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ABSTRACT. In this paper we introduce a new class of epidemics on networks
which we call SI(S/I). SI(S/I) networks differ from SIS networks in allowing
an infected individual to become reinfected without first passing to the sus-
ceptible state. We use a covering graph construction to compare SIR, SIS, and
SI(S/I) networks. Like the SIR networks that cover them, SI(S/I) networks
exhibit infection probabilities that are monotone with respect to both trans-
mission probabilities and the initial set of infectives. The same covering graph
construction allows us to characterize the recurrent states in a SIS or SI(S/I)
network with reinfection.

1. INTRODUCTION

Two standard network models for epidemics are the SIR and SIS models, which
can each be considered deterministically or stochastically. The discrete stochas-
tic SIS model does not in general exhibit monotonicity; that is, decreasing either
transmission probabilities or the initial number of infected individuals may increase
the total number of infections. Because monotonicity can be associated with herd
immunity, models that admit monotonicity seem to be of real-world relevance. We
introduce a stochastic SIS-like model that admits monotonicity with respect to both
transmission probabilities and initial infectives. Moreover, there are in general no
persistent epidemics on the stochastic SIS model, so that asymptotic behavior is
uninteresting; we consider certain long-lived states that may be of qualitative in-
terest.

In the SIR model, an individual is either susceptible (S), infective (I), or recov-
ered (R). A susceptible individual may become infective if in contact with one or
more infective individuals, and an infective individual will recover and no longer be
capable of getting the disease. In the SIS model, an individual is either susceptible
or infective, and an infective individual becomes susceptible again after recovering
from the disease.

If births and deaths are neglected, a deterministic SIR model is given by the
system

S =—pSI, I'=8SI—~I, R =~I

of ordinary differential equations, and a deterministic SIS model by the system

S = -BSI+~I, I'=p3SI—~I
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of ordinary differential equations, where (3 is the transmission rate and ~ is the
recovery rate. The total population size is the constant N = S + I + R in the first
case and N = S + I in the second. In both cases, Rg = % is called the basic
reproductive number. An initial condition with everyone susceptible except for a
small number of infectives will proceed to an epidemic if Ry > 1 and will not if
Ro < 1. The corresponding discrete deterministic SIS model is given by

S(n+1)=S5(n) — BSn)I(n)+~I(n), I(n+1)=1I(n)+BSn)I(n)—~I(n).
In this model as well, the basic reprodutive number is Ry = ¥ For more in-
formation see, for example, Bailey’s text [2] or Brauer’s survey article [3] for the
ordinary differential equations models and the Allen-Burgin article [1] for the dis-
crete deterministic models.

The basic stochastic SIS network model consists of a labeled finite directed graph
in which the vertices correspond to individuals, and the edges to contacts between
individuals. Each edge is labeled with a transmission probability, and at any unit
of time a vertex is labeled S or I. Epidemics proceed probabilistically. If no
edge has probability 1, then since extinction is the single absorbing state it is well
known from the theory of Markov processes that epidemics achieve extinction with
probability 1. That is, there are no persistent epidemics on such networks. This
stands in sharp contrast to the results for deterministic SIS networks.

An important real-world benefit of vaccination is herd immunity. By protecting
those who are vaccinated, it reduces opportunities for disease transmission and thus
confers probabilistic protection on those who are not vaccinated. In the determin-
istic SIR and SIS models above, a crucial benefit of vaccination is to reduce Rq by
effectively reducing N. With a sufficient portion of the population vaccinated, Rg
drops below 1 and there is no epidemic. Mathematically, herd immunity also man-
ifests itself in terms of monotonicity properties: each person’s chances of becoming
infected should not go up as a result of either reducing the initial set of infective
people or reducing transmission probabilities between people. Surprisingly, if trans-
mission probabilities can vary with respect to time, SIR networks need not exhibit
monotonicity. However, if these probabilities are held constant, then SIR networks
are necessarily monotone [5].

A key ingredient for the proof of monotonicity in [5] is that in an SIR network
each edge may transmit infection at most once. This allows for the use of percolation
methods to study epidemics in SIR networks, and monotonicity follows readily from
the percolation approach. By contrast, there is no limit to the number of times
an edge may transmit on an SIS network. We used a covering graph argument
in [5] to apply percolation methods to a generalization of SIR networks in which
infectivity can last longer than a single time step. We now wish to use simlar
covering graph methods to apply percolation techniques to study SIS networks.
It turns out that these arguments require us to introduce a new class of SIS-like
networks allowing for immediate reinfection. We call these SI(S/I) networks. As
are SIR networks, SI(S/I) networks are monotone with respect to initial infectives
and edge probabilities.

We look at examples where the network remains infected at very high levels for
a very long time and spends most of that time in a particular state. Thus, while
infection is not the long-term behavior of the system, it can be very long lived
and spend most of this time in states that act like “conditional attractors”. These
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long lived behaviors, called quasi-stationary distributions by Daroch and Seneta in
[4], may be of more practical importance than the network’s eventual inevitable
extinction. We also consider networks with spontaneous reinfection.

2. BACKGROUND AND DEFINITIONS

2.1. Social networks. We consider the epidemiology of three sorts of networks,
namely, STR networks, SIