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Abstract. This paper introduces decreasing norm-trace codes, which are evaluation

codes defined by a set of monomials closed under divisibility and the rational points of

the extended norm-trace curve. As a particular case, the decreasing norm-trace codes

contain the one-point algebraic geometry (AG) codes over the extended norm-trace

curve. We use Gröbner basis theory and find the indicator functions on the rational

points of the curve to determine the basic parameters of the decreasing norm-trace

codes: length, dimension, minimum distance, and the dual code. We give conditions for

a decreasing norm-trace code to be a self-orthogonal or a self-dual code. We provide a

linear exact repair scheme to correct single erasures for decreasing norm-trace codes,

which applies to higher rate codes than the scheme developed by Jin, Luo, and Xing

(IEEE Transactions in Information Theory 64 (2), 900-908, 2018) for the one-point AG

codes over the extended norm-trace curve.

1. Introduction

Decreasing monomial codes, which are evaluation codes where the set of monomials is

closed under divisibility, were introduced by Bardet, Dragoi, Otmani, and Tillich in [4] to

algebraically analyze the polar codes defined by Arikan [1]. The classical families of Reed-

Solomon and Reed-Muller codes can be considered decreasing monomial codes and have

amply motivated the study of decreasing codes. Decreasing monomial-Cartesian codes,

also known as variants of Reed-Muller codes over finite grids, are slightly more general

families than Reed-Muller codes that have been studied because of their applications to

certain symmetric channels [9], distributed storage systems [26], and efficient decoding

algorithms [31]. In this paper, we introduce decreasing codes from curves, focusing on

the extended norm-trace curve.

Let Fqr be a finite field with qr elements and u a positive integer such that u | qr−1
q−1

.

The extended norm-trace curve, denoted by Xu , is the affine curve over Fqr defined by

the equation

xu = yq
r−1

+ yq
r−2

+ · · ·+ y.
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We introduce in this work decreasing norm-trace codes, which are codes defined by eval-

uating monomials on the rational points of the curve Xu . We now give more details.

Enumerate the points in Xu = {P1, . . . , Pn} ⊆ F2
qr . The evaluation map, denoted ev,

is the Fqr -linear map given by

ev : Fqr [x, y] → Fnqr
f 7→ (f(P1), . . . , f(Pn)) .

Let M ⊆ Fqr [x, y] be a set of monomials closed under divisibility, meaning that if

M ∈ M and M ′ divides M , then M ′ ∈ M . Let L = FqrM be the Fqr -subspace of

Fqr [x, y] generated by the set M . The image of L under the evaluation map, denoted by

ev(M), is called a decreasing norm-trace code. We can see that the extended norm-trace

codes introduced and recently studied in [7] and [21] are particular instances of decreasing

norm-trace codes. Even more, we check later that the family of decreasing norm-trace

codes contains, in a specific case, the family of one-point geometric Goppa codes over the

Hermitian curve and the more general norm-trace curve.

We organize this paper as follows. In Section 2, we give the vanishing ideal IXu of

the extended norm-trace curve Xu (Lemma 2.1), which is the ideal of all polynomials

that vanish on Xu . We recall essential concepts from the Gröbner basis theory, such as

the footprint of an ideal, and determine a Gröbner basis for IXu (Proposition 2.2) with

respect to the lexicographic order.

The main result of Section 3 shows the standard indicator function of every rational

point of the extended norm-trace curve Xu (Theorem 3.2). Given a rational point P on

Xu , a standard indicator function fP is a linear combination of monomials that belong

to the footprint of IXu such that fP (P ) = 1 and fP (P ′) = 0 for every other rational

point P ′ 6= P of Xu .

In Section 4, we formally introduce decreasing norm-trace codes (Definition 4.1). We

show that these decreasing codes generalize the one-point AG codes over the norm-trace

curve (Remark 4.2) and determine their basic parameters, such as the length, dimension,

and minimum distance (Theorem 4.5).

In Section 5, we give an explicit expression for the dual of a decreasing norm-trace code

(Theorem 5.1) in terms of the complement of the set of monomials. The hull of a linear

code is the intersection of the code with its dual. The hull has several applications, e.g.,

it has been used to classify finite projective planes [2] and to construct entanglement-

assisted quantum error-correcting codes [23]. We show instances where the hull of a

decreasing norm-trace code is computed explicitly (Theorem 5.3). We also give conditions

on the set of monomials, so that the decreasing norm-trace code is a self-orthogonal or a

self-dual code.
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In Section 6, we apply our results to study linear repair schemes for decreasing norm-

trace codes. A repair scheme is an algorithm that recovers the value at any entry of a

codeword using limited information from the values at the other entries. After presenting

the basic definitions of this theory, we prove results that show the existence of a repair

scheme for decreasing norm-trace codes (Theorem 6.2).

We close with some conclusions in Section 6.
References for vanishing ideals and related algebraic concepts used in this work are

[12, 13, 19, 32].

2. Preliminaries

Let Fq be a finite field with q elements and r ≥ 2 an integer. Define the polynomials

N(x) := x
qr−1
q−1 and Tr(y) := yq

r−1
+ yq

r−2
+ · · · + yq + y in Fqr [x, y] . The trace with

respect to the extension Fqr/Fq is the map

Tr : Fqr → Fq
α 7→ Tr(α).

