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Abstract—In this paper, we introduce norm-trace-lifted
codes over binary fields, which are codes with locality and
high availability based on the norm-trace curve over the
field F2r . While they are inspired by Hermitian-lifted codes,
norm-trace-lifted codes are easier to define and provide
some potential advantages in terms of locality, meaning
the number of symbols required to recover another, or
alphabet size.

I. INTRODUCTION

Codes with locality allow for the recovery of any
codeword symbol utilizing only a few other symbols.
They have been studied extensively in the literature [9],
[10], [11], [12], [4] including utilizing Reed-Solomon
and other codes from curves [2], [6], The availability
of such a code is the number of disjoint sets of co-
ordinates that support this recovery. Hence, codes with
high availability can recover a missing symbol in many
different ways which means the stored information is
more resilient against erasures.

Hermitian-lifted codes [7] were defined to yield high-
availability codes for local recovery using the Hermitian
curve. In this paper, we introduce the norm-trace-lifted
codes, adapting the construction to the family of norm-
trace curves given by

X2,r : x2r−1 = y2
r−1

+ · · ·+ y2 + y

over F2r , i.e., NF2r/F2
(x) = TrF2r/F2

(y), meaning the
norm of x is the trace of y where both the norm and the
trace are taken relative to the extension F2r/F2. Codes
from norm-trace curves were first studied by Geil [5].
The norm-trace-lifted code construction yields evaluation
codes defined by functions which are easier to determine
than for the Hermitian-lifted codes, due to number of
intersection points of the norm-trace curve with non-
horizontal lines in the projective space P2.

Recall that a code C ⊆ Fn
q has locality r if for each

codeword coordinate i, there exists a set Ri of other
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coordinates such that for all c ∈ C, ci = φ(c |Ri
) for

some function φ : Fr
q → Fq and | Ri |= r. The set Ri

(resp., Ri ∪ {i}) is called a recovery set (resp., repair
group) for i. If each coordinate i has t disjoint repair
groups, then the code is said to have availability t.

For the norm-trace-lifted codes, the repair groups are
the sets of points of intersection between the curve
and non-horizontal lines. The functions employed are
those that restrict to low degree polynomials on the non-
horizontal lines. For the Hermitian-lifted codes, charac-
terizing the so-called good monomials is a challenging
problem which remains open. With the norm-trace-lifted
codes considered here, the larger numbers of points of
intersection alleviates this difficulty. The trade-off for
this cleaner code definition is a higher rate over the same
(or smaller) alphabet with either smaller locality and
availability or greater locality with the same availability.
In all, employing the norm-trace curve yields rates with
bounds that are asymptotically better than those of the
Hermitian-lifted codes, and one may choose whether
to focus on smaller locality or maintaining availability.
Alternate constructions for locally recoverable codes
from norm-trace curves exist in [1] and [3], but each have
distinct parameters from the codes constructed here.

This paper is organized as follows. Intersection num-
bers are determined in Section II. They are applied
to define the norm-trace-lifted codes in Section III.
Examples and comparisons with other codes are given
in Section IV, followed by a conclusion in Section V.

II. INTERSECTION NUMBERS

In this section, we consider how lines of the form
Lα,β(t) :=

{
(t, αt+ β) : t ∈ F2

2r
}

intersect the curve
X2,r. Throughout, we will assume that α ̸= 0, meaning
we do not consider horizontal lines. Many of these
lines are tangent to the curve making the intersection



between horizontal lines and the curve is not conducive
for forming repair groups. The set of lines of interest is

L := {Lα,β : α ∈ F2r\{0}, β ∈ F2r}.

Note that X2,r has 22r−1 + 1 F2r -rational points and
genus g = (2r−1 − 1)2 [8].

For f ∈ F2r [x, y] and g ∈ F2r [t] and a line Lα,β :
F2r [t] → F2

2r , we say that f ◦ Lα,β agrees with g on
X2,r, and write

f ◦ Lα,β ≡ g,

if f(Lα,β(t)) = g(t) for all t ∈ F2r with Lα,β(t) ∈ X2,r.
Given α, β ∈ F2r , it will be useful to consider the

polynomial

pα,β(t) := t2
r−1+α2r−1

t2
r−1

+ · · ·+αt+TrF2r/F2
(β).

