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Abstract—We present two families of augmented Reed-Muller
(ARM) codes, which are evaluation codes obtained by adding
specific vectors to a Reed-Muller code. We develop exact repair
schemes for single erasures for these ARM codes. When a
dimension and a base field are fixed, we give examples where
ARM codes provide a lower bandwidth in comparison with Reed-
Solomon codes. We analyze the asymptotical behavior when ARM
codes achieve the maximum rate.

I. INTRODUCTION

Distributed storage systems operate by storing a data file
over multiple storage nodes. Ideally, the system is set up so if
one node fails, the information on that node can be recovered
with the information stored on the remaining nodes. A scheme
to exactly recover a failed node is known as an exact repair
scheme. Particular types of systems known as erasure-coded
distributed storage systems distribute the data in accordance
with an erasure code, where the the data file is encoded as a
codeword and each node stores a symbol. With this setup, it
is clear that recovering a failed node exactly is equivalent to
fixing an erasure in the codeword [3], [4].

Recently, much work has been done on developing efficient
repair schemes for erasure-coded distributed storage systems
based on evaluation codes. Notably, Guruwarmi and Wooters
developed a foundational scheme (GW-scheme) to efficiently
repair a single erasure in a Reed-Solomon (RS) code in [6],
and this work was extended by Chen and Zhang in [1] to
efficiently repair Reed-Muller (RM) codes. These schemes
gain their advantage by employing the concept of subsymbols.
Rather than transmit a certain number of remaining symbols
from a codeword to recover an erasure, Guruswarmi and
Wooters opted to transmit subsymbols, but from more coordi-
nates. In this context, every symbol is represented by several
subsymbols. With the right subsymbols in an appropriate set-
up, these new schemes require less information than standard
approaches to repair.

Both RS and RM codes are evaluation codes that employ
polynomials with restricted degrees. Using such a set of
polynomials allows for easily definable codes, but there is no
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reason to expect this set will yield the highest rate or most
efficiently repairable codes. Monomial-Cartesian codes [9] are
evaluation codes that allow for more finely-tuned polynomial
sets. We can develop augmented Reed-Muller (ARM) codes
via monomial-Cartesian codes, which are evaluation codes
obtained when certain vectors are added to a RM code so that
the dimension is increased and a linear exact repair scheme can
still be implemented. In this paper, we introduce two families
of ARM codes and develop associated exact repair schemes.

The GW-scheme repairs a RS code provided the code
satisfies a restriction on the dimension. Hence, there are codes
and parameters for which the GW-scheme does not apply. In
this paper, we fill some of those gaps using ARM codes. When
a dimension and a base field are fixed, there are instances
where ARM codes provide a lower bandwidth in comparison
with RS codes, and a lower bandwidth in terms of bits versus
Hermitian codes.

A. Preliminaries

Let q be a power of a prime p and K = Fqt a field extension
of degree t = [K : Fq] of Fq. The field trace can be defined
as the polynomial TrK/Fq

(x) ∈ K[x] given by

TrK/Fq
(x) = xq

t−1

+ · · ·+ xq
0

.

For the sake of convenience, we will often refer to TrK/Fq
(x)

as simply Tr(x) when the extension being used is obvious
from context. Importantly, the field trace Tr(x) always outputs
an element of Fq . Additionally, Tr(x) is an Fq-linear map,
treating the field K as a vector space over Fq . One can also
verify that p(x) := Tr(zx)

x = zq
t−1

xq
t−1−1 + · · ·+ zq

0

satisfies
p(0) = z for z ∈ K. Another useful property is found in the
next remark.

Remark 1.1. Let B = {z1, . . . , zt} be a basis of K over Fq.
Then there exists a basis B′ = {z′1, . . . , z′t} of K over Fq ,
such that Tr(ziz′j) = δij . In this case, B and B′ are called
dual bases. For α ∈ K,

α =

t∑
i=1

Tr(αzi)z′i.

Thus, determining α is equivalent to finding Tr(αzi) for all
i ∈ [t] := {1, . . . , t} [11].



