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Abstract. It has been conjectured that if G is a negatively curved discrete group with space
at infinity ∂G the 2-sphere, then G has a properly discontinuous, cocompact, isometric action
on hyperbolic 3-space. Cannon and Swenson reduced the conjecture to determining that
a certain sequence of coverings of ∂G is conformal in the sense of Cannon’s combinatorial
Riemann mapping theorem. In this paper it is proved that, in this setting, the two axioms of
conformality can be replaced by a single axiom which is implied by each of them.

§0. Introduction.

This paper involves the burgeoning field of discrete approximations to complex analysis
and conformal mapping. The purpose is to improve the combinatorial Riemann mapping
theorem of [3] by simplifying its hypotheses and thereby greatly enhancing its applicability.

We recall here the purpose of the combinatorial Riemann mapping theorem by compar-
ing it with the other discrete Riemann mapping theorems.

A two-dimensional planar or spherical domain can be approximated by a sequence of
subdivisions or networks (as used by the finite element method), tilings or shinglings, or
circle packings. The discrete Riemann mapping theorems state that, if the approximations
are sufficiently regular and geometric, then the combinatorial approximations can be used
to approximate not only the domain but also the classical Riemann or uniformization
mappings.

On the other hand, the combinatorial Riemann mapping theorem drops all hypotheses
of geometric regularity, in fact forgets the underlying analytic structure of the domain, and
asks to what extent the combinatorics alone of the approximations are sufficient to deter-
mine an analytic structure on the domain with respect to which the approximations are
nicely geometric approximations. That is, do combinatorics determine analytic structure?
The combinatorial Riemann mapping theorem gives necessary and sufficient conditions for
the existence of an analytic structure on the domain (quasiconformally unique!) compatible
with the combinatorics.
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Appropriately enough the conditions supplying the (quasi) conformal analytic structure
on the domain are discrete analogues of classical conformal invariants, namely combinato-
rial conformal modulus or extremal length.

Why should one be interested in the combinatorial Riemann mapping theorem? After
all, in the classical theory, the underlying analytic structure is always supplied by hypoth-
esis. In response we cite the following important conjecture whose attempted proof has
attracted worldwide effort.

Conjecture. Suppose G is a negatively curved (word hyperbolic) discrete group whose
space at infinity is the 2-sphere. Then G acts properly discontinuously, cocompactly, and
isometrically on hyperbolic 3-space H3.

This conjecture has invited approaches via 3-manifold theory, complex analysis, differ-
ential equations and differential geometry, and geometric and combinatorial group theory.
Our approach, which mixes geometric group theory, hyperbolic geometry, complex vari-
ables, and the geometry of planar tessellations, has reduced the conjecture precisely to the
verification, under appropriate conditions, of the hypotheses of the combinatorial Riemann
mapping theorem. The 2-sphere of the conjecture arrives equipped only with combinato-
rial structure induced by the structure of the group. The difficulty of the conjecture arises
precisely from the problem of finding a compatible analytic structure.

From thence also comes our urgent desire to simplify the hypotheses of the theorem;
we would prefer to verify easy conditions rather than difficult conditions (albeit we can do
neither at present).

We consider the improvements supplied by this paper substantial: (1) we replace two
axioms by one much simpler axiom obviously weaker than either of the two original; (2) we
replace the verification of the two conditions for all of an uncountable set of domains to the
verification of the simpler axioms for a finite number of domains; (3) in another paper [5]
we show that the simpler axiom can actually be verified in a variety of nontrivial situations
provided there is substantial symmetry present (and symmetries, though unfortunately not
of the kind we understand, abound in groups).

Unfortunately our improvement does not come without cost. The original theorem had
proof that was long and hard, and it is not simplified by our work. Rather, the previous
work must be distilled and understood even more completely. But greater understanding
has its benefits as well. In particular, we have had to improve the quadratic area estimate of
the original paper which implies that under our very abstract versions of discrete Riemann
mapping the image domain has curvature close to zero, is combinatorially quite flat. Also,
we have had to come to grips with the very geometric nature of the classical estimates of
conformal modulus; we have found this insight to be enlightening. In summary, we hope
that the reader will not find himself or herself without reward.

We now review some definitions and outline the paper. A shingling of a topological
surfaceX is a locally finite cover ofX by compact, connected sets, called shingles. IfX is a
surface and S is a shingling of X, a weight function on S is a nonzero function ρ : S → R
such that ρ(s) ≥ 0 for all s ∈ S. Suppose S is a shingling of a surfaceX, and thatR is a ring
in X. If ρ is a weight function on S, then the area A(R, ρ) =

∑
s∈S:s∩R6=∅ ρ(s)2 and the

length of a curve α inR is L(α, ρ) =
∑
s∈S:s∩α6=∅ ρ(s). The heightH(R, ρ) = inf{L(α, ρ) :
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α is a curve joining the ends of R} and the circumference C(R, ρ) = inf{L(α, ρ) : α
is a simple closed curve separating the ends of R}. The combinatorial moduli are

M(R,S) = supρ{
H(R,ρ)2

A(R,ρ) } and m(R,S) = infρ{ A(R,ρ)
C(R,ρ)2 }.

Suppose we are given a surface X, a subset A ⊆ X, and a neighborhood N of A in X.
We say that a ring R in N \A surrounds A if one of the connected components of N \R
is an open disk D such that ∂D is one of the ends of R and D contains A. If x ∈ N and
R surrounds {x}, we say that R surrounds x.

Now suppose that {Si}∞i=1 is a sequence of shinglings of a topological surface X with
mesh locally approaching zero. Let Y be an open subsurface ofX. The sequence {Si}∞i=1 is
conformal (K) in Y if there is a positive real numberK satisfying the following conditions.

Axiom I. For each ring R in Y , there exists r > 0 such that m(R,Si),M(R,Si) ∈
[r,Kr] for sufficiently large i.

Axiom II. Given x ∈ Y , a neighborhood N of x, and an integer J , there is a ring R
in N surrounding x such that m(R,Si),M(R,Si) > J for sufficiently large i.

When Y = X we say that {Si}∞i=1 is conformal (K) or conformal. The combinatorial
Riemann mapping theorem states that if {Si}∞i=1 is a conformal sequence of shinglings of a
topological surface X, then there is an analytic structure onX such that the analytic mod-
uli of rings in X are within a global multiplicative bound of the asymptotic combinatorial
moduli.

Our replacement for these two axioms is the following weak condition, which is implied
by Axiom I or Axiom II.

Axiom 0. Given x ∈ Y and a neighborhood N of x, there is a ring R in N
surrounding x such that the moduli m(R,Si) are bounded away from 0.

This paper depends heavily on arguments and techniques from [3]. In Section 1 we prove
some preliminary results about moduli for a fixed shingling. In Section 2 we discuss how
to adapt arguments in Sections 3, 4.1, and 4.2 of [3] so that they do not assume Axiom
I. In Sections 3-6 we assume that X is a ring or quadrilateral in a topological surface,
S1,S2,S3, . . . are finite shinglings of a neighborhood of X with mesh locally approaching
0 which satisfy Axiom II, and ρ1, ρ2, ρ3, . . . are (fat flow) optimal weight functions for
S1,S2,S3, . . . with A(X, ρi) = 1 for all i. The separation theorem is proved in Section 3:
if A and B are disjoint compact subsets of X, then lim inf{di(A,B)} > 0. This is used
in Section 4 to prove that if R is a ring in the interior of X, then the moduli m(R,Si)
are bounded above and the moduli M(R,Si) are bounded from 0. Two theorems are
proved in Section 5 about a ring R in X with inner boundary component R0 and outer
boundary componentR1, a point p withinR0, a sufficiently large integer i, and the numbers
r0i = max{di(p, x) : x ∈ R0} and r1i = max{r0i,min{di(p, x) : x ∈ R1}}: the logarithmic
modulus estimates, which estimate the moduli of R in terms of log(r1i/r0i); and the
buffered ring theorem, which estimates r1i/r0i in terms of the moduli of a nested triple of
rings with R in the middle. In Section 6 we give, for sufficiently large i, a lower bound
for the area A(D, ρi) of a disk D in X as a quadratic polynomial in the di-radius of D
from a point p ∈ D. The sufficiently rich theorem is proved in Section 7; this states that
a sequence of shinglings with mesh locally approaching 0 is conformal if it satisfies Axiom
II and there is a sufficiently rich family of buffered rings with controlled moduli. Finally,
in Section 8 we prove the main result, Theorem 8.2, which gives the equivalence of Axiom



4 J. W. CANNON, W. J. FLOYD, AND W. R. PARRY

0 to Axioms I and II in an appropriate setting.
The hypothesis that G is a negatively curved group whose space at infinity is a 2-sphere

is not used until Section 8, where it is used for a finiteness statement. Since the first seven
sections do not use this hypothesis, they are applicable in other settings. In [5, Section 5],
a parallel argument to that of Section 8 is given to prove an analogue of Theorem 8.2 for
a bounded valence finite subdivision rule with mesh approaching 0.

§1. Results for one shingling.
In this section we prove some preliminary results about the moduli of a ring with respect

to a single shingling. Let R be a ring in a topological surface, and let S be a finite shingling
of a neighborhood of R. As in Section 2.4.1 of [4], there are four moduli to consider: the fat
flow modulus Mf (R, S), the fat cut modulus mf (R, S), the skinny flow modulus Ms(R, S),
and the skinny cut modulus ms(R, S). In this terminology, flows are paths that join the
ends of R and cuts are closed curves that separate the ends ofR. The terms fat and skinny
desribe how length is measured. The fat length of a path, which is the length defined in the
introduction, is the sum of the weights of all of the shingles that intersect the path. The fat
flow modulus Mf (R, S) = M(R, S) and the fat cut modulus mf (R, S) = m(R, S). The
skinny flow modulus, Ms(R, S), is also a supremum of (height)2/area, where (roughly
speaking) the skinny height of a path is the sum of the weights of a minimal set of shingles
whose union contains the path. (The technical definition, which is in Section 2.4.1 of [4],
is a modification of this.) The skinny cut modulus, which we will not use in this paper, is
defined similarly. A significant difference between the present situation and that of [4] is
that in [4] every shingle is contained in R but here shingles need not be contained in R.

Proposition 1.1. Let R′ be a ring contained in R which separates the ends of R. Then

mf (R′, S) ≤ mf (R, S) and Mf (R′, S) ≤Mf (R, S).

Proof. Let ρ be an optimal weight function on S relative to fat cuts for R. Then

A(R′, ρ) ≤ A(R, ρ) and C(R′, ρ) ≥ C(R, ρ).

Thus

mf (R′, S) ≤ A(R′, ρ)

C(R′, ρ)2
≤ A(R, ρ)

C(R, ρ)2
= mf (R, S).

This proves the first inequality of Proposition 1.1.
Now let ρ be an optimal weight function on S relative to fat flows for R′. Then

H(R′, ρ) ≤ H(R, ρ) and A(R′, ρ) = A(R, ρ).

Thus

Mf (R′, S) =
H(R′, ρ)2

A(R′, ρ)
≤ H(R, ρ)2

A(R, ρ)
≤Mf (R, S).

This completes the proof of Proposition 1.1. �
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Theorem 1.2. Let ρ be a fat flow optimal weight function on S for R. Then

A(R, ρ) ≤ H(R, ρ)C(R, ρ).

Proof. The results of Section 2.3 of [4] hold in the present situation. Thus there exist paths
α1, . . . , αk in R joining the ends of R which in the language of Section 2.4 of [4] are the
underlying paths of a fundamental family of fat flows for R relative to S. In other words,
there exists a fat flow optimal weight function σ on S for R such that if s is a shingle in
S, then σ(s) is the number of paths α1, . . . , αk that meet s. Line 2.3.4 of [4] shows that

(1.3) A(R, σ) = kH(R, σ).

Now let β be a simple closed curve in R which separates the ends of R. Then β meets
each of the paths α1, . . . , αk. It easily follows that the σ-length of β is at least k. Hence
C(R, σ) ≥ k. Combining this with line 1.3 gives that

A(R, σ) ≤ H(R, σ)C(R, σ).

This proves Theorem 1.2 because σ is a scalar multiple of ρ. �
Corollary 1.4. Let ρ be a fat flow optimal weight function on S for R with A(R, ρ) = 1.
Then

mf (R, S) ≤ 1

C(R, ρ)2
≤Mf (R, S).

Proof. The first inequality is clear, and the second inequality follows easily from Theorem
1.2. �
Theorem 1.5.

mf (R, S) = Ms(R, S).

Proof. The theorem can be proved by verifying that the results of Section 2.4.3 of [4] hold
in the present situation. �

Let K be a positive integer. We say that a collection C of subsets of some set has
bounded valence (K) if every element of C meets at most K elements of C.
Theorem 1.6 (Bounded Valence Theorem). Suppose that K is a positive integer
such that S has bounded valence (K). Then

Mf (R, S) ≤ K2mf (R, S).

Proof. For the proof of Theorem 1.6 we use the notation of Section 2.4.1 of [4].
Given a shingle s in S, let σ(s) be the set of all shingles in S which meet s. Let w be

an optimal weight function on S for fat flows of R. Let w′ be the weight function on S
such that if s ∈ S, then w′(s) =

∑
t∈σ(s)

w(t).
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In this paragraph we prove that Hw,f ≤ Hw′,s. For this let f be a minimal skinny flow
for w′. Let F = ∪s∈fs, and let C = ∪{s ∈ S : s∩F = ∅}. Then F is a compact connected
set which joins the ends of R, and F is disjoint from the compact set C. It easily follows
that there exists a connected open set U joining the ends of R which is disjoint from C.
From this it follows that there exists a path α in R \C joining the ends of R. Since every
shingle which meets α lies in ∪{s ∈ S : s ∩ F 6= ∅}, the w-length of α is at most the
w′-length of f . This proves that Hw,f ≤ Hw′,s.

In this paragraph we estimate Aw′ . Given s ∈ S, w′(s) =
∑

t∈σ(s)

w(t). Since |σ(s)| ≤ K,

the Cauchy-Schwarz inequality implies that w′(s)2 ≤ K
∑

t∈σ(s)

w(t)2. Hence

Aw′ =
∑
s∈S

w′(s)2 ≤ K
∑
s∈S

∑
t∈σ(s)

w(t)2 = K
∑
t∈S

∑
s∈σ(t)

w(t)2 ≤ K2
∑
t∈S

w(t)2 = K2Aw.

Thus

Mf =
H2
w,f

Aw
≤
K2H2

w′,s

Aw′
≤ K2Ms.

Since Theorem 1.5 states that mf = Ms, it follows that Mf ≤ K2mf .
This proves Theorem 1.6. �

Theorem 1.7 (Layer Theorem). Let R1, . . . , Rn be rings contained inR which separate
the ends of R, and suppose that every shingle in S meets at most one Ri. Then M(R, S) ≥∑n
i=1M(Ri, S).

Proof. For each i ∈ {1, . . . , n}, let ρi be an an optimal weight function on S relative to fat
flows for Ri. Define a weight function ρ on S by ρ(s) = 0 if s∩Ri = ∅ for all i ∈ {1, . . . , n}
and ρ(s) = H(Ri,ρi)

A(Ri,ρi)
ρi(s) if s ∩Ri 6= ∅. Then

H(R, ρ) ≥
n∑
i=1

H(Ri, ρi)

A(Ri, ρi)
H(Ri, ρi) =

n∑
i=1

M(Ri, ρi).

Similarly

A(R, ρ) =

n∑
i=1

(
H(Ri, ρi)

A(Ri, ρi)

)2

A(Ri, ρi) =

n∑
i=1

M(Ri, ρi).

Thus

M(R, S) ≥M(R, ρ) =
H2(R, ρ)

A(R, ρ)
≥

n∑
i=1

M(Ri, ρi) =
n∑
i=1

M(Ri, S).

This proves Theorem 1.7. �
§2. Groundwork for sequences of shinglings.

In this section we examine the results we wish to apply from [3]. Since we will not be
using them with the hypotheses from [3], we need to examine the proofs to see how to
adapt them to fit our situation.
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2.1. Assumptions.
Let X be a quadrilateral or ring in a topological surface. Let S1, S2, S3, . . . be a sequence

of finite shinglings of some neighborhood of X with fat flow optimal weight functions
ρ1, ρ2, ρ3, . . . for X normalized so that the area of X is 1. As for all optimal weight
functions, if s ∈ Si and s ∩X = ∅, then ρi(s) = 0 for every positive integer i. We do not
assume that shingles either miss X or are contained in X. We assume that the meshes of
S1, S2, S3, . . . approach 0. Our main assumption is that Axiom II is satisfied for all points
in X.

2.2. Discussion of assumptions and certain results in [3].
We wish to apply most of the results proved in [3] from Proposition 3.3 through Section

4.2. There are three difficulties involved in doing this. First of all there is a ring R which
appears throughout this passage of [3]. We wish to replace R by X, which is either a ring
or a quadrilateral. The second difficulty is that we must ensure that the results which we
apply from [3] do not require any applications of Axiom I. The third difficulty concerns
what we call the conditioning assumption, which we discuss in the next paragraph.

Proposition 3.3 of [3] holds in the present situation. As after Proposition 3.3 in [3] we
might therefore assume after passing to a subsequence that the following conditions are
satisfied. For each x ∈ X and for each positive integer i, there exists a ring R(x, i) of metric
diameter less than 1/i surrounding x having the following property. If j ≥ i, then R(x, i)
misses star2(x, Sj) and there is a proper disk neighborhoodD = D(x, i, j) ofX∩star2(x, Sj)
whose frontier FrD lies inR(x, i) and has length Lj(FrD) < 1/i. We call this assumption on
S1, S2, S3, . . . the conditioning assumption. The conditioning assumption is convenient
for [3], but it is inconvenient here for the following reason. We wish to eventually prove after
making more assumptions that S1, S2, S3, . . . is conformal. For this it does not suffice to
prove that a subsequence ofS1, S2, S3, . . . is conformal. We therefore avoid the conditioning
assumption. Instead of making the conditioning assumption, we use an index function,
which is defined as follows. There exists a strictly increasing function ι : Z+ → Z+,
where Z+ is the set of positive integers, called an index function, satisfying the following
conditions. For each x ∈ X and for each positive integer I, there exists a ring R(x, I) of
metric diameter less than 1/I surrounding x having the following property. If i ≥ ι(I),
then R(x, I) misses star2(x, Si) and there is a proper disk neighborhood D = D(x, I, i) of
X ∩ star2(x, Si) whose frontier FrD lies in R(x, I) and has length Li(FrD) < 1/I. We fix
such an index function ι. Given a positive integer i ≥ ι(1), we define i-approximations in
the present situation as follows. Let I be the largest positive integer such that i ≥ ι(I).
Then an i-approximation to a point x ∈ X is a proper disk D(x) of X of metric diameter
less than 1/I such that X ∩ star2(x, Si) ⊆ R IntD(x) and Li(FrD(x)) < 1/I. For positive
integers i < ι(1) we define i-approximations in the same way, taking I = 0, so that the
conditions which involve 1/I are vacuous. Using these i-approximations, we define the
distance function di as before for every positive integer i. We use ι to reformulate results
of [3] so that they apply to the original sequence S1, S2, S3, . . . and not just to subsequences
which satisfy the conditioning assumption. For example, we reformulate Proposition 3.4 of
[3] as follows. Suppose given positive integers I and i with i ≥ ι(I). Then for each x ∈ X,
di(x, x) < 1/I. For each x, y, z ∈ X,

di(x, z) ≤ di(x, y) + di(y, z) + 2/I.
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Thus the reader must examine [3] from immediately after Proposition 3.3 to the end of
Section 4.2 focusing on the following three things: i) occurrences of R, ii) applications of
Axiom I, and iii) the index i. We next discuss this examination in greater detail. We begin
by stating that although Proposition 4.0.3 is stated in this passage of [3], it is not proved
in this passage, and is not under consideration here. The reader must verify that the ring
R which appears in this passage of [3] can be replaced by X, which is either a ring or a
quadrilateral. Almost the only change required by this generalization is that in Proposition
4.2.7 both E(r) and the curve C should separate the ends of X. We denote the ends of X
by X0 and X1. The reader must verify that the following describes all of the applications
of Axiom I in this passage. With exactly one exception, the applications of Axiom I in
this passage deal with the uniform boundedness of the distance functions d1, d2, d3, . . . .
Proposition 4.1.1 is the most basic of these results; it is used by Proposition 4.1.4, which
is used by Proposition 4.0.2, hence by the corollary to Proposition 4.0.2, and this corollary
is used by Theorem 4.0.1. We will not apply any of these results of [3]. We will also
not apply Proposition 4.1.7, which is used in the proof of Theorem 4.0.2. The exceptional
application of Axiom I is used to prove the quadratic area estimate. This application occurs
indirectly in the paragraph before Proposition 4.2.12, where it is assumed that 6/i < Hi.
This assumption follows from lim inf{Hi} > 0, which is a consequence of Axiom I. In the
next paragraph we show how to prove the quadratic area estimate without Axiom I, so
that we will be able to apply the quadratic area estimate in the present situation. Finally,
we turn to the index i. We are considering the results in [3] after Proposition 3.3 to the
end of Section 4.2 other than those already ruled out: Proposition 4.1.1, Proposition 4.1.4,
Proposition 4.1.7, Proposition 4.0.2 and its corollary, Theorem 4.0.1 and Proposition 4.0.3.
The reader must verify that with but one exception all relevant results in this passage of
[3] can be reformulated using the index function ι as at the end of the previous paragraph.
The exceptional case here is the same as the exceptional case for applications of Axiom
I; namely, it involves the restriction 6/i < Hi made in the paragraph before Proposition
4.2.12 in [3]. In the next paragraph we show how to prove the quadratic area estimate
without Axiom I so that it holds for the original sequence of shinglings and not just for a
subsequence.

In this paragraph we modify the proof of the quadratic area estimate in [3] to obtain a
proof which does not use Axiom I and which holds for the original sequence of shinglings,
not just for a subsequence. Our modification centers on the definition of the setB made
immediately before Proposition 4.2.8. Keep in mind that estimates in [3] involving the
index i generally become estimates involving I, where i ≥ ι(I). If 6/I < Hi, then we use
the definition of B in [3]. If 6/I ≥ Hi, then we define B to be simply X\(X0 ∪ X1). In
doing this we in effect separate the proof of the quadratic area estimate into two cases.
In the first case 6/I < Hi, and this case is proved in [3]. We now consider the second
case, in which 6/I ≥ Hi. We must examine the proof of the quadratic area estimate
beginning with Proposition 4.2.8. The assumptions made on I (i in [3]) after Proposition
4.2.11 other than 6/I < Hi imply that 7/I ≤ r. Since 6/I ≥ Hi and 7/I ≤ r, we have
r ≥ Hi + 1/I. Combining Propositions 4.1.2 and 4.1.3 of [3], which have already been
verified to hold in the present situation, it easily follows that there exists a ρi-minimal
arc α joining the ends of X and a path β in X joining α to some i-approximation to x
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with Li(β) < 1/I. Since Li(α ∪ β) ≤ Li(α) + Li(β) ≤ Hi + 1/I ≤ r, it easily follows that
α ⊆ D(r), and so D(r) contains an arc joining the ends of X. This result corresponds to
the corollary to Proposition 4.2.9 of [3]. The proof of Proposition 4.2.10 of [3] is now valid
when 6/I ≥ Hi. Proposition 4.2.11 of [3] holds with 4/i replaced by 4/I when 6/I ≥ Hi.
We next consider Proposition 4.2.12 of [3]. To prove this when 6/I ≥ Hi, first note that α
meets star(X \D(5r)) and we may assume that α meets star(D(r)). Hence α contains an
open arc β irreducibly joining star(X \D(5r)) and star(D(r)). It follows that

Li(β) + r + 1/I ≥ 5r,

and so
Li(α \ star(D(r))) ≥ Li(β) ≥ 4r − 1/I ≥ r ≥ Hi.

This proves Proposition 4.2.12 when 6/I ≥ Hi. The rest of the proof of the quadratic area
estimate in [3] holds when 6/I ≥ Hi with i replaced by I in a few places. This proves
that the quadratic area estimate holds without Axiom I and that it holds for the original
sequence of shinglings, not just for a subsequence.

§3. The separation theorem.
The purpose of Section 4.3 of [3] is to prove that the limit pseudometric is a metric; that

is, that the distance between distinct points is positive. In this section we prove essentially
the same result without using Axiom I. The assumptions of Section 2.1 remain in effect.

Theorem 3.1 (Separation Theorem). If A and B are disjoint compact subsets of X,
then lim inf{di(A,B)} > 0.

Proof. The proof proceeds by contradiction: letA and B be disjoint compact subsets ofX
with lim inf{di(A,B)} = 0. By passing to a subsequence of S1, S2, S3, . . . we may assume
that there exists a convergent sequence {ai} in A and a convergent sequence {bi} in B such
that lim di(ai, bi) = 0.

In this paragraph we prove that by again passing to a subsequence of S1, S2, S3, . . .
we may assume the following. There exist convergent sequences {pi}, {p′i} and {qi}
in X with limi→∞ pi 6= limi→∞ qi, limi→∞ p′i 6= limi→∞ qi, lim inf{di(pi, qi)} = 0, and
lim inf{di(p′i, qi)} > 0. To begin the proof of this, let K(2) be the constant in the qua-
dratic area estimate. Let r be a real number such that 0 < r < K(2)−1/2. For every
positive integer i let

D(ai, r, i) = {t ∈ X : di(ai, t) ≤ r}.

Then the quadratic area estimate states that

A(D(ai, r, i), ρi) ≤ K(2)r2 < 1

for every sufficiently large positive integer i. Hence for every sufficiently large positive
integer i, D(ai, r, i) 6= X, and so there exists a point p′i ∈ X with di(ai, p

′
i) > r. By

passing to a subsequence of S1, S2, S3, . . . we may assume that there exists such a point p′i
for every positive integer i and that the sequence {p′i} converges. If limi→∞ p

′
i = limi→∞ ai,

then let pi = ai and let qi = bi for every positive integer i. If limi→∞ p′i 6= limi→∞ ai,
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then let pi = bi and qi = ai for every positive integer i. In either case {pi}, {p′i} and
{qi} are convergent sequences in X with limi→∞ pi 6= limi→∞ qi, limi→∞ p

′
i 6= limi→∞ qi,

lim inf{di(pi, qi)} = 0 and lim inf{di(p′i, qi)} > 0.
In this paragraph we prove that by again passing to a subsequence of S1, S2, S3, . . .

we may assume the following. See Figure 1. There exist i) distinct points x, y ∈ X, ii)
proper disk neighborhoods D ⊆ D′ of x in X \ {y}, iii) a ring R as in Axiom II (with
lim inf{m(R, Si)} > 0) separating D from y such that R ∩ X ⊆ D′, iv) a sequence {xi}
in the relative interior of D converging to x and a sequence {yi} in X\D′ converging to y
such that limdi(xi, yi) = 0, and v) a sequence {x′i} in the relative interior of D converging
to a point x′ in the relative interior of D such that lim inf{di(xi, x′i)} > 0. To begin
the proof of this, let yi = qi for every positive integer i, and let y = limi→∞ yi. Now
cover X\{y} by relative interiors of proper disks D which are separated from y by rings
R as in Axiom II such that R ∩ X is contained in a proper disk neighborhood D′ of D
in X\{y}. Because X\{y} is connected, the results of the previous paragraph imply that
there exists such a triple (D,R,D′) such that the relative interior of D contains points x
and x′ (possibly equal) and sequences {xi} converging to x and {x′i} converging to x′ such
that lim inf{di(xi, yi)} = 0 and lim inf{di(x′i, yi)} > 0. By passing to a subsequence of
S1, S2, S3, . . . , we may assume that limdi(xi, yi) = 0, lim inf{di(xi, x′i)} > 0, and yi /∈ D′
for every positive integer i. This achieves the assumptions stated at the beginning of this
paragraph.

D'

R

D

xx

x'

x 'i

y

y
y

y

R

D'

a) b)

D

x'x 'i

x
x i

i

i

i

Figure 1. The proper disks D, D′, and the ring R.

We again pass to a subsequence of S1, S2, S3, . . . to not only maintain the assumptions of
the previous paragraph but to also achieve the conditioning assumption. We shall obtain a
contradiction to the assumption that lim inf{m(R, Si)} > 0. We need the following lemma,
which is essentially the lemma in the proof of Proposition 4.0.3 in [3].

Lemma 3.2. Let ε be a positive real number such that lim inf{di(xi, x′i)} > 4ε, and let δ
be any positive real number. Then the following holds for every sufficiently large positive
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integer i. If J is any simple closed curve in R separating the ends of R, then J contains a
point at di-distance greater than ε from xi and a point at di-distance less than δ from xi.

Proof. We choose i so large that every i-approximation to xi lies inD, every i-approximation
to x′i lies in D, every i-approximation to yi lies in X\D′, di(xi, x′i) > 4ε, di(xi, yi) < δ,
1/i < δ, and 9/i < ε. We furthermore choose i so large that no i-approximation contains
the frontier of a proper disk containing D and no i-approximation meets both sides of X
when X is a quadrilateral.

By Propositions 4.1.2 and 4.1.3 of [3], there exist an i-approximation D(x′i) to x′i, an
Li-minimal path α joining the ends of X, and a path β with Li(β) < 1/i joining FrD(x′i)
and α.

Let J be any simple closed curve in R separating the ends of R. Let J ′ be an arc
or simple closed curve in J which is the frontier of a proper disk E containing xi and
missing yi. See Figure 2. Since J ′ separates every i-approximation to xi from every
i-approximation to yi and 1/i < δ, J ′ has a point at di-distance less than δ from xi.

y

a) b)

E

x 'i

x i

i

z 0

z1

β

J'=Jy

E

x 'i

w

i

i

z0

z1

β

J'

α0

X0
X0

α
α

D(x ')

D(x ')

x

i

i

α0

Figure 2. The proper disk E.

We complete the proof of Lemma 3.2 by assuming that every point of J ′ is at di-distance
at most ε from xi and obtaining a contradiction. We may assume that E misses X1. If
E meets X0, then let w be a point in J ′ ∩X0. Because no i-approximation contains the
frontier of a proper disk containing D, J ′ meets the frontier of every i-approximation to
w. Let D(w) be an i-approximation to w, let z0 ∈ J ′ ∩ FrD(w), and let α0 be an arc in
FrD(w) irreducible from z0 to X0. If E misses X0, then let α0 be an arc in α∪β irreducible
from X0 to E and let z0 = α0 ∩ E. Let α1 be an arc in α ∪ β irreducible from X1 to E
and let z1 = α1 ∩ E. If FrD(x′i) ∪ β meets star(J ′), then let α2 = ∅. Otherwise, let α2 be
irreducible in α from FrD(x′i) ∪ β to star(J ′), α2 half open with its missing endpoint in
star(J ′). Then

Li(α0 ∪ α1) + Li(α2) < Li(α ∪ β) + 1/i < H(X, ρi) + 2/i
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and

H(X, ρi) < Li(α0 ∪ α1) + di(xi, z0) + di(xi, z1) + 4/i.

Hence

Li(α2) < di(xi, z0) + di(xi, z1) + 6/i ≤ 2ε+ 6/i.

But there exists a point z ∈ J ′ such that di(z, x
′
i) < Li(α2) + 1/i. Hence

4ε < di(xi, x
′
i) ≤ di(xi, z) + di(z, x

′
i) + 2/i

< ε+ (2ε+ 6/i+ 1/i) + 2/i = 3ε+ 9/i < 4ε,

a contradiction.
This proves Lemma 3.2. �

We next obtain a contradiction to the assumption that lim inf{m(R, Si)} > 0, arguing
as in the proof of Proposition 4.0.3 in [3]. This will complete the proof of Theorem 3.1.
We maintain the notation of Lemma 3.2.

For every nonnegative real number r set

D(r) = {t ∈ X : di(xi, t) ≤ r}.

Let N be a positive integer. For every n ∈ {0, . . . , N} set

Dn = D(ε/en).

For every n ∈ {1, . . . , N} set

Cn = {s ∈ Si : s ∩Dn−1 6= ∅ but s ∩Dn = ∅}.

Put the remaining elements of Si into collection C0. Define a new weight function ρ′i on
Si as follows. If s ∈ C0, then ρ′i(s) = 0, and if s ∈ Cn with n ∈ {1, . . . , N}, then

ρ′i(s) = ρi(s)
en

ε(e− 1)
.

The geometric motivation behind this argument is that the logarithm function trans-
forms an annulus A bounded by two concentric circles into a right circular cylinder. The
weight function ρ′i gives a combinatorial analogue of this; A corresponds to the ring in
Figure 3.a) bounded by ∂D0 and ∂DN .

In this paragraph we obtain a lower bound on the ρ′i-circumference C(R, ρ′i) of R. We
choose the number δ of Lemma 3.2 so that δ = ε/N . Now let i be so large that the
conclusion of Lemma 3.2 holds. Let J be any simple closed curve in R separating the ends
of R. We obtain a lower bound on the ρ′i-length L′i(J) of J . By Lemma 3.2, J contains a
point at di-distance greater than ε from xi and a point at di-distance less than δ = ε/N
from xi. Hence J meets X \D0 and DN . So J contains an open arc αn irreducibly joining
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D0∂

D1∂

Dn-1∂

Dn∂

DN∂

element of Cn

element of C0

p

D0∂

element of Cn

element of C0

D1∂
Dn-1∂

Dn∂
DN∂

b)a)

Figure 3. The disks Dn.

star(X \Dn−1) and star(Dn) for n ∈ {1, . . . , N}. No shingle of Si meets two of these paths
α1, . . . , αN . Hence we get a lower bound on L′i(J) as follows.

L′i(J) ≥ L′i(α1 ∪ . . . ∪ αN ) = L′i(α1) + · · ·+ L′i(αN )

We next estimate L′i(αn) for n ∈ {1, . . . , N}. First,

Li(αn) ≥ ε

en−1
− ε

en
− 2

i
=
ε(e− 1)

en
− 2

i
,

and since every shingle in Si that meets αn lies in Cn,

L′i(αn) = Li(αn)
en

ε(e− 1)
≥ 1− 2en

iε(e− 1)
.

Hence L′i(αn) ≥ 1
2 for every n ∈ {1, . . . , N} and for every sufficiently large positive integer

i. Thus L′i(J) ≥ N
2 for every sufficiently large positive integer i, and so C(R, ρ′i) ≥ N

2 for
every sufficiently large positive integer i.

We estimate the ρ′i-area A(R, ρ′i) of R in this paragraph. Since every shingle in Si of
positive ρ′i-weight meets D0 but not DN ,

A(R, ρ′i) ≤ A(D0, ρ
′
i) ≤

N−1∑
n=0

A(Dn, ρi)

(
en+1

ε(e− 1)

)2

.

The quadratic area estimate gives that

A(R, ρ′i) ≤
N−1∑
n=0

K(2)
( ε
en

)2
(

en+1

ε(e− 1)

)2

=
Ne2K(2)

(e− 1)2

for every sufficiently large positive integer i.
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Thus

m(R, Si) ≤
A(R, ρ′i)

C(R, ρ′i)
2
≤ 4

N2

Ne2K(2)

(e− 1)2
=

4e2K(2)

N(e− 1)2

for every sufficiently large positive integer i. Since N can be taken arbitrarily large, this
contradicts the assumption that lim inf{m(R, Si)} > 0.

This proves Theorem 3.1. �

§4. Separation theorem gives bounds on moduli.
In this section we use the separation theorem to obtain certain bounds on moduli. We

begin with a technical lemma that will be used repeatedly. The assumptions of Section
2.1 remain in effect.

Lemma 4.1. Let R be a ring contained in the interior of X which does not separate the
ends of X. Let R0 denote the inner boundary component ofR, and let R1 denote the outer
boundary component ofR. Suppose that i ≥ ι(I) and I is so large that no i-approximation
contains R0. Let p be a point of X within R0. See Figure 5. For every nonnegative real
number r let

Di(r) = {x ∈ X : di(p, x) ≤ r}.

Set

r0i = max{di(p, x) : x ∈ R0}

and

r1i = max{r0i,min{di(p, x) : x ∈ R1}}.

Let α be a simple closed curve in R that separates the ends of R. Let L denote the
ρi-length Li(α) of α. Then the following hold.

i) α ∩Di(r1i + 1/I) 6= ∅
ii) α ⊆ Di(2L+ 3/I)
iii) r0i ≤ 3L+ 6/I

Proof. To begin the proof of i), choose x ∈ R1 ∩Di(r1i). Let D(x) be an i-approximation
to x, let D(p) be an i-approximation to p and let β be a path in X joining D(x) and D(p)
with Li(β) ≤ r1i. If FrD(x) ∪ β ∪ FrD(p) joins the ends of R, then α meets this set, from
which it easily follows that α ∩Di(r1i + 1/I) 6= ∅, as desired. If FrD(x)∪ β ∪FrD(p) does
not join the ends ofR, then either R1∩FrD(x) = ∅ or R0∩FrD(p) = ∅. If R1∩FrD(x) = ∅,
then R1 ⊆ D(x), and so R ⊆ D(x). But this is impossible because no i-approximation
contains R0. It is likewise impossible that FrD(x) ∪ β ∪ FrD(p) does not join the ends of
R and R0 ∩ FrD(p) = ∅. This proves i).

To prove ii), apply Propositions 4.1.2 and 4.1.3 of [3]: there exists a ρi-minimal path
γ joining the ends of X and a path β in X joining γ to some i-approximation D(p) to p
with Li(β) < 1/I. If α meets β ∪ FrD(p), then it easily follows that α ⊆ Di(L + 1/I),
which gives ii). Thus we may assume that α does not meet β ∪ FrD(p). It follows that
β ∪ FrD(p) lies within α and that α meets γ. Finally apply Proposition 4.1.5 of [3] with
FrD = α: D(p) and α are joined by a path with ρi-length at most L + 3/I. This easily
proves ii).
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To prove iii), maintain β, γ and D(p) as in the proof of ii). Let x ∈ R0. Just as β, γ
and D(p) exist, there also exist a ρi-minimal path γ′ joining the ends of X and a path β′

in X joining γ′ to some i-approximation D(x) to x with Li(β
′) < 1/I. Arguing as in the

previous paragraph proves iii).

This completes the proof of Lemma 4.1. �

The assumptions of Section 2.1 are temporarily not in effect.

Theorem 4.2 (Separation Theorem Gives Bounds On Moduli). Let Y be a topo-
logical surface. Let S1, S2, S3, . . . be a sequence of shinglings of Y with mesh locally
approaching 0 which satisfies Axiom II. Let R be a ring in Y . Then there exists a positive
real number M such that

m(R, Si) ≤M and 1/M ≤M(R, Si)

for every positive integer i.

Proof. We first reduce to the case in which R is contractible in Y . Suppose that Theorem
4.2 is true if R is contractible in Y . To prove the second inequality for a general ring R,
we choose rings R1 and R2 in the interior of R as in Figure 4.a) such that one connected
component of R \ Rj is an open disk Cj for j ∈ {1, 2} and C1 ∪ C2 separates the ends of
R. For every positive integer i and j ∈ {1, 2} let ρij be the optimal weight function on Si
relative to M(Rj, Si), and let ρi = ρi1 +ρi2. If γ is a curve in R which joins the ends of R,
then because C1∪C2 separates the ends ofR, it follows that γ meets C1∪C2. Hence γ joins
the ends of either R1 or R2. Thus for every positive integer i either H(R, ρi) ≥ H(R1, ρi1)
or H(R, ρi) ≥ H(R2, ρi2). The triangle inequality implies that A(R, ρi) ≤ 4 for every
positive integer i. It easily follows that the second inequality of Theorem 4.2 holds for R
with an appropriate choice of M . The first inequality of Theorem 4.2 can be proved for R
by using the normalized fat flow optimal weight function for a ring R1 as in Figure 4.b).
Thus to prove Theorem 4.2 we may assume that R is contractible in Y .

a) b)

R

R1
C1

C2

R2

R

1R

Figure 4. Choosing contractible rings.
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Let X be a quadrilateral in Y which contains R in its interior. Statement iii) of Lemma
4.1 applies in this situation. In the notation of Lemma 4.1, we have that

r0i ≤ 3C(R, ρi) + 6/I

for every sufficiently large positive integer I and i ≥ ι(I). Theorem 3.1, the separation
theorem, easily implies that lim inf{r0i} > 0. Thus there exists a positive real number C
such that C(R, ρi) ≥ C for every sufficiently large positive integer i. But it is clear that
A(R, ρi) ≤ A(X, ρi) = 1. Thus

m(R, Si) ≤
A(R, ρi)

C(R, ρi)2
≤ 1

C2

for every sufficiently large positive integer i. This proves the first inequality in Theorem
4.2.

For the second inequality, note that the separation theorem implies that there exists a
positive real number H such that the di-distance between the boundary components ofR is
at least H for every sufficiently large positive integer i. It easily follows that H(R, ρi) ≥ H
for every sufficiently large positive integer i. Thus

M(R, Si) ≥
H(R, ρi)

2

A(R, ρi)
≥ H2

for every sufficiently large positive integer i.
This proves Theorem 4.2. �

§5. Logarithmic modulus estimates and the buffered ring theorem.
The assumptions of Section 2.1 are again in effect. Let R be a ring contained in the

interior of X which does not separate the ends of X. See Figure 5. Let R0 denote the
inner boundary component of R, and let R1 denote the outer boundary component of R.
Let p be a point of X within R0. For every positive integer i set

r0i = max{di(p, x) : x ∈ R0}

and
r1i = max{r0i,min{di(p, x) : x ∈ R1}}.

r
r

0i
1i

1p R

0R

Figure 5. The ring R.
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Theorem 5.1 (Logarithmic Modulus Estimates). LetK(2) be the constant occurring
in the quadratic area estimate, and let K be a real number such thatK > 9e2K(2). Then
for all sufficiently large positive integers i,

1

K
(log(r1i/r0i)− 1) ≤M(R, Si)

and
m(R, Si) ≤ K(log(r1i/r0i) + 2).

Proof. We work with large positive integers I and i ≥ ι(I). We write r0 and r1 instead
of r0i and r1i, and for every subset Y of X we write star(Y ) instead of star(Y, Si). By
Theorem 3.1, the separation theorem, we may assume that r0 > 0. For every nonnegative
real number r set

D(r) = {x ∈ X : di(p, x) ≤ r}.
For every integer n set

Dn = D(r1/e
n)

and
Cn = {s ∈ Si : s ∩Dn−1 6= ∅ but s ∩Dn = ∅}.

Set
C−∞ = {s ∈ Si : s ∩X = ∅}

and
C∞ = {s ∈ Si : s ∩Dn 6= ∅ for every n ∈ Z}.

Then the sets Cn for n ∈ {−∞}∪Z∪{∞} partition Si. Let N be the nonnegative integer
such that

N ≤ log(r1/r0) and N + 1 > log(r1/r0),

equivalently,
r1/e

N ≥ r0 and r1/e
N+1 < r0.

This argument is like one in Section 3; see Figure 3.
We now aim for the first inequality. This inequality is vacuous for N = 0, so we assume

that N ≥ 1. Define a new weight function ρ′i on Si as follows. If s ∈ Cn with n ≤ 0 or
n ≥ N + 1, then ρ′i(s) = 0, and if s ∈ Cn with 1 ≤ n ≤ N , then

ρ′i(s) = ρi(s)
en

r1(e− 1)
.

We estimate the ρ′i-height H(R, ρ′i) of R in this paragraph. Let α be a path in R that
joins R1 and R0. It follows that α contains an open path α1 irreducibly joining R1 and
star(D1). Moreover, α contains an open path αn irreducibly joining star(X \ Dn−1) and
star(Dn) for n ∈ {2, . . . , N}. No shingle of Si meets two of these paths α1, . . . , αN . Hence
we get a lower bound on the ρ′i-length L′i(α) of α as follows.

L′i(α) ≥ L′i(α1 ∪ · · · ∪ αN ) = L′i(α1) + · · ·+ L′i(αN )
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We next estimate L′i(αn) for n ∈ {1, . . . , N}. First,

Li(αn) ≥ r1

en−1
− r1

en
− 2

I
=
r1(e− 1)

en
− 2

I
,

and since every shingle in Si that meets αn lies in Cn,

L′i(αn) = Li(αn)
en

r1(e− 1)
≥ 1− 2en

Ir1(e− 1)
.

Since r1/e
n ≥ r1/e

N ≥ r0,

L′i(αn) ≥ 1− 2

Ir0(e− 1)
.

The separation theorem implies that r0 is bounded from 0, and so

2

Ir0(e− 1)
≤ 1

2

for every sufficiently large positive integer I. Hence L′i(αn) ≥ 1/2 for such values of I.
Hence H(R, ρ′i) ≥ N/2 for every sufficiently large positive integer i.

We estimate the ρ′i-area A(R, ρ′i) of R in this paragraph. Since every shingle in Si of
positive ρ′i-weight meets D0 but not DN ,

A(R, ρ′i) ≤ A(D0, ρ
′
i) ≤

N−1∑
n=0

A(Dn, ρi)

(
en+1

r1(e− 1)

)2

.

The quadratic area estimate gives that

A(R, ρ′i) ≤
N−1∑
n=0

K(2)
( r1

en

)2
(

en+1

r1(e− 1)

)2

=
Ne2K(2)

(e− 1)2

for every sufficiently large positive integer i.
Thus

M(R, Si) ≥
H(R, ρ′i)

2

A(R, ρ′i)
≥ N2

4

(e− 1)2

Ne2K(2)
≥ (e− 1)2

4e2K(2)
(log(r1/r0)− 1)

for every sufficiently large positive integer i. Since

4e2K(2)

(e− 1)2
≤ 9e2K(2) ≤ K,

it follows that

M(R, Si) ≥
1

K
(log(r1/r0)− 1)
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for every sufficiently large positive integer i. This proves the first inequality of Theorem
5.1.

We now turn to the second inequality. Define another weight function ρ′′i on Si as
follows. If s ∈ Cn with n ≤ −1, then

ρ′′i (s) = 0.

If s ∈ Cn with 0 ≤ n ≤ N , then

ρ′′i (s) = ρi(s)
en

r1(e− 1)
.

If s ∈ Cn with n ≥ N + 1, then

ρ′′i (s) = ρi(s)
eN+1

r1(e− 1)
.

The geometric motivation behind this argument is as follows. The weight function ρ′′i
gives a combinatorial analogue of a conformal map which takes a disk to a can with a
hole in the bottom: DN maps to the top of the can; the ring bounded by ∂D0 and ∂DN
maps to the side of the can; and D−1 \D0 maps to a ring in the bottom of the can with
concentric boundary components. See Figure 6.

D0∂

D1∂

Dn-1∂

Dn∂

DN∂p

element of Cn

element of C0

p

D0∂

element of Cn

element of C0

D1∂
Dn-1∂

Dn∂
DN∂

b)a)

D-1∂

D-1∂

Figure 6. The disks Dn.

We next estimate the ρ′′i -circumference C(R, ρ′′i ) of R. Let α be a simple closed curve
in R that separates the ends of R. Let L denote the ρi-length Li(α) of α. We choose I so
large that no i-approximation contains R0. Let M be the positive real number such that
M2 = e2K(2)/K. Since K > 9e2K(2), it follows that M < 1/3. We will prove that the
ρ′′i -length L′′i (α) of α is at least M/(e− 1) for every sufficiently large positive integer i.

First suppose that α 6⊆ D−1. Then by i) of Lemma 4.1, α contains an open path
α0 irreducibly joining star(X \ D−1) and star(D(r1 + 1/I)). It follows that Li(α0) ≥
r1(e− 1)− 3/I. Since every shingle in Si that meets α0 lies in C0,

L′′i (α) ≥ L′′i (α0) = Li(α0)
1

r1(e− 1)
≥ 1− 3

Ir1(e− 1)
≥ M

e− 1
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for sufficiently large values of I because the separation theorem shows that r1 is bounded
from 0. Thus L′′i (α) ≥M/(e− 1) if α 6⊆ D−1 for every sufficiently large positive integer i.

