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A SURVEY OF TWISTED FACE-PAIRING 3-MANIFOLDS
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Abstract. The twisted face-pairing construction gives an efficient way to gen-
erate face-pairing descriptions for many interesting closed 3-manifolds. Our
work in this paper is directed toward the goal of determining which closed,
connected, orientable 3-manifolds can be generated from this construction.
We succeed in proving that all lens spaces, the Heisenberg manifold (Nil ge-
ometry), S2 × S1, and all connected sums of twisted face-pairing manifolds

are twisted face-pairing manifolds. We show how to obtain most closed, con-

nected, orientable, Seifert-fibered manifolds as twisted face-pairing manifolds.

It still seems unlikely that all closed, connected, orientable 3-manifolds can be

so obtained.

The twisted face-pairing construction of our earlier papers [1], [2], [3] gives an
efficient way of generating, mechanically and with little effort, myriads of relatively
simple face-pairing descriptions of interesting closed 3-manifolds. Papers [1] and
[2] established the basic properties of these manifolds. In [3] we investigated a
special subclass of twisted face-pairing manifolds, namely the ample manifolds,
and showed that each has Gromov hyperbolic fundamental group with the 2-sphere
as the space at infinity. In [4] we showed how to construct Heegaard diagrams for
twisted face-pairing 3-manifolds. From that construction it is easy to give framed
surgery descriptions for twisted face-pairing 3-manifolds.

Our work in this paper is directed towards determining which closed, connected,
orientable 3-manifolds can be realized as twisted face-pairing manifolds. Our meth-
ods are powerful enough to show that the class of twisted face-pairing manifolds
contains all lens spaces (Corollary 4.2), the Heisenberg manifold (Example 7.4),
S2 × S1 (Example 6.2.1 of [4]), every orientable torus bundle over a circle with
Solv geometry (Theorem 5.1), most closed, connected, orientable, Seifert fibered
manifolds (Theorem 8.1), and all connected sums of twisted face-pairing manifolds
(Theorem 9.1). It still seems unlikely, however, that all closed, connected, ori-
entable 3-manifolds can be obtained as twisted face-pairing manifolds. Thus the
following tantalizing questions remain unanswered:

Questions. Is every closed, connected, orientable 3-manifold a twisted face-pairing
manifold? In particular, is there any twisted face-pairing manifold based on Eu-
clidean geometry or on H2 ×R? Is the 3-torus a twisted face-pairing manifold?

We have identified twisted face-pairing manifolds from each of Thurston’s eight
3-manifold geometries except Euclidean geometry and H2 ×R.

Much of the paper is devoted to detailed analyses of the class of twisted face-
pairing manifolds arising from two classes of model face-pairings. The first of these
is reflection face-pairings, in which the model faceted 3-ball P is the unit ball
in R3 and each face-pairing map is reflection through the xy-plane. These are
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used in showing that every lens space is a twisted face-pairing 3-manifold and that
every torus bundle over S1 with Solv geometry is a twisted face-pairing 3-manifold.
The other class of model face-pairing that is studied in detail is the class of lune
complexes, in which the faceted 3-ball P has exactly two vertices and each face of
P is a digon. Every twisted face-pairing 3-manifold arising from a lune complex is
a Seifert fibered manifold, and most closed, connected, orientable, Seifert fibered
3-manifolds are twisted face-pairing manifolds.

Section 1 establishes the terminology for two standard constructions, twist moves
and slam-dunks, on framed links in S3. These constructions are used throughout
the paper.

Section 2 gives a connected-sum operation for corridor complex links, which are
defined in [4]. Suppose P is a faceted 3-ball, ε is an orientation-reserving face-
pairing on P , and mul is a multiplier function for (P, ε). Let M(ε,mul) be the
associated twisted face-pairing manifold. The corridor construction of [4] produces
a planar projection of a framed link L in S3 such that M(ε,mul) is obtained from S3

by framed surgery on L. The corridor complex link L has two kinds of components,
face components and edge components. Each face component has framing 0, and
the framing of an edge component is the blackboard framing of its given planar
projection plus the reciprocal of the multiplier of the associated edge cycle. In
Section 2 we show that the connected sum of two corridor complex links along edge
components is itself a corridor complex link as long as one of the edge components
has an edge cycle representative with distinct vertices. This is used in Sections 6,
8, and 9.

Section 3 begins the analysis of reflection face-pairings. Given a reflection face-
pairing ε on a faceted 3-ball P and a multiplier function mul, we prove that the
corridor complex link can be replaced by a much simpler link L such that the twisted
face-pairing 3-manifold M(ε,mul) is obtained from S3 by framed surgery on L. The
corridor complex link is constructed from a Heegaard diagram for M(ε,mul) where
the Heegaard surface is the boundary of a handlebody obtained from P by joining
each pair of faces by a solid tube so that the solid tubes follow corridors in the 1-
skeleton of P . For reflection face-pairings, one obtains the new link from a Heegaard
diagram where the Heegaard surface is the boundary of a handlebody obtained
from S3 \ int(P ) by adding a vertical tube in P for each face pair. As for corridor
complex links, the link is composed of face components and edge components. The
face components all have framing 0, and the framing of an edge component is the
reciprocal of the multiplier of its associated edge cycle (each edge component has
blackboard framing 0).

In Section 4 we show that every lens space is a twisted face-pairing manifold
coming from a reflection face-pairing in which the faceted 3-ball is a scallop. By
a slight modification of the construction, in Section 5 we show that every torus
bundle over S1 with Solv geometry is a twisted face-pairing 3-manifold.

Suppose that L is an unframed corridor complex link. Then for each multiplier
function mul on the set of edge cycles of the associated faceted 3-ball, one obtains
a twisted face-pairing manifold from the framed surgery on L in which each face
component has framing 0 and each edge component has framing its blackboard
framing plus the reciprocal of the multiplier of its associated edge class. Hence,
by varying the multipliers, one obtains infinitely many manifolds by surgery on
L. In Section 6 we show that we still get a twisted face-pairing 3-manifold by
framed surgery on L if we give each face component framing 0 and either give each
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edge component its blackboard framing plus an arbitrary positive rational number
or give each edge component its blackboard framing minus an arbitrary positive
rational number. The proof of this result involves modifying the model faceted 3-
ball by “attaching scallops” and “splitting edges”. This result is used in Section 8
to show that “most” closed, connected, orientable, Seifert fibered 3-manifolds are
twisted face-pairing manifolds.