Let C be an [n, k]-linear code over K. The elements of
K are called symbols and the elements of Fq are called
subsymbols. Note that every entry of each vector c ∈ C can
be represented using t subsymbols, because K is a degree t
extension of Fq. In terms of distributed storage systems, the
code C is saved over n different storage nodes, one for each
coordinate. When one of the storage nodes fails or is erased,
an exact repair scheme is an algorithm that is able to recover
the information of the erased node in terms of the rest of
the storage nodes. The repair bandwidth b is the number of
subsymbols that the scheme algorithm needs to download to
recover the erased entry. Observe that a vector c ∈ Kn is
composed of nt subsymbols, so the number b

nt can be seen as
the fraction of the codeword that is needed by the exact repair
scheme to recover the erased symbol.

By Reed-Muller codes, we mean the evaluation codes
obtained when polynomials in m variables up to certain total
degree k ∈ Z≥0 are evaluated at all the points of Km. In
this work, we are interested in two new families of codes
that are obtained when certain polynomials in m variables
are evaluated on all the points of Km. Reed-Muller codes
and these two families of evaluation codes are particular
cases of monomial-Cartesian codes [9], whose definition is
the following. Let R = K[x1, . . . , xm] be the set of m-variate
polynomials over K. For a point a = (a1, . . . , am) ∈ Zm≥0,
we use xa to denote the monomial xa11 · · ·xamm ∈ R. Given a
set A ⊆ Zm≥0, let L(A) = SpanK{xa : a ∈ A} be the set
of K-linear combinations of monomials with exponents in A.

Definition 1.2. Let S = {P1, . . . , Pn} ⊆ Km be a Cartesian
set and A ⊂ Zm≥0 a finite set. The monomial-Cartesian code
associated to S and A is given by

C(S,A) = {evS(f) : f ∈ L(A)} ⊆ Kn,

where evS(f) = (f(P1), . . . , f(Pn)).

Remark 1.3. Assume S = S1×· · ·×Sm, where Si ⊆ K. When
A ⊆

∏m
i=1{0, . . . , |Si| − 1}, the function evS : L(A) → Kn

given by evS(f) = (f(P1), . . . , f(Pn)) is injective. Thus, for
the monomial-Cartesian code C(S,A), the length is |S|, the
dimension is dimK C(S,A) = |A|, and the rate is |A||S| .

Definition 1.4. The Reed-Muller code (RM code) is given by

RM(Km, k) = C(Km,ARM (k)),

where ARM (k) = {a ∈ Zm≥0 : ai ≤ |K| − 1,
∑m
i=1 ai ≤ k}.

The dual of C(S,A), denoted by C(S,A)⊥, is the set of all
α ∈ Kn such that α · β = 0 for all β ∈ C(S,A), where α · β
is the ordinary inner product in Kn. The dual code C(S,A)⊥

was previously studied in [9] in terms of the vanishing ideal
of S and in [10] in terms of the indicator functions of S. The
dual code RM(Km, k)⊥ has been extensively studied in the
literature. See for instance [1], [2], [7].

II. REPAIRING AUGMENTED REED-MULLER CODE 1

We define now a family of ARM codes. Then we describe
a scheme to repair an erasure inspired by Guruswarmi and

Wooters’s work in [6] for Reed-Solomon codes and later
extended in [1] by Chen and Zhang for generalized Reed-
Muller codes.

Definition 2.1. The augmented Reed-Muller code 1 (ARM1
code) is defined by

ARM1(Km, k) = C(Km,A1(k)),

where A1(k) = {0, . . . , |K| − 1}m \ {k + 1, . . . , |K| − 1}m.

Remark 2.2. As ARM (k) ⊂ A1(k), we clearly obtain
RM(Km, k) ⊂ ARM1(Km, k), hence the name augmented
Reed-Muller code 1 is appropriate.

The following proposition will be relevant to develop the
exact repair scheme for ARM1(Km, k).