The norm with respect to the extension Fqr/Fq is the map

N : Fqr → Fq
α 7→ N(α).

The norm-trace curve, denoted by X , is the affine plane curve over Fqr given by the

equation

x
qr−1
q−1 = yq

r−1

+ yq
r−2

+ · · ·+ y.

The curve X has been extensively studied in the literature to construct linear codes [7,

15, 24, 28, 30]. We are interested in a slightly more general curve. Let u be a positive

integer such that u | qr−1
q−1

. The extended norm-trace curve, denoted by Xu , is the affine

curve over Fqr defined by the equation

xu = yq
r−1

+ yq
r−2

+ · · ·+ y.

We use the rational points of the curve Xu to construct a family of decreasing evaluation

codes, which contains, as a particular case, the extended norm-trace codes [7, 21].

Results from Gröbner bases theory have been used in coding theory for some time to

determine parameters of codes (see, e.g., [15, 16, 11]). We now recall important concepts

and results from this theory.

Let M be the set of monomials of Fqr [x1, . . . , xm] . A monomial order ≺ on M is a

total order where 1 is the least monomial and if M1 ≺ M2 , then MM1 ≺ MM2 , for

all M,M1,M2 ∈M . Fix a monomial order in M and let f be a nonzero polynomial in

Fqr [x1, . . . , xm] . The greatest monomial which appears in f is called the leading monomial
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of f , denoted by lm(f). Given an ideal I ⊆ Fqr [x1, . . . , xm] , a Gröbner basis for I is a

set {f1, . . . , fs} ⊆ I such that for every polynomial f ∈ I \ {0} , we have that lm(f) is

a multiple of lm(fi) for some i ∈ {1, . . . , s} . The Gröbner basis concept was introduced

in the Ph.D. thesis of Bruno Buchberger (see [8]) in which the author proves that if

{f1, . . . , fs} is a Gröbner basis for I then I = (f1, . . . , fs), and that every ideal admits

a Gröbner basis (w.r.t. a fixed monomial order).

Let {f1, . . . , fs} be a Gröbner basis for I . The footprint of I is the set ∆≺(I) of

monomials which are not multiples of lm(fi), for all i = 1, . . . , n . One of the main

results in Buchberger’s thesis states that the set of classes {M + I | M ∈ ∆≺(I)} ⊆
Fqr [x1, . . . , xm]/I is a basis for Fqr [x1, . . . , xm]/I as a Fqr -vector space.

We now define an ideal associated with the extended norm-trace curve Xu :

IXu := (Tr(y)− xu, xqr − x, yqr − y) ⊆ Fqr [x, y].

Next, we consider some relevant properties of this ideal.

Lemma 2.1. The ideal IXu is radical and is the ideal of all polynomials which vanish on

Xu .

Proof. Since xq
r − x, yqr − y ∈ IXu , for any monomial order, the footprint is finite and

consists of monomials of the form xayb where a and b are less than qr . Hence, IXu is a

zero-dimensional ideal. Thus, from [5, Prop. 8.14], IXu is a radical ideal. From [17, Thm.

2.3], it follows that IXu is the ideal of all polynomials which vanish on Xu . �

The following result is a particular case of [21, Theorem 21]. We add detailed proof

here for completeness.

Proposition 2.2. The set {Tr(y) − xu, x(q−1)u+1 − x} is a Gröbner basis for IXu with

respect to the lexicographic order with x ≺ y . Moreover, | Xu |= qr−1((q − 1)u + 1). In

particular, if u = qr−1
q−1

, then IX is the vanishing ideal of X , the set {Tr(y)−N(x), xq
r−x}

is a Gröbner basis for IX with respect to the lexicographic order with x ≺ y , and | X |=
q2r−1 .

Proof. Let (α, β) be a point on Xu . As αu = Tr(β), αu ∈ Fq . Thus, the polynomial

x(q−1)u+1−x = x((xu)q−1−1) vanishes at all points of Xu and from Lemma 2.1, x(q−1)u+1−
x ∈ IXu . To prove that IXu = (Tr(y)−xu, x(q−1)u+1−x), we show that xq

r −x, yqr − y ∈
(Tr(y) − xu, x(q−1)u+1 − x). Indeed, let v be the positive integer such that uv = qr−1

q−1
.
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Then one easily checks that(
x(q−1)u(v−1) + x(q−1)u(v−2) + · · ·+ x(q−1)u + 1

)
(x(q−1)u+1 − x) = xq

r − x

and
(
(Tr(y)− xu)q−1 − 1

)
(Tr(y)− xu) + xu−1(x(q−1)u+1 − x)

= (Tr(y)− xu)q − (Tr(y)− xu) + xuq − xu

= Tr(y)q − xuq − Tr(y) + xu + xuq − xu

= (yq
r−1

+ yq
r−2

+ · · ·+ y)q − (yq
r−1

+ yq
r−2

+ · · ·+ y)

= yq
r − y.

