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Abstract. Recently, Skabelund defined new maximal curves which are
cyclic extensions of the Suzuki and Ree curves. Previously, the now well-
known GK curves were found as cyclic extensions of the Hermitian curve.
In this paper, we consider locally recoverable codes constructed from
these new curves, complementing that done for the GK curve. Locally
recoverable codes allow for the recovery of a single symbol by accessing
only a few others which form what is known as a recovery set. If every
symbol has at least two disjoint recovery sets, the code is said to have
availability. Three constructions are described, as each best fits a partic-
ular situation. The first employs the original construction of locally re-
coverable codes from curves by Tamo and Barg. The second yields codes
with availability by appealing to the use of fiber products as described
by Haymaker, Malmskog, and Matthews, while the third accomplishes
availability by taking products of codes themselves. We see that cyclic
extensions of the Deligne-Lusztig curves provide codes with smaller lo-
cality than those typically found in the literature.

1 Introduction

Maximal curves have played a role in a number of applications in coding theory.
For instance, they allow for the construction of long algebraic geometry codes and
yield explicit families of codes with parameters exceeding the Gilbert-Varshamov
bound [23]. The Deligne-Lusztig curves, which include the Hermitian, Suzuki,
and Ree curves, have proven particularly useful. In particular, Hermitian codes
are perhaps the best understood algebraic geometry codes other than Reed-
Solomon codes. The Suzuki and Ree curves share several important properties
with the Hermitian family in that they are optimal with respect to the Hasse-
Weil bound and have known automorphism groups; thus, codes from these curves
have interesting properties as well.

More recently, maximal curves have been employed in the construction of
codes with locality. In some applications, it is desirable to recover a single (or
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small number of) codeword symbol(s) by accessing only a few, say r, particular
symbols of the received word. This leads to the notion of locally recoverable
codes, or LRCs. Tamo and Barg [21] introduced a construction for codes with
locality that is similar to that of algebraic geometry codes. This motivated much
work on locally recoverable codes, including [1], [2], [7], [11], [13]. In [9], we em-
ploy maximal curves to construct LRCs with availability t ≥ 2, meaning each
coordinate j has t disjoint recovery sets. Codes with availability make informa-
tion more available to more users, since recovery of an erasure is not entirely
dependent on a single set of coordinates (which may itself contain erasures).

In this paper, we define codes with locality from new maximal curves con-
structed by Skabelund [18] using cyclic covers of the Suzuki and Ree curves. The
Suzuki curve Sq over Fq gets its name from its automorphism group which is the
Suzuki group Sz(q) of order q2(q2 + 1)(q − 1). In [8], Hansen and Stichtenoth
considered this curve and applications to algebraic geometry codes leading to
other works such as [12], [15]. Recently, Eid, Hammond, Ksir, and Peachey [4]
constructed an algebraic geometry (AG) code over Fq4 whose automorphism
group is Sz(q). Skabelund considers a cyclic extension of Sq and proves it is
maximal over Fq and Fq4 . Similarly, the Ree curve Rq over Fq has a Ree group
as its automorphism group. Both curve constructions are similar to that of the
Giulietti-Korchmáros, or GK, curve, which has already proven useful in con-
structing codes with locality. These cyclic extensions of the Suzuki and Ree
curves have also been utilized for AG codes and for quantum codes from them
[16] and their automorphism groups have been determined by Giulietti, Mon-
tanucci, Quoos, and Zini [6].

This paper is organized as follows. In Section 2, we obtain codes with locality
from the cyclic extension S̃q of the Suzuki curve Sq and the cyclic extension R̃q of
the Ree curve Rq. The locality is much smaller relative to the alphabet size and
code length than comparable constructions. In Section 3, we construct codes
with availability from S̃q and R̃q. Our constructions build on tools found in
[21] and [9], and some useful background may be found there. Because explicit
code descriptions remain out of reach for these standard constructions when
employing Rq or R̃q (as they depend on explicit bases for Riemann-Roch spaces
which remain elusive), we provide an alternate construction for such settings.
We also consider constructions from products of codes. In Section 4, we consider
examples of the above constructions and make some comparisons between them.

2 Locally recoverable codes

Locally recoverable codes, or LRCs for short, can recover a single (or small
number of) codeword symbol(s) by accessing a small number, say r, of particular
symbols of the received word. In principle, the locality r should be small so as
to limit network traffic though this can adversely impact other code parameters.
While an [n, k, d] code C, meaning a code of length n, dimension k, and minimum
distance d, can recover any d−1 erasures or correct any

⌊
d−1
2

⌋
errors, this assumes

access to all other symbols of the entire received word. More precisely, the code
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C of length n over the alphabet F (typically taken to be a finite field) is locally
recoverable with locality r if and only if for all j ∈ [n] := {1, . . . , n} there exists

Aj ⊆ [n] \ {j} with |Aj | = r

and
cj = φj(c|Aj )

for some function
φj : Aj → F

for all c ∈ C. The set Aj is called a recovery set for the j-th coordinate. In this
section, we see how cyclic extensions naturally lead to LRCs.