Proposition 2.3. Take k < |K|. The dimension and the dual
of the augmented Reed-Muller code 1 are given by
(a) dim ARM1(Km, k) = qtm−(qt−k−1)m, and
(b) ARM1(Km, k)⊥ = C(Km,A⊥1 (k)),

where A⊥1 (k) = {0, . . . , |K| − k − 2}m .

Proof. As A1(k) is contained in {0, . . . , |K| − 1}m ,
by Remark 1.3 we have that dimK ARM1(Km, k) =
|A1(k)| = | {0, . . . , |K| − 1}m \ {k + 1, . . . , |K| − 1}m | =
qtm−(qt−k−1)m. Observe that a ∈ Ac1 if and only if
(|K| − 1, . . . , |K| − 1) − a ∈ A⊥1 (k). Thus the result about
the dual follows from [10, Theorem 7.8].

Example 2.4. Take K = F7. The code ARM1(K2, 2) is
generated by the vectors evK2(M), where M is a mono-
mial whose exponent is a point in Figure 1(a). The dual
ARM1(K2, 2)⊥ is generated by the vectors evK2(M), where
M is a monomial whose exponent is a point in Figure 1(b).
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Fig. 1: The ARM1(K2, 2) code in Example 2.4 with K = F7 is generated by
the vectors evK2 (M), where M is a monomial whose exponent corresponds
to a point in (a). ARM1(K2, 2)⊥ is generated by the vectors evK2 (M),
where M is a monomial whose exponent corresponds to a point in (b).

Compare this to Figure 2, which shows the monomials that
define RM(K2, 2) and RM(K2, 2)⊥. Notice, by the definition,
the monomial diagram for any Reed-Muller code will restrict
the allowable monomials under some diagonal. This excludes
many monomials along or near the edges, resulting in codes
with lower dimensions and rates. Hence the reason ARM1
codes have higher rates than their associated Reed-Muller
codes.
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Fig. 2: The code RM(K2, 2) in Example 2.4 with K = F7 is generated by the
vectors evK2 (M), where M is a monomial whose exponent corresponds to
a point in (a). The dual RM(K2, 2)⊥ is generated by the vectors evK2 (M),
where M is a monomial whose exponent corresponds to a point in (b).

Theorem 2.5. Assume k < qt − qt−1. There exists an exact
repair scheme for ARM1(Km, k) with bandwidth

b = t|K|m − (t− 1)(|K| − 1)m − t.

Proof. Let P ∗ = (α∗1, . . . , α
∗
m) ∈ Km and assume that

the entry f(P ∗) of the codeword (f(P1), . . . , f(Pn)) ∈
ARM1(Km, k) is erased. Let {z1, . . . , zt} be a basis for K
over Fq. For i ∈ [t], define the following polynomials

pi(x) =
Tr(zi(x1 − α∗1) · · · (xm − α∗m))

(x1 − α∗1) · · · (xm − α∗m)
.

By Proposition 2.3, the dual ARM1(Km, k)⊥ is given by
C(Km, {0, . . . , |K| − k − 2}m). We have that k < qt − qt−1,
then |K| − k − 2 ≥ |K| − qt + qt−1 + 1 − 2 = qt−1 − 1.
As degxj

pi(x) ≤ qt−1− 1 and the monomials that appear on
each pi(x) are of the form xa11 . . . xamm where 0 ≤ ai < qt−1,
we obtain that every polynomial pi(x) defines an element in
ARM1(Km, k)⊥. Therefore, we obtain the t equations

pi(P
∗)f(P ∗) = −

∑
P∈Km\{P∗}

pi(P )f(P ), i ∈ [t].

Define the following two sets:

Γ1 = {(α1, . . . , αm) ∈ Km |αi = α∗i some i} \ {P ∗},
Γ2 = {(α1, . . . , αm) ∈ Km |αi 6= α∗i for all i}.

Observe pi(P ) = zi for all P ∈ Γ1. Thus, for i ∈ [t],

zif(P ∗) = −
∑
P∈Γ1

zif(P )−
∑
P∈Γ2

Tr(zi
∏m
i=1(αi − α∗i ))f(P )∏m
i=1(αi − α∗i )

.