Since the leading monomials lm(Tr(y)) = yq
r−1

and lm(x(q−1)u+1 − x) = x(q−1)u+1 are

coprime, {Tr(y) − xu, x(q−1)u+1 − x} is a Gröbner basis for IXu according to [12, Prop.

4, p. 104]. Since IXu is a radical ideal and Fqr is a perfect field, | Xu |=| ∆≺(IXu) | [5,

Thm. 8.32]. �

3. Standard indicator functions

Some of the properties of the decreasing evaluation codes depend on the indicator

functions of the curve Xu . Take n :=| Xu | . One may show (see [14] or [11, Prop. 3.7])

that the following linear transformation is an isomorphism

ϕ : Fqr [x, y]/IXu → Fnqr
f + IXu 7→ (f(P1), . . . , f(Pn)) .

So, for each P ∈ Xu , there exists an unique class gP + IXu such that gP (P ) = 1 and

gP (Q) = 0, for every Q ∈ Xu \ {P} . Since {M + IXu | M ∈ ∆≺ (IXu)} is a basis

for Fqr [x, y]/IXu as an Fqr -vector space, there is a unique Fqr -linear combination of

monomials in ∆≺(IXu), which we denote by fP , such that fP (P ) = 1 and fP (Q) = 0,

for every Q ∈ Xu . We call this polynomial fP the standard indicator function of P .

We first describe the set of points of Xu in a way that will be useful in the next section.

Lemma 3.1. For every γ ∈ Fq , define Aγ := {(α, β) ∈ A2(Fqr) |Tr(β) = αu = γ}.

Then, we have Xu =
⋃
γ∈Fq

Aγ . Moreover, | A0 |= qr−1 and | Aγ |= uqr−1 , for all

γ ∈ F∗q .

Proof. From Theorem 2.2, we know that if (α, β) ∈ Xu , then α is a root of x(q−1)u+1−x .

Furthermore, x(q−1)u+1 − x | xqr − x , so x(q−1)u+1 − x has (q − 1)u + 1 distinct roots.

For each nonzero root α , we have (αu)q−1 = 1, so αu ∈ F∗q and x(q−1)u+1 − x must be a

factor of x
∏

γ∈F∗q
(xu − γ). Since the last two polynomials have the same degree and are

monic, we actually have x(q−1)u+1 − x = x
∏

γ∈F∗q
(xu − γ). For every γ ∈ Fq , it is well
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known that there are qr−1 elements β such that Tr(β) = αu . This shows that Aγ ⊆ Xu
for all γ ∈ Fq and that | A0 |= qr−1 and | Aγ |= uqr−1 when γ ∈ F∗q . On the other hand,

if (α, β) ∈ Xu and αu = γ , then (α, β) ∈ Aγ . �

Theorem 3.2. Let P = (α, β) ∈ Xu . The polynomial

fP (x, y) := c

(
x(q−1)u+1 − x

x− α

)(
Tr(y)− Tr(β)

y − β

)
is the standard indicator function for P where

c :=

{
−1 if α = 0

(−u)−1 ∈ Fq otherwise.

In particular, yq
r−1−1x(q−1)u is the leading monomial of the standard indicator function

for P .

Proof. Observe that fP (α, β) 6= 0. Let P ′ = (α′, β′) be a point in Xu different from P .

If α 6= α′ , then
(
x(q−1)u+1−x

x−α

) ∣∣∣∣
x=α′

= 0 by Theorem 2.2; thus fP (P ′) = 0. If α = α′ , then

β 6= β′ and Tr(β′) = (α′)u = αu = Tr(β). This means that β′ is a root of Tr(y)−Tr(β)

and
(
Tr(y)−Tr(β)

y−β

) ∣∣∣∣
y=β′

= 0; thus fP (P ′) = 0. We conclude that fP (α′, β′) = 0 for every

(α′, β′) ∈ Xu \ {(α, β)} .
Let β = β1, . . . , βqr−1 ∈ Fqr be the distinct roots of Tr(y) − Tr(β), so that Tr(y) −

Tr(β) =
∏qr−1

i=1 (y−βi). Taking the formal derivative, we have that 1 =
∑qr−1

j=1

∏qr−1

i=1,i 6=j(y−
βi). Thus, (

Tr(y)− Tr(β)

y − β

) ∣∣∣∣
y=β

=

qr−1∏
i=2

(β − βi) = 1.

Likewise, let α = α1, . . . , αu(q−1)+1 be such that x(q−1)u+1−x =
∏(q−1)u+1

i=1 (x−αi). Taking

the formal derivative, we get ((q − 1)u+ 1)x(q−1)u − 1 =
∑(q−1)u+1

j=1

∏(q−1)u
i=1,i 6=j(x− αi), so

(
x(q−1)u+1 − x

x− α

) ∣∣∣∣
x=α

=

(q−1)u∏
i=2

(α− αi) = ((q − 1)u+ 1)α(q−1)u − 1.

If α 6= 0, then we have αu ∈ F∗q from the proof of Lemma 3.1. Thus,

((q − 1)u+ 1)α(q−1)u − 1 = ((q − 1)u+ 1)(αu)q−1 − 1 = (q − 1)u = −u.

As u | qr−1
q−1

, the integer u is not a multiple of char(Fq). Hence u 6= 0 in Fq . �
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4. Parameters of decreasing norm-trace codes

This section defines and computes the basic parameters of a new family of evaluation

codes called decreasing norm-trace codes. Consider the evaluation map, denoted ev, is

the Fqr -linear map given by

ev : Fqr [x, y] → Fnqr
f 7→ (f(P1), . . . , f(Pn))

where Xu = {P1, . . . , Pn} ⊆ F2
qr and n := qr−1((q − 1)u+ 1).

Definition 4.1. A decreasing norm-trace code is an evaluation code ev(M) such that

M ⊆ Fqr [x, y] is closed under divisibility, meaning if M ∈ M and M ′ divides M, then

M ′ ∈M .

Remark 4.2. The family of decreasing norm-trace codes contains, as a particular case,

the family of one-point geometric Goppa codes over the norm-trace. Indeed, define

Ls :=
{
xiyj | iqr−1 + j q

r−1
q−1
≤ s
}

. It is straightforward to check that Ls is closed under

divisibility. As the one-point geometric Goppa codes over the norm-trace are precisely

ev (Ls) (see, e.g. [15, 20]), we obtain the result.

The extended norm-trace codes introduced and studied in [7] and [21] are also partic-

ular instances of decreasing norm-trace codes.

Example 4.3. Take q = 3 and r = 2. Figure 1 (a) shows the points of the norm-

trace curve X . Let M be the set of monomials in Fqr [x, y] whose exponents are the

points in Figure 1 (b). Note that M is closed under divisibility. Using the coding theory

package [3] for Macaulay2 [18] and Magma [6], we obtain that ev(M) is a [27, 10, 15]

decreasing norm-trace code over F9 .

Let ∆
(
x(q−1)u+1, yq

r−1
)

be the set of monomials that are not multiples of either of

these two monomials.

Lemma 4.4. Let ev(M) be a decreasing norm-trace code. There exists a monomial set

M′ ⊆ ∆
(
x(q−1)u+1, yq

r−1
)

such that ev(M) = ev(M′).

Proof. The kernel of ev is the ideal IXu = (Tr(y)− xu, xqr − x, yqr − y) by Lemma 2.1.

Even more, the set {Tr(y) − xu, x(q−1)u+1 − x} is a Gröbner basis for IXu with respect

to the graded lexicographic order with x ≺ y by Theorem 2.2.

Note the evaluation map induces an isomorphism of Fqr -linear spaces between

Fqr [x, y]/IXu and Fnqr . So, the image of a monomial xayb ∈ M under the function

ev equals the image of its reminder xiyj modulo IXu , which satisfies i < (q − 1)u + 1

and j < qr−1 . �
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ω7

(a) Evaluation points

0

Z≥0

1 2 3 4 5 6 7 80
Z≥0

1

2

(b) Evaluation monomials

Figure 1. Take q = 3 and r = 2. (a) Shows the points of the norm-trace
curve X : x4 = y3+y . Let M be the set of monomials whose exponents are
the points in (b). The evaluation code ev(M) is an [27, 10, 15] decreasing
norm-trace code over F9 .

We assume from now on that M⊆ ∆
(
x(q−1)u+1, yq

r−1
)

by Lemma 4.4.

We come to one of the main results of this work, which computes the basic parameters

of a decreasing norm-trace code.

Theorem 4.5. The decreasing norm-trace code ev(M) has the following basic parame-

ters.

(1) Length n =| Xu |= ((q − 1)u+ 1)qr−1 .

(2) Dimension k =| M |.
(3) Minimum distance

d =((q − 1)u+ 1)qr−1

−max
(
{min

(
aqr−1 + (u(q − 1) + 1− a)b, aqr−1 + bu

)
| xayb ∈M}

)
.

Proof. (1) It is a consequence of Theorem 2.2. (2) It follows from Lemma 4.4 and its

proof. (3) Let f be a nonzero polynomial in the Fqr -vector space generated by the

monomials in M . The set of points in Xu which are zeros of f is the set of the zeros

of the ideal IXu + (f) ⊆ Fqr [x, y] , denoted by V (IXu + (f)). Since IXu + (f) is a radical

ideal (see [5, Prop. 8.14]), [5, Thm. 8.32] implies that | V (IXu + (f)) |= ∆≺(IXu + (f)).

Let xayb be the leading monomial of f and let ∆
(
x(q−1)u+1, yq

r−1
, xayb

)
be the set of

monomials that are not multiples of either of these three monomials. Then ∆≺(IXu +
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(f)) ⊆ ∆(x(q−1)u+1, yq
r−1
, xayb) so that

| V (IXu + (f)) | ≤| ∆(x(q−1)u+1, yq
r−1

, xayb) |

= ((q − 1)u+ 1)qr−1 − ((q − 1)u+ 1− a)(qr−1 − b)

= aqr−1 + ((q − 1)u+ 1− a)b.

On the other hand, from [16, Proposition 4]), we get that | V (IXu + (f)) |≤ aqr−1 + bu .