Lemma 1. Consider the norm-trace curve X2,r over F2r

with r ≥ 2. The intersection between a line Lα,β ∈ L
and X2,r has cardinality of 2r−1 − 1 or 2r−1 + 1; that
is,

| Lα,β ∩ X2,r |= 2r−1 ± 1.

Proof. Notice that points in the intersection Lα,β ∩X2,r

correspond to values t that satisfy the equation

t2
r−1 = (αt+ β)2

r−1

+ · · ·+ (αt+ β)2 + (αt+ β).

Expanding the terms on the right with Freshman’s Dream
gives

pα,β(t) = 0. (1)

To determine |Lα,β∩X2,r|, we wish to find the degree
of d(t) = gcd(pα,β(t), t2

r − t), as the number of points
of intersection is exactly the degree of d(t). Because
TrF2r/F2

(β) ∈ {0, 1}, we consider two cases as follows.
Case 1: Suppose TrF2r/F2

(β) = 0. Applying the
Euclidean algorithm yields

gcd(pα,β(t), t2
r

− t) = α2r−1

t2
r−1+1 + · · ·+ αt2 + t.

See that the degree of this polynomial is 2r−1 + 1.
Case 2: Suppose TrF2r/F2

(β) = 1. We again apply
the Euclidean algorithm to obtain

gcd(pα,β(t), t2
r

− t) = α2r−1

t2
r−1−1 + · · ·+ α.

See that the degree of this polynomial is 2r−1 − 1. We
conclude that the number of points in the intersection
Lα,β ∩ X2,r is 2r−1 ± 1. ■

In the next section, we will define codes for which
certain points on the lines Lα,β ∈ L will act as repair
groups for a coordinate. Lemma 1 guarantees at least
2r−1 − 1 available points, giving rise to codes with
locality 2r−1 − 2.

III. CODES WITH LOCALITY FROM THE NORM-TRACE
CURVE

In this section, we introduce the norm-trace-lifted
codes. Polynomials of bounded degree are crucial to
the code construction; the set of polynomials in an
indeterminate t of degree at most k with coefficients in
F2r is denoted F2r [t]≤k. We will use standard notation
from coding theory. An [n, k] code C over a finite field
F is an F-subspace of Fn with dimF C = k. The rate of
C is k

n .

Definition 1. The norm-trace-lifted code C is the eval-
uation code

C := {(f(x, y))(x,y)∈X2,r
: f ∈ F} ⊆ F22r−1

2r

where

F :=

{
f ∈ F2r [x, y] :

∃g ∈ F2r [t]≤2r−1−3 with
f ◦ Lα,β ≡ g ∀Lα,β ∈ L,

}
.

Hence, the norm-trace-lifted code is the image of F
under the evaluation map

ev : F22r−1

2r [x, y] −→ Fn
2r

f 7−→ (f(x, y))(x,y)∈X2,r
.

It is immediate that C has length n = 22r−1.
For C, the intersection of a line and the curve is

essentially a Reed-Solomon code, because on that set,
we are considering low-degree univariate polynomials.
In this way, the repair of information would be Reed-
Solomon in nature. Also, as each point lies on many
lines, recovery may use any of a number of Reed-
Solomon codes, one for each line the point lies on.

Next, we consider the rate of C. We will show the
rate of these norm-trace-lifted codes is asymptotically
bounded away from 0. To do so, we only need to count
the number of monomials Mab := xayb which have a+b
less than the desired locality of 2r−1 − 2.

Lemma 2. The set of vectors{
(Ma,b(x, y))(x,y)∈Xq,r

:
0 ≤ a ≤ qr−1 − 1,

0 ≤ b ≤ qr − 1

}

in F22r−1

2r is linearly independent.

Proof. We proceed almost exactly as in [7]. The kernel
of ev is generated by

x

(
qr−1
q−1

)
− yq

r−1

− · · · − yq − y, xqr − x, yq
r

− y.