Applying the trace function to both sides, by the linearity of
the trace function we obtain

Tr (zif(P ∗)) = −
∑
P∈Γ1

Tr (zif(P ))

−
∑
P∈Γ2

Tr(zi
m∏
i=1

(αi − α∗i ))Tr
(

f(P )∏m
i=1(αi − α∗i )

)
.

As a consequence, the t independent traces Tr (zif (P ∗)) , i ∈
[t], of f(P ∗) can be determined by downloading the following.
• The symbol f(P ), which is equivalent to the t subsym-

bols Tr (z1f(P )) , . . . ,Tr (ztf(P )) , for P ∈ Γ1.

• The subsymbol Tr
(

f(P )∏m
i=1(αi−α∗i )

)
for P ∈ Γ2.

Thus, by Remark 1.1 the erased symbol f(P ∗) can be recov-
ered from its t independent traces by downloading t|Γ1|+ |Γ2|
subsymbols. Note, |Γ2| = (|K| − 1)m and |Γ1| = |Km \
Γ2 ∪ {P ∗}| = |K|m − (|K| − 1)m − 1. Hence, the bandwidth
becomes b = t|K|m − (t− 1)(|K| − 1)m − t, as desired.

III. REPAIRING AUGMENTED REED-MULLER CODE 2

We now define a second family of augmented Reed-Muller
codes and provide an associated exact repair scheme. Note
that this exact repair scheme has a greater bandwidth, but
importantly the rate is improved with respect to the family
defined in Section II.

Definition 3.1. The augmented Reed-Muller code 2 (ARM2-
code) is defined as

ARM2(Km, k) = C(Km,A2(k)),

where A2(k) = {0, . . . , |K| − 1}m \
⋃m
i=1 Li and

Li = {a ∈ Km : k+1 ≤ ai ≤ |K|−1 , aj = |K|−1 ∀j 6= i}

Proposition 3.2. Take k < |K|. The dimension and the dual
of the augmented Reed-Muller code 2 are given by
(a) dim ARM2(Km, k) = qtm−m(qt−k−2)− 1, and
(b) ARM2(Km, k)⊥ = C

(
Km,A⊥2 (k)

)
,

where A⊥2 (k) =
⋃m
i=1 L

′
i and

L′i = {a ∈ Km : 0 ≤ ai ≤ |K|−k−2 , aj = 0 ∀j 6= i}.

Proof. The set A2(k) is contained in {0, . . . , |K| − 1}m .
By Remark 1.3 we have that dimK ARM2(Km, k) =
|A2(k)| = | {0, . . . , |K| − 1}m \

⋃m
i=1 Li| = qtm−|

⋃m
i=1 Li|.

As
⋂m
i=1 Li = {a}, where a = (|K| − 1, . . . , |K| − 1),

and (Li \ {a})
⋂

(Lj \ {a}) = ∅ for all i 6= j, then
|
⋃m
i=1 Li| =

∑m
i=1 |Li \ {a}| + 1 = m(|K| − k − 2) + 1.

Thus dim ARM1(Km, k) = qtm−m(qt−k−2) − 1. Observe
that b ∈ Ac2 if and only if (|K|−1, . . . , |K|−1)−b ∈ A⊥2 (k).
Thus the result follows from [10, Theorem 7.8].

Example 3.3. Take K = F7. The code ARM2(K2, 2) is
generated by the vectors evK2(M), where M is a mono-
mial whose exponent is a point in Figure 1(a). The dual
ARM2(K2, 2)⊥ is generated by the vectors evK2(M), where
M is a monomial whose exponent is a point in Figure 1(b).

Theorem 3.4. Assume k < qt − qt−1, t > m and (m, p) = 1.
There exists a repair scheme algorithm for ARM2(Km, k) with
bandwidth b = t|K|m − (t−m)(|K| − 1)m − t.