Assume that aqr−1 + bu ≤ aqr−1 + ((q − 1)u + 1 − a)b and b 6= 0, so we have a ≤
(q − 2)u + 1. According to Lemma 3.1 (and its proof), for all γ ∈ fq∗ , the number of

distinct elements of Fqr , which appear as the first entry of points in Aγ is u , while 0 is

the first entry in all points of A0 . Fix γ ∈ F∗q . Since a ≤ (q − 2)u + 1, we may choose

α1, . . . , αa ∈ Fqr such that for all i = 1, . . . , a we have (αi, βi) ∈ Xu for some βi ∈ Fqr
and αui 6= γ . Recall that b < qr−1 , and let β1, . . . , βb ∈ Fqr be distinct elements such

that Tr(βj) = γ for all j = 1, . . . , b . Let g(x, y) =
∏a

i=1(x−αi) ·
∏b

j=1(y−βj). For every

i = 1, . . . , a , there exist qr−1 points in Xu of the form (αi, β), none of them in Aγ . For

every j = 1, . . . , b , there exist u points of Xu of the form (α, βj), all of them in Aγ .

Hence, | V (IXu + (g)) |= aqr−1 + bu .

Now assume that aqr−1 + ((q − 1)u + 1 − a)b < aqr−1 + bu and b 6= 0. Then a >

(q − 2)u + 1. Again, we fix γ ∈ F∗q and take β1, . . . , βb ∈ Fqr to be distinct elements

such that Tr(βj) = γ for all j = 1, . . . , b . Let α1, . . . , αa ∈ Fqr be distinct elements

such that for all i = 1, . . . , a we have (αi, βi) ∈ Xu for some βi ∈ Fqr and for exactly

a− (q − 2)u− 1 elements αi we have αui = γ (note that since a < (q − 1)u + 1 we get

a−(q−2)u−1 < u). Let h(x, y) =
∏a

i=1(x−αi) ·
∏b

j=1(y−βj), for each α ∈ {α1, . . . , αa}

we have qr−1 elements (α, β) ∈ Xu , which are also zeros of h . For each β ∈ {β1, . . . , βb}
we have u− (a− (q− 2)u− 1) = (q− 1)u+ 1− a elements of the form (α, β) ∈ Xu which

are zeros of h and have not been counted yet. Thus, the total number of zeros of h in

Xu is | V (IXu + (h)) |= aqr−1 + b((q − 1)u+ 1− a).

If b = 0, then aqr−1 + ((q − 1)u + 1 − a)b = aqr−1 + bu . Taking α1, . . . , αa ∈ Fqr
such that for all i = 1, . . . , a , we have (αi, βi) ∈ Xu for some βi ∈ Fqr , the polynomial

t(x, y) =
∏a

i=1(x− αi) is such that | V (IXu + (t)) |= aqr−1 .

Thus, we have proved that for every monomial xayb ∈ M , there exists a polynomial

f in the Fqr -vector space generated by the monomials in M having xayb as its leading

monomial, and such that | V (IXu + (f)) | attains its greatest possible value, namely

min {aqr−1 + (u(q − 1) + 1− a)b, aqr−1 + bu} . This completes the proof. �
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Example 4.6. Take q = 2, r = 4, and u = 3. Figure 2 (a) shows the points of

the extended norm-trace curve Xu . Let M be the set of monomials in Fqr [x, y] whose

exponents are the points in Figure 2 (b). Note that M is closed under divisibility. By

Theorem 4.5, ev(M) is a [32, 12, 12] decreasing norm-trace code over F16 .

0

F16

ω0 ω5 ω100
F16

ω0
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ω2
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ω4

ω5

ω6

ω7

ω8
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ω10

ω11

ω12

ω13

ω14

(a) Evaluation points

0

Z≥0

1 2 30
Z≥0

1

2

3

4

5

6

7

(b) Evaluation monomials

Figure 2. Take q = 2, r = 4, and u = 3. (a) Shows the points of the
norm-trace curve Xu : x3 = y8+y4+y2+y . Let M be the set of monomials
whose exponents are the points in (b). The evaluation code ev(M) is an
[32, 12, 12] decreasing norm-trace code over F16 .

One may notice that

k+d = n+1−
(
max

(
{min

(
aqr−1 + (u(q − 1) + 1− a)b, aqr−1 + bu

)
| xayb ∈M}

)
− | M | +1

)
meaning decreasing norm-trace codes have a gap of

max
(
{min

(
aqr−1 + (u(q − 1) + 1− a)b, aqr−1 + bu

)
| xayb ∈M}

)
− | M | +1

to the Singleton Bound k + d ≤ n + 1. One may compare this with algebraic geometry

codes which see a gap of at most g , where g denotes the genus of the curve.

Note that Theorem 4.5 allows one to recover the exact minimum distances of one-point

codes on Xu by choosing specific sets M ⊆ ∆
(
x(q−1)u+1, yq

r−1
)

. For the norm-trace
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curve this approach had already appeared in [15], where such codes are denoted by E(s).

Moreover, the improved codes Ẽ(s), which appear in [15], are also decreasing norm-trace

codes, and our results recover those of [15] regarding their parameters.

5. Dual of decreasing norm-trace codes

This section proves that the dual of a decreasing norm-trace code is monomially equiv-

alent to a decreasing norm-trace code. Even more, we describe the dual code in terms of

the monomial set and the coefficients of the indicator functions. We then give conditions

to find families of self-dual and self-orthogonal codes.

Recall that the two linear codes C1 and C2 in Fnqr are monomially equivalent if there

is β = (β1, . . . , βn) ∈ Fnqr such that βi 6= 0 for all i and C2 = β · C1 := {β · c | c ∈ C1} ,
where β · c := (β1c1, . . . , βncn) for c = (c1, . . . , cn) ∈ C1 .

We come to one of the main results of this work, which computes the dual of a de-

creasing norm-trace code. Recall that the two linear codes C1 and C2 in Fnqr are mono-

mially equivalent if there is β = (β1, . . . , βn) ∈ Fnqr such that βi 6= 0 for all i and

C2 = β · C1 := {β · c | c ∈ C1} , where β · c := (β1c1, . . . , βncn) for c = (c1, . . . , cn) ∈ C1 .

Theorem 5.1. Assume Xu = {P1, . . . , Pn} and let ev(M) be a decreasing norm-trace

code. The dual code ev (M)⊥ is monomially equivalent to the code ev
(
M{
)

where

M{ :=

{
x(q−1)u+1yq

r−1

xiyj
: xiyj ∈ ∆

(
x(q−1)u+1, yq

r−1
)
\M

}
denotes the complement of M. More precisely,

ev (M)⊥ = β · ev
(
M{
)
,

where βi :=

{
u−1 if the x-coordinate of Pi is nonzero

1 otherwise.

Proof. The result is trivial when M = ∆
(
x(q−1)u+1, yq

r−1
)

. For the case M (

∆
(
x(q−1)u+1, yq

r−1
)

, we base our proof on [27, Theorem 5.4]. By Lemma 2.1, IXu is

the vanishing ideal of Xu . Even more, ∆≺(IXu) = ∆
(
x(q−1)u+1, yq

r−1
)

by Theorem 2.2.

The monomial x(q−1)uyq
r−1−1 is the largest monomial in ∆≺(IXu) and it is essential by

Theorem 3.2, meaning that it appears in each indicator function for every point in Xu .

Note that ∣∣M ∣∣ +
∣∣M{

∣∣= ∣∣∣∣∆(x(q−1)u+1, yq
r−1
) ∣∣∣∣ =| Xu |,
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which implies that [27, Theorem 5.4] (1) is valid. As M is closed under divisibility and

M ( ∆
(
x(q−1)u+1, yq

r−1
)

, given xayb ∈M and x(q−1)uyq
r−1−1

xiyj
∈M{ , we have that either

i > a or j > b . Thus, x(q−1)uyq
r−1−1 cannot divide the product

(
xayb

) (
x(q−1)uyq

r−1−1

xiyj

)
.

This implies that [27, Theorem 5.4] (2) is valid. �

Example 5.2. Take q = 3 and r = 2.Figure 1 (a) shows the points of the norm-trace

curve X : x4 = y3 + y . Let M be the set of monomials in ∆ (x9, y3) of degree at most

4. The exponents of these monomials are the points in Figure 3 (a). The complement of

M on X is the set of monomials M{ , whose exponents are the points in Figure 3 (b).

By Theorem 5.1, the dual code ev (M)⊥ is monomially equivalent to the code ev
(
M{
)
.

0

Z≥0

1 2 3 4 5 6 7 80
Z≥0

1

2

(a) Monomials of degree at most 4.

0Z≥0

1

2

8 7 6 5 4 3 2 1

Z≥0

(b) Complement of (a) on X .

Figure 3. (a) shows the exponents of the set of monomials M in
∆ (x9, y3) of degree at most 4. (b) shows the exponents of M{ , the comple-

ment of M on X . By Theorem 5.1, the dual code ev (M)⊥ is monomially
equivalent to the code ev

(
M{
)
.

Recall the hull of a code C is Hull(C) := C ∩C⊥ . The code C is self-dual if C = C⊥

and self-orthogonal if C ⊆ C⊥ . Theorem 5.1 gives a powerful tool for designing self-dual

and self-orthogonal codes.

Theorem 5.3. Assume Xu = {P1, . . . , Pn} and let ev(M) be a decreasing norm-trace

code. If the equation x2 = u has a solution α in Fqr , then

Hull(λ · ev(M)) = λ · ev
(
M∩M{

)
,

where λi :=

{
α−1 if the x-coordinate of Pi is nonzero

1 otherwise.

Proof. Denote by λ−1 the vector whose entries are λ−1
i . By Theorem 5.1, we have

that λλ = β , so λ = λ−1β , where the product between vectors is pointwise. Thus,

(λ · ev(M))⊥ = λ−1 · ev (M)⊥ = λ−1β · ev
(
M{
)

= λ · ev
(
M{
)
. �
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Corollary 5.4. Assume Xu = {P1, . . . , Pn} and the equation x2 = u has a solution α

in Fqr . If M⊆M{ , then λ · ev(M) is a self-dual dual code, where λi is as in Theorem

5.3. If M =M{ , then λ · ev(M) is a self-dual code.

Proof. If M ⊆ M{ , then Hull(λ · ev(M)) = λ · ev
(
M∩M{

)
= λ · ev (M) by Theo-

rem 5.3. Thus, λ · ev (M) = Hull(λ · ev(M)) ⊆ (λ · ev (M))⊥ . The case M = M{ is

analogous. �

Example 5.5. Take q = 2, r = 4, and u = 5. Figure 4 (a) shows the points of the set

Xu . Let M be the set of monomials in Fqr [x, y] with degree in x at most 5 and degree in

y at most 4. The exponents of these monomials are the points in Figure 4 (b). As 5 ≡ 1

in F2 , then Hull(ev(M)) = ev
(
M∩M{

)
= ev(M) by Theorem 5.3. Thus, ev(M) is a

self-dual code by Corollary 5.4.

0

F16

ω0 ω3 ω6 ω10 ω130
F16
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ω6
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ω9
ω10
ω11
ω12
ω13
ω14

(a) Evaluation points

0

Z≥0

1 2 3 4 50
Z≥0

1

2

3

4

5

6

7

(b) Evaluation monomials

Figure 4. (a) shows the points of the curve X : xu = y8 + y4 + y2 + y .
Let M be the set of monomials whose exponents are the points in (b).
The evaluation code ev(M) is a self-dual code over F16 .

6. Single Erasure Repair Scheme

This section defines a repair scheme that repairs a single erasure for specific decreasing

norm-trace codes. An element of Fqr may be thought of as a vector in Frq . In this theory,

the elements of Fqr are called symbols and the elements of Fq are called subsymbols. Given

a code C ⊂ Fnqr , a repair scheme is an algorithm that recovers the entry of any vector of

C using the other entries. The bandwidth b is the number of subsymbols required by the
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algorithm to repair the entry. A codeword is defined by nr subsymbols, and the fraction

b

nr
is called bandwidth rate.

Recall that ∆ (xi, yj) denotes the set of monomials which are not multiples of either

of these two monomials. From Lemma 4.4, we may assume that an arbitrary element of

ev(M) is of the type ev(f), where every monomial which appears in f is in ∆≺(IXu) =

∆
(
x(q−1)u+1, yq

r−1
)

. Take n := ((q− 1)u+ 1)qr−1 . Since ev(f) ∈ Fnqr , the element ev(f)

depends on n symbols (over Fqr ) or, equivalently, on nr subsymbols (over Fq ).

Remark 6.1. [25, Definition 2.30 and Theorem 2.40] Let B = {z1, . . . , zr} be a basis of

Fqr over Fq. Then there exists a basis {z′1, . . . , z′r} of Fqr over Fq , called the dual basis

of B such that Tr(ziz
′
j) = δij is a delta function and for α ∈ Fqr ,

α =
r∑
i=1

Tr(αzi)z
′
i.

Thus, determining α is equivalent to finding Tr(αzi), for i ∈ {1, . . . , r} .

Theorem 6.2. Let M ⊆ ∆
(
x(q−1)u, yq

r−1
)

be a monomial set that is closed under

divisibility. There exists a repair scheme of ev(M) for one erasure with bandwidth at

most

| Xu | −1 + (r − 1)(u)(q − 1).

Proof. Take Xu = {P1, . . . , Pn} and let ev(f) = (f(P1), . . . , f(Pn)) be an element of

ev(M). Assume that the coordinate f(P ∗) of ev(f) is erased, where P ∗ = (α∗, β∗) ∈ Xu .

We define the following polynomials

pi(y) =
Tr(zi(y − β∗))

(y − β∗)
= zi + zqi (y − β∗)q−1 + · · ·+ zq

r−1

i (y − β∗)qr−1−1

for i ∈ [r] . We have that {1, y, . . . , yqr−1−1} ⊆ M{ as M ⊆ ∆
(
x(q−1)u, yq

r−1
)

. The

element β · (pi(P1), . . . , pi(Pn)) is in ev (M)⊥ for i ∈ [r] and β defined in Theorem 5.1.

We, therefore, obtain the r equations

(1) βP ∗pi(P
∗)f(P ∗) = −

∑
Xu\{P ∗}

βPpi(P )f(P ), i ∈ [r].

As pi(P
∗) = zi, applying the trace function to both sides of previous equations and

employing the linearity of the trace function, we obtain

Tr (ziβP ∗f(P ∗)) = −
∑

Xu\{P ∗}

Tr (βPpi(P )f(P )) , i ∈ [r].
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Define the set Γ = {(α, β) ∈ Xu : β = β∗}. We have that pi(P ) = zi for P ∈ Γ. For

P = (α, β) ∈ Xu \ Γ, pi(P ) =
Tr(zi(β − β∗))

(β − β∗)
. We obtain that for i ∈ [r]

∑
Xu\{P ∗}

Tr (βPpi(P )f(P )) =
∑

Γ\{P ∗}

Tr (βPpi(P )f(P )) +
∑
Xu\Γ

Tr (βPpi(P )f(P ))

=
∑

Γ\{P ∗}

Tr (βP zif(P )) +
∑
Xu\Γ

Tr

(
βP
Tr(zi(β − β∗))

(β − β∗)
f(P )

)

=
∑

Γ\{P ∗}

Tr (βP zif(P )) +
∑
Xu\Γ

Tr(zi(β − β∗))Tr
(
βPf(P )

(β − β∗)

)
.

