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Cannon’s Conjecture

Conjecture: If G is a Gromov-hyperbolic discrete group whose
space at infinity is S2, then G acts properly discontinuously,
cocompactly, and isometrically on H?.
@ Suppose G is a group and I is a locally finite Cayley graph.
G is Gromov-hyperbolic if ' has thin triangles.

@ Points in the space at infinity are equivalence classes of
geodesic rays; R ~ S if sup{d(R(t),S(t)) : t > 0} < oc.

How do you proceed from combinatorial/topological information
to analytic information?
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Combinatorial structure

Theorem (C): If G is a cocompact, discrete group of isometries
of hyperbolic space, then G has a linear recursion.

@ J. W. Cannon, The combinatorial structure of cocompact discrete
hyperbolic groups, Geom. Dedicata 16 (1984), 123-148.

@ The proof shows that the cone type of a vertex depends
only on the order type of a finite ball around the vertex in
the Cayley graph, and hence there are only finitely many
cone types.

@ The proof depends on hyperbolic space having thin
triangles. Once Gromov-hyperbolic spaces are defined,
the proof applies to Gromov-hyperbolic groups.
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Weight functions

@ shingling (locally-finite covering by compact, connected
sets) 7 on a surface S, ring (or quadrilateral) R € S

@ weight function pon7: p: T — R>g
@ p-length of a curve ain St X 1ra20y (1)

@ p-height H, of R: infimum of the p-lengths of the height
curves

@ p-area A, of R: Ty, 1naspyo(t)?
@ p-circumference C, of R: infimum of the p-lengths of
separating curves

@ moduli M, = HZ/A,and m, = A,/C?
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Combinatorial moduli

@ moduli M(R) = sup,H3/A, and m(R) = inf, A,/C?

@ The sup and inf exist, and are unique up to scaling. (This
follows from compactness and convexity.)

@ Now consider a sequence of shinglings of S.

@ Axiom 1. Nondegeneration, comparability of asymptotic
combinatorial moduli

@ Axiom 2. Existence of local rings with large moduli

@ conformal sequence of shinglings: Axioms 1 and 2, plus
mesh locally approaching O.
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Optimal weight functions - an example
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fat flows skinny cuts
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Finite Riemann Mapping Theorem

Theorem (C-F-P, Schramm): For a tiling of a quadrilateral, the
optimal weight function determines a squaring of a rectangle.

@ C-F-P, Squaring rectangles: the finite Riemann mapping
theorem, Contemp. Math., 169 (1994), 133-212.
O. Schramm, Square tilings with prescribed combinatorics,
Israel J. Math. 84 (1993), 97-118.

@ The optimal weight function for fat flows is also the optimal
weight function for skinny cuts.

@ This optimal weight function is a weighted sum of fat flows
and a weighted sum of fat cuts. The flows and cuts give a
grid for the squaring.

@ With an eye toward Cannon’s Conjecture, Hersonsky has a
new proof using harmonic maps.
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Combinatorial Riemann Mapping Theorem

Theorem (C): If {S;} is a conformal sequence of shinglings on
a topological surface S and R isaring in S, then R has a
metric which makes it a right-circular annulus such that analytic
moduli and asymptotic combinatorial moduli on R are uniformly
comparable.

@ J. W. Cannon, The combinatorial Riemann mapping theorem,
Acta Math. 173 (1994), 155-234.

Corollary (C): If {Sj} is a conformal sequence of shinglings on
a topological surface S, then there is a quasiconformal
structure on S such that the analytic moduli of rings are
comparable to the asymptotic combinatorial moduli.
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Cannon-Swenson

@ G a Gromov-hyperbolic group, I a locally finite Cayley
graph, base vertex O

@ space at infinity I',,: points are equivalence classes of
geodesic rays based at O
@ half-space
H(R,n)={x eTl: d(x,R([n,00)) < d(x,R([0,n])}
@ disk at infinity
D(R,n) ={[S] € T liMiod(S(t),l \H(R,N)) = o0}
@ cover D(n) = {D(R,n): R is a geodesic ray based at O}
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Cannon-Swenson

Theorem (C-Swenson): In the setting of Cannon’s conjecture,
it suffices to prove that the sequence {D(n)}nen is conformal.
Furthermore, the D(n)’s satisfy a linear recursion.