2.1 LRCs from cyclic extensions of Suzuki curves

The Suzuki curve Sq may be described by the equation

Sq : yq + y = xq0 (xq + x)

where q0 = 2s, q = 2q20 , and s ∈ N. It is an optimal curve over Fq, having q2 + 1
Fq-rational points. Indeed, if a, b ∈ Fq, aq = a and bq = b; since char Fq = 2,
bq + b = 0 = aq0 (aq + a). In addition, there is a unique point at infinity P∞
corresponding to x = z = 0 and y = 1. The genus of Sq is q0 (q − 1) [8, Lemma
1.9]. It is maximal over Fq4 , having q4 + 1 + 2q0q

2(q − 1) Fq4-rational points [4,
Equation (7)]. Define

S̃q :

{
yq + y = xq0 (xq + x)

tm = xq + x.

where m = q − 2q0 + 1. The curve S̃q has a unique point at infinity, and affine
points will be denoted Pabc := (a : b : c : 1) to mean the unique zero of x − a,
y − b, and t − c, just as those of Sq will be denoted by Pab. The genus of S̃q is
q3−2q2+q

2 [18]. According to [18], the number of Fq4 -rational points on S̃q that
are not Fq-rational is

q5 − q4 + q3 − q2;

see also [18, Section 3] for a discussion of the points on this curve. Define

g : S̃q → Sq

Pabc 7→ Pab

Let
S := Sq

(
Fq4
)
\ Sq (Fq) . (1)

Then |S| = q4+2q0q
2(q−1)−q2 [4, Equations (4)-(7)]. Set D :=

∑
P∈D P where

D := g−1 (S) =
{
Pabc ∈ S̃q

(
Fq4
)

: c 6= 0
}
. (2)
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For each Pab ∈ S, g−1 (Pab) = {Pabc : cm = aq + a}, so

|g−1 (Pab) | = q − 2q0 + 1. (3)

Recall that given a divisor G on a curve X over a field F, the space of
functions determined by G, sometimes called the Riemann-Roch space of G, is

L(G) := {f ∈ F(X) : (f) ≥ −G} ∪ {0} ,

where F(X) denotes the set of rational functions on X, and (f) denotes the
divisor of the function f ; to say that (f) =

∑
Q∈Z aQQ −

∑
P∈P bPP with

aQ, bP ∈ Z+ means f has a zero of order aQ at Q and a pole of order bP at
P . We use the standard notation (f)0 :=

∑
Q∈Z aQQ to denote the zero divisor

of f and (f)∞ :=
∑

P∈P bPP to denote the pole divisor of f . Let α ∈ Z+, and
consider the divisor

G := α

P∞ +
∑

a,b∈Fq

Pab


on Sq. It is worth noting that L

(
α
(
P∞ +

∑
a,b∈Fq

Pab

))
∼= L

(
α
(
q2 + 1

)
P∞
)

[4]. According to [4, Theorem 1], a basis for L(G) is given by

B :=


xaybucvd

(xq + x)e
:

aq + b(q + q0) + c(q + 2q0)
+d(q + 2q0 + 1) ≤ α+ eq2

a ∈ {0, . . . , q − 1} , b ∈ {0, 1} ,
c, d ∈ {0, . . . , q0 − 1} , e ∈ {0, . . . , α}

 ⊆ Fq4 (Sq)

where

u = x2q0+1 − y2q0

and

v = xy2q0 − u2q0 .

Set

V :=
〈
fti : i = 0, . . . ,m− 2; f ∈ B

〉
Fq4

.

Now define

ev : V → F(q−2q0+1)(q4+2q0q
2(q−1)−q2)

q4

f 7→ (f (Pabc))Pabc∈S̃q(Fq4)\S̃q(Fq)
,

and set C(D,G, g) := ev(V ). Note that the evaluation map ev is well-defined,
as | D |= (q − 2q0 + 1)(q4 + 2q0q

2(q − 1)− q2) and f ∈ V has no poles at points
in D. One may notice that

V ⊆ L

(mα+ (m− 2)q2
)
P̃∞ +mα

∑
a,b∈Fq

Pa,b,0

 (4)
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where P̃∞ denotes the unique point of S̃q lying above P∞. Let

G′ :=
(
mα+ (m− 2)q2

)
P̃∞ +mα

∑
a,b∈Fq

Pa,b,0.

We are now ready to state the result.

Theorem 1. Suppose C(D,G, g) is constructed as above where degG′ < |S|.
Then C(D,G, g) is an [n, k, d] code over Fq4 with locality q − 2q0,

n = (q − 2q0 + 1)
(
q4 + 2q0q

2 (q − 1)− q2
)
,

k = (q − 2q0)
(
α
(
q2 + 1

)
− q0 (q − 1) + 1

)
,

and

d ≥ n−
(
mαq2 +mα+ (m− 2)q2

)
.

Proof. The map ev is injective, since degG′ < |S| guarantees the kernel of the
evaluation map is {0}; this may be observed by noting that if f ∈ ker ev \ {0}
then f would have more zeros than poles. Hence, the dimension is given by
dimFq4 V which follows from the facts that

{
ti : i = 0, 1, . . . ,m− 1

}
is a basis of

Fq4(S̃q)/Fq4(Sq); B is a basis for Fq4(Sq)/Fq4 ; and

| B |=
(
α
(
q2 + 1

)
− q0 (q − 1) + 1

)
according to [4, Remark 1]. We claim that R := g−1 (Pab) \ {Pabc} is a recovery
set for the position corresponding to Pabc. Suppose f ∈ V . Then

f(x, y, t) =

m−2∑
i=0

M∑
j=1

aijf
∗
j t

i

for some aij ∈ Fq4 and f∗j ∈ B, where M :=| B |. Notice that f(a, b, T ) ∈ Fq [T ]
and degT f(a, b, T ) ≤ m− 2. Hence, f(a, b, c) can be recovered using the m− 1
interpolation points: Pabc′ ∈ R. As a result, f (Pabc) may be recovered using only
elements of R.

To determine a bound on the minimum distance d, we use that

d ≥ wt(ev(h)) ≥ n− deg(h)0

where h = ftm−2 and f ∈ B ⊆ L(G). Then deg(h)0 ≥ m deg(G) + (m− 2)q2 ≥
mα(q2 +1)+(m−2)q2 as G is a divisor of degree α(q2 +1) on Sq, [S̃q : Sq] = m,

and (t) is a divisor on S̃q with zero divisor of degree q2. As a result

d ≥ n−
(
mα(q2 + 1) + (m− 2)q2

)
.