The element βP ∗f(P ∗), and f(P ∗) as a consequence, can be recovered from its r inde-

pendent traces Tr(ziβP ∗f(P ∗)) by Remark 6.1. The traces are obtained by downloading:

• For each P ∈ Γ \ {P ∗} , the r subsymbols Tr (βP z1f(P )) , . . . , T r (βP zrf(P )).

• For each P ∈ Xu \ Γ, the subsymbol Tr

(
βPf(P )

(β − β∗)

)
.

Hence, the bandwidth is b = r(| Γ | −1)+ | Xu \Γ | = (qr−1 + r− 1)u(q− 1) + (qr−1− 1)

=| Xu | −1 + (r − 1)(u)(q − 1). �

Consequently, we obtain the following result for the norm-trace curve.

Corollary 6.3. If M ⊆ ∆
(
xq

r
, yq

r−1−1
)

or M ⊆ ∆
(
xq

r−1, yq
r−1
)

is a monomial set

that is closed under divisibility, then there exists a repair scheme of the decreasing norm-

trace code ev(M) for one erasure with bandwidth at most

| X | −1 + (r − 1)(qr − 1).

In particular, there exists a repair scheme for the Hermitian decreasing code for one

erasure with bandwidth at most

q3 + q2 − 2.

Proof. This is a consequence of Theorem 6.2 for the particular case when u = qr−1
q−1

. The

Hermitian case is obtained when r = 2. �

Jin et al. introduced in [22] a repair scheme for single erasures of algebraic geometry

codes. In particular, [22, Theorem 3.3] repairs a single erasure on one-point AG codes

defined over the curve Xu , which can also be considered as monomial decreasing norm-

trace codes [10]. Both schemes, [22, Theorem 3.3] and Theorem 6.2, have restrictions

and can repair codes with up to a maximum dimension. One of the main advantages of

Theorem 6.2 is the ability to repair single erasures on codes with a higher dimension that

use the rational points of the curve Xu as evaluation points. Indeed, consider the case
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where we want to repair an erasure on a monomial decreasing norm-trace code ev(M).

By Theorem 4.5, the length of the code ev(M) is n =| Xu |= ((q − 1)u + 1)qr−1 . By

the hypothesis of Theorem 6.2, the maximum dimension where the repair scheme can be

applied is when M = ∆
(
x(q−1)u, yq

r−1
)

, where the dimension is

(2) kev := (q − 1)uqr−1 =| Xu | −qr−1.

Now, consider the case where we want to repair an erasure on a one-point AG code

over the curve Xu . The curve Xu has genus g := (u−1)(qr−1−1)
2

(see [29, Thm. 13]). In the

context of [22, Theorem 3.3], the maximum dimension of the one-point AG code where

the repair scheme can be applied is when m =| Xu | −(q − 1)(g + 1), which implies that

the dimension would be

(3) kAG := m− g =| Xu | −(q − 1)(g + 1)− g =| Xu | −q(g− 1) + 1.

Example 6.4. Taking u = qr−1
q−1

, we have that g := (u−1)(qr−1−1)
2

=

(
qr−1
q−1
−1

)
(qr−1−1)

2
. From

Equation 3, kAG =| Xu | −q(g−1)+1 =| Xu | −1
2
q2r−1+lower terms. As kev =| Xu | −qr−1

in Equation 2, we can see that there are values of q and r for which keq > kAG.

We close this section by finding the maximum rate that a monomial decreasing norm-

trace code ev(M) would have when the repair scheme of Theorem 6.2 can be applied.

As | Xu |= ((q − 1)u + 1)qr−1 , we can see that we can repair an erasure on a monomial

decreasing norm-trace code ev(M) when M ⊆ ∆
(
x(q−1)u, yq

r−1
)

. Thus, we have the

following bound for the rate of the code:

(4) Rate(ev(M)) ≤ (q − 1)uqr−1

((q − 1)u+ 1)qr−1
= 1− 1

(q − 1)u+ 1
,

where the inequality is tight when M = ∆
(
x(q−1)u, yq

r−1
)

. In the particular case where

u = qr−1
q−1

, the inequality in 4 becomes:

Rate(ev(M)) ≤ 1− 1

qr
.

Conclusion

This work introduced decreasing norm-trace codes, which are evaluation codes defined

by a set of monomials closed under divisibility and the rational points of the extended

norm-trace curve. We used Gröbner basis theory and indicator functions to find the

basic parameters of these codes: length, dimension, minimum distance, and dual code.

By exploiting the basic parameters, we gave conditions over the set of monomials, so
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a decreasing norm-trace code is a self-orthogonal or a self-dual code. We presented a

repair scheme for a single erasure on a decreasing norm-trace code that repairs codes

with higher rates than the AG codes over the norm-trace curve.
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