Proof. Let P ∗ = (α∗1, . . . , α
∗
m) be an element in Km and

assume that the entry f(P ∗) is missing in the codeword
(f(P1), . . . , f(Pn)) ∈ ARM2(Km, k). Let {z1, . . . , zt} be
a basis for K over Fq. For i ∈ [t], define the following
polynomials:

pi(x) =

m∑
j=1

Tr(zi(xj − α∗j ))
xj − α∗j

.
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Fig. 3: The code ARM2(K2, 2) in Example 3.3 with K = F7 is generated by
the vectors evK2 (M), where M is a monomial whose exponent corresponds
to a point in (a). The dual ARM2(K2, 2)⊥ is generated by the vectors
evK2 (M), where M is a monomial whose exponent corresponds to a point
in (b).

By Proposition 3.2, the dual ARM2(Km, k)⊥ is given by
C
(
Km,A⊥2 (k)

)
, where A⊥2 (k) =

⋃m
i=1 L

′
i and

L′i = {a ∈ Km : 0 ≤ ai ≤ |K|−k−2 , aj = 0 ∀j 6= i}.
We have that k < qt − qt−1. Then |K| − k − 2 ≥ |K| −
qt + qt−1 + 1 − 2 = qt−1 − 1. As degxj

pi(x) ≤ qt−1 − 1
and the monomials that appear on each pi(x) are of the form
x
aj
j where 0 ≤ aj < qt−1 and 1 ≤ j ≤ m, we obtain that

every polynomial pi(x) define an element in ARM2(Km, k)⊥.
Therefore, we obtain the following t equations

pi(P
∗)f(P ∗) = −

∑
P∈Km\{P∗}

pi(P )f(P ), i ∈ [t].

Define Γ1 and Γ2 as in the proof of Theorem 2.5. Observe
that if P ∈ Γ1, then there exist an integer `P ≥ 1 and an
element βP in Fq such that pi(P ) = (`P )zi + βP . Actually
`P is the number of entries where P and P ∗ coincide, in other
words, ` = m− dH(P, P ∗), where dH(P, P ∗) represents the
Hamming distance. Even more, pi(P ∗) = mzi, hence why it
is relevant that (m, p) = 1. Thus, applying the trace and by
the linearity of the trace function we obtain that for i ∈ [t]

mTr (zif(P ∗)) =

−
∑
P∈Γ1

Tr ([(`P )zi + βP ] f(P ))

−
∑
P∈Γ2

m∑
j=1

Tr(zi(αj − α∗j ))Tr

(
f(P )

αj − α∗j

)
.

As a consequence, the t independent traces Tr (zif (P ∗)) ,
i ∈ [t], of f(P ∗) can be determined by downloading the
whole symbol f(P ), for P ∈ Γ1, and the m subsym-
bols Tr

(
f(P )
α1−α∗1

)
, . . . ,Tr

(
f(P )

αm−α∗m

)
from each f(P ), where

P ∈ Γ2. Thus, by Remark 1.1 the erased symbol f(P ∗) can
be recovered from its t independent traces by downloading
t|Γ1|+m|Γ2| = t|K|m−(t−m)(|K|−1)m−t subsymbols.

There are important comments about the repair polynomials
pi(x) defined in the proofs of Theorems 2.5 and 3.4. (a) While
the proofs of Theorems 2.5 and 3.4 are similar in spirit, both
are important because each shows the behavior of pi(x) and
their impact on the computation of the bandwidths. (b) Every
ARM code has the property that the pi(x)’s define an element
in its dual. Trivial modifications in the pi(x)’s can give an even
larger family of ARM codes. For instance, in the pi(x)’s of
the proof of the Theorem 3.4, instead of the sum from j = 1
to m, we may have the sum from j = 1 to `, with 1 ≤ ` < m.
This would allows to define ARM2′(Km, k) using A′2(k) =
{0, . . . , |K| − 1}m \

⋃`
i=1 Li as in Definition 3.1. However,

a difference between ARM2(Km, k) and ARM2′(Km, k) is
that the minimum distance of ARM2′(Km, k) is lower that of
ARM2′(Km, k) by [5, Proposition 4].

IV. RESULTS

The Reed-Solomon code with evaluation set K and dimen-
sion k is denoted by RS(K, k). Table I shows the length,
dimension, bandwidth and restrictions on the exact repair
schemes that we have discussed in previous sections for the
RS,RM,ARM1 and ARM2 codes.