Alternatively, the bound on the minimum distance may be seen as a consequence
of d ≥ n− degG′ using (4).
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Example 1. Let q = 8 and q0 = 2, so q4 = 4096. Notice that the Suzuki curve

S8 : y8 + y = x2
(
x8 + x

)
has 64 F8-rational points and 5888 F4096-rational points. Here, |S| = 5824 and
n = 29120. Then C(D,G, g) has locality 4. We can compare this with an LRC
C ′ from the Hermitian curve y64 + y = x65 over the same field, F4096. Using
a projection onto the x-coordinate gives a code of length 262144 with locality
63 whereas projection onto the y-coordinate yields locality 64. Hence, the con-
struction using S̃8 has a smaller ratios of locality to code length and to alphabet
size.

Remark 1. 1. Other bounds on the minimum distance of the codes in Theorem
1 may be given; see [22] for instance.

2. Alternatively, an LRC may be constructed using the projection

g : S̃q → Cm

Pabc 7→ Qac

where Cm denotes the curve given by tm = xq + x and Qac denotes the
common zero of x−a and t−c. Let S be as in (1), D as in (2), and G′ := αQ∞
where Q∞ is the point at infinity on Cm. Then a basis for L (αQ∞) is given
by

B′ :=
{
tixj : i ≥ 0, j ∈ {0, . . . , q − 1} , qi+mj ≤ α

}
;

see, for instance, [10, Lemma 12.2(i)]. Use this to define

V =
〈
fyi : i ∈ {0, . . . , q − 2} , f ∈ B′

〉
.

The code C(D,G′, g) has locality q − 1 and dimension (q − 1) |B|.

In Section 3, we will see how these two approaches can be combined to give
LRCs with availability. Before doing so, we turn our attention to cyclic extensions
of Ree curves.

2.2 LRCs from cyclic extensions of Ree curves

The Ree curve Rq may be described by the equation

Rq :

{
yq − y = xq0 (xq − x)

zq − z = x2q0 (xq − x)

where q0 = 3s, q = 3q20 , and s ∈ N. It is optimal over Fq6 . In addition, there is a
unique point at infinity. The genus of Rq is 3

2q0 (q − 1) (q + q0 + 1) [8]. Define

R̃q :


yq − y = xq0 (xq − x)

zq − z = x2q0 (xq − x)

tm = xq − x
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where m = q − 3q0 + 1. The curve R̃q has a unique point at infinity, and affine
points will be denoted Pabcd := (a : b : c : d : 1) to mean the unique zero of x−a,
y − b, z − c and t− d, just as those of Rq will be denoted by Pabc. The genus of

R̃q is q4−2q3+q
2 . According to [16], the number of Fq6-rational points on R̃q that

are not Fq-rational is
q7 − q6 + q4 − q3;

see also [18]. Define

g : R̃q → Rq

Pabcd 7→ Pabc

and let
S := Rq

(
Fq6
)
\Rq (Fq) . (5)

Set D :=
∑

P∈D P where

D := g−1 (S) =
{
Pabcd ∈ R̃q

(
Fq6
)

: d 6= 0
}
. (6)

For each Pabc ∈ S, g−1 (Pabc) = {Pabcd : dm = aq − a}, so

|g−1 (Pabc) | = q − 3q0 + 1. (7)

Consider the divisor G = αP∞ on Rq with mdegG+ (m− 2) deg(t)∞ < |S|.
Set

V :=
〈
fti : i = 0, . . . ,m− 2; f ∈ L(G)

〉
Fq6

.

Now define
ev : V → F|D|q6

f 7→ (f (Pabcd))Pabcd∈R̃q(Fq6)\R̃q(Fq)
,

and set C(D,G, g) := ev(V ).

Proposition 1. Suppose C(D,G, g) is constructed as above. Then C(D,G, g)
is an [q7 − q6 + q4 − q3, (m− 1)`(G)] code over Fq6 with locality q − 3q0.

Proof. This follows similarly to that of Theorem 1.

Remark 2. 1. Explicit bases for L(G) where G is a divisor on the Ree curve
is a topic of current research for arbitrary q, even for the case where G
is a multiple of the point at infinity. See [19] for recent work on related
topics. The work [3] also highlights the challenges of this problem, which
was originally stated in [17]; indeed, when s = 1 (so q = 27), the associated
Weierstrass semigroup has more than 100 generators, compared with 2 in the
Hermitian case and 4 for Suzuki. Hence, the dimension of the codes described
in Proposition 1 cannot be specified more precisely the expression given
above for arbitrary q. However, for specific small values of q, a set of functions
which generate L(G) may be found computationally. We include this result
so that if the theory progresses and sheds more light on this value, LRCs
are an immediate consequence. We also note that our interest in the Ree
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curve is partially motivated by the fact that it allows for results over fields
of odd characteristic whose cardinalities are odd powers of primes (unlike
the Suzuki curve, which is considered over a field of even characteristic, and
the Hermitian curve which is considered over a field with square cardinality).

2. Also, as in Remark 1, the projection

g : R̃q → Cm

Pabcd 7→ Qad,

where Cm : tm = xq − x and Qad denotes the common zero of x − a and
t − c, may be used to define a code with different recovery sets than those
considered above.

3. A bound on the minimum distance is given in [9, Theorem 3.1]

3 Locally recoverable codes with availability from
products

3.1 Availability from cyclic extensions viewed as fiber products of
curves

If every coordinate j has t disjoint recovery sets, then C is said to have availability
t to reflect that information is more available to users in the presence of erasure.
In [9], fiber products of curves are used to construct locally recoverable codes
with availability. We review the construction in the case t = 2 below.