Under the usual monomial ordering with x

(
qr−1
q−1

)
<

yq
r−1

, we have that x

(
qr−1
q−1

)
− yq

r−1 − · · · − yq − y



and xqr − x form a Gröbner basis for the kernel of the
evaluation map, so the evaluations of Ma,b are linearly
independent. ■

A key difference between this work and that of
Hermitian-lifted codes [7] centers on the rate of the
codes. There, monomials xayb with a + b < q are
among those evaluated to produce codewords. However,
the number of such monomials alone is q(q+1)

2 , giving
lower bounds on code rates that are asymptotically zero.
Hence, some monomials with a + b > q needed to be
counted to guarantee that the rate was asymptotically
bounded away from zero. However, as we will see,
for binary norm-trace-lifted codes, this is not necessary:
more monomials fall naturally within the specifications
to produce codewords.

For a polynomial g(t) ∈ F2r [t], define ĝα,β(t) to be
the remainder resulting from dividing g(t) by pα,β(t),
and define

degα,β(g) := deg(ĝα,β).

Notice that degα,β(g) ≤ 2r−1−2 for all g ∈ F2r [t]. With
the above definition, we note that Ma,b ∈ F provided

degα,β(Ma,b ◦ Lα,β) < 2r−1 − 2,

motivating the next definition.

Definition 2. A monomial Ma,b(x, y) is said to be good
if for all lines Lα,β ∈ L,

degα,β(Ma,b ◦ Lα,β) < 2r−1 − 2.

Note that if Ma,b is good, then Ma,b ∈ F . Hence,
we wish to find a large set of good monomials due to
Lemma 2. The definitions above provide a bound on the
rate in the following lemma.

Theorem 3. The norm-trace-lifted code C over F2r is
an [22r−1, (0.25 − εr) · 22r−1,≥ 2r] code with locality
2r−1 − 2 and availability 2r − 1. Moreover, the rate of
the associated norm-trace-lifted code is asymptotically
0.25

Proof. First, note that the locality of C follows from
Lemma 1. Since each line in L intersects the curve X2,r

in exactly 2r−1−1 or 2r−1+1 distinct affine points, the
locality is (2r−1−1)−1 = 2r−1−2. Indeed, fix an F2r -
rational point P on X2,r and a line Lα,β ∈ L through P .
Then for f ∈ F , f(x, y)|Lα,β

= g(t) ∈ F2r [t]≤2r−1−3.
Since | (Lα,β ∩ X2,r) \ {P}| ≥ 2r−1 − 2, f(P ) may be
determined by these 2r−1 − 2 interpolation points.

The availability may be found by determining the
number of lines that pass through a given point which
intersect the curve in at least 2r−1 − 1 points; since this

describes all lines in the space, we simply count the
number of lines through any given point.

If we fix a particular point, and a particular slope α,
then the other parameter of the line β is determined.
Similarly, if β is fixed for a point, then α is determined.
So, we only consider the number of possible α for a
point; this is then simply 2r − 1.

To determine the dimension of C, note that the number
of monomials Mab with a+ b < 2r−1 − 2 is

(2r−1 − 2)(2r−1 − 1)

2
= 22r−3 − 2r−1 − 2r−2 + 1.

Since the number of points on X2,r is 22r−1, the norm-
trace-lifted code has rate at least

22r−3 − 2r−1 − 2r−2 + 1

22r−1
=

1

4
− εr

where εr := 1
2r +

1
2r+1 − 1

22r−1 . Since εr → 0 as r → ∞,
the rate approaches 1

4 as r → ∞.
Next, we show that there are no good monomials Ma,b

with a + b ≥ 2r−1 − 2. Recall that 0 ≤ a ≤ 2r and
0 ≤ b ≤ 2r−1. To show that such a monomial Ma,b

is not good, we must find some line Lα∗,β∗ such that
degα∗,β∗(Ma,b ◦ Lα∗,β∗) ≥ 2r−1 − 2.

We consider the following cases to show this fact.
In each case, we consider the specific line L1,0(t) =
(t, t); because of the particular line considered, (Ma,b ◦
L1,0)(t) = ta+b.