Following the notation of [7], we describe a closed, connected, orientable , Seifert
fibered 3-manifold M by either

(Oog|b; (α1, β1), . . . , (αs, βs)) or (Onk|b; (α1, β1), . . . , (αs, βs)).

Here O signifies that M is orientable, og signifies that the base surface is an ori-
entable surface with g handles and nk signifies that the base surface is a nonori-
entable surface with k crosscaps, b is an arbitrary integer, s is an arbitrary nonneg-
ative integer, and for i ∈ {1, . . . , s} αi and βi are relatively prime positive integers
with αi > βi. Given the above data, let S be the surface described by og or nk, and
let N be the orientable circle bundle over S which has a section. Then M is obtained
from N by Dehn surgery on s + 1 fibers with framings 1/b, α1/β1, . . . , αs/βs.

Twisted face-pairing manifolds arising from lune complexes are analyzed in Sec-
tion 7. Suppose that P is a lune complex and ε is an orientation-reversing face-
pairing on P . We can assume that P is the unit 3-ball in R3, the vertices of P are
the north pole and the south pole, and ε preserves the equator. Then ε restricts
to an edge-pairing on the equatorial disk D obtained by intersecting P with the
xy-plane. The quotient of D under the edge-pairing is a closed surface S with a
vertex corresponding to each edge cycle and an edge corresponding to each face
pair. We prove in Theorem 7.5 that for each multiplier function mul, the twisted
face-pairing 3-manifold M(ε,mul) is a Seifert fibered manifold with base surface
S. If b is the number of edge cycles with multiplier 1 and m1, . . . , ms are the
multipliers that are greater than 1, then M is either (Oog|b; (m1, 1), . . . , (ms, 1))
or (Onk|b; (m1, 1), . . . , (ms, 1)), where og or nk describes the topological type of
S. Combining this with Theorem 6.1, in Theorem 8.1 we show that a closed, con-
nected, orientable, Seifert fibered 3-manifold M is a twisted face-pairing manifold
as long as b ≥ 0 and either b > 0 or s > 0. By changing the orientation on M ,
one can show that a closed, connected, orientable, Seifert fibered 3-manifold is a
twisted face-pairing 3-manifold unless either b = s = 0 or s > 0 and −s < b < 0.

The Seifert fibered 3-manifolds described in the previous sentence are not the
only Seifert fibered 3-manifolds which are twisted face-pairing manifolds. Example
7.2 of [4] shows that Dehn surgery on the figure eight knot with positive integer
framing m yields a twisted face-pairing manifold. These twisted face-pairing man-
ifolds are also mentioned in Section 10 below. According to page 95 of [6], Dehn
surgery on the figure eight knot with framing 1 gives the Seifert fibered manifold
(Oo0|−1; (2, 1), (3, 1), (7, 1)). The framing m = 2 gives (Oo0|−1; (2, 1), (4, 1), (5, 1)),
and the framing m = 3 gives (Oo0| − 1; (3, 1), (3, 1), (4, 1)). These three twisted
face-pairing manifolds are not obtained by the results described in the previous
paragraph.

We prove in Section 9 that the connected sum of two twisted face-pairing 3-
manifolds is a twisted face-pairing 3-manifold. In Section 10 we briefly describe
our computations with SnapPea [12] to construct hyperbolic twisted face-pairing
manifolds with small volume. Finally, we conclude the paper in Section 11 with
some questions.
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1. Dehn surgery preliminaries [prelim]

In this section we collect some well-known facts about Dehn surgery which will
be used later.

We first discuss twist moves. They appear on page 162 of [5] as Rolfsen twists,
they appear in Sections 16.4, 16.5 and 19.4 of [9] as Fenn-Rourke moves, and they
appear in Section 9.H of [10]. For this let L be a link in S3 framed by the elements
of Q ∪ {∞}. Let J be an unknotted component of L. Then L \ J is contained in a
closed solid torus T , which is the complement in S3 of a regular neighborhood of
J . Let τ be a right hand Dehn twist of T . Let n ∈ Z. Let L′ be the link gotten
from L by applying τn to L \ J . We frame L′ as follows. If the L-framing of J is
r, then the L′-framing of J is 1

n+ 1
r

. If K is a component of L other than J with

framing r, then the image of K in L′ has framing r + nlk2(J,K), where lk(J,K) is
the linking number of J and K. When n = 1, we say that L′ is obtained from L by
performing a twist move about J . In general we obtain L′ by performing n twist
moves about J . We are interested in twist moves because the manifold obtained
by Dehn surgery on L′ is homeomorphic to the manifold obtained by Dehn surgery
on L.

We next discuss slam-dunks. These appear on page 163 of [5]. Let L be a framed
link in S3. Suppose that one component K of L is a meridian of another component
J and that K is contained in a topological ball in S3 which meets no component
of L other than J and K. Suppose that the framing of J is n ∈ Z and that the
framing of K is r ∈ Q∪{∞}. Let L′ be the framed link obtained from L by deleting
K and changing the framing of J to n − 1

r . We say that L′ is obtained from L
by performing the slam-dunk which removes K. The manifold obtained by Dehn
surgery on L′ is homeomorphic to the manifold obtained by Dehn surgery on L.

2. Connected sums of corridor complex links

This section is devoted to establishing the fact that the links obtained from the
corridor construction in [4] are closed under the operation of connected sum in a
certain restricted sense.

We begin with two faceted 3-balls P1 and P2. For i ∈ {1, 2} let εi be an
orientation-reversing face-pairing on Pi with multiplier function muli, and let Mi =
M(εi,muli). Theorem 6.2.2 of [4] deals with framed links obtained from corridor
constructions. Let Li be such an unframed link so that, after Li is appropriately
framed, Dehn surgery on Li yields Mi for i ∈ {1, 2}. Recall that every component
of Li is either a face component or an edge component, that is, every component of
Li corresponds to either a face-pair of Pi or an edge cycle of Pi for i ∈ {1, 2}. Let
Ci be an edge component of Li for i ∈ {1, 2}. Let ei be an edge of Pi which lies in
the εi-edge cycle corresponding to Ci for i ∈ {1, 2}. We assume that either e1 has
distinct vertices or e2 has distinct vertices. Let P ′i be the faceted 3-ball obtained
from Pi by replacing ei with a digon Di for i ∈ {1, 2}. See Figure 1. Because either
e1 has distinct vertices or e2 has distinct vertices, we obtain a faceted 3-ball P from
P ′1 and P ′2 by cellularly identifying D1 and D2. We refer to P as a connected sum
of P1 and P2 along e1 and e2. The face-pairings ε1 and ε2 induce a face-pairing ε
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Figure 1. Replacing ei with a digon Di.

on P . Except for choices to be made involving corridors along either e1 or e2, the
corridor constructions for (P1, ε1) and (P2, ε2) which give rise to L1 and L2 induce a
corridor construction for (P, ε), which gives rise to an unframed link L. The isotopy
type of L is uniquely determined by L1, L2 and the identification of D1 and D2. It
is easy to see that L is a connected sum of L1 and L2 which joins C1 and C2. We
summarize this paragraph in the following theorem.