Now assume that α ⊆ D−1 but α 6⊆ DN . Statement ii) of Lemma 4.1 shows that α ⊆
D(2L+3/I). Since α 6⊆ DN , it follows that r1/e

N < 2L+3/I. Set J = min{2L+3/I, er1}.
Then r1/e

N < J ≤ er1 and α ⊆ D(J). Let n be the integer with −1 ≤ n ≤ N − 1 for
which

r1

en+1
< J ≤ r1

en
,

that is,
en+1

r1
>

1

J
≥ en

r1
.

Then

L′′i (α) ≥ Li(α)
en+1

r1(e− 1)
.

Thus

L′′i (α) ≥ Le
n+1

r1

1

e− 1
≥ L

J(e− 1)
≥ L

(2L+ 3/I)(e− 1)
≥ M

e− 1

for sufficiently large values of I because iii) of Lemma 4.1 and the separation theorem show
that L is bounded from 0. Thus L′′i (α) ≥ M/(e − 1) if α ⊆ D−1 but α 6⊆ DN for every
sufficiently large positive integer i.

It remains to consider the case in which α ⊆ DN . In this case

L′′i (α) = Li(α)
eN+1

r1(e− 1)
=
eN+1

r1

L

e− 1
≥ L

r0(e− 1)
.

Hence iii) of Lemma 4.1 gives that

L′′i (α) ≥ L

(3L+ 6/I)(e− 1)
≥ M

e− 1

for I sufficiently large. This completes the proof that L′′i (α) ≥ M/(e − 1) for every
sufficiently large positive integer i.

Thus C(R, ρ′′i ) ≥M/(e− 1) for every sufficiently large positive integer i.
We next estimate the ρ′′i -area A(R, ρ′′i ) of R as in the proof of the first inequality of

Theorem 5.1.

A(R, ρ′′i ) ≤
N∑

n=−1

A(Dn, ρi)

(
en+1

r1(e− 1)

)2

≤
N∑

n=−1

K(2)
( r1

en

)2
(

en+1

r1(e− 1)

)2

=
e2K(2)(N + 2)

(e− 1)2

Therefore

m(R, Si) ≤
A(R, ρ′′i )

C(R, ρ′′i )2
≤ (e− 1)2

M2

e2K(2)(N + 2)

(e− 1)2
≤ K(log(r1/r0) + 2)

for every sufficiently large positive integer i.
This completes the proof of Theorem 5.1. �
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Theorem 5.2 (Buffered Ring Theorem). Let α1, α2, α3, α4 be four disjoint simple
closed curves in the interior of X such that α4 bounds a disk in X, α3 lies within α4

(relative to the bounded disk), α2 lies within α3, and α1 lies within α2. Let Rij be the
ring whose ends are αi and αj for (i, j) ∈ {(1, 2), (2, 3), (3, 4), (1, 4)}. Let p be a point within
α1. Let rji = max{di(p, x) : x ∈ αj} and rji = min{di(p, x) : x ∈ αj} for j ∈ {1, 2, 3, 4}
and every positive integer i. Let K be a real number as in Theorem 5.1, and let L be a
positive real number. If m(R12, Si) > 2K, m(R34, Si) > 2K and M(R14, Si) ≤ L, then
r3i/r2i ≤ eKL+1 for every sufficiently large positive integer i.

Remark 5.3. In analogy with the terminology of the beginning of Section 7 of [3] we
say that a ring R in C is almost round (M) if there is a pair of concentric disks, one
surrounded by R and the other containing R, such that the ratio of the larger radius to
the smaller radius is bounded by M . In the terminology of the beginning of Section 7, R23

is a buffered ring (L) and Theorem 5.2 states that the buffered ring R23 is almost round
(eKL+1) with respect to di for every sufficiently large positive integer i.

Proof of Theorem 5.2. The following hold for every sufficiently large positive integer i.
Theorem 5.1 easily yields that r1i ≤ r2i and r3i ≤ r4i because

2K < m(R12, Si) ≤ K(log(r2i/r1i) + 2)

and
2K < m(R34, Si) ≤ K(log(r4i/r3i) + 2).

Theorem 5.1 likewise yields that

1

K
(log(r4i/r1i)− 1) ≤M(R14, Si) ≤ L.

Hence r4i/r1i ≤ eKL+1. Since r1i ≤ r2i and r3i ≤ r4i, it follows that r3i/r2i ≤ eKL+1.
This proves Theorem 5.2. �

§6. The quadratic area estimate from below.
The main result in the passage of [3] considered in Section 2.2 is the quadratic area

estimate, which gives upper bounds for certain areas. This estimate states that the area
of a disk of the form D(r) = {x ∈ X : di(p, x) ≤ r} is at most a constant multiple of
r2. Our next result gives lower bounds on similar areas, and the bounds are also constant
multiples of radii squared.

Theorem 6.1 (Quadratic Area Estimate From Below). Let D be a closed disk in
the interior of X, and let p be a point in the interior of D. For every positive integer i let

ri = min{di(p, x) : x ∈ ∂D}.

Suppose that there exists a positive integer K such that Si has bounded valence (K) for
every positive integer i. Then

A(D, ρi) ≥
1

50K
r2
i
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for all sufficiently large positive integers i.

Proof. As in the proof of Theorem 5.1, we work with large positive integers I and i ≥ ι(I),
and for every nonnegative real number r we set

D(r) = {x ∈ X : di(p, x) ≤ r}.

As after Proposition 4.2.5 of [3], we enlarge D(r) slightly by constructing a connected
compact set E(r). The idea behind this construction is to note that the closure of D(r)
is a compact subset of D(r + 1/I) and to cover this closure of D(r) with finitely many
i-approximations. The set E(r) is the union of finitely many i-approximations

D1, D2, D3, . . . , Dk, E1, E2, E3, . . . , Ek

and paths

α1, α2, α3, . . . , αk

such that
i) for every x ∈ D(r) there exists j ∈ {1, . . . , k} such that Dj is an i-approximation to x

and for every j ∈ {1, . . . , k} there exists x ∈ D(r) such that Dj is an i-approximation
to x,

ii) Ej is an i-approximation to p for every j ∈ {1, . . . , k},
iii) if Dj ∩ Ej 6= ∅, then FrDj ∩ FrEj 6= ∅ for every j ∈ {1, . . . , k}, and
iv) αj irreducibly joins FrDj and FrEj and Li(αj) ≤ r + 1/I for every j ∈ {1, . . . , k}.
We assume that ri > 0 since Theorem 6.1 is trivially true if ri = 0. It is then easy to

see that we may assume that i is so large that

E(ri/4) ⊆ D(3ri/4) ⊆ IntD.

Since D(3ri/4) is open, D \ D(3ri/4) is a compact set containing ∂D. Let C be the
connected component ofD\D(3ri/4) which contains ∂D. Then E(ri/4) and C are disjoint
connected compact subsets ofD. Thus there exists a simple closed curveα in D\(E(ri/4)∪
C) that separates E(ri/4) and C. Let R be the ring contained in D whose ends are α and
∂D. We prove Theorem 6.1 by estimating the moduli of R.

We estimate m(R, Si) in this paragraph. According to iii) of Lemma 4.1, if I is suffi-
ciently large, then

max{di(p, x) : x ∈ α} ≤ 3C(R, ρi) + 6/I.

Since

ri/4 ≤ max{di(p, x) : x ∈ α},

we have that

ri/4 ≤ 3C(R, ρi) + 6/I,

and so

C(R, ρi) ≥ ri/12− 2/I
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for every sufficiently large positive integer I. Thus

(6.2) m(R, Si) ≤
A(R, ρi)

C(R, ρi)2
≤ A(D, ρi)

(ri/12− 2/I)2

for every sufficiently large positive integer I.
We estimate M(R, Si) in this paragraph. We begin by estimating H(R, ρi). Let β be

a path in R that joins the ends of R such that Li(β) = H(R, ρi). If di(p, x) > 3ri/4 for
every x ∈ β, then β ⊆ C because β is a connected set which meets ∂D. This is impossible
because α is disjoint from C. Hence there exists x ∈ β such that di(p, x) ≤ 3ri/4. This
easily implies that there exists a path joining an i-approximation to a point in ∂D and an
i-approximation to p with length at most Li(β) + 3ri/4 + 1/I. Hence

Li(β) + 3ri/4 + 1/I ≥ ri,
and so

H(R, ρi) = Li(β) ≥ ri/4− 1/I.

Thus

(6.3)
(ri/4− 1/I)2

A(D, ρi)
≤ H(R, ρi)

2

A(R, ρi)
≤M(R, Si).

Combining lines 6.2, 6.3, and Theorem 1.6, the bounded valence theorem, gives that

(ri/4− 1/I)2

A(D, ρi)
≤ K2 A(D, ρi)

(ri/12− 2/I)2

for every sufficiently large positive integer I. Thus

A(D, ρi) ≥
(ri/4− 1/I)(ri/12− 2/I)

K
≥ 1

50K
r2
i

for I sufficiently large.
This proves Theorem 6.1. �

§7. The sufficiently rich theorem.
The assumptions of Section 2.1 are no longer in effect.
Let X be a topological surface. Let S1, S2, S3, . . . be a sequence of shinglings of X. Let

α1, α2, α3, α4 be four disjoint simple closed curves in the interior ofX such α4 bounds a disk
in X, α3 lies within α4 (relative to the bounded disk), α2 lies within α3, and α1 lies within
α2. Let Rij be the ring whose ends are αi and αj for (i, j) ∈ {(1, 2), (2, 3), (3, 4), (1, 4)}.
Let K(2) be the constant in the quadratic area estimate, let K be a positive integer, and
let L be a positive real number. Suppose that m(R12, Si) > 18e2K(2) and m(R34, Si) >
18e2K(2) for all sufficiently large positive integers i, and suppose that M(R14, Si) ≤ L
for all sufficiently large positive integers i. In this situation we call R23 a buffered ring
(L). We call R12 and R34 boundary rings; R12 is the inner boundary ring and R34

is the outer boundary ring. We call R14 the ring spanning R12 and R34 or simply the
spanning ring. Let Y be a subsurface ofX. A bounded valence (K) buffered ring cover
(L) of Y is a bounded valence (K) locally finite cover of Y by closed disks {Dα : α ∈ A}
contained in X such that each Dα contains a closed disk Eα for which Dα \ IntEα is a
buffered ring (L) and Eα ∩ Eβ = ∅ if α, β ∈ A and α 6= β. We say that the spanning
ring mesh of a buffered ring cover is at most ε if every disk in the cover has a spanning
ring with metric diameter at most ε.
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Theorem 7.1 (Sufficiently Rich Theorem). Let X be a topological surface, and let
Y be an open subsurface of X. Let S1, S2, S3, . . . be a sequence of shinglings of X with
mesh locally approaching 0 which satisfies Axiom II in Y . Suppose that there exists a
positive integer K and a positive real number L such that Si has bounded valence (K) for
every positive integer i and for every positive real number ε there exists a bounded valence
(K) buffered ring cover (L) of Y with spanning ring mesh at most ε. Then the sequence
S1, S2, S3, . . . is conformal (M) in Y , where M is a positive real number that depends only
on K and L.

Proof. What must be proved is that the sequence S1, S2, S3, . . . satisfies Axiom I in Y .
For this let R be a ring in Y . We prove Theorem 7.1 by estimating the moduli m(R, Si)
and M(R, Si) of R.

We begin by enlarging R slightly to obtain a ring R′ as follows. Let δ be a positive
real number. We will put successively stronger restrictions on δ, making δ closer to 0. Let
R0 and R1 denote the ends of R. Using Axiom II we cover R0 ∪ R1 with finitely many
open disks D′′1 , . . . , D

′′
k in Y such that for every j ∈ {1, . . . , k} we have that i) D′′j is a

connected component of the complement of a ring R′′j in Y with m(R′′j , Si) > 1/δ2 for
all sufficiently large positive integers i, ii) D′′j contains neither R0 nor R1, and iii) either
R′′j ∩ R0 = ∅ or R′′j ∩R1 = ∅. Now let R′ be a ring in Y containing R in its interior such

that R separates the ends of R′ and if one of the ends R0 or R1 of R meets a disk D′′j ,
then the corresponding end R′0 or R′1 of R′ also meets D′′j . Let ρ1, ρ2, ρ3, . . . be fat flow
optimal weight functions for R′ on S1, S2, S3, . . . normalized so that the area of R′ is 1.

Having constructed the ring R′, we prove two lemmas which compare R and R′.

Lemma 7.2. The following holds for all positive integers I and i ≥ ι(I). Given x ∈ R0

there exists y ∈ R′0 such that di(x, y) ≤ 2δ + 3/I, and given x ∈ R1 there exists y ∈ R′1
such that di(x, y) ≤ 2δ + 3/I.

Proof. We fix positive integers I and i ≥ ι(I). Let x ∈ R0. Let D′′j be an open disk in the
above cover of R0∪R1 which contains x. It is not difficult to see using the proof of Propo-
sition 3.3 of [3] that from R′′j it is possible to construct an R′-proper disk neighborhood
D of x such that FrD ∩R′0 6= ∅ and Li(FrD) < δ. Now apply Propositions 4.1.2 and 4.1.3
of [3]: there exist a ρi-minimal path α joining the ends of R′ and a path β in R′ joining
α and some i-approximation D(x) to x with Li(β) < 1/I. Proposition 4.1.5 of [3] shows
that Li(α∩D) < δ+ 2/I. Hence β ∪ (α∩D)∪FrD contains a path which joins D(x) and
R′0 with ρi-length at most 1/I + δ + 2/I + δ. This proves Lemma 7.2 if x ∈ R0.

The same argument proves Lemma 7.2 if x ∈ R1, and so the proof of Lemma 7.2 is
complete. �
Lemma 7.3. If δ is sufficiently small, then

M(R′, Si) ≤ 4M(R, Si)

for every sufficiently large positive integer i.

Proof. Let i and I be positive integers with i ≥ ι(I). Let α be a ρi-minimal path for R
joining the ends of R. From Lemma 7.2 it easily follows that α can be modified slightly to
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obtain a path β in R′ joining the ends of R′ such that

Li(β) ≤ Li(α) + 4δ + 10/I.

Hence

(7.4) H(R′, ρi) ≤ H(R, ρi) + 4δ + 10/I.

On the other hand there exists a positive real number M independent of i such that

(7.5) M ≤M(R, Si) ≤M(R′, Si) = H(R′, ρi)
2,

where the first inequality comes from the separation theorem bounds on moduli given in
Theorem 4.2 and the second inequality comes from Proposition 1.1. Lines 7.4 and 7.5 show
that if δ is sufficiently small, then

(7.6) H(R, ρi) + 4δ + 10/I ≤ 2H(R, ρi)

for every sufficiently large positive integer I. Lines 7.4 and 7.6 yield that

H(R′, ρi) ≤ 2H(R, ρi)

for every sufficiently small positive real number δ and every sufficiently large positive
integer i. Thus

M(R′, Si) = H(R′, ρi)
2 ≤ 4H(R, ρi)

2 ≤ 4
H(R, ρi)

2

A(R, ρi)
≤ 4M(R, Si)

for every sufficiently small positive real number δ and every sufficiently large positive
integer i.

This proves Lemma 7.3. �
We henceforth assume that δ is so small that the inequality of Lemma 7.3 holds.
We next choose disks in the manner of the second paragraph of the proof of Theorem

7.1, except that the current disks cover R instead of R0 ∪ R1 and their rings lie in R′.
This time we use the positive real number λ for the parameter in the construction of the
disks, where before we used δ. In other words we cover R with finitely many open disks
D′′′1 , . . . , D

′′′
m contained in R′ such that for every j ∈ {1, . . . ,m} we have that D′′′j is a

connected component of the complement of a ring R′′′j in R′ with m(R′′′j , Si) > 1/λ2 for
all sufficiently large positive integers i.

By the hypotheses on buffered ring covers of Y and the Lebesgue covering lemma, it
easily follows that there exists a finite bounded valence (K) buffered ring cover (L) of R
by closed disks D1, . . . , Dn such that for every j ∈ {1, . . . , n} the spanning ring of Dj lies
in one of the disks D′′′1 , . . . , D

′′′
m, hence the spanning ring of Dj lies in the interior of R′

and Dj lies in one of the disks D′′′1 , . . . , D
′′′
m. For every j ∈ {1, . . . , n} let Ej denote the

closed disk contained in Dj for which Dj \ IntEj is the buffered ring of Dj .
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We next apply Theorem 5.2, the buffered ring theorem, once for every diskD1, . . . , Dn.
For every j ∈ {1, . . . , n} we choose a point pj in Dj (corresponding to the point p in
Theorem 5.2) surrounded by the inner boundary ring of Dj . This leads to positive real
numbers r2ij and r3ij as in Theorem 5.2 so that r3ij ≤ Cr2ij for every sufficiently large
positive integer i and every index j, where C is a positive real number that depends only
on the number L.

We view the collection {D1, . . . , Dn} as a shingling S of R. We define a weight function
τi on S for every positive integer i ≥ ι(1) as follows. Let I be the largest positive integer
such that i ≥ ι(I). Then for j ∈ {1, . . . , n} we set

τi(Dj) = 2r3ij + 4/I.

We now have all the preliminary definitions and constructions necessary for the proof
of Theorem 7.1. For the rest of the proof of Theorem 7.1, let I and i be positive integers
with i ≥ ι(I).

In this paragraph we determine an upper bound for the area A(R, τi) of R relative to
the weight function τi on S. We have that

A(R, τi) =

n∑
j=1

τi(Dj)
2 =

n∑
j=1

(2r3ij + 4/I)2.

Since Theorem 3.1, the separation theorem, implies that lim inf{r3ij} > 0, we may take I
so large that 4/I ≤ r3ij for every j ∈ {1, . . . , n}. Hence if i is sufficiently large, then

A(R, τi) ≤ 9

n∑
j=1

r2
3ij ≤ 9C2

n∑
j=1

r2
2ij ≤ 450KC2

n∑
j=1

A(Ej, ρi),

the last inequality coming from Theorem 6.1, the quadratic area estimate from below.
Since the E′js are disjoint, their Si-stars are disjoint for i sufficiently large. Thus

(7.7) A(R, τi) ≤ 450KC2A(R′, ρi) = 450KC2

for every sufficiently large positive integer i.

In this paragraph we determine a lower bound for the τi-height H(R, τi) of R. Let
α be a τi-minimal path for R joining the ends of R. According to line 2.4.1.1 in [4],
the fat flow with underlying topological path α has a skinny subflow. Hence there exist
shingles Dj1 , . . . , Djh in S all of which meet α such that Dj1 ∩ R0 6= ∅, Djl ∩ Djl+1

6= ∅
for l ∈ {1, . . . , h − 1} and Djh ∩ R1 6= ∅. Since Dj1 ⊆ R′ and Djh ⊆ R′, it follows that
∂Dj1 ∩R0 6= ∅ and ∂Djh∩R1 6= ∅. By deleting some Dj ’s if necessary, we may furthermore
assume that ∂Djl ∩ ∂Djl+1

6= ∅ for l ∈ {1, . . . , h− 1}. Now choose x0 ∈ ∂Dj1 ∩R0, choose
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xl ∈ ∂Djl ∩ ∂Djl+1
for l ∈ {1, . . . , h− 1}, and choose xh ∈ ∂Djh ∩R1. It follows that

(7.8)

H(R, τi) =
∑

α∩Dj 6=∅
τi(Dj) ≥

h∑
l=1

τi(Djl) =

h∑
l=1

(2r3ijl + 4/I)

≥
h∑
l=1

(di(pjl , xl−1) + di(pjl , xl) + 4/I)

≥
h∑
l=1

(di(xl−1, xl) + 2/I) ≥ di(x0, xh).

By Lemma 7.2 there exist points y0 ∈ R′0 and yh ∈ R′1 such that di(x0, y0) ≤ 2δ+ 3/I and
di(xh, yh) ≤ 2δ + 3/I. Hence

(7.9)

H(R′, ρi)− 2/I ≤ di(y0, yh)

≤ di(y0, x0) + di(x0, xh) + di(xh, yh) + 4/I

≤ di(x0, xh) + 4δ + 10/I.

Combining lines 7.8 and 7.9 yields that

(7.10) H(R, τi) ≥ H(R′, ρi)− 4δ − 12/I.

Since R is contained in R′ and R separates the ends of R′, Proposition 1.1 shows that

M(R, Si) ≤M(R′, Si) = H(R′, ρi)
2.

Hence the separation theorem bounds on moduli given in Theorem 4.2 imply thatH(R′, ρi)
is greater than a positive real number which is independent of i and δ. Thus δ may be
chosen so small that

(7.11) H(R′, ρi)− 4δ − 12/I ≥ 1

2
H(R′, ρi)

for every sufficiently large positive integer I. We henceforth assume that δ is this small.
Combining lines 7.10 and 7.11 yields that

(7.12) H(R, τi) ≥
1

2
H(R′, ρi)

for every sufficiently large positive integer i.
In this paragraph we obtain an upper bound on the moduli M(R, Si). We have that

M(R, S) ≥ H(R, τi)
2

A(R, τi)
≥ H(R′, ρi)

2

1800KC2
=
M(R′, Si)

1800KC2
≥ M(R, Si)

1800KC2
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for all sufficiently large positive integers i, where the second inequality comes from lines
7.7 and 7.12 and the third inequality comes from Proposition 1.1. Thus

(7.13) M(R, Si) ≤ 1800KC2M(R, S)

for every sufficiently large positive integer i.

We next determine a lower bound for the τi-circumference C(R, τi) of R. This argument
extends from here to line 7.20.

To obtain this estimate, we construct in this paragraph a special closed curve in R′

that separates the ends of R′. This construction might be viewed as a strengthening of
the assertion in line 2.4.1.1 of [4] which states that every cut contains a subcut which is a

skinny cut. Let R̃′ denote the universal cover of R′ with covering projection π : R̃′ → R′.
Let α : [0, 1]→ R be a τi-minimal simple closed curve in R separating the ends of R. Let

α̃ : R→ R̃′ denote a path for which π(α̃(t+ z)) = α(t) for every t ∈ [0, 1] and z ∈ Z. The

shingles of S all lift to R̃′. Given a shingle Dj in S with α∩Dj 6= ∅ and a lift D̃j of Dj there

exists a real number t such that α̃(t) ∈ D̃j but α̃(s) /∈ D̃j for real numbers s > t. Given
a real number t, because the shingles in S which contain π(α̃(t)) cover a neighborhood

of π(α̃(t)), there exists a shingle Dj ∈ S and a lift D̃j of Dj such that α̃(t) ∈ D̃j and

α̃(s) ∈ D̃j for some real number s > t. Using the results of the previous two sentences, we

construct an infinite sequence of lifts of shingles in S as follows. First choose a lift D̃j1 of
any shingle Dj1 in S which meets α such that Dj1 is not contained in another shingle of S.

Let t1 be the real number such that α̃(t1) ∈ D̃j1 but α̃(s) /∈ D̃j1 for s > t1. Next choose a

lift D̃j2 of a shingle Dj2 in S such that i) α̃(t1) ∈ D̃j2 , ii) α̃(s) ∈ D̃j2 for some real number
s > t1, and iii) Dj2 is not contained in another shingle of S. Iterate. We obtain in this way

an infinite sequence of shingles Dj1 , Dj2 , Dj3 , . . . in S with distinct lifts D̃j1 , D̃j2 , D̃j3 , . . .

such that D̃jl ∩ D̃jl+1
6= ∅ and even ∂D̃jl ∩ ∂D̃jl+1

6= ∅ for every positive integer l. Since
S is finite, we may assume that Dj1 = Djh+1

for some integer h ≥ 2 and that h is the

smallest such integer. Choose a point x̃l ∈ ∂D̃jl ∩ ∂D̃jl+1
for l ∈ {1, . . . , h}. Let β̃l be a

path in D̃jl from x̃l−1 to x̃l for l ∈ {2, . . . , h}. Let β̃1 be a path in D̃j1 with initial point

the lift to D̃j1 of π(x̃h) and end point x̃1. Let β̃ be the concatenation of β̃1, . . . , β̃h. Let

xl = π(x̃l) for l ∈ {1, . . . , h}, let βl = π(β̃l) for l ∈ {1, . . . , h}, and let β = π(β̃). Then β

is a closed path in R′ which is the concatenation of β1, . . . , βh. Since β̃ is not closed, β is
not null homotopic in R′, and so β separates the ends of R′.

Having gotten distinct shingles Dj1 , . . . , Djh , points x1, . . . , xh, and paths α, β1, . . . , βh,
and β, we proceed as follows. Since we seek a lower bound for C(R, τi) and

C(R, τi) =
∑

α∩Dj 6=∅
τi(Dj) ≥

h∑
l=1

τi(Djl),

it suffices to find a lower bound for this last sum.

We begin estimating this last sum in a special case by considering each summand. Fix
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l ∈ {1, . . . , h}. We have

(7.14)

τi(Djl) = 2r3ijl + 4/I

≥ di(pjl , xl−1) + di(pjl , xl) + 4/I

≥ di(xl−1, xl) + 2/I.

Let D(xl−1) and E(xl) be i-approximations to xl−1 and xl and let γl be a path in R′ joining
D(xl−1) and E(xl) such that Li(γl) = di(xl−1, xl). Suppose that βl ∪ γl ∪D(xl−1)∪E(xl)
separates the ends of R′. By construction Djl is contained in one of the open disks
D′′′1 , . . . , D

′′′
m. By choosing I large enough we may assume that βl ∪ D(xl−1) ∪ E(xl) is

contained in one of the disks D′′′1 , . . . , D
′′′
m. Under this assumption it therefore follows from

the proof of Proposition 3.3 of [3] that βl ∪ D(xl−1) ∪ E(xl) is surrounded by a simple
closed curve ωl in R′ which is null homotopic in R′ such that Li(ωl) < λ. It follows that
γl ∪ ωl separates the ends of R′. Thus

(7.15) C(R′, ρi) ≤ Li(γl ∪ ωl) ≤ di(xl−1, xl) + λ

for every sufficiently large positive integer i. Combining lines 7.14 and 7.15 gives that

τi(Djl) ≥ C(R′, ρi)− λ

for all sufficiently large positive integers i. Thus if βl ∪ γl ∪D(xl−1) ∪E(xl) separates the
ends of R′ for some l ∈ {1, . . . , h}, then

(7.16) C(R, τi) ≥ C(R′, ρi)− λ

for every sufficiently large positive integer i. This gives a lower bound for C(R, τi) if
βl ∪ γl ∪D(xl−1) ∪E(xl) separates the ends of R′ for some l ∈ {1, . . . , h}.

Now suppose that βl ∪ γl ∪ D(xl−1) ∪ E(xl) does not separate the ends of R′ for l ∈
{1, . . . , h}. By lifting these sets to the universal cover R̃′ of R′, it is easy to see that

h⋃
l=1

(γl ∪ ∂D(xl−1) ∪ ∂E(xl))

contains a closed path γ which separates the ends of R′. Thus

(7.17)

C(R′, ρi) ≤ Li(γ) ≤
h∑
l=1

(Li(γl) + 2/I)

≤
h∑
l=1

(di(xl−1, xl) + 2/I) ≤
h∑
l=1

τi(Djl) ≤ C(R, τi),

the next-to-last inequality coming from line 7.14. This gives a lower bound for C(R, τi) if
βl ∪ γl ∪D(xl−1) ∪E(xl) does not separate the ends of R′ for l ∈ {1, . . . , h}.
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Combining lines 7.16 and 7.17 shows that

(7.18) C(R, τi) ≥ C(R′, ρi)− λ

for all sufficiently large positive integers i. Corollary 1.4 shows that

1

C(R′, ρi)2
≤M(R′, Si).

Hence Theorem 1.6, the bounded valence theorem, and the separation theorem bounds on
moduli given in Theorem 4.2 imply that the circumferences C(R′, ρi) are bounded from 0
for all positive integers i. Thus once δ is chosen, λ may be chosen so small that

(7.19) C(R′, ρi)− λ ≥
1

2
C(R′, ρi).

We henceforth assume that λ is this small. Combining lines 7.18 and 7.19 yields that

(7.20) C(R, τi) ≥
1

2
C(R′, ρi)

for every sufficiently large positive integer i.
In this paragraph we obtain a lower bound on the moduli M(R, Si). We have that

m(R, S) ≤ A(R, τi)

C(R, τi)2
≤ 1800KC2

C(R′, ρi)2
≤ 1800KC2M(R′, Si)

≤ 7200KC2M(R, Si)

for every sufficiently large positive integer i, where the second inequality comes from lines
7.7 and 7.20, the third inequality comes from Corollary 1.4, and the last inequality comes
from Lemma 7.3. Hence

(7.21) M(R, Si) ≥
m(R, S)

7200KC2

for every sufficiently large positive integer i.
Thus lines 7.13 and 7.21 show that the moduli M(R, Si) lie in the interval with left

endpoint (7200KC2)−1m(R, S) and right endpoint 1800KC2M(R, S) for all sufficiently
large positive integers i. Because S and Si have bounded valence (K), Theorem 1.6, the
bounded valence theorem, and Corollary 1.4 show that

m(R, S) ≤M(R, S) ≤ K2m(R, S) and m(R, Si) ≤M(R, Si) ≤ K2m(R, Si)

for every positive integer i. Therefore the moduli m(R, Si) and M(R, Si) lie in a single
M -interval for all sufficiently large positive integers i, where M is a positive real number
that depends only on K and L. Thus the sequence S1, S2, S3, . . . is conformal (M) in Y .

This proves Theorem 7.1. �
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§8. A conformality criterion for negatively curved groups.
In this section we apply the sufficiently rich theorem to a sequence of disks at infinity

constructed in [6] coming from a negatively curved group whose space at infinity is the
2-sphere. We show in this situation that Axiom I and Axiom II can be replaced by Axiom
0. In fact the argument shows that it suffices to check Axiom 0 for finitely many rings.
We begin with a lemma about fixed point sets of elements of a negatively curved group
under the group’s action on its space at infinity.

Lemma 8.1. Let G be a negatively curved group with locally finite Cayley graph Γ, and
let g be an element of G. Then under the action of G on its space at infinity ∂Γ, either g
fixes every point of ∂Γ or the fixed point set of g is nowhere dense.

Proof. Let g be an element of the negatively curved group G, and let U be an open subset
of ∂Γ such that g fixes every point in U . We must prove that g fixes every point in ∂Γ. By
Corollary 8.2.G of [7] there exists a hyperbolic element h ∈ G whose fixed points in ∂Γ lie
in U . According to the discussion at the beginning of Section 5 of [7], the subgroup of G
generated by g and h is a finite extension of the subgroup generated by h. Since the fixed
points of h lie in U , it follows that g commutes with a nontrivial power of h. Without loss
of generality we assume that g commutes with h. Then h stabilizes the fixed point set of
g. But given a point in ∂Γ, some power of h takes that point into U . Thus g fixes every
point in ∂Γ. This proves Lemma 8.1. �

We next recall some definitions, notation, and results from [6]. Let G be a negatively
curved group. Let Γ be a locally finite Cayley graph for G with path metric d such that
the length of every edge is 1. Let O denote a fixed vertex in Γ.

The space at infinity ∂Γ of Γ consists of equivalence classes of geodesic rays in Γ,
where rays R, S : [0,∞) → Γ are equivalent if lim supt→∞ d(R(t), S(t)) < ∞. We always
parametrize geodesic rays by arclength. We denote the equivalence class of a geodesic ray
R by R(∞). We assume that ∂Γ = S2. Given a geodesic ray R : [0,∞)→ Γ and t ∈ [0,∞),
the half-space H(R, t) is defined so that

H(R, t) = {x ∈ Γ : d(x,R([t,∞))) ≤ d(x,R([0, t]))},

and the disk at infinity D(R, t) is defined so that

D(R, t) = {S(∞) ∈ ∂Γ : lim
r→∞

d(S(r),Γ \H(R, t)) =∞},

where S : [0,∞)→ ∂Γ is a geodesic ray with S(0) = O. Let m be a positive integer as in
line 3.27 of [6]. Given a geodesic ray R : [0,∞) → Γ and an integer n ≥ m, the shingle
S(R, n, n −m) is defined to be the closure of the connected component of D(R, n −m)
which contains D(R, n). For every nonnegative integer n we have a collection

D(n) = {D(R, n) : R is a geodesic ray in Γ with R(0) = O}

of disks at infinity, and line 3.21 of [6] easily implies that D(n) is finite. For every integer
n ≥ m we have a finite collection of shingles

S(n,m) = {S(R, n, n−m) : R is a geodesic ray in Γ with R(0) = O}.
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For every nonnegative integer n the sets in D(n) cover ∂Γ and although these sets are
not shingles, we can use them to define combinatorial moduli in the straightforward way
as in Section 2.2.5 of [6]. The notion of conformality of the sequence {D(n)} is likewise
meaningful.

The cone C(x,O) at a vertex x ∈ Γ relative to O is the set of all points y ∈ Γ which can
be joined to O by a geodesic segment which contains x. Two vertices x, y ∈ Γ are said to
have the same cone type if left multiplication yx−1 : Γ→ Γ takes C(x,O) isomorphically
to C(y,O). By [1] or [2], every negatively curved group has only finitely many cone types.

Theorem 8.2. Let G be a negatively curved group. Let Γ be a locally finite Cayley graph
for G with space at infinity ∂Γ = S2. Given a base vertex O in Γ, we have a sequence
{D(n)} of finite collections of disks at infinity as above. Assume that {D(n)} satisfies
Axiom 0 for every point in ∂Γ. Then the sequence {D(n)} is conformal.

Proof. We maintain the notation between Lemma 8.1 and Theorem 8.2. In addition let δ
be a positive integer such that every geodesic triangle in Γ is δ-thin.

In this paragraph we introduce the notion of a recursion system. Suppose given a
geodesic ray R : [0,∞)→ Γ with R(0) = O and a nonnegative integer n. To R and n we
associate a set T (R, n) of triples (x, γ, C), where x is a vertex in Γ, γ is a geodesic edge
path in Γ containing x of length at most 8δ and C is the cone at one of the endpoints of γ
relative to O. The elements of T (R, n) are all such triples which arise from geodesic rays
S in Γ as follows. Let S : [0,∞) → Γ be a geodesic ray with S(0) = O. Suppose that
there exists an element D in D(n) such that D(S, n) meets D and D meets the closure of
D(R, n) in ∂Γ. Such a geodesic ray S gives rise to the triple (x, γ, C) in T (R, n), where
x = S(n), γ is the intersection of S with the closed ball of radius 4δ centered about x in Γ,
and C = C(S(n+ 4δ),O). The set T (R, n) contains a distinguished triple, namely, the
triple (x, γ, C), where x = R(n), γ is the intersection of R with the closed ball of radius
4δ centered about x in Γ, and C = C(R(n+ 4δ),O). We call the ordered pair (T (R, n), t),
where t is the distinguished triple of T (R, n), a recursion system. We call n the level
of (T (R, n), t).

We associate an open subset of ∂Γ to every recursion system (T, t) as follows. Suppose
that (T, t) has level n and that t = (x, γ, C). Let R : [0,∞) → Γ be a geodesic ray with
R(0) = O such that R(n) = x and γ is the intersection of R with the closed ball of radius
4δ centered about x in Γ. Let N ⊆ ∂Γ be the union of all elements D ∈ D(n) such that D
meets the closure of D(R, n) in ∂Γ. Line 3.21 of [6] implies that N is independent of the
choice of R. We call N a star neighborhood, the star neighborhood associated to (T, t).
We call D(R, n) the central disk of N relative to (T, t).