Suppose X = Y1 ×Y Y2 where Y1, Y2, and Y are curves over a finite field
F with rational, separable maps hi : Yi → Y . The Fq-rational points of X are
{(P1, P2) : Pi is an Fq − rational point on Yi, h1(P1) = h2(P2)}. Thus, there are
projection maps gi : X → Yi defined by gi(P1, P2) = Pi; a rational, separa-
ble map g : X → Y given by g = h1 ◦ g1 = h2 ◦ g2; maps of function fields
h∗i : F(Y ) → F(Y1) given by h∗i (f) := f ◦ hi; and primitive elements xi of the
extensions F (Yi) /h

∗
i (F (Y )) . Let S be a set of F-rational points on Y , and take

D :=
∑

P∈g−1(S) P . Choose an effective divisor G on Y of degree ` < |S|, and

take a basis {f1, . . . , ft} for L(G). Set

V := Span {(fi ◦ g)x∗e11 x∗e22 : 1 ≤ i ≤ t, 0 ≤ ei ≤ deg hi − 2}

where x∗i = g∗i (xi) given that g∗i : F(Yi)→ F(X) for i = 1, 2. Consider

ev : V → Fn

f 7→ (f (Pi))Pi∈suppD .

Then the code C(D,G, g, g1, g2) := ev(V ) has length |D| = deg g|S|, dimension

t (deg h1 − 1) (deg h2 − 1) ,

and minimum distance bounded below according to [9]. For i = 1, 2,

g−1i (gi (Q)) \ {Q}

serves as a recovery set for Q ∈ S. Hence, C(D,G, g, g1, g2) has locality 2. Next
we apply this construction to S̃q and R̃q.
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Cyclic extensions of Suzuki curves as fiber products. Because S̃q is the
fiber product of covers Sq → P1

x and Cm → P1
x, we may apply the construction

to obtain a code with availability 2 and localities m − 1 and q − 1; that is,
every coordinate has 2 disjoint recovery sets, one of cardinality q − 2q0 and one
of cardinality q − 1. To do this, consider the projection maps g1 : S̃q → Cm,

g2 : S̃q → Sq, and g : S̃q → P1
x. We take S as in (1), D as in (2), and G := αP∞

where P∞ is the unique point at infinity on P1
x. Fix a basis B of L(G), and

V :=
〈
fyitj : 0 ≤ i ≤ q − 2, 0 ≤ j ≤ m− 2, f ∈ B

〉
Fq4

.

P1
x

Sq Cm

S̃q

h1 h2

g1 g2

g

Fig. 1. Cyclic extension of Suzuki curve viewed as a fiber product

Theorem 2. Suppose C(D,G, g, g1, g2) is constructed as above. Then the code
C(D,G, g, g1, g2) is an [n, k, d] code over Fq4 with availability 2 and recovery sets
for each coordinate of sizes q − 2q0 and q − 1, where

n = (q − 2q0 + 1)
(
q4 + 2q0q

2 (q − 1)− q2
)
,

k = (q − 2q0) (α+ 1) (q − 1) ,

and
d ≥ n−

(
αmq + (q − 2)m(q + q0) + (m− 2)q2

)
.

Proof. The length and dimension can be verified directly by applying [9, The-
orem 3.1]. To determine the minimum distance d, we use the fact that d ≥
n − wt(ev(h)) ≥ n − deg(h)0 where h = fyq−2tm−2 and f ∈ L(αP∞). Then
(h) = (f) + (q − 2)(y) + (m − 2)(t). Note that when considered as a functions
on S̃q, deg(f)0 ≤ αmq, deg(y)0 ≤ m(q + q0), and deg(t)0 ≤ q2. Putting this to-
gether, we conclude that d ≥ n−

(
αmq + (q − 2)m(q + q0) + (m− 2)q2

)
, which

coincides with that given in [9, Theorem 3.1].
We claim that

R(1) := g−12 (g2 (Pabc)) \ {Pabc} =
{
Pab′c : b′ ∈ Fq4 \ {b}

}
and

R(2) := g−11 (g1 (Pabc)) \ {Pabc} =
{
Pabc′ : c′ ∈ Fq4 \ {c}

}
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are recovery sets for the position corresponding to Pabc. Suppose f ∈ V . Then
f(x, y, t) =

∑m−2
i=0

∑M
j=1 aijf

∗
j t

i. Notice that f(a, b, T ) ∈ Fq [T ] and the degree
is bounded by degT f(a, b, T ) ≤ m − 2. Hence, f(a, b, c) can be recovered using
the m−1 interpolation points: Pabc′ ∈ R. As a result, f (Pabc) may be recovered
using only elements of R.

Observe that the functions in the set V are modified from the construction
in Section 2 in order to obtain multiple recovery sets for each position, thus
impacting the dimension of the code.

One might compare this with the code found in [9, Theorem 6.1], which has
availability 2 with recovery sets of size q−1, length n = q(q−1)(q2+2qq0+q+1)
and dimension k = (q − 1)(q − 2)(q2 + 2qq0 + q + 1). Notice that the new codes
defined using S̃q give the option of using a smaller recovery set (cardinality
q − 2q0 compared with q − 1).

Cyclic extensions of Ree curves as fiber products. Because R̃q is the fiber
product of Rq → P1

x and Cm → P1
x, we may apply this construction to obtain a

code with availability 2 and localities m− 1 and q− 1; that is, every coordinate
has 2 disjoint recovery sets, one of cardinality q − 3q0 and one of cardinality
q − 1. To do this, consider the projection maps g1 : R̃q → Cm, g2 : R̃q → Rq,

and g : R̃q → P1
x. We take S as in (5), D as in (6), and G is a divisor on P1

x. Fix
a basis B of L(G), and

V :=
〈
fyitj : 0 ≤ i ≤ q − 2, 0 ≤ j ≤ q − 3q0 − 1, f ∈ B

〉
Fq6

.