Theorem 2.1. Let P1 and P2 be faceted 3-balls with orientation-reversing face-
pairings ε1 and ε2. Let L1 and L2 be corresponding unframed corridor complex
links. Let C1 be an edge component of L1, and let C2 be an edge component of L2.
Let e1 be an edge of P1 which lies in the ε1-edge cycle corresponding to C1, and let
e2 be an edge of P2 which lies in the ε2-edge cycle corresponding to C2. Suppose
that either e1 has distinct vertices or e2 has distinct vertices. Let P be a connected
sum of P1 and P2 along e1 and e2, and let L be a connected sum of L1 and L2

which joins C1 and C2. Then L is an unframed corridor complex link associated to
the orientation-reversing face-pairing on P induced by ε1 and ε2.

Proof. This is clear from the previous paragraph.

3. Reflection face-pairings

In this section we consider face-pairings of a very special sort. We assume that
our model faceted 3-ball P can be identified with the closed unit ball in R3 so
that the following holds. The intersection of the unit sphere with the xy-plane is
a union of edges of P and the model face-pairing ε on P is given by reflection in
the xy-plane. In other words, we have cell structures on both the northern and
southern hemispheres of the unit sphere in R3, and the face-pairing maps of the
model face-pairing ε are given by the map (x, y, z) 7→ (x, y,−z), which is therefore
a cellular automorphism of P . In this case we call P a reflection faceted 3-
ball, and we call ε a reflection face-pairing. Using the identification of P with
the closed unit ball in R3, we speak of the equator of P and the northern and
southern hemispheres of P .

Let P be a reflection faceted 3-ball with reflection face-pairing ε and multiplier
function mul. As in Figure 2, we can describe P , ε, and mul using a diagram which
consists of a cellular decomposition of a closed disk together with a positive integer
for every edge. We view this closed disk as the northern hemisphere of P . Hence we
have the cellular decomposition of the northern hemisphere of P , which therefore
determines the cellular decomposition of the southern hemisphere of P , and the
positive integer attached to the edge e is the multiplier of the ε-edge cycle of e. We
sometimes allow ourselves the liberty of attaching 0 to an edge as well as positive



6 J. W. CANNON, W. J. FLOYD, AND W. R. PARRY

•

•

•

p

q

r
t

s

Figure 2. The diagram corresponding to P , ε and mul.

integers. Attaching 0 to an edge means that every edge in the corresponding ε-edge
cycle collapses to a vertex.

Let P be a reflection faceted 3-ball with reflection face-pairing ε. Suppose given
a multiplier function mul for ε, and let M be the associated twisted face-pairing
manifold. Theorem 6.2.2 in [4] produces a framed link in the 3-sphere S3 such that
Dehn surgery on this framed link gives M . In this paragraph we describe another
framed link L in S3 such that Dehn surgery on L also gives M . We construct
L as follows. We identify P with the closed unit ball in R3 as in the definition
of reflection faceted 3-ball. For every edge e of the northern hemisphere of P we
choose an open topological ball Be ⊆ R3 such that Be ∩ ∂P is a topological disk
which meets e and is disjoint from every edge of P other than e. We assume that
such topological balls corresponding to distinct edges are disjoint. For every face
f of the northern hemisphere of P we construct an unknot Cf in the interior of f
such that if e is an edge of f , then Cf meets Be. These unknots are all components
of L with framings 0. We call these components of L face components. Let
σ ∈ {±1}. Every edge e of P in the northern hemisphere also gives a component
Ce of L, called an edge component, as follows. Let e be an edge in the equator
of P contained in the face f of the northern hemisphere. The ε-edge cycle of e
is just {e}. We define Ce to be a meridian of Cf contained in Be with framing
σ/mul({e}). Now let e be an edge of the northern hemisphere of P not contained
in the equator. Let f and g be the faces of P which contain e. Let x be a point of
f ∩ Be separated by Cf from ∂f , and let y 6= x be a point of g ∩ Be separated by
Cg from ∂g. The ε-edge cycle of e is {e, εf (e)}. We define Ce to be an unknot in
Be with framing σ/mul({e, εf (e)}) such that P ∩Ce is a properly embedded arc in
P ∩Be joining x and y. This defines L.

Example 3.1. Let P be the reflection faceted 3-ball with reflection face-pairing and
multiplier function given by the diagram in Figure 2. Figure 3 shows the framed
link L constructed above from these data using nonnegative framings.

Theorem 3.2. Let P be a reflection faceted 3-ball with reflection face-pairing ε.
Suppose given a multiplier function for ε, and let M be the associated twisted face-
pairing manifold. Let L be the framed link in S3 constructed above. Then Dehn
surgery on L gives M .

Proof. Theorem 6.2.2 in [4] produces a framed link L′ in S3 such that Dehn surgery
on L′ gives M . We review the construction of L′ and indicate how to adapt the
proof of Theorem 6.2.2 in [4] to the present situation.
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Figure 3. The framed link L.

The link L′ is constructed essentially as follows. We identify P with the closed
unit ball in R3 as in the definition of a reflection faceted 3-ball. We construct a
handlebody H ′ by attaching handles to P , one handle for every pair of faces of P .
One end of every handle lies in a face f of P , and the other end lies in the face of P
paired with f by ε. This is done so that the closure of S3 \H ′ is also a handlebody.
Certain components of L′, called edge components, are curves in the interior of
H ′ constructed roughly as follows. Choose a face f of P and an edge e of f . We
construct a curve in ∂H ′ which begins at e, goes to the handle of H ′ attached to f ,
goes across this handle to the face f̂ of P paired with f and then to the edge e′ of f̂
corresponding to e. This curve crosses e′ and proceeds in this way until we obtain
a simple closed curve in ∂H ′. We isotop this curve slightly into the interior of H ′.
The result is a component of L′. In this way every edge cycle of ε gives rise to a
component of L′. The framing of this component of L′ is the framing determined
by ∂H ′ plus or minus 1/mul(E), where E is the ε-edge cycle which contains e. The
remaining components of L′ are called face components. They are constructed as
follows. Choose a handle of H ′, and choose a meridian curve in ∂H ′ for this handle.
This meridian curve is a component of L′. It has framing 0.

To prove Theorem 3.2, we replace H ′ by another handlebody H. We construct
H as follows. We still identify P with the closed unit ball in R3. Let B be the
topological ball which is the closure in S3 of S3 \ P . We construct H by attaching
handles to B as follows. Let f be a face of P , and let f̂ be the face of P paired
with f by ε. Then f and f̂ are joined by a vertical circular cylinder. We attach
such a cylinder to B. Doing this for every pair of faces of P yields our handlebody
H. It is clear that the closure in S3 of S3 \H is also a handlebody.

We identify the components of L with curves in ∂H in a straightforward way. It
is easy to see that the face components of L correspond to the face components of
L′ and that the edge components of L correspond to the edge components of L′.
Furthermore the framing determined by ∂H of every edge component of L is 0. As
in the proof of Theorem 6.2.2 in [4], it follows that Dehn surgery on L gives M .

4. Lens spaces

In this section we show that every lens space is a twisted face-pairing manifold.
We begin by defining the notion of a scallop. A scallop is a reflection faceted 3-ball
P (defined in Section 3) whose northern hemisphere has a cell structure essentially
as indicated in Figure 4. More precisely, every vertex of a scallop P lies on the
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Figure 4. Top view of a scallop.

equator of P , P contains a vertex v such that every edge of P not contained in
the equator of P joins v with another vertex and every vertex of P other than v
is joined with v by at least one edge. We call v the apex of the scallop. So the
northern hemisphere of a scallop might consist of just a monogon. Otherwise it is
subdivided into digons and triangles, in which case it has at least two digons, but
it may have arbitrarily many digons.

Theorem 4.1. Let P be a scallop with k faces in its northern hemisphere. Let
ε be a reflection face-pairing on P , let mul be a multiplier function for ε, and let
M = M(ε,mul). Suppose that P , ε, and mul are given by the diagram in Figure 5,
where m1 > 0, mk > 0, and mi ≥ 0 for i ∈ {2, . . . , k − 1}. (If a multiplier is 0,
then the corresponding edge in Figure 5 collapses to a vertex of P .) Define integers
a1, . . . , ak so that a1 = m1 if k = 1 and if k > 1, then a1 = m1 + 1, ak = mk + 1,
and ai = mi + 2 for i ∈ {2, . . . , k − 1}. Then there exist relatively prime positive
integers p ≥ q such that M is homeomorphic to the lens space L(p, q), where

p

q
= a1 −

1

a2 −
1

a3 − · · · −
1

ak−1 −
1
ak

.

(It is possible that p = q = 1, in which case we obtain the 3-sphere.) Furthermore,
given relatively prime positive integers p and q with p ≥ q, then there exists a unique
sequence of integers m1, . . . ,mk as above such that the above continued fraction
equals p/q.

Proof. Theorem 3.2 implies that M is given by Dehn surgery on the framed link
in Figure 6. We repeat that if mi = 0 for some i ∈ {2, . . . , k − 1}, then the corre-
sponding edge in Figure 5 collapses to a vertex of P . In this case the corresponding
component of the link in Figure 6 is to be removed. This is consistent with the fact
that any component with framing ∞ may be removed from a framed link without
changing the resulting manifold. We next use Kirby calculus to simplify the framed
link in Figure 6. For every i ∈ {1, . . . , k} we perform the slam-dunk which removes
the component with framing −1/mi. In doing this, the component linked with the
given component acquires the framing mi. We next perform a twist move about
every component shown in Figure 6 with framing −1. Every such component is
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Figure 5. The diagram for P , ε and mul.

then removed, and 1 is added to the framing of the components linked with it.
The resulting framed link is in Figure 7. It follows from page 272 of [10] or page
108 of [9] or just by iterating slam-dunks that M is the lens space as stated in
Theorem 4.1.

The uniqueness statement is well known. For this, first note that if k = 1, then
a1 is an arbitrary positive integer. If k > 1, then a1, . . . , ak are arbitrary integers
with ai ≥ 2 for i ∈ {1, . . . , k}. Given p and q, we calculate a1, . . . , ak by modifying
the division algorithm usually used to calculate continued fractions. Instead of
taking the greatest integer less than or equal to our given number, we take the
least integer greater than or equal to our given number. The details are left to the
reader.

This proves Theorem 4.1.

Corollary 4.2. Every lens space is a twisted face-pairing manifold.

5. Torus bundles over a circle

Theorem 5.1. Every orientable torus bundle over a circle with Solv geometry is a
twisted face-pairing manifold.

Proof. We begin with a scallop. If the scallop is simply the union of two monogons,
then we insert two new vertices in the scallop’s edge. Otherwise we insert one new
vertex in each of the two equatorial edges which contain the scallop’s apex. Two
edges of the resulting faceted 3-ball therefore lie in the equator and contain the
scallop’s apex. Let P be the faceted 3-ball obtained by replacing each of these two
edges with a digon. Figure 8 shows ∂P with one equatorial point at infinity. Let ε1
and ε2 be face-pairings on P which extend the reflection face-pairing on the original
scallop so that ε1 pairs the new digons fixing the apex and ε2 pairs the new digons
without fixing the apex. Figure 9 shows corridor complexes and corridor complex
framed links L1 and L2 for the pairs (P, ε1) and (P, ε2).

We use Kirby calculus to simplify L1 and L2 just as we simplified the link in the
proof of Theorem 4.1. The resulting framed links are shown in Figure 10, where
a1, . . . , ak are positive integers. If k = 1, then it is not difficult to see that a1 ≥ 1 for
(P, ε1) and a1 ≥ 5 for (P, ε2). If k > 1, then ai ≥ 2 for i ∈ {1, . . . , k}, and ai ≥ 3 for
some i because our original scallop has at least one equatorial edge. According to
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Figure 6. The framed link corresponding to Figure 5.
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Figure 7. Dehn surgery on this framed link gives M .
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Figure 8. The faceted 3-ball P .
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Figure 10. Simplifications of L1 and L2.

the discussion on pages 308 and 309 of [8] or Sections 4.6 and 6.1 of [5], these links
correspond to the plumbing graphs in Figure 11, where bi ≥ 2 for i ∈ {1, . . . , k}
and bi ≥ 3 for some i. Now statement IV of Theorem 6.1 of [8] implies that the
twisted face-pairing manifolds which arise from (P, ε1) are all torus bundles over a
circle and that these torus bundles are those whose structure matrices have traces
at least 3. Statement V of Theorem 6.1 of [8] gives the corresponding result for
(P, ε2) and traces at most −3.

This easily proves Theorem 5.1.
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Figure 11. The corresponding plumbing graphs.

6. Generalizing framings of corridor complex links

We construct corridor complex links in Section 6.2 of [4] by means of link pro-
jections. Some components, the face components, of a corridor complex link corre-
spond to the face-pairs of our model face-pairing, and the remaining components,
edge components, correspond to the edge cycles of our model face-pairing. We
frame corridor complex links as follows. Let C be a component of a corridor com-
plex link L. If C is a face component, then we define the framing of C to be 0.
If C is an edge component, then we define the framing of C to be the blackboard
framing of C plus or minus the reciprocal of the multiplier of the edge cycle cor-
responding to C. The sign is chosen to be either plus for every C or minus for
every C. Theorem 6.2.2 of [4] states that performing Dehn surgery on L with this
framing obtains our twisted face-pairing manifold. The following theorem states
that if we redefine the framing of L by replacing every edge cycle multiplier with an
arbitrary positive rational number, then Dehn surgery on L still obtains a twisted
face-pairing manifold (usually constructed from a different faceted 3-ball).

Theorem 6.1. Let L be an unframed corridor complex link. We frame L as fol-
lows. Let C be a component of L. If C is a face component, then we define the
framing of C to be 0. If C is an edge component, then we define the framing of
C to be the blackboard framing of C plus a nonzero rational number. These ratio-
nal numbers are chosen to have the same sign. Then Dehn surgery on L with this
framing obtains a twisted face-pairing manifold.

Proof. Theorem 6.2.2 of [4] states that if the framing of every edge component of
L is its blackboard framing minus the reciprocal of a positive integer, then Dehn
surgery on L obtains a twisted face-pairing manifold. Let C be an edge component
of L with blackboard framing b. In the next paragraph we consider the case in
which the framing of C is changed from b minus the reciprocal of a positive integer
to b minus a rational number greater than 1.

We in effect change the framing of C by “attaching a scallop” to our model
faceted 3-ball, proceeding as follows. Twisted face-pairing manifolds of scallops
with reflection face-pairings are obtained by Dehn surgery on framed links such as
the one in Figure 6. We subdivide one edge of our scallop, obtaining the framed
link K in Figure 12. It is easy to see that K is a corridor complex link. Let J be
the connected sum of L and K which joins C and the component of K with framing
−1 which is parallel to the component with framing −1/m1. Theorem 2.1 implies
that J is a corridor complex link. The blackboard framing of the component of J
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Figure 12. The framed link K.

corresponding to C is b. We take the framing of this component of J to be b − 1.
We next simplify the part of J corresponding to K as in the proof of Theorem 4.1.
We obtain the framed link in Figure 13, where a1, . . . , ak are integers, a1 ≥ 1, and
ai ≥ 2 for i ∈ {2, . . . , k}. As in the proof of Theorem 4.1, by performing k−1 slam-
dunks, we may reduce J to the framed link in Figure 14, where r is an arbitrary
positive rational number. One more slam-dunk reduces J to L, where the framing
of C is b minus an arbitrary rational number greater than 1.

In this paragraph we show how to change the framing of C to b minus an arbitrary
positive rational number which is not the reciprocal of an integer by “splitting
edges”. The link L in the statement of Theorem 6.1 is obtained from a model face-
pairing ε on a faceted 3-ball. The component C corresponds to an ε-edge cycle. We
construct a new faceted 3-ball by subdividing every edge in this ε-edge cycle into
two edges. The face-pairing ε induces a face-pairing on this new faceted 3-ball. In
terms of links, the result is to adjoin to L a new component D which is parallel
to C in our corridor complex. Let C have framing b− r for some rational number
r > 1, and let D have framing b − 1/m for some positive integer m. Part a) of
Figure 15 shows parts of C and D. One slam-dunk leads to part b) of Figure 15.
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Figure 13. Simplifying the framed link J .

b-1

C

r

•
•

•
••

•

Figure 14. Simplifying the framed link J .

We give C and D opposite orientations as in part c) of Figure 15 to prepare for a
type 2 Kirby move. The result of our type 2 Kirby move is in part d) of Figure 15;
the framing of the new component is the framing of C plus the framing of D plus
2lk(C,D) = −2b. An isotopy gives part e) of Figure 15. Performing m twist moves
about the component with framing −1/m in part e) gives part f) of Figure 15.
Finally, a slam dunk gives part g) of Figure 15. It follows that if the framing of C
is changed to any rational number less than b, then Dehn surgery on L with this
new framing obtains a twisted face-pairing manifold.

This easily proves Theorem 6.1.

7. Lune complexes

Let P be a faceted 3-ball with orientation-reversing face-pairing ε such that P is
a regular CW-complex whose faces are all digons. Hence P has exactly two vertices
and every edge of P joins the two vertices of P . We call P a lune complex. Given
a multiplier function for ε, we obtain a twisted face-pairing manifold. This twisted
face-pairing manifold does not depend on the specific homeomorphisms by which ε
pairs the faces of P ; it only depends on what faces are paired and the action of ε
on vertices of face-pairs. It follows that we may, and do, assume that there exists
a homeomorphism from P to the closed unit ball in R3 such that the vertices of
P correspond to (0, 0,±1), the edges of P correspond to arcs of great circles, and
every face-pairing map corresponds to an isometry. We refer to the inverse image
in P of the xy-plane under this homeomorphism as an equatorial disk of P and
ε.

Let D be an equatorial disk of a lune complex P with orientation-reversing face-
pairing ε. Then D has a cell structure whose vertices are the intersections of D
with the edges of P and whose edges are the intersections of D with the faces of
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Figure 15. Simplifying the link gotten by adjoining the compo-
nent D.

P . Furthermore, ε restricts to an edge pairing on D. The vertex cycles of D under
its edge pairing are in canonical bijective correspondence with the edge cycles of
ε. Conversely, suppose that the closed unit disk D in the xy-plane of R3 is given
the cell structure of a polygon. An edge pairing on D in which every edge is paired
with a different edge by an isometry determines a lune complex structure P on the
closed unit ball in R3 with vertices (0, 0,±1) and edges arcs of great circles. It also
determines an orientation-reversing face-pairing on P by isometries which restricts
on the equator of P to the given edge pairing on D.

