
(
n
2

)
− n. Suppose that S is a failed power dominating set.

Without loss of generality, we may assume that 0 is not power dominated. Then
none of its neighbors are elements of S; that is, ei /∈ S for all i ∈ [n]. The weight
0 and weight 1 vertices of Qn account for n+ 1 vertices of Qn \ S. As a result,
there are

(
n
2

)
− 1 vertices of weight at least 2 which are elements of Qn \ S. Let

v ∈ S such that wt(v) = 2. Note that v will power dominate two vertices of
weight 1, say ei and ej each of which must have a weight 2 neighbor which is
not power dominated. Let e′i and e′j denote such a neighbor. Then e′i, e

′
j /∈ S

and e′i ̸= e′j . Note that the weight 3 neighbors of e′i are not elements of S, and
the same is true for e′j , and there are n− 2 such vertices. Because there can be
at most one vertex in common, so there will be a total of either 2n−3 or 2n−4
vertices of weight 3 that are not in S. However, 2n − 3 ≥ 2n − 4 > 1, because
n ≥ 3. Therefore, it must be that there is not a single element of S of weight 2.
Notice that the maximum number of vertices of weight 2 that are elements of S
is ⌊n

2 ⌋, because each weight 1 vertex has a neighbor that is not power dominated
and each weight 2 vertex only has 2 weight 1 neighbors that it can “protect”.
Therefore, if S contains k weight 2 vertices, we know that 1 < k ≤ ⌊n

2 ⌋. We also
know that there are k − 1 vertices that are at least weight at least 3 that are
not elements of S. However, we also know that the number of weight 3 vertices
that are not elements S must be at least 2n−3. This means that 2n−3 ≤ k−1
which implies that 2n− 2 ≤ k. This implies that 2n− 2 ≤ k ≤ ⌊n

2 ⌋ which leads
to a contradiction because 2n− 2 > ⌊n

2 ⌋ for all n ≥ 3.
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In [2], it is shown that 2n−1

n ≤ γp(Qn) ≤ 2n−⌊log2n⌋−1 and if n = 2k then
γp(Qn) = 2n−k−1. Determining the exact value of the power domination number
of the n-dimensional hypercube when n is not a power of 2 remains open.

5 Conclusion

In this paper, we considered the failed power domination number for certain
families of graphs. A closed form expression is provided for the failed power
domination number of n × n grids, tori, and hypercubes as well as bounds for
n×n cylinders. Determining this exact value remains an open question. It also
may be interesting to consider failed power domination for grids, cylinders, and
tori which are not square as well as that of other graph products.
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