Case 1: Let 2r−1−2 < a+b < 2r−1. Then, because
the degree of p1,0(t) is 2r − 1, we have

degα,β(Ma,b◦L1,0) = degα,β(t
a+b) = a+b > 2r−1−2.

Thus, the monomial Ma,b is not good.
Case 2: Let 2r − 1 ≤ a + b ≤ 2r + 2r−1. Then,

extending the previous case,

degα,β(Ma,b◦L1,0) = degα,β(t
a+b) ≥ 2r−1 > 2r−1−2.

This is because t2
r−1 = t2

r−1

+ · · · + t, so again Ma,b

is not good.
Since in each of the cases above, degα,β(Ma,b ◦

L1,0) > 2r−1 − 2, there are no good monomials with
a+ b ≥ 2r−1 − 2, so the rate of the code is 0.25− εr.

Now we show a lower bound on the minimum dis-
tance. We utilize the same counting argument given in
[7]. If c ∈ C is a codeword with a nonzero symbol in the
ith position, then this symbol corresponds to a function
fc which is nonzero on that point. The position i has
2r−1 disjoint recovery sets as we showed above, each of
which has at least one corresponding nonzero symbol in
c. So, any nonzero codeword must have nonzero entries
in at least 2r nonzero positions. ■



Next, we compare the norm-trace-lifted codes with
close relatives, including one-point norm-trace codes and
Hermitian-lifted codes. In addition, examples of norm-
trace-lifted codes are provided.

First, we consider one-point norm-trace codes. Recall
that

L(mP∞) =

〈
xayb :

a, b ∈ Z+,
a2r−1 + b (2r − 1) ≤ m

〉
and the one-point norm-trace code is

C(D,mP∞) = {(f(P1), . . . , f(Pn)) : f ∈ L (mP∞)} .

We claim that

L(
(
22r−2 − 3 · 2r−1

)
P∞) ⊆ F

so that
C(D,mP∞) ⊆ C.

Let m̂ = 22r−2−3·2r−1; we wish to show that this gives
a+ b ≤ 2r−1 − 3, so xayb ∈ F . If a2r−1 + b(2r − 1) ≤
22r−2 − 3 · 2r−1, then

a+ b ≤ a+ 2b− b

2r−1
=

a2r−1 + b2r − b

2r−1

≤
⌊
22r−2 − 3 · 2r−1

2r−1

⌋
=

⌊
2r−1 − 3

⌋
= 2r−1 − 3.

Therefore, since m̂ ≤ 22r−2 − 3 · 2r−1, all monomials
xayb ∈ L(m̂P∞) are in the set F .

Next, we confirm that C(D, m̂P∞) ⊊ C. The mono-
mial y2

r−1−3 ∈ F , since a + b < 2r−1 − 2. However,
Ma,b ∈ L(m̂P∞) would need to satisfy a2r−1 + b(2r −
1) ≤ m̂. Then, if we consider a = 0, the largest that b
could be for a monomial yb would be

⌊
22r−2−3·2r−1

2r−1

⌋
≤

2r−2 − 2, because m̂ ≤ 22r−2 − 3 · 2r−1. With this,
it is clear that the monomial y2

r−1−3 could not be in
L(m̂P∞), because for yb ∈ L(m̂P∞) we have shown
b ≤ 2r−2 − 2 < 2r−1 − 3 for r not small. Thus, the sets
of evaluation polynomials for the two codes are different.
This difference is highlighted in Figure 2.

We claim that the rate of one-point norm-trace codes
with m̂ ≤ 22r−2 − 3 · 2r−1 defined over F2r is asymp-
totically 0.125. To find the dimension of C(D, m̂P∞),
we must count all pairs (a, b) with a and b nonnegative,
and a2r−1 + b(2r − 1) ≤ 22r−2 − 3 · 2r−1. So, we wish
to find integer solutions within the triangle formed by
(0, 0), (2r−1−2, 0), and (0, 2r−2−1) (this will yield an
overestimate of the dimension). By Pick’s theorem from
classical geometry, we have that for a plane polygon with
integer vertices,

A = i+
b

2
− 1

where A is the area of the figure, i the number of interior
integer points, b the number of boundary integer points.
We will use this to determine i+ b.