Let D be a polygon in R3 with an edge pairing, so that every edge of D is
paired with a different edge. We may use the edge pairing on D to attach handles
to D in a straightforward way, attaching one handle for every pair of edges of D.
The resulting surface T in R3 is uniquely determined up to homeomorphism as an
abstract surface, but its embedding in R3 is not. We call T a handle surface
for D. The boundary components of T are in canonical bijective correspondence
with the vertex cycles of D under its edge pairing. Hence if D is an equatorial disk
of a lune complex with face-pairing ε, then the boundary components of T are in
canonical bijective correspondence with the ε-edge cycles. Conversely, a surface T
in R3 which consists of a polygon D with handles attached as above gives an edge
pairing on D.

Theorem 7.1. Let P be a lune complex with orientation-reversing face-pairing ε
and multiplier function mul such that P ⊆ R3. Let D be an equatorial disk of P
and ε. Let T be a handle surface for D. Suppose that T has a regular neighborhood
in R3 which is a handlebody H such that the closure of S3 \H is also a handlebody.
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00

Figure 16. Two framed links for Example 7.2.

We choose handles for H to correspond to the handles of T in the straightforward
way, and we choose a meridian curve for every handle of H. Let L be the link
in S3 whose components consist of the boundary components of T together with
the meridian curves of H. We frame L so that the boundary component of T
which corresponds to the ε-edge cycle E has framing ±1/mul(E) plus the framing
determined by T and every meridian curve of H has framing 0. The sign is either
always plus or always minus. Then the manifold obtained by Dehn surgery on L is
homeomorphic to M = M(ε,mul).

Proof. This follows easily from Theorem 6.1.2 of [4].

Example 7.2. Let P be a lune complex with exactly two faces. Let ε be an orientation-
reversing face-pairing on P which interchanges the two vertices of P . Then ε has
only one edge cycle. Let this edge cycle have multiplier m. An equatorial disk D
of P and ε has just two edges. Every such surface T is a Mobius band. Every such
handlebody H is a solid torus. Two such framed links L are shown in Figure 16.

We have seen that giving a lune complex with orientation-reversing face-pairing
is equivalent to giving a polygon with edge pairing and that this is equivalent to
giving a surface constructed by attaching handles to a polygon. Similarly, it is
also equivalent to giving a closed surface with the structure of a CW-complex with
exactly one 2-cell; the 2-cell corresponds to a polygon with an edge pairing. Given
a lune complex P and an orientation-reversing face-pairing ε with equatorial disk
D, we define an equatorial surface of P and ε to be a closed surface obtained by
identifying the edges of D using the edge pairing on D induced by ε. When this
equatorial surface is orientable, Theorem 7.1 can be interpreted as follows.

Corollary 7.3. Let P be a lune complex with orientation-reversing face-pairing ε
and multiplier function mul. Let S be an equatorial surface of P and ε, and suppose
that S is orientable. We embed S in S3 so that it bounds two handlebodies in S3.
We identify S × [−1, 1] with a regular neighborhood of S in S3. We construct a
framed link L in S3 as follows. For every vertex v of S we choose closed disks Dv

and Ev in S such that v ∈ int(Dv), Dv ⊆ int(Ev), and Eu ∩ Ev = ∅ if u 6= v. The
boundary of Ev is one component of L for every vertex v of S. Every vertex v of S
corresponds to an ε-edge cycle E, and we take the framing of ∂Ev to be 1/mul(E).
Every edge e of S gives a component of L as follows. Let u and v be the vertices
of e. Let s be a closed segment of e whose endpoints lie in ∂Du ∪ ∂Dv such that
e\s ⊆ Du∪Dv. Then s×[−1, 1] ⊆ S×[−1, 1] is a closed disk in S3, and we take the
boundary of this disk to be a component of L with framing 0. This defines L. Then
the manifold obtained by Dehn surgery on L is homeomorphic to M = M(ε,mul).
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Figure 17. The equatorial surface S and the framed link L of Example 7.4.

Proof. We apply Theorem 7.1. We may identify the surface T of Theorem 7.1 with
the surface gotten from S by deleting the interiors of the disks Ev. Let U be the
surface gotten from S by deleting the interiors of the disks Dv. Because S bounds
two handlebodies in S3, it is not difficult to see that H = U×[−1, 1] is a handlebody
in S3 such that the closure of S3\H is also a handlebody. Corollary 7.3 now follows
easily from Theorem 7.1.

Example 7.4. We return to Example 7.3 of [4], which is also considered in Ex-
ample 7.2 of [2]. Let P be a lune complex with four faces. Let ε be the orientation-
reversing face-pairing on P which pairs opposite faces of P and fixes the vertices
of P . Then there is exactly one ε-edge cycle. Let m be the multiplier of the ε-edge
cycle. The induced edge pairing on an equatorial disk D for P and ε identifies
opposite edges of D to give an equatorial surface S which is a torus. Figure 17
shows S with its vertex and two edges. Figure 17 also shows the framed link of
Corollary 7.3. We see that L is the link of Borromean rings. As in Example 7.3 of
[4], it follows that our twisted face-pairing manifold is the Seifert fibered manifold
(Oo1|0; (m, 1)). When m = 1, this is the Heisenberg manifold, the prototype of Nil
geometry.

Our next result shows that every twisted face-pairing manifold obtained from a
lune complex is a Seifert fibered manifold, and so we now fix notation for Seifert
fibered manifolds. We use the notation in Chapter 4 of [7]. Thus we denote a
closed, connected, orientable, Seifert fibered manifold M by either

(Oog|b; (α1, β1), . . . , (αs, βs)) or (Onk|b; (α1, β1), . . . , (αs, βs)).

The O means that M is orientable. The o and g mean that the base surface of M
is the orientable closed surface with g handles. The n and k mean that the base
surface of M is the nonorientable closed surface with k crosscaps. Furthermore,
b is an arbitrary integer, s is a nonnegative integer, and αi and βi are relatively
prime positive integers with αi > βi for every i ∈ {1, . . . , s}. The manifold M
can be constructed as follows. Let S be the base surface of M . Let N be the
orientable closed 3-manifold which is a circle bundle over S with a section. Then
M is obtained by performing Dehn surgeries on s + 1 fibers of N with framings
1/b, α1/β1, . . . , αs/βs.

Theorem 7.5. Let P be a lune complex with orientation-reversing face-pairing ε
and multiplier function mul. Let S be an equatorial surface of P and ε. Suppose
that the ε-edge cycle multipliers are m1, . . . , ms+b for some nonnegative integers s
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Figure 18. Two unpaired adjacent edges of D.
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Figure 19. The result of performing a Kirby move.

and b such that mi > 1 for i ∈ {1, . . . , s} and mi = 1 for i ∈ {s+1, . . . , s+b}. Then
M = M(ε,mul) is the Seifert fibered manifold with base surface homeomorphic to
S given by either

(Oog|b; (m1, 1), . . . , (ms, 1)) or (Onk|b; (m1, 1), . . . , (ms, 1)).