We first compare the GW-scheme and the scheme developed
for the ARM1 codes (ARM1-scheme) in Theorem 2.5 when
the dimension and the base field Fq are the same. Assume
m divides t and t = mt∗. The GW-scheme and the ARM1-
scheme repair the codes RS(Fqt , k) and ARM1(Fm

qt∗
, k) when

the dimensions are at most qt − qt−1 and qt − qt−m, respec-
tively. An advantage of the ARM1(Fm

qt∗
, k) comes when a

code with dimension k∗ between qt − qt−1 and qt − qt−m

is required. The restriction on the dimension of the GW-
scheme implies that to employ an RS code, it must utilize
an alphabet of size qt+1 to achieve dimension k∗. However,
as the dimension of the code ARM1(Fm

qt∗
, k) can be up to

qt−qt−m, there are values between qt−qt−1 and qt where we
can still use ARM1(Fm

qt∗
, k), whose bandwidth can be lower.

We show this in the following example.

Code Length Dimension Bandwidth Restrictions

RS(K, k) qt k qt − 1 k < qt − qt−1 by [6, Theorem 1]

RM(Km, k) qmt
(m+k

k

)
(qt − 1)(t− blogq(qt − k − 1)c) k < qt − 1 by [1, Theorem III.1]

ARM1(Km, k) qmt qtm−(qt−k−1)m tqtm−(t−1)(qt−1)m−t k < qt − qt−1 by Theorem 2.5

ARM2(Km, k) qmt qtm−m(qt−k−2)− 1 tqtm−(t−m)(qt−1)m−t k < qt − qt−1,m < t, (m, p) = 1 by Theorem 3.4

TABLE I: For each code we consider the associated linear exact repair scheme over Fq , with K = GF (qt) a field extension of degree t of Fq .



Example 4.1. Assume that a code of dimension k∗ = 648 over
a field of characteristic 3 is required. Observe that 36 − 35 =
486 < k∗ < 36 = 729. Over the field of size 36, there is a
Reed-Solomon code with dimension 648, but the GW-scheme
is not applicable. Indeed, the requirement that the dimension
is at most n − qt−1 = 486 is not satisfied. To resolve this,
a larger field such as one of size 37 = 2187 may be used.
Given that the GW-scheme requires the dimension to be at
most n − qt−1, the RS code’s length must then be bounded
below by 648 + qt−1 = 1377, meaning the bandwidth is at
least 1376. The code ARM1(F2

33 , 17) has dimension k∗ and
bandwidth 837. As a consequence we obtain the following.
Using RS codes and the GW-scheme, we obtain a code over
F2187, length 1377, bandwidth 1376 and dimension 648. Using
ARM1 and the ARM1-scheme, we obtain a code over F27,
length 729, bandwidth 837 and dimension 648.

Example 4.2. The code ARM1(F3
23 , 3) has length 512 and

dimension 448. The bandwidth in bits is 847, whereas the
Hermitian code of the same rate in [8, Example 14] requires
(3)(511)=1533 bits for repair. In addition, the ARM1(F3

23 , 3)
code is over F8, while the Hermitian code is over F64. An RS
code of the same length and dimension requires a field of size
at least 512 and 1533 bits for repair.

By Table I, the ARM codes will have greater repair band-
widths than the RM codes when q increases. However, the
expression makes it difficult to immediately determine the
massive rate improvement gained by implementing the ARM
codes. Figure 4 graphs the rate versus the repair bandwidth of
the exact repair schemes of RM(F3

54 , k), ARM1(F3
54 , k), and

ARM2(F3
54 , k), for all values of k that satisfy the restriction

in Table I. The same figure demonstrates that RM codes admit
repair schemes with much lower bandwidths than the ARM.
However, it also reveals that the ARM codes have significantly
higher rates, increasing from at most 0.2 to more than 0.99.

Fig. 4: Rate versus the repair bandwidth of the exact repair schemes of
RM(F3

54
, k), ARM1(F3

54
, k), and ARM2(F3

54
, k), for all values of k that

satisfy the restriction in Table I.