P1
x

Rq Cm

R̃q

h1 h2

g1 g2

g

Fig. 2. Cyclic extension of Ree curve viewed as a fiber product

Proposition 2. The code C(D,G, g, g1, g2) constructed as above is a code with
parameters [q7− q6 + q4− q3, `(G)(q−1)(q−3q0)] code over Fq6 with availability
2 and recovery sets for each coordinate of sizes q − 3q0 and q − 1.

Proof. The proof is similar to that of Theorem 2.
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Remark 3. 1. As noted in Remark 2, the explicit construction for codes from
the Ree curve depends on that of bases for certain Riemann-Roch spaces.
We provide an alternate LRC with availability construction from the Ree
curve in the Section 4. There, we see codes with more accessible parameters
due to choosing functions to evaluate carefully, rather than beginning with
an entire Riemann-Roch space which is difficult to describe.

2. A bound on the minimum distance is given in [9, Theorem 3.1].

Observe the functions in the set V are modified from the construction in Sec-
tion 2 in order to obtain multiple recovery sets for each position, thus impacting
the dimension of the code.

3.2 Availability from products of codes

We may also take products of codes themselves to obtain LRCs with availability,
as detailed below. We begin with the simplest definition, the product of two
codes, C1 and C2, which may be generalized to more factors. Examples of this
construction may be found in the next section.

Definition 1. Let C1 be an [n1, k1, d1] code and C2 be an [n2, k2, d2] code over
the same alphabet F. The product code of C1 and C2 is defined by assigning
symbols from F to the pairs (i, j) ∈ [n1]× [n2] such that the symbols assigned in
[n1] × {j}, for j ∈ [n2] are a codeword in C1 and {i} × [n2] for i ∈ [n1] are a
codeword in C2; that is,

C1 × C2 := {(aibj) ∈ F[n1]×[n2] | (a1, a2, . . . , an1
) ∈ C1, (b1, b2, . . . , bn2

) ∈ C2}

An alternative definition is to place symbols from F in an n1×n2 rectangular
array such that each column is a codeword of C1 and each row is a codeword of
C2. See also [14].

Theorem 3. Let C1 be an [n1, k1, d1] code and C2 be an [n2, k2, d2] code. Then
the code C1 ×C2 is a [n1n2, k1k2, d1d2] code with availability 2. Moreover, if C1

has locality r1 and availability l1 and C2 has locality r2 and availability l2, then
C1 × C2 is a code of availability l1 + l2 and locality r1 + r2.

Proof. Let D denote the minimum distance of the code C1 × C2. If (i, j) is a
nonzero position, then there are d1 positions in the set [n1] × {j} which have
a nonzero entry. Suppose those nonzero positions are (i1, j), (i2, j), . . . , (id1

, j).
For each of those nonzero positions (is, j), there are d2 nonzero positions in
{is} × [n2]. Thus there are at least d1d2 nonzero positions.

In order to prove equality, let (a1, a2, . . . , an1
) be a codeword of weight d1 in

C1, and (b1, b2, . . . , bn2
) be a codeword of weight d2 in C2. Then the codeword

defined by ci,j = aibj is the required codeword of weight d1d2.
Let I1 be an information set for C1 and let I2 be an information set of C2.

The ith coordinate of c ∈ C1 may be written as the linear combination pim1 for
a message vector m1 ∈ FI1 . Likewise, the ith coordinate of c ∈ C1 may be written
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as the linear combination qjm2 for a message vector m2 ∈ FI2 . After placing
any values in I1 × I2, the remaining values are given by ci,j = pim1qjm2.

Note that position (i, j) is in the two sets [n1] × {j} and {i} × [n2]. These
two sets have only (i, j) in common. Thus, [n1]×{j}\ (i, j) and {i}× [n2]\ (i, j)
are recovery sets for (i, j); note that they are disjoint as required for availability.

Consider (i, j) ∈ [n1] × [n2]. As C1 is a code of availability l1 there are l1
disjoint sets , I1, I,2, . . . , Il1 in [n1]\{i} from which position i may be recovered.
Likewise as C2 is a code of availability l2 there are l2 disjoint sets , J1, J2, . . . , Jl2
in [n2]\{j} from which position j may be recovered. The sets I1×{j},I2×{j}, . . .,
Il1 ×{j}, {i}× J1,{i}× J2, . . ., {i}× Jl2 are then l1 + l2 recovery sets which are
disjoint; this gives the desired availability.

4 Examples

A number of examples of LRCs are given in this section, and some comparisons
are drawn between instances of the constructions discussed in this paper as well
as those appearing elsewhere in the literature. In addition, we provide LRCs on
the Ree curve via a construction that allows for computable parameters despite
the issues mentioned in Remarks 2 and 3.

Tamo and Barg gave a seminal construction of an optimal LRC code of
locality r in [21]. The LRC construction is based on a set L ⊆ Fq, a partition of
L into disjoint subsets A1, A2, ... , Am where each set Ai has size r + 1 and a
polynomial g(x) of degree r+ 1 such that g is constant on each subset Ai. Tamo
and Barg construct an LRC code from a subcode of the Reed–Solomon code
over L of dimension k′ by evaluating the functions of the form Xig(X)j where
0 ≤ i ≤ r, i 6= s for a fixed 0 ≤ s ≤ r and i+ (r + 1)j ≤ k′ − 1. There are many
partitions and many choices for g(X). However, we shall focus on partitions
given by linear subsets of Fq or by cosets of the multiplicative group of Fq. We
shall use evaluation codes as a generalization of Reed–Solomon codes and AG
codes.

Let A = {α1, α2, . . . , αn} ⊆ Fm
q . Let f(x1, x2, . . . , xm) be a polynomial in m

variables. The evaluation map of f on A is defined as

evA : Fq[x1, x2, . . . , xm]→ Fn
q

where
evA(f) = (f(α1), f(α2), . . . , f(αn)).