Proof. We prepare to apply Theorem 7.1. Without loss of generality we assume
that P ⊆ R3. Let D be an equatorial disk of P . Let T be a handle surface for D
so that T has a regular neighborhood in R3 which is a handlebody H such that
the closure of S3 \H is also a handlebody. Theorem 7.1 states that T and H give
rise to a framed link L such that M is obtained by Dehn surgery on L.

In this paragraph we present a way to modify D, P , T , and L. Suppose given
two adjacent edges of D which are not paired by the edge pairing on D. Figure 18
shows the two edges of D, the ends of the two handles of T attached to these edges,
and the two corresponding meridian curves of H. These two meridian curves are
components of L each with framing 0. Now we perform a type 2 Kirby move
with these two components of L in a straightforward way to replace one of these
components, say, the left one, as in Figure 19. The new component also has framing
0. Just as L is obtained from D, this new framed link is obtained from the disk
with edge pairing gotten from D by cutting and pasting as in Figure 20. Thus we
may modify D is this way, thereby modifying P , T , and L, without modifying M .

We have just modified D by cutting off a triangle from D and pasting it elsewhere.
By combining several such operations we may cut D along any arc c which joins
two of its vertices as long as some edge of D on one side of c is paired with an edge
on the other side of c.

As is well known these last operations can be used to put D into one of the two
normal forms shown in Figure 21. This is essentially done in Section 1.3 of [11].
More precisely, Section 1.3 of [11] shows how to obtain the normal forms in Figure 21
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Figure 22. Gathering together c1, . . . , cs+b−1.

except for gathering together the edges c1, . . . , cs+b−1. The edges c1, . . . , cs+b−1 can
be gathered together using the operation shown in Figure 22.
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Figure 23. Attaching handles to D.

So we assume that D has one of the normal forms in Figure 21. We also assume
that T is gotten from D by attaching handles as in Figure 23. In addition to
showing how the handles of T attach to D, Figure 23 also shows the corresponding
meridian curves of H. Part of one boundary component of T is drawn with thick
arcs and dashes in Figure 23. We denote this boundary component of T by α. In
addition to α, every handle of T as in part c) of Figure 23 gives rise to one boundary
component of T .

So the link L consists of the meridian curves of H, the component α, and one
component for every handle of T as in part c) of Figure 23. We next discuss the
framing of L given by Theorem 7.1. Every meridian curve of H has framing 0.
Every other component β of L corresponds to some ε-edge cycle, with multiplier,
say, m. We take the framing of β to be −1/m plus the framing determined by T .
If β 6= α, then the framing of β determined by T is 0. Handles of T as in parts a)
and c) of Figure 23 contribute nothing to the framing of α, and every handle of T
as in part b) of Figure 23 contributes −2 to the framing of α.

Now we apply an isotopy to L as follows. Every portion of L as shown in a part
of Figure 23 is transformed to what is shown in the corresponding part of Figure 24
. In parts a) and c) of Figure 24 the component α is shown with framing f . In
part b) of Figure 24 the component α is shown with framing f − 2. The two link
portions in Figure 25 can be seen to be equivalent by twisting −2 times about the
component with framing 1/2. This subtracts 2 from the framing of α and from the
framing of the component with framing 2. After performing all such moves, the
framing of α is −1/m, where m is the multiplier of the ε-edge cycle corresponding
to α. Slam-dunks give the equivalences shown in Figures 26 and 27.
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Figure 25. Using Kirby calculus to modify L.
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Figure 26. Using Kirby calculus to modify L.

The link L now has one of the two forms shown in Figure 28. It is easy to see
in each case that the components with framings ms+1, . . . , ms+b may be replaced
with one component with framing 1/b. The resulting links appear in Figure 12 on
page 146 of [7]. According to [7], the manifold M is as stated in Theorem 7.5.
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Figure 28. Almost the final form of L.
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Figure 29. Some corridor complex links.

This proves Theorem 7.5.

The following lemma, which is used later, follows from the proof of Theorem 7.5.

Lemma 7.6. Every link shown in Figure 29 is a corridor complex link. The only
component which must occur is the one labeled α, and the link cannot consist of
just α. The components framed with 0 are face components. All other components,
including α, are edge components. The framing of α determined by the corridor
complex is −2 times the number of components in the link as in part b) of Figure 24.
The framing determined by the corridor complex of every other component of the
link is 0.

Proof. We return to the proof of Theorem 7.5. We begin with the normal forms
for D in Figure 21. We attach handles to D as in Figure 23. We then perform
isotopies as in Figure 24. This easily proves Lemma 7.6.

8. Seifert fibered manifold

In this section we prove that most closed, connected, orientable Seifert fibered
manifolds are twisted face-pairing manifolds.

Theorem 8.1. Let M be a Seifert fibered manifold given by either

(Oog|b; (α1, β1), . . . , (αs, βs)) or (Onk|b; (α1, β1), . . . , (αs, βs)).

Suppose that b ≥ 0 and that either b > 0 or s > 0. Then M is a twisted face-pairing
manifold.

Proof. Define an integer t so that t = s − 1 if b = 0 and t = s if b > 0. The
assumptions imply that t ≥ 0. If g = 0 and t = 0, then either M = (Oo0|0; (α1, β1))
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Figure 30. The faceted 3-ball P and edge cycle multipliers.

or M = (Oo0|b). These manifolds are all lens spaces, and hence they are twisted
face-pairing manifolds by Corollary 4.2. Thus we assume that if g = 0, then t > 0.
Now we construct a link L which has the form of those in Figure 29. We take L to
consist of the component α, t of the elements in part c) of Figure 24, and either g
of the elements in part a) of Figure 24 or k of the elements in part b) of Figure 24.
Lemma 7.6 implies that L is a corridor complex link. We next frame L. We define
the framing of every face component of L to be 0. We define the framing of α to
be an arbitrary negative rational number minus 2 times the number of components
of L as in part b) of Figure 24. We frame every remaining component of L with
an arbitrary negative rational number. Lemma 7.6 and Theorem 6.1 imply that
Dehn surgery on L with this framing obtains a twisted face-pairing manifold. We
transform L as indicated in Figures 25, 26, and 27 to obtain a link as in Figure 28
with the index s + b in Figure 28 replaced by the current t + 1. The framings
m1, . . . , mt+1 are arbitrary positive rational numbers. According to Figure 12 on
page 146 of [7], it follows that we can choose the framing of L to obtain M . This
proves Theorem 8.1.