Example 4.3. By Table I, the maximum k for RM(F5
27 , k),

ARM1(F5
27 , k) and ARM2(F5

27 , k) are 126, 63 and 63, re-
spectively. The code RM(F5

27 , 126) has rate 0.009002376 and
bandwidth 889. The code ARM1(F5

27 , 62) has rate 0.96975
and bandwidth 4.229 × 1010. The code ARM2(F5

27 , k) has
rate 0.999999991 and bandwidth 1.744× 1011.

A. Maximum rates and asymptotical behavior

Focusing on the improved rate, here we study the
asymptotic behavior of the rate and b

nt . The maximum
k for which RM(Km, k) admits the repair scheme given
in [1, Theorem III.1] is k∗ = qt − 2. In this case,
by Table I dimK RM(Km, k∗) =

(
m+qt−2
qt−2

)
and b∗ =

bandwidth at k∗ = (qt−1)t. Thus limt→∞
dimK RM(Km,k∗)

n =

limt→∞
(m+qt−2

qt−2 )
qtm ≤ limt→∞

(
e(m+qt−2)

qt−2

)m

qtm = 0, and

limt→∞
b∗

nt = limt→∞
(qt−1)t
tqtm = 0.

The maximum k for which ARM1(Km, k) admits the repair
scheme given in Theorem 2.5 is k∗ = qt − qt−1 − 1. In
this case, by Table I, dimK ARM1(Km, k∗) = qtm−q(t−1)m

and bandwidth b∗ = tqtm − (t − 1)(qt − 1)m − t. Thus
limt→∞

dimK ARM1(Km,k∗)
n = limt→∞

qtm−q(t−1)m

qtm = 1− 1
qm ,

and limt→∞
b∗

nt = limt→∞
tqtm−(t−1)(qt−1)m−t

tqtm = 0.

The maximum k for which ARM2(Km, k) admits the
repair scheme given in Theorem 3.4 is k∗ = qt −
qt−1 − 1. In this case, by Table I dimK ARM2(Km, k∗) =
qtm−m(qt−1 − 1) − 1 and b∗ = bandwidth at k∗ = tqtm −
(t − m)(qt − 1)m − t. Thus limt→∞

dimK ARM2(Km,k∗)
n =

limt→∞
qtm−m(qt−1−1)−1

qtm = limt→∞
qtm−mqt−1+m−1

qtm =

1, and limt→∞
b∗

nt = limt→∞
tqtm−(t−m)(qt−1)m−t

tqtm =

limt→∞ 1 − (1 − m
t )(1 − 1

qt )m − 1
qtm = 1 − 1 − 0 = 0.

By previous paragraphs, as t increases, the relative bandwidth
advantage of the RM codes lessens, while the rate advantage
of the ARM codes intensifies, as summarized in Table II.

Code Dimension lim
t→∞

Rate lim
t→∞

b
nt

RM(Km,max)
(m+qt−2

qt−2

)
0 0

ARM1(Km,max) qtm−q(t−1)m 1− 1/qm 0

ARM2(Km,max) qtm−m(qt−1−1)−1 1 0

TABLE II: Asymptotic behavior of the codes RM,ARM1 and ARM2, when
each achieves the maximum dimension so the repair schemes given in [1,
Theorem III.1], Theorem 2.5 and Theorem 3.4 can be applied.

As expected, the augmented Reed-Muller codes, which were
designed to maximize the rate of the code, have a higher repair
bandwidth as well, due to the trade-off between the rate of a
code and the bandwidth of its associated repair scheme.

V. CONCLUSION

In this paper, we defined two new families of augmented
Reed-Muller codes and described erasure repair schemes for
each of them. We demonstrated that when a dimension and a
base field are fixed, there are some instances where augmented
Reed-Muller codes provide a better bandwidth than Reed-
Solomon codes, and a better bandwidth in terms of bits than
Hermitian codes. We analyzed the asymptotical behavior when
Reed-Muller and augmented Reed-Muller codes achieve the
maximum rate.
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