We remark that the vanishing ideal of A, namely

IA = {f ∈ Fq[x1, x2, . . . , xm] |f(α) = 0∀α ∈ A},

is the kernel of the evaluation map evA.
Let A = {α1, α2, . . . , αn} ⊆ Fm

q . Let L be a subspace of Fq[x1, x2, . . . , xm].
The set

C(A,L) = {evA(f) | f ∈ L}
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is known as an affine variety code. The definition of an affine variety code simply
states that a linear code may be constructed by evaluating functions on a set of
points. In most cases, the structure of L or A will imply certain properties of
the code hold, such as dimension, minimum distance or locality.

Lemma 1. Let V1 ⊆ Fm1
q . Let L1 be a subspace of Fq[x1, x2, . . . , xm1 ]. Simi-

larly, take V2 ⊆ Fm2
q and L2 be a subspace of Fq[y1, y2, . . . , ym2 ]. Consider the

evaluation codes: C1 = C(V1, L1) and C2 = C(V2, L2). The product code C1×C2

is the evaluation code C3 = C(V3, L3), where V3 = V1 × V2 ⊆ Fm1+m2
q and the

set of evaluated functions is L3 = {f(X)g(Y ), f ∈ L1, g ∈ L2}.

Proof. It is clear that taking f ∈ L1 and g ∈ L2 and evaluating the product
f(X)g(Y ) on the array {(α, β) | α ∈ V1, β ∈ V2} will give a codeword of the
form (f(α)g(β)). This codeword is also a codeword of C1 × C2.

In order to prove equality, we use a dimensional analysis. As C1 is a code of
dimension k1, there exist f1, f2, . . . , fk1 functions of L1 and α1, α2, . . . , αk1 ∈ V1
such that fi(αj) = δi,j . Likewise, there exist g1, g2, . . . , gk2

functions of L2 and
β1, β2, . . . , βk2

∈ V2 such that gi′(βj′) = δi′,j′ . The evaluation of the functions
figi′ on the points αjβj′ will also imply the image has dimension k1k2.

We will construct LRC codes based on the product code of the Tamo–Barg
construction and Lemma 1. In particular, we shall take V1 × V2, V1 × V2 × V3,
for Vi ⊆ Fq as our evaluation sets and the evaluation functions to be

{f1(X)f2(Y )f3(Z) | fi ∈ Li}

where Li = {T agi(T )j , 0 ≤ a ≤ ri, a 6= si, a+ (ri + 1)j < k′}.
Note that classical Hermitian codes are obtained by evaluating monomials

of the form M(s) := {XiY j | iq + j(q + 1) ≤ s} on the q3 points of the form
A = {(α, β) ∈ F2

q2 | αq+1 = βq + β, α 6= 0}. However, as the vanishing ideal of

A is the ideal spanned by Xq+1 − Y q − Y and Xq2−1 − 1, we may consider the
Hermitian code obtained by evaluating the functions

M(s) = {XiY j | iq + j(q + 1) ≤ s, 0 ≤ i ≤ q2 − 2, 0 ≤ j ≤ q − 1}.

In order to find a subcode of the Hermitian code with a given locality, proceed
as follows: Let g1(x) be a polynomial of degree r1+1. Let A1, A2, . . . , A q2−1

r1+1

be a

partition of Fq2 into multiplicative cosets of F∗q2 where g1(X) is constant on each

Ai. Likewise let g2(Y ) be a polynomial of degree r2 + 1. Let B1, B2, . . . , B q
r2+1

be a partitiion of {γ|γq + γ = 0} where g2(Y ) is constant on each Bj . For fixed
s1, s2, the code obtained by evaluating

Ls1,s2(s) =

Xi1g1(X)i2Y j1g2(Y )j2 |
0 ≤ i1 ≤ r1, i1 6= s1, 0 ≤ j1 ≤ r2,
0 ≤ i1 + (r1 + 1)i2 ≤ q2 − 2,
0 ≤ j1 + (r2 + 1)j2 ≤ q − 1


is a subcode of the Hermitian code of degree s which also has locality r1 and lo-
cality r2 with availability 2. In this case we obtain the codes over F16 with locality
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3 and availability 2 and the following parameters: [64, 1, 64], [64, 2, 60], [64, 3, 59],
[64, 4, 56], [64, 5, 55], [64, 6, 54], [64, 7, 51], [64, 8, 50], [64, 9, 48], [64, 10, 46],
[64, 11, 44], [64, 12, 43], [64, 13, 40], [64, 14, 39], [64, 15, 38], [64, 16, 35], [64, 17, 34],
[64, 18, 32], [64, 19, 30], [64, 20, 28], [64, 21, 27], [64, 22, 24], [64, 23, 23], [64, 24, 22],
[64, 25, 19], [64, 26, 18], [64, 27, 16], [64, 28, 14], [64, 29, 12], [64, 30, 12], [64, 31, 8],
[64, 32, 8], [64, 33, 8], [64, 34, 6], [64, 35, 6], [64, 36, 4]. Note these codes handily
outperform the product code construction from two Reed–Solomon code over
F16, which have parameters: [64, 3, 56], [64, 6, 42], [64, 9, 28],[64, 12, 30], [64, 18, 20],
[64, 27, 12].

For Suzuki curves, we use two different constructions of LRCs. As the full
affine plane F2

q is the set of Fq–rational points, we evaluate the intersection of a
product code of two LRC codes with the Suzuki code of length q2. The vanishing
ideal of the full affine plane is the ideal spanned by Xq−X,Y q−Y . In this case,
the Suzuki code is obtained by taking the polynomials of low order at infinity and
evaluating at the q2 rational points. One can also take the remainders modulo
Xq+X,Y q+Y to determine the dimension of the code instead. Hence the Suzuki
code is obtained by evaluating L(s) =

{XaY bU cV d mod Xq+X,Y q+Y | aq+b(q+q0)+c(q+2q0)+d(q+2q0+1) ≤ s}.