@ J. W. Cannon, E. L. Swenson, Recognizing constant curvature
groups in dimension 3, Trans. Amer. Math. Soc. 350 (1998),
809-849.

@ The disks at infinity give a basis for the topology of I ..

@ The CRMT implies there is a quasiconformal structure on
. It is quasiconformally equivalent to an analytic
structure. The group action is uniformly quasiconformal so
by Sullivan/Tukia it is conjugate to a conformal action.

@ The linear recursion follows from finite cone types.
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Sufficiently rich families

@ Axiom 1. Nondegeneration, comparability of asymptotic
combinatorial moduli

@ Axiom 2. Existence of local rings with large moduli
@ Axiom 0. Existence of local rings whose moduli don’t
degenerate to 0

@ buffered ring: made out of three subrings; the outer rings
have moduli bounded below (by a fixed constant) and the
spanning ring has moduli bounded above

@ buffered ring cover: bounded valence family of closed
disks which cover, have disjoint inner disks, and have
complements that are buffered annuli
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Theorem (C-F-P): In the setting of Cannon’s conjecture,
Axioms 1 and 2 can be replaced by Axiom O plus the existence
of buffered ring covers of arbitrarily small mesh. Furthermore,
for Axiom O it suffices to check the moduli of finitely many
annuli.

@ C-F-P, Sufficiently rich families of planar rings, Ann. Acad. Sci.
Fenn. Math. 24 (1999), 265—-304.

@ The proof of CRMT can be adapted so you only need
Axiom 2 plus the existence of the buffered ring covers.

@ By the finite recursion, finding buffered ring covers reduces
to finding them for finitely many disks.

@ Axiom 2 follows from Axiom O because of the finiteness
and the subadditivity of moduli for nested annuli.
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Definition of a finite subdivision rule R

@ C-F-P, Finite subdivision rules, Conform. Geom. Dyn. 5 (2001),
153-196 (electronic).

@ subdivision complex Sg

@ Sg is the union of its closed 2-cells. Each 2-cell is modeled
on an n-gon (called a tile type) with n > 3.

@ subdivision R(Sz) of Sg

@ subdivision map oz : R(Sg) — Sr

@ oy is cellular and takes each open cell homeomorphically
onto an open cell.

@ R-complex: a 2-complex X which is the closure of its
2-cells, together with a structure map h: X — Sz which
takes each open cell homeomorphically onto an open cell

@ One can use a finite subdivision rule to recursively
subdivide R-complexes. R(X) is the subdivision of X.
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Example 1. Pentagonal subdivision rule

The pentagonal sudivision rule and the first three subdivisions.
(The subdivisions are drawn using Stephenson’s CirclePack).
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Example 2. The dodecahedral subdivision rule

The subdivisions of the three tile types. Note that there are two
edge types.

Ay Y,
)
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Example 2. The dodecahedral subdivision rule

The first two subdivisions of the pentagonal tile type.
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This subdivision rule on the sphere at infinity

The dodecahedral subdivision rule comes from the recursion at
infinity for a Kleinian group.
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Conformal finite subdivision rules

@ Afsr R has bounded valence if there is an upper bound to
the valences of the vertices in the subdivisions R"(Sz).

@ R has mesh approaching 0 if, for any open cover U of Sg,
for n sufficiently large each tile of R"(Sx) is contained in
an element of U.

@ R is conformal if each R-complex is conformal with
respect to the sequence of tiles of R"(X).

@ For fsr's with bounded valence and mesh approaching O,
Axiom 0 implies conformality.

@ 1,2,3-tile criterion. It suffices to consider finitely many

e
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@ A fsr with bounded valence, mesh approaching 0, a single
tile type and dihedral symmetry is conformal. This uses the
1,2,3-tile criterion.

@ A one-tile orientation preserving fsr with rotational
symmetry is conformal. The proof uses expansion
complexes and conformal structures on the subdivision
complex.

@ An expansion complex for a fsr R is an R-complex X with
X ~ R? and an orientation preserving homeomorphism
p: X = X suchthathop =0 oh,whereh: X — Sy is
the structure map for X.