9. Connected sums of twisted face-pairing manifolds

Theorem 9.1. The connected sum of two twisted face-pairing manifolds is a twisted
face-pairing manifold.

Proof. Let P be the faceted 3-ball with just two faces which are degenerate pen-
tagons as in Figure 30. Let ε be the face-pairing on P which fixes the edge common
to the two faces, and let mul be the multiplier function for ε indicated in Figure 30.
Figure 31 shows a corridor complex and a corridor complex framed link L for ε and
mul.

Now let P1 and P2 be faceted 3-balls with face-pairings and multiplier functions
which give rise to twisted face-pairing manifolds M1 and M2. We choose one of the
two edges of P in the ε-edge cycle with multiplier m1, and we form a connected
sum P ′1 of P and P1 along this edge and any edge of P1. Next we choose one of the
two edges of P in the ε-edge cycle with multiplier m2. This edge corresponds to an
edge of P ′1. We form a connected sum P ′2 of P ′1 and P2 along this edge and any edge
of P2. Theorem 2.1 easily implies that we obtain a twisted face-pairing manifold
M which is the connected sum of M1, M2, and a manifold which is obtained by
Dehn surgery on a framed link which consists of two simply linked unknots with
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Figure 31. The framed corridor complex link L.

framings 0 and −1. This third connected summand is the 3-sphere. Thus M is the
connected sum of M1 and M2.

This proves Theorem 9.1.

10. SnapPea computations of hyperbolic manifolds with small volume

In this section we give a brief report on our SnapPea [12] computations. We seek
twisted face-pairing manifolds which are hyperbolic and have small volume. For a
working definition of “small volume” we find it convenient to focus on the first 75
manifolds in SnapPea’s census of orientable closed hyperbolic 3-manifolds. In the
introduction of [1] we reported that we had obtained approximately one fourth of
these manifolds as twisted face-pairing manifolds. Now we can realize 36 of these
75 manifolds as twisted face-pairing manifolds.

We have two methods of computation. One method uses a program, pairsnap.c,
which we wrote. It is freely available from http://www.math.vt.edu/people/floyd.
The program pairsnap.c takes as input the data given by a faceted 3-ball with an
orientation-reversing face-pairing and multiplier function and transforms it into a
file suitable for input to SnapPea. So, to compute we first run pairsnap.c and then
we run SnapPea. Our other method of computation uses our Dehn surgery descrip-
tion of twisted face-pairing manifolds. A faceted 3-ball with an orientation-reversing
face-pairing and multiplier function gives rise to a corridor complex link, and Dehn
surgery on this framed link in S3 obtains our twisted face-pairing manifold. So to
compute we draw our link (more likely, a simplification of it) in SnapPea, have Snap-
Pea compute the link complement, and then have SnapPea perform the appropriate
Dehn fillings corresponding to the components of our link. Theorem 6.1 provides
this second method of computation with an advantage over the first method of
computation because where the first method is in effect restricted to inverses of
positive integers, the second method may use arbitrary positive rational numbers.

We illustrate our second method of computation in this paragraph. We begin
with a model faceted 3-ball P which is a tetrahedron. Let e1 and e2 be two disjoint
edges of P . We choose our orientation-reversing model face-pairing ε to fix ei and
interchange the two faces which contain ei for i ∈ {1, 2}. As in Example 7.2 of
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0 0

Figure 32. A corridor complex link L.
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Figure 33. Framing and simplifying L.

[4], we see that the link L in Figure 32 is a corridor complex link for the pair
(P, ε). The two components of L with framing 0 are face components of L, and
the other three components of L are edge components with blackboard framings 0.
Theorem 6.1 implies that Dehn surgery on the left framed link in Figure 33 obtains a
twisted face-pairing manifold, where r, s and t are positive rational numbers. Two
slam-dunks transform the left framed link in Figure 33 to the right one. Hence
Dehn surgery on the Borromean rings yields a twisted face-pairing manifold if the
framings are nonzero rational numbers not of the same sign. Applying SnapPea to
the Borromean rings with such framings, we found 25 twisted face-pairing manifolds
among the first 75 manifolds in SnapPea’s census of orientable closed hyperbolic
3-manifolds.

As stated in the first paragraph of this section, we have found 36 twisted face-
pairing manifolds among the first 75 manifolds in SnapPea’s census of orientable
closed 3-manifolds. The 11 not accounted for in the previous paragraph can be
obtained using the method of the previous paragraph applied to face-pairings on
model faceted 3-balls P such that P is either a tetrahedron, P is gotten from two
tetrahedra by identifying a face of one with a face of the other (P is a hexahedron),
P is an octahedron, or P is a tetrahedron with two disjoint edges bisected (which
makes every face a quadrilateral instead of a triangle).

11. Questions

We conclude with some questions about twisted face-pairing 3-manifolds.
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Question 11.1. Is every closed, connected, orientable 3-manifold a twisted face-
pairing manifold?

It seems unlikely that the answer to this question is yes. In particular, are any
of the following twisted face-pairing manifolds: the 3-torus, the Poincaré homology
3-sphere, the closed hyperbolic 3-manifold of smallest volume in the SnapPea [12]
census, any closed 3-manifold with the geometry of R3 or of H2 ×R? Is there an
effective characterization of twisted face-pairing manifolds?

Question 11.2. Is every twisted face-pairing 3-manifold that comes from a regular
faceted 3-ball irreducible?

This question seems approachable because of the explicit description of the Hee-
gaard diagrams in [4]. A related question is whether every twisted face-pairing
3-manifold that comes from a regular faceted 3-ball has a nontrivial fundamental
group. Question 11.2 is motivated in part by the following fact. Every twisted
face-pairing manifold is a connected sum of finitely many (possibly zero) copies
of S2 × S1 (which is a twisted face-pairing manifold by Example 6.2.1 of [4]) and
finitely many (possibly zero) twisted face-pairing manifolds which arise from regu-
lar faceted 3-balls. The last sentence can be proved using the results of [4], but our
argument is too long to be presented conveniently here.

Question 11.3. Is every twisted face-pairing 3-manifold that comes from an ample
faceted 3-ball hyperbolic?

The twisted face-pairing technique was discovered in a search for an easy combi-
natorial construction for test manifolds for Thurston’s Hyperbolization Conjecture.
By [3], any twisted face-pairing 3-manifold that comes from an ample faceted 3-ball
has a Gromov-hyperbolic fundamental group, and hence is a test manifold for the
Hyperbilization Conjecture.
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