In this case, the optimal LRC codes of locality 3 and length 8 have param-
eters: [8, 1, 8], [8, 2, 7],[8, 3, 6], [8, 4, 4], [8, 5, 3], [8, 6, 2]. In order to get a product
code of locality 3 and availability 2 from these codes, we get a [64, 10, 21] code.
From the Suzuki code construction, after imposing additional LRC conditions,
we get a [64, 10, 36] code with the same locality and availability parameters.

In the following table, we compare some Suzuki LRC codes with some RS
product LRC codes. Both have the same length, symbols, locality and availabil-
ity. Note that we were able to improve on most of the Product code constructions,
except for [64, 25, 9]. We expect to improve our codes by improving the minimum
distance bounds of the Suzuki codes.

To get LRCs from the Ree curve we shall make a similar construction to
the codes from the Suzuki curve. Due to the abundance of possible codes and
availabilities, we shall restrict ourselves to the case where q = 27, availability is
3 and r1 = r2 = r3 = 8. Please recall that the Ree curve Rq may be described
by the equation

Rq :

{
yq − y = xq0 (xq − x)

zq − z = x2q0 (xq − x)

where q0 = 3s, q = 3q20 , and s ∈ N. The valuation of x at infinity is q, the
valuation of y at infinity is q + q0 and the valuation of z at infinity is q +
2q0. If G represents the pole at infinity of the Ree curve, and D is the divisor
corresponding to the F27–affine points of the Ree curve, then the code C(sG,D)
is the algebraic geometry code obtained by evaluating all functions having poles
only at infinity of order ≤ s. We shall compare LRC subcodes of C(sG,D) with
product codes of Reed–Solomon codes. We shall use a particular Tamo–Barg
construction [21] for F27. In this case, our sets will be places where the trace is



Codes with locality from cyclic extensions of Deligne-Lusztig curves 15

[s1, s2] Suzuki code Suzuki code with locality and availability

[1, 0] [64, 1, 64] [64, 1, 64]
[1, 0] [64, 2, 56] [64, 2, 56]
[2, 0] [64, 3, 54] [64, 3, 54]
[3, 0] [64, 5, 51] [64, 4, 51]
[3, 0] [64, 6, 48] [64, 5, 48]
[3, 0] [64, 7, 46] [64, 6, 46]
[3, 0] [64, 8, 44] [64, 7, 44]
[3, 0] [64, 12, 40] [64, 8, 40]
[3, 0] [64, 14, 38] [64, 9, 38]
[3, 0] [64, 15, 36] [64, 10, 36]
[2, 0] [64, 19, 32] [64, 11, 32]
[3, 0] [64, 20, 31] [64, 12, 31]
[3, 0] [64, 21, 30] [64, 13, 30]
[3, 0] [64, 23, 28] [64, 14, 28]
[3, 0] [64, 24, 27] [64, 15, 27]
[3, 0] [64, 25, 26] [64, 16, 26]
[3, 0] [64, 27, 24] [64, 17, 24]
[3, 0] [64, 29, 22] [64, 18, 22]
[3, 0] [64, 31, 20] [64, 19, 20]
[3, 0] [64, 32, 19] [64, 20, 19]
[3, 0] [64, 35, 16] [64, 21, 16]
[3, 0] [64, 37, 14] [64, 22, 14]
[3, 0] [64, 39, 12] [64, 23, 12]
[3, 0] [64, 40, 11] [64, 24, 11]
[3, 0] [64, 43, 8] [64, 25, 8]
[3, 0] [64, 44, 7] [64, 26, 7]
[3, 0] [64, 45, 6] [64, 27, 6]
[3, 0] [64, 47, 4] [64, 28, 4]
[3, 0] [64, 49, 2] [64, 29, 2]

Table 1. Comparison of parameters of codes from the Suzuki curve using a standard
AG code construction and those with locality and availability
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Suzuki code with locality and availability Comparable Product code

[64, 1, 64] [64, 1, 64]
[64, 2, 56] [64, 2, 56]
[64, 3, 54] [64, 3, 48]
[64, 4, 51] [64, 4, 49]
[64, 5, 48] [64, 5, 24]
[64, 6, 46] [64, 6, 42]
[64, 7, 44] [64, 6, 42]
[64, 8, 40] [64, 8, 28]
[64, 9, 38] [64, 9, 36]
[64, 10, 36] [64, 10, 21]
[64, 11, 32] [64, 10, 21]
[64, 12, 31] [64, 12, 24]
[64, 13, 30] [64, 12, 24]
[64, 14, 28] [64, 12, 24]
[64, 15, 27] [64, 15, 18]
[64, 16, 26] [64, 16, 16]
[64, 17, 24] [64, 16, 16]
[64, 18, 22] [64, 18, 12]
[64, 19, 20] [64, 18, 12]
[64, 20, 19] [64, 20, 12]
[64, 21, 16] [64, 20, 12]
[64, 22, 14] [64, 20, 12]
[64, 23, 12] [64, 20, 12]
[64, 24, 11] [64, 24, 8]
[64, 25, 8] [64, 25, 9]
[64, 26, 7] [64, 25, 9]
[64, 27, 6] [64, 25, 9]
[64, 28, 4] [64, 25, 9]
[64, 29, 2] [64, 25, 9]

Table 2. Comparison of parameters of codes from the Suzuki curve with locality and
availability and product codes
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constant A0 = {a ∈ F27 | a + a3 + a9 = 0}, A1 = {a ∈ F27 | a + a3 + a9 = 1}
and A2 = {a ∈ F27 | a+ a3 + a9 = 2}. The polynomial L(T ) = T + T 3 + T 9 is
constant on the recovery sets A0, A1, A2 and the evaluation of the polynomials in
{L(T )iT j | 0 ≤ i ≤ 2, 0 ≤ j ≤ 7, 2i+j ≤ k} gives a subcode of the Reed–Solomon
code RS27(F27, k) which is an LRC with locality 8.