First, the number of boundary points is (2r−1 − 2) +
(2r−2− 1) plus the number of points on the diagonal of
the triangle. The number of integer points on the segment
connecting the points (2r−1 − 2, 0) and (0, 2r−2 − 1) is
simply the greatest common divisor of the two non-zero
components given, which is 2r−2 − 1, so we gain an
additional 2r−2 − 3 boundary integer points, giving

(2r−1 − 2) + (2r−2 − 1) + 2r−2 − 3 = 2r − 6

integer points on the boundary.
The area of the figure is just the area of a triangle, so

A =
1

2

(
2r−2 − 1

) (
2r−1 − 2

)
= 22r−4 − 2r−1 + 1.

With these two above calculations of A and b, we find
the number of interior points to be

i = A− b

2
+ 1 = 22r−4 − 2r + 5,

so the dimension is upper bounded by

i+ b = 22r−4 − 1.

Finally, the rate of the code is asymptotically

22r−4 − 1

22r−1
=

1

23
− 1

22r−1
→ 1

8
as r → ∞.

In the Hermitian case, the good monomials with a+b
less than the locality q were exactly those which formed
the basis for the one-point Hermitian codes. It was then
those good monomials with a+ b ≥ q which caused the
rate of the lifted codes to be nonzero asymptotically.

This is in contrast with the binary norm-trace-lifted
codes, where the good monomials with a + b less than
the locality of 2r−1−2 are the only monomials present.
This can be seen in Figure 2. This triangular shape is
slightly different from what is observed in the Hermitian-
lifted case in two key ways. For Hermitian-lifted codes:
(1) the monomials with a + b greater than the locality
are necessary to achieve the given rate results and (2)
only a subset of functions which define codewords are
defined explicitly, meaning those identified in Figures 1
and 3 are not all such functions.

IV. EXAMPLES AND CODE COMPARISONS

In this section, we consider examples and comparisons
with Hermitian-lifted codes and one-point codes from
norm-trace curves.



Fig. 1. One-point Hermitian code compared with HLC when q = 8
(over F64).

Fig. 2. One-point norm-trace code compared with NTLC when r = 6
(over F64).

Example 1. Figures 1 and 2 reveal the differences in
the functions that define codewords when compared with
their one-point code counterparts. Additional functions
may define codewords in the Hermitian-lifted codes.

Example 2. Figure 3 suggests why the rate bounds for
the norm-trace-lifted codes are better than for Hermitian-
lifted codes. Table I compares the Hermitian-lifted codes
with the norm-trace-lifted codes based on their localities.

Example 3. Consider the case when r = 6 shown in
Table II. Values for the dimensions and rates of the
Hermitian-lifted codes may be found in [7].

Fig. 3. HLC compared with NTLC when q = 8 and r = 6 respectively
(over F64).

TABLE I
LIFTED CODE COMPARISONS, GENERAL

HLC NTLC
Locality 2r−1 2r−1 − 2
Alphabet Size 22r−2 2r

Availability 22r−2 − 1 2r − 1
Length 23r−3 22r−1

Dimension ≥ 0.007 · 23r−3 (0.25− εr) · 22r−1

Rate ≥ 0.007 0.25− εr
Min. Dist. d ≥ 22r−2 d ≥ 2r

TABLE II
ONE-POINT CODES VERSUS LIFTED CODES OVER F64

(r = 6) Norm-trace code HLC NTLC
Field size 64 64 64
Locality 30 8 30
Availability 63 63 63
Length 2048 512 2048
Dimension 240 75 465
Rate ∼ 0.117 ∼ 0.146 ∼ 0.227

V. CONCLUSION

In this paper, we introduce norm-trace-lifted codes
over binary fields, which are codes with locality and
high availability based on the norm-trace curve over
the field F2r . They are easier to construct than the
Hermitian-lifted codes; indeed the functions that define
the codewords are explicit and simple to describe. More-
over, the norm-trace-lifted codes compare favorably with
Hermitian-lifted codes in that they are higher rate and
smaller locality over a smaller alphabet, though this
comes with less availability. In addition, they provide
higher rate with identical locality and availability when
compared with one-point codes on the norm-trace curve.
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