In this paragraph we begin to consider translating recursion systems by elements ofG.
Let (T, t) be a recursion system. Let g ∈ G. We have in a natural way g(T, t), which might
not be a recursion system (although it is a recursion system relative to the base vertex
gO). Suppose however that g(T, t) is a recursion system (relative to O). Let n be the level
of (T, t), and let n′ be the level of g(T, t). Let N be the star neighborhood associated to
(T, t). Line 3.21 of [6] easily implies that gN is the star neighborhood associated to g(T, t).
Furthermore, for every nonnegative integer k the cover D(n+ k) of ∂Γ induces a cover of
N , and it is not difficult to see that line 3.21 of [6] implies that g takes this cover of N to
the cover of gN induced by D(n′ + k). Thus in this sense a recursion system recursively
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determines the covers of its associated star neighborhood induced by the sequence of covers
{D(n)}. The above proves line 8.3.

(8.3)

Let (T, t) be a recursion system with level n and star neighborhood N .
Suppose given g ∈ G such that g(T, t) is a recursion system with level n′.
Let R be a ring in N . Then m(R,D(n+ k)) = m(gR,D(n′ + k)) for every
nonnegative integer k. Furthermore m(R,S(n + k,m)) = m(gR,S(n′ +
k,m)) and M(R,S(n + k,m)) = M(gR,S(n′ + k,m)) for every integer
k ≥ m.

In this paragraph we choose a special finite set of recursion systems. Let (T, t) be a
recursion system. Using lines 3.25 and 3.26 of [6], it is easy to see that if t = (x, γ, C)
and if (x′, γ′, C′) ∈ T , then d(x, x′) is bounded by a real number which depends only on
δ. This and the fact that Γ has only finitely many cone types easily implies that there are
only finitely many recursion systems up to the action of G: there exists a finite set T of
recursion systems such that if (T, t) is a recursion system, then there exists an element g
in G for which g(T, t) ∈ T . We call the elements of T recursion system models, and
we call the star neighborhoods associated to elements of T star neighborhood models.
Note that we have not ruled out the possibility that some star neighborhood model might
be associated to distinct recursion system models.

In this paragraph we apply the hypothesis that {D(n)} satisfies Axiom 0 to the star
neighborhood models and improve it slightly. Let (T, t) be a recursion system model, let
N be the star neighborhood model associated to (T, t), and let D be the central disk of N
relative to (T, t). By hypothesis, for every point x in the closure D of D there exists a ring
R in N surrounding x such that the moduli {m(R,D(n))} are bounded from 0. Because
D is compact, the ring R in the previous sentence can be restricted to a finite set of such
rings. Since there are only finitely many recursion system models, it follows that there
exists a positive real number M such that if (T, t) is a recursion system model and N is the
star neighborhood model associated to (T, t) with central disk D relative to (T, t), then for
every point x in D there exists a ring R in N surrounding x such that m(R,D(n)) ≥ M
for every nonnegative integer n.

In this paragraph we establish Axiom II in ∂Γ for the sequences {D(n)} and {S(n,m)}.
Let x ∈ ∂Γ, and let N be a neighborhood of x. Because the diameters of the elements
of D(n) go to 0 uniformly as n → ∞, there exists a recursion system (T1, t1) with star
neighborhood N1 ⊆ N whose central disk relative to (T1, t1) contains x. There exists an
element g in G such that g(T1, t1) is a recursion system model. Hence gN1 is a star neigh-
borhood model, and by the previous paragraph there exists a ring R1 ⊆ N1 surrounding
x such that m(gR1,D(n)) ≥ M for every nonnegative integer n. Line 8.3 implies that
m(R1,D(n)) ≥ M for every integer n ≥ n1, where n1 is the level of (T1, t1). Just as at
the beginning of the proof of Theorem 5.3.1 in [6], there exists a positive integer K such
that D(n) has bounded valence (K) for every nonnegative integer n, S(n,m) has bounded
valence (K) for every integer n ≥ m, and D(n) has bounded overlap (K) with S(n,m)
for every integer n ≥ m. Using just the bounded overlap property for now, Theorem 4.3.1
of [6] implies that there exists a positive real number M ′ such that m(R1,S(n,m)) ≥ M ′

for every sufficiently large positive integer n. We repeat this construction of R1 with N
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replaced by the connected componentC1 of ∂Γ\R1 which contains x: there exists a recur-
sion system (T2, t2) with star neighborhood N2 ⊆ C1 whose central disk relative to (T2, t2)
contains x and there exists a ring R2 ⊆ N2 surrounding x such that m(R2,S(n,m)) ≥M ′
for every sufficiently large positive integer n. Given a positive integer k, we iterate and ob-
tain rings R1, . . . , Rk in N with each surrounding the next andRk surrounding x such that
m(Ri,S(n,m)) ≥M ′ for every i ∈ {1, . . . , k} and for every sufficiently large positive integer
n. Corollary 1.4 and Theorem 1.7, the layer theorem, show that if R is a ring that contains
R1, . . . , Rk and whose ends are separated by each of them, then M(R,S(n,m)) ≥ kM ′

for every sufficiently large positive integer n. This and Theorem 1.6, the bounded valence
theorem, imply that Axiom II holds in ∂Γ for the sequence {S(n,m)}, which with the
bounded overlap property implies that Axiom II holds in ∂Γ for the sequence {D(n)}.

In this paragraph we use Axiom II to construct finitely many special rings in the star
neighborhood models. Let C be a positive real number. Let (T, t) be a recursion system
model, and let N be the star neighborhood model associated to (T, t) with central disk D
relative to (T, t). The compactness of D and the fact that Axiom II holds for the sequence
{D(n)} imply that there exists a finite set of rings in N such that every point in D is
surrounded by at least one of these rings and m(R,D(n)) > C for each of these rings R
and for every sufficiently large positive integer n. We fix these rings and call them the
outer boundary ring models associated to (T, t). We construct outer boundary ring
models for every recursion system model in this way. Just as for star neighborhood models,
some outer boundary ring model might be associated to distinct recursion system models.

In this paragraph we choose for every recursion system model (T, t) and every outer
boundary ring model R associated to (T, t) a point p ∈ ∂Γ surrounded by R so that the
property in line 8.4 is satisfied.

(8.4)

Suppose that (T, t) and (T ′, t′) are recursion system models, that R and R′

are outer boundary ring models associated to (T, t) and (T ′, t′), respectively,
and that p and p′ are the points in ∂Γ chosen corresponding to the pairs
((T, t), R) and ((T ′, t′), R′), respectively. Suppose that g and g′ are elements
of G such that g(T, t) and g′(T ′, t′) are recursion systems with the same
level. Then either (T, t) = (T ′, t′), R = R′, and g and g′ act identically on
∂Γ or gp 6= g′p′.

For this we consider all ordered pairs ((T1, t1), (T2, t2)), where (T1, t1) and (T2, t2) are re-
cursion systems with the same level whose star neighborhoods meet. Just as there are only
finitely many recursion systems up to the action ofG, there exists a finite set P of such or-
dered pairs of recursion systems such that if ((T1, t1), (T2, t2)) is an ordered pair of recursion
systems with the same level whose star neighborhoods meet, then there exists an element
g in G such that g((T1, t1), (T2, t2)) ∈ P. Suppose that ((T1, t1), R1), . . . , ((Tk, tk), Rk) are
all the ordered pairs of the form ((T, t), R), where (T, t) is a recursion system model and
R is an outer boundary ring model associated to (T, t). We inductively choose points
p1, . . . , pk ∈ ∂Γ such that pi is surrounded by Ri for i ∈ {1, . . . , k}. Suppose that
i ∈ {1, . . . , k} and that p1, . . . , pi−1 ∈ ∂Γ are chosen such that pj is surrounded by Rj
for j ∈ {1, . . . , i − 1} and that line 8.4 is satisfied for p1, . . . , pi−1. Let j ∈ {1, . . . , i}.
Suppose that g and g′ are elements of G such that (g(Ti, ti), g

′(Tj , tj)) ∈ P. We want to
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choose pi so that gpi 6= g′pj unless i = j and g−1g′ acts trivially on ∂Γ. Hence we consider
the inequality pi 6= g−1g′pj . Since P is finite, there are only finitely many choices for g
and g′, and so there are only finitely many such inequalities to satisfy. To satisfy these
inequalities for j < i amounts to choosing pi in the complement of some finite set, which
is obviously possible. To satisfy these inequalities for j = i amounts to choosing pi so that
it is not a fixed point of the finitely many elements g−1g′. But according to Lemma 8.1,
either g−1g′ acts trivially on ∂Γ or the fixed point set of g−1g′ is nowhere dense. So in
choosing pi we must only avoid a finite union of nowhere dense subsets of ∂Γ. It easily
follows that we are able to choose p1, . . . , pk in this way to satisfy line 8.4.

Having chosen points p1, . . . , pk in the previous paragraph, it is easy to see that for every
i ∈ {1, . . . , k} we may furthermore associate to the pair ((Ti, ti), Ri) an open disk Di ⊆ ∂Γ
surrounded byRi such that pi ∈ Di and such that the following property, which strengthens
line 8.4, holds. Suppose that (T, t) and (T ′, t′) are recursion system models, that R and
R′ are outer boundary ring models associated to (T, t) and (T ′, t′), respectively, and that
D and D′ are the open disks in ∂Γ chosen corresponding to ((T, t), R) and ((T ′, t′), R′),
respectively. Suppose that g and g′ are elements of G such that g(T, t) and g′(T ′, t′) are
recursion systems with the same level. Then either (T, t) = (T ′, t′), R = R′, and g and g′

act identically on ∂Γ or gD ∩ g′D′ = ∅.
In this paragraph we construct buffered rings relative to the sequence {S(n,m)} in

the star neighborhood models. Choose a recursion system model (T, t), let N be the
star neighborhood model associated to (T, t), and let R be an outer boundary ring model
associated to (T, t). Let D be the open disk associated to the pair ((T, t), R) in the previous
paragraph. Recall that a positive real number C was chosen arbitrarily and that R was
chosen so that m(R,D(n)) > C for every sufficiently large positive integer n. Using Axiom
II we now choose a ring R′ contained in D such that m(R′,D(n)) > C for every sufficiently
large positive integer n. Let K(2) be the constant in the quadratic area estimate, Theorem
4.2.1 of [3]. Because D(n) has uniformly bounded overlap with S(n,m) for every integer
n ≥ m, Theorem 4.3.1 of [6] shows that C may be chosen so large that m(R,S(n,m)) >
18e2K(2) and m(R′,S(n,m)) > 18e2K(2) for every sufficiently large positive integer n.
Let R′′ be the ring which containsR and R′, whose boundary is contained in ∂R∪∂R′, and
whose ends are separated by each ofR and R′. Theorem 1.6, the bounded valence theorem,
and the bounds on moduli given by the separation theorem in Theorem 4.2 imply that
there exists a positive real number L such that M(R′′,S(n,m)) ≤ L for every sufficiently
large positive integer n. It follows that the ring between R and R′ is a buffered ring (L)
relative to the sequence {S(n,m)}. Because there are only finitely many pairs ((T, t), R),
we may assume that L is independent of ((T, t), R).

In this paragraph we complete the proof of Theorem 8.2. Let ε be a positive real number.
Because the diameters of the elements of D(n) go to 0 uniformly as n→∞, there exists a
positive integer n such that the star neighborhood of every recursion system with leveln has
diameter less than ε. Let (T, t) be a recursion system with level n and star neighborhood
N . Let g be an element in G such that g(T, t) is a recursion system model, so that gN is
a star neighborhood model. In the previous paragraph we constructed a buffered ring (L)
relative to {S(n,m)} in gN for every outer boundary ring model R ⊆ gN associated to
(T, t). Line 8.3 implies that the inverse image of this buffered ring under g is a buffered
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ring (L) in N relative to {S(n,m)}. We take the set of all such inverse image buffered rings
as R varies over all such outer boundary ring models and (T, t) varies over all recursion
systems with level n. The result is a buffered ring cover (L) of ∂Γ with spanning ring mesh
at most ε having bounded valence with respect to a parameter which is independent of n.
Theorem 7.1, the sufficiently rich theorem, finally implies that the sequence {S(n,m)} is
conformal, and so the sequence {D(n)} is conformal.

This proves Theorem 8.2. �
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