The possible Reed–Solomon codes with locality 8 and length 27 of this form
are: [27, 1, 27], [27, 2, 26], [27, 3, 25], [27, 4, 24], [27, 5, 23], [27, 6, 22], [27, 7, 21],
[27, 8, 20], [27, 9, 18], [27, 10, 17], [27, 11, 16], [27, 12, 15], [27, 13, 14], [27, 14, 13],
[27, 15, 12], [27, 16, 11], [27, 17, 9], [27, 18, 8], [27, 19, 7], [27, 20, 6], [27, 21, 5],
[27, 22, 4], [27, 23, 3], [27, 24, 2].

The key idea of this proof is that both the product code of Reed–Solomon
codes and the subcodes of the Ree AG code may be considered as evaluation
codes of combinations of monomials in L = {XiY jZl | 0 ≤ i, j, l ≤ 26}. In the
F3

27.
The subcode of C(sG,D) is obtained by evaluating the monomials in

L(s) = {XaY bZc ∈ L | aq + b(q + q0) + c(q + 2q0) ≤ s, 0 ≤ a, b, c ≤ q − 1}.

The subcode of C(sG,D) with locality 8 and availability 3 is given by evaluating
polynomials of the form L(X)a1Xa2L(Y )b1Y b2L(Z)c1Zc2 where 0 ≤ a1, b1, c1 ≤
2, 0 ≤ a2, b2, c2 ≤ 7 and subject to the degree constrain that the polynomials
should also be in L(s). Note that depending on the parameters of the codes we
might find better Reed–Solomon product codes as LRCs or better LRC subcodes
from the Ree curve.

For example, comparing codes with minimum distance 600 we get an LRC
with parameters [19683, 4536, 600], locality 8 and availability 3 from the prod-
uct code construction of the Reed–Solomon code and a [19683, 2937, 600] LRC
with locality 8 and availability 3 from C(sG,D). However, comparing codes
with dimension 200 we get a [19683, 200, 10580] LRC with locality 8 and avail-
ability 3 from the product code construction of the Reed–Solomon code and a
[19683, 201, 13086] LRC with locality 8 and availability 3 from the AG code.

There is also an LRC construction using the codes C(sG,D). In this case
note that for the same replication sets A0, A1 and A2, the dual code of an LRC
with locality 8 is generated by evaluating {L(T )i | 0 ≤ i ≤ 2}. If we extend this
to F3

27 we can get a code with locality 8 and availability 3 as the dual code of
the evaluation of {L(X)iL(Y )jL(Z)k | 0 ≤ i ≤ 2}. In order to find subcodes of
C(sG,D) with locality 8 and availability 3 we consider how many of the functions
{L(X)iL(Y )jL(Z)k | 0 ≤ i ≤ 2} also have weight s. The dimension of the LRC
is found by computing the dimension of L(s) +{L(X)iL(Y )jL(Z)k | 0 ≤ i ≤ 2}.

In this case we have found a [19683, 4536, 600] LRC with locality 8 and avail-
ability 3 from the product code construction of the Reed–Solomon code and a
[19683, 15434, 600] LRC with locality 8 and availability 3 from C(sG,D)⊥.

We have found instances in which the Reed–Solomon product codes are better
than the LRC from the AG codes. Likewise, we have found cases in which the
AG LRCs outperform the Reed–Solomon codes. Further improvements could be
possible as knowledge of the Riemann-Roch spaces of the Ree curve improves.
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2. Ballentine, S., Barg, A., Vlăduţ, S.: Codes with hierarchical locality from covering
maps of curves, IEEE Transactions on Information Theory, vol. 65, no. 10, pp.
6056–6071, Oct. 2019. doi: 10.1109/TIT.2019.2919830

3. Eid, A., Duursma, I.: Smooth embeddings for the Suzuki and Ree curves. Al-
gorithmic arithmetic, geometry, and coding theory, vol. 637, 251-291, 2015. doi:
10.1090/conm/637/12763

4. Eid, A., Hasson, H., Ksir, A. , Peachey, J.: Suzuki-invariant codes from the
Suzuki curve. Designs, Codes and Cryptography, vol. 81, pp. 413– 425, 2016. doi:
10.1007/s10623-015-0164-5

5. Giulietti, M., Korchmros, G.: A new family of maximal curves over a finite field,
Mathematische Annalen, vol. 343, article 229, 2009. doi: 10.1007/s00208-008-0270-
z

6. Giulietti, M., Montanucci, M., Quoos, L., Zini, G.: On some Galois covers of the
Suzuki and Ree curves, Journal of Number Theory, vol. 189, pp. 220–254. doi:
10.1016/j.jnt.2017.12.005.

7. Guruswami, V., Jin, L., Xing, C.: Constructions of maximally recoverable local
reconstruction codes via function fields, International Colloquium on Automata,
Languages, and Programming, 2019. doi: 10.4230/LIPIcs.ICALP.2019.68

8. Hansen, J.P., Stichtenoth, H.: Group codes on certain algebraic curves with many
rational points, Applicable Algebra in Engineering, Communication and Comput-
ing, vol. 1, pp. 67–77, 1990. doi: 10.1007/BF01810849

9. Haymaker, K., Malmskog, B., Matthews, G. L.: Locally recoverable codes with
availability t ≥ 2 from fiber products of curves, Advances in Mathematics of Com-
munications, vol. 12 (2), pp. 317–336, 2018. doi: 10.3934/amc.2018020
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