@ Loosely, an expansion map corresponds to a horoball, and

the map ¢ corresponds to moving along a geodesic to the
corresponding point at infinity.
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An example with rotational symmetry

jecture, finite subdivision rules



2]
c
Q
Kz
=
©
o
-]
7
o
D
0
o
o
£
S
@
Q
>
7))

superimposed. Note

Here are the third and fourth subdivisions
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The expansion complex

@ The direct limit of the subdivisions is an expansion
complex X. One can put a piecewise conformal structure
on X with regular pentagons, and then use power maps to
extend over the vertices. (This is inspired by a
Bowers-Stephenson construction.)

@ The expansion map agrees with a conformal map on the
vertices. One can conjugate to get a new fsr for which this
conformal map is the expansion map. The subdivision map
is conformal with respect to the induced conformal
structure on the subdivsion complex.

@ The existence of an invariant conformal structure implies
(combinatorial) conformality of the fsr.

@ C-F-P, Expansion complexes for finite subdivision rules I,
Conform. Geom. Dyn. 10 63-99 (2006) (electronic)

C-F-P, Expansion complexes for finite subdivision rules II,
Conform. Geom. Dyn. 10 326—354 (2006) (electronic)
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Critically finite branched maps

@ A fsr has an edge pairing if the subdivision complex is a

surface. In this case, if the subdivision map isn’t a
covering, the subdivision complex is S? and the
subdivision map f is a critically finite branched map.

f is critically finite if Ps, the set of post-critical points, is
finite.

Suppose R is an orientation-preserving fsr with mesh
approaching 0 and S ~ S?? When is the subdivision map
f equivalent to a rational map?

Here f ~ g if there is a homeomorphism h: S? — S? such
that h(Ps) = Pg, (h o (goh) \Pf, and h o f is isotopic,
rel P;,togoh.

Put an orbifold structure Of on Sy by setting

vy =lem{Dg(y): g(y) = x andg = f°" for somen}.

Ole, =
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Thurston obstruction

@ Let 7(0%) be the Teichmiiller space of Oy.
@ f induces a pullback map 7t : 7(0f) — 7(Os).
Theorem (Thurston): If 77 has a fixed point, then f is
equivalent to a rational map.
@ multicurve I': components are nontrivial, non-peripheral,
and pairwise non-isotopic
@ invariant multicurve I': each component of f~1(I") is trivial,
peripheral, or isotopic to a component of I
@ Thurston matrix A" for an invariant multicurve
Al — Z 1
v a deg(f: a—9d)
@ Thurston obstruction: an invariant multicurve with spectral
radius at least 1
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Thurston’s characterization theorem

Theorem (Thurston): If O is hyperbolic, then f is equivalent to
a rational map if and only if there are no Thurston obstructions.

@ If f is the subdivision map of an orientation-preserving fsr
with mesh approaching 0 and Sy, is a 2-sphere, then f is
realizable by a rational map if and only if f is
(combinatorially) conformal.

@ Most of the proof of Thurston’s theorem can be recast in
term of fsr's. The chief stumbling block in giving a fsr proof
is Mumford’s theorem.
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The pentagonal subdivision rule

@ The pentagonal subdivision rule is closely associated with
a fsr (with triangular tile types) which is realizable by a
rational map. Here are subdivisions drawn by CirclePack
and by preimages under the rational map (unfolding by
Z— 25).
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The barycentric subdivision rule

@ The barycentric subdivision rule can be realized by the

rational map f(z) = %. Here is the Julia set.
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Realizing rational maps by fsr's

Theorem (C-F-P, Bonk-Meyer): If f is a critically finite rational
map without periodic critical points, then every sufficiently large
iterate of f is equivalent to the subdivision rule of a fsr.

@ Our proof: Pick a simple closed curve containing the
post-critical points. For a sufficiently large iterate, that
curve can be approximated by a curve in its preimage.
Now use the expansion complex machinery.

@ Do you need to pass to an iterate of the map?

@ What about critically finite maps with periodic critical
points? This corresponds to fsr's with unbounded valence.
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