
Compressed sensing matrices from function

fields defined by linearized polynomials

Gretchen L. Matthews ⇤† Justin D. Peachey‡

May 26, 2015

Abstract

Compressed sensing is a technique which allows for the reconstruc-
tion of a sparse signal even when few measurements of the signal are
available. A key problem in compressed sensing is the deterministic
constuction of sensing matrices. In this paper, we provide sensing
matrices from function fields defined by linearized polynomials. Our
approach relies on the determination of explicit bases for Riemann-
Roch spaces on function fields defined by linearized polynomials. At
times, it improves upon comparable known constructions. In addition
to the sensing matrices, the bases yield explicit generator and parity
check matrices for algebraic geometry codes. Previous results on the
Hermitian function field as well as on the norm-trace function field
can be obtained as special cases of those given here for function fields
defined by linearized polynomials.

1 Introduction

The goal of compressed sensing is to reconstruct a discrete-time signal by
taking as few measurements as possible. Let � be an m ⇥ n matrix and
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y = �x where the entries of both � and x are real numbers. Compressed
sensing seeks to reconstruct x from y. Here, x is considered as a discrete-
time signal, y is thought of as the measurement vector, and � is called a
sensing matrix. In groundbreaking works, Candes, Romberg, and Tao [4]
and Donoho [8] show that a sparse signal can be reconstructed with few
measurements. Furthermore, Candes et. al. provide criteria, such as the
restricted isometry property defined below, which are desirable for sensing
matrices.

While random matrices satisfy this criteria with high probability, it is
di�cult to verify the criteria for a particular matrix. In addition, the storage
requirements for a random matrix may be problematic. Hence, there is a need
for deterministic constructions. Recently, a new deterministic construction
of sensing matrices using algebraic geometric (AG) codes from the Hermi-
tian function field was given by Li, Gao, Ge, and Zhang [14]. By utilizing
the structure of certain Riemann-Roch spaces, they provide an improvement
on DeVore’s construction from polynomials over Fp [7]. In this paper, we
construct a larger class of sensing matrices from function fields defined by
linearized polynomials. To demonstrate their advantages, we first give a brief
overview of compressed sensing. For a more in-depth treatment, see [8] or
[6].

To refine the search for good sensing matrices, we consider the following
definition. Here, we say a vector x 2 Rn is k-sparse to mean x has at most
k nonzero entries.

Definition 1.1. An m⇥n matrix � satisfies the restricted isometry property
(RIP) of order k if there is a constant 0  �k < 1 such that for all k-sparse
vectors x,

(1� �k)kxk22  k�xk22  (1+ �k)kxk22.

If a matrix � satisfies the restricted isometry property, then a unique and
exact solution x is guaranteed. Often, the notion of coherence is used as a
proxy for RIP. The coherence of a matrix � with unit column vectors ui is

µ(A) = max
i 6=j

|hui,uji|.

Then, the following is shown in [1].

Theorem 1.2. If a matrix � has coherence µ, then � satisfies the restricted
isometry property of order k with constant �k = (k � 1)µ.
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Note that as �k < 1, we must have that k < 1
µ
+ 1. This leads one to

consider matrices with small values of µ in order to handle larger values of
k (meaning less sparse vectors x). In [14], the authors construct matrices
from algebraic codes from the Hermitian function field which are better than
those in [7].

In this paper, we build sensing matrices from function fields defined by
linearized polynomials. To do so, we provide explicit bases for Riemann-Roch
spaces of divisors supported by certain places of degree one on function fields
defined by linearized polynomials. These bases yield sensing matrices which,
in certain cases, improve upon their Hermitian counterparts.

This paper is organized as follows. This section concludes with a sum-
mary of notation used throughout the paper. Section 2 contains relevant
background on the function fields defined by linearized polynomials and in-
cludes the determination of bases for and dimension of certain Riemann-Roch
spaces. These are applied to determine sensing matrices in Section 3. Closing
observations are shared in Section 4.

Notation. Let F be a finite field and F/F be an algebraic function field
of genus g > 1. The divisor of a function f 2 F \ {0} will be denoted by (f).
The Riemann-Roch space of a divisor A of F is

L(A) := {f 2 F \ {0} : (f) � �A} [ {0} ,

which is a finite-dimensional vector space over F. Let `(A) denote the dimen-
sion of the vector space L(A) over F. The Riemann-Roch Theorem states
that

`(A) = degA+ 1� g + `(W � A)

where W is any canonical divisor of F . Moreover, if the degree of A is at
least 2g � 1, then `(W � A) = 0 and so `(A) = degA + 1 � g. For divisors
A of smaller degree, the dimension ` (A) is not necessarily easy to compute.

The set of positive integers is denoted by Z+. As usual, given v 2 Zm

where m 2 Z+, the ith coordinate of v is denoted by vi.
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2 Function fields defined by linearized poly-

nomials and bases for some Riemann-Roch

spaces

Let q be a power of a prime and r be an integer with r � 2. Consider the
function field F := Fqr (x, y) /Fqr with defining equation

L(y) = xu (1)

where u| qr�1
q�1 and L(y) =

dP
i=0

aiy
qi is a separable linearized polynomial which

splits over Fqr If one takes u = qr�1
q�1 and L(y) = TrFqr/Fq (y), the defining

equation is
TrFqr/Fq (y) = NFqr/Fq (x) ,

meaning the trace of y with respect to the extension Fqr/Fq is equal to the
norm of x with respect to the extension Fqr/Fq; this function field is called
the norm-trace function field. As special cases, one may also obtain the Her-
mitian function field (by taking r = 2, u = qr�1

q�1 , and L(y) = TrFqr/Fq (y))
and a quotient of the Hermitian function field (by taking r = 2 and L(y) =
TrFqr/Fq (y)). The norm-trace function field was first studied by Geil in [11]
where he considered evaluation codes and one-point algebraic geometry codes
constructed from this function field. More recently, Munuera, Tizziotti, and
Torres [18] examined two-point algebraic geometry codes on this same func-
tion field.

The relevance of this function field to coding theory and other appli-
cations is tied to the abundance of rational places. Both the Hermitian
function field and its quotient mentioned above are maximal function fields,
meaning that the number of rational places meet the Hasse-Weil bound. The
norm-trace function field and its infinite place, while not maximal, meet the
Geil-Matsumoto bound [12]; certain places are used in the construction of
algebraic geometry codes, and the Geil-Matsumoto bound takes this into
account.

Given a, b 2 Fqr such that L(b) = au, let Pab denote the unique place of
F of degree one with x (Pab) = a and y (Pab) = b. The common pole of x and
y will be denoted by P1. Consider

B := {� 2 Fqr : L (�) = 0} .
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Then |B| = qd, and for any � 2 B, L(y) = L (y � �) which means F has qd

places of the form P0�. Furthermore, one can show

(x) =
X

�2B

P0� � qdP1 and (y � �) = uP0� � uP1. (2)

We view F as a Kummer extension of Fqr (y). The place of the rational
function field Fqr(y) which corresponds to the irreducible polynomial y � �
is denoted P�. If � 2 B, then P�of Fqr(y) is totally ramified in F/Fqr(y) as

is the infinite place p1 of Fqr (y). The genus of F/Fqr is g =
(u�1)(qd�1)

2 .
We now focus on bases for Riemann-Roch spaces L(a1P1+

P
�2B a�P0�).

To do so, we make use of integral bases, which can be determined immediately
from [20, Theorem III.5.10(b)]. The results given here generalize those in [15]
and are obtained via a similar approach.

Lemma 2.1. The functions 1, x, x2, . . . , xu�1 form an integral basis of the
function field Fqr (y, x) /Fqr (y) at any place of Fqr (y) other than p1.

Theorem 2.2. Consider the divisor G := a1P1 +
P

�2B a�P0� on the func-
tion field F/Fqr defined by L(y) = xu as in (1), where a1 2 Z and a� 2 Z
for all � 2 B. Then

[

0iu�1

(
xific(y) : c 2 Z,�

X

�2B

�
a� + i

u

⌫
 c 

�
a1 � iqd

u

⌫)

is a basis for L (G) as a vector space over Fqr where

fic(y) 2
(
Y

�2B

(y � �)e�,i : e�,i 2 Z, e�,i � �
�
a� + i

u

⌫
,
X

�2B

e�,i = c

)
.

Furthermore, the dimension of L (G) is

` (G) =
u�1X

i=0

max

(�
a1 � iqd

u

⌫
+
X

�2B

�
a� + i

u

⌫
+ 1, 0

)
.

Proof. Let L := L(a1P1 +
P

�2B a�P0�) and

S :=

8
<

:xi
Y

�2B

(y � �)e�,i :
e�,i 2 Z, �a�  ue�,i + i,
iqd + u

P
�2B e�,i  a1

8i, 0  i  u� 1

9
=

; .
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Notice that (2) implies S ✓ L and the Fqr -linear span of S is a subset of L.
Let f 2 L\{0}. Given a place P of Fqr (y) where P /2 {p1}[{P� : � 2 B},

there exist fi 2 Fqr(y) such that

f = f0 + f1x+ · · ·+ fu�1x
u�1

and no fi has a pole at P , according to Lemma 2.1. In fact, the only possible
poles of fi in Fqr (y) are p1 and P� with � 2 B. To see this, consider a placeQ
of Fqr(y), Q /2 {p1, P}[{P� : � 2 B}. Notice that Lemma 2.1 also applies to
Q, meaning there exist hi 2 Fqr(y) such that f = h0+h1x+· · ·+hu�1x

u�1 and
no hi has a pole at Q. Because {1, x, . . . , xu�1} is a basis of F/Fqr(y), fi = hi

for all i, 0  i  u � 1, which implies fi has no poles at Q. Consequently,
the only possible poles of fi in Fqr (y) are p1 and P� with � 2 B, and

fi = gi(y)
Y

�2B

(y � �)e�,i ,

where e�,i 2 Z, gi 2 Fqr [y], and (y � �) - gi(y) for all � 2 B. It follows that
f is an Fqr -linear combination of functions

Ai,j := xiyj+e0,i
Y

�2B\{0}

(y � �)e�,i

with 0  j  deg gi. It remains to verify that Ai,j 2 S for 0  i  u� 1 and
0  j  deg gi. Since P0� is totally ramified in the extension F/Fqr(y) for all
� 2 B, vP0�

(fixi) = uvP�
(fi) + i = ue�,i + i. Hence, for 0  i, j  u� 1,

vP0�

�
fix

i
�
6⌘ vP0�

�
fjx

j
�

mod u

unless i = j. As a result, min {ue�,i + i : 0  i  u� 1} = vP0�
(f) � �a�.

Similarly, min {vP1(fixi) : 0  i  u� 1} = vP1(f) � �a1 as

vP1

�
fix

i
�
= vP1 (fi) + vP1

�
xi
�
= uvp1 (fi)� iqd

are distinct modulo u for 0  i  u�1. Since vp1(fi) = �
⇣
deg gi +

P
�2B e�,i

⌘
,

we conclude that

u (j + e0,i) +
X

�2B\{0}

e�,i + iqd  u

 
deg gi +

X

�2B

e�,i

!
+ iqd  a1.
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Thus, Aij 2 S and f is in the Fqr -linear span of S, establishing that S is a
spanning set for L.

Next, we obtain a basis for L from S. For 0  i  u� 1, set

Vi :=

(
�iqd � u

X

�2B

e� :
e� 2 Z,�a�  ue� + i, and
iqd + u

P
�2B e�  a1 8� 2 B

)

and V := [u�1
i=0 Vi. From above, {vP1 (f) : f 2 L \ {0}} ✓ V. If n 2 V , then

n = vP1

⇣
xi
Q

�2B (y � �)e�
⌘
. Since xi

Q
�2B (y � �)e� 2 L by the previous

argument, V = {vP1 (f) : f 2 L \ {0}}. Moreover,

dim L = |V | =
u�1X

i=0

|Vi|.

Here, the first equality holds due to [15, Lemma 3.5]. The latter equality
follows from the observation that the sets Vi, 0  i  u � 1, are disjoint;
indeed, u | (i� j)qd implies i = j.

For i, 0  i  u� 1, one can check that

| Vi |=|
(
c 2 Z : �

X

�2B

�
a� + i

u

⌫
 c 

�
a1 � iqd

u

⌫)
| .

Hence,

|Vi| = max

(�
a1 � iqd

u

⌫
+
X

�2B

�
a� + i

u

⌫
+ 1, 0

)
,

completing the proof.

Remark 2.3. Notice that one may set a� = 0 for some (or all) � 2 B
or a1 = 0. In this way, Theorem 2.2 gives bases for divisors with support
being any subset of {P0� : � 2 B} [ {P1}. By setting r = 2, u = q + 1,
and L(y) = TrFqr/Fq (y), one recovers bases for Riemann-Roch spaces of the
Hermitian function field [15, Corollary 3.7]. In particular, setting a� = 0 for
all � 2 B yields the original result of Stichtenoth [21, Satz 2] (see also [22,
Proposition 1]).

Our focus is the construction of sensing matrices which follow from Theo-
rem 2.2; this is detailed in the next section. It is also worth noting that The-
orem 2.2 has several immediate consequences for algebraic geometry codes
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defined by divisors whose support is contained in {P1}[B. For instance, we
can obtain the floor of any divisor whose support is contained in {P1} [ B,
exact dimensions of algebraic geometry codes defined by divisors whose sup-
port is contained in {P1} [ B, as well as bounds on the minimum distances
of such codes. In addition, both generator and parity-check matrices of these
codes are corollaries of Theorem 2.2.

3 Compressed Sensing Matrices

We now review the construction for sensing matrices due to Li et. al. [14].
Let q be a prime power and consider a function field F over Fq. Let P denote
a set of rational places of F and G be a divisor of F such that deg(G) < |P|
and the support of G does not include any places which are elements of P .
For each f 2 L(G), define a column vector vf whose entries are indexed by
pairs (P, a) 2 P ⇥ Fq by

[vf ](P,a) := f(P )=a,

meaning that the entry of vf associated with the pair (P, a) is an indicator
function

f(P )=a =

(
1 if f(P ) = a

0 otherwise.

Define an m⇥n matrix �0 with columns vf where f 2 L(G); here, m = q|P|
and n = q`(G). Then the following result holds.

Lemma 3.1 ([14], Theorem 3.2). Let � = 1p
|P|

�0. Then � is a sensing

matrix with coherence µ(�)  deg(G)
|P| .

Applying this construction to the Hermitian function field over Fq2 with
G = sQ1 gives sensing matrices of size mH ⇥nH where mH = q2 · |PH | = q5,
nH = q2`(G), and 2gH�1  s < |P| = q3. For certain values of q, this construc-
tion yields better parameters than previously known from DeVore’s construc-
tion; indeed, better sensing matrices are obtained when 8(s�gH+1)�2

5 > q
3
2 . By

applying this construction to function fields defined by linearized polynomi-
als as in (1), we show that it is possible to construct larger classes of sensing
matrices. In certain cases, they improve upon those associated with the
Hermitian function field.
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Theorem 3.2. Let s 2 Z+. Then there exists a sensing matrix � of size
mnt ⇥ nnt where mnt := q3r�1 and nnt := qr`(sP1) with coherence bounded by
µ(�)  s

q2r�1 .

Proof. Take F to be the norm-trace function field over Fqr . Then F has
exactly q2r�1 +1 places of degree one. Set G = sP1. Then |P| = q2r�1. The
result is then an immediate application of Lemma 3.1.

Corollary 3.3. There exists sensing matrices constructed from the norm-
trace function field over Fqr with the upper bound on coherence in Lemma
3.1 less than that of sensing matrices from the Hermitian function field of
the same size.

Corollary 3.4. Let k = 3r�1
5 . If s

t
< q

r�2
5 , then the upper bound on the

coherence of sensing matrices in Lemma 3.1 from the norm-trace function
field is less than that of those from the Hermitian function field.

Proof. Consider the Hermitian function field H over Fq2k = F(qk)2 and the

norm-trace function field F over Fqr . Let t 2 Z be so that 2gH � 1  t < q3k

and 2k
r
(t + 1 � gH) 2 Z, where gH := qk(qk�1)

2 is the genus of H. By the

Riemann-Roch Theorem, ` (tQ1) = t+ 1� qk(qk�1)
2 where Q1 is the infinite

place of H. Because 2k
r
(t+1�gH) 2 Z+, Theorem 2.2 applies to give s 2 Z+

so that

`(sP1) =
2k

r
(t+ 1� gH)

where P1 is the infinite place of the norm-trace function field. According to
Theorem 3.1, we may construct an mnt⇥nnt sensing matrix �nt where mnt =
q3r�1, nnt = qr`(sP1) = q2k(t+1�gH), and µ (�nt)  s

q2r�1 =: µnt. Notice that
the function field H and divisor G = tQ1 also give rise to a sensing matrix

�H of size q3r�1 ⇥ q2k(t+1�gH), because
�
qk
�5

= q5k = q3r�1 and qk
2`(tQ1)

=
q2k(t+1�gH). By Lemma 3.1, the coherence of �H is µ (�H)  t

q3k
=: µH .

Comparing the bounds on the coherence of the matrices �nt and �H , we
see that

µnt < µH

as s
t
< q

r�2
5 .

Remark 3.5. If s, t satisfy the given hypotheses, `(sP1) = k
r
(t + 1 � gH).

Moreover, as q � 2 and r � 7, qk  qr�1 � 1 and 2q2k  q2r�2. Hence,

k

r
(t+ 1� gH) 

k

r
(q3k � gH) =

(3r � 1)(2q3k � qk + q
k
2 )

10r
< gnt.
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Thus, to find s it is necessary to apply Theorem 2.2 since s < 2gnt� 1. Also,
as Theorem 2.2 provides a basis for L(sP1), we may find an explicit descrip-
tion of all functions in the Riemann-Roch space. An explicit construction of
these matrices is as given in the introduction to this section. Furthermore,
provided that s

t
q

�11r+7
10 < 1, the sensing matrix constructed over the norm-

trace function field has a smaller bound on the coherence than its Hermitian
counterpart.

Example 3.6. Let q = 2 and r = 7; then, k = 4. Consider the norm-trace
function field F over F27 and the Hermitian function field F 0 over F24. Then,
if t = 4093 = 212� 3 < q3k � 1, k

r
(t+1� gH) = 2336. Applying Theorem 2.2,

we find `(6064P1) = 2336.
Then the sensing matrix constructed over the Hermitian function field is a

220⇥ 216352 matrix with µH  4093
26 . Moreover, the corresponding sensing ma-

trix constructed over the norm-trace function field has the same dimensions,
and µnt  6064

213 < 4093
26 .

Example 3.7. Let q = 5 and r = 7; then, k = 4. Consider the norm-trace
function field F over F57 and the Hermitian function field F 0 over F54. Then,
if t = 600 = 2gH ,

k
r
(t + 1 � gH) = 2336. Using Sage and applying Theorem

2.2, we find `(304687P1) = 172.
Then the sensing matrix constructed over the Hermitian function field is a

520⇥51204 matrix with µH  600
56 . Moreover, the corresponding sensing matrix

constructed over the norm-trace function field has the same dimensions, and
µnt  304687

513 < 600
56 .

4 Conclusion

In this paper, we obtain compressed sensing matrices using function fields de-
fined by linearized polynomials. To do so, we give explicit bases for Riemann-
Roch spaces of these function fields which may be of independent interest (es-
pecially considering that this family of function fields includes the Hermitian
function field and the norm-trace function field as well as certain quotients).
Applications of the determined Riemann-Roch spaces are not limited those
of sensing matrices and AG codes considered here. They are also relevant
to the construction of low-discrepancy sequences [19], certain secret-sharing
schemes [5, 10], and small-bias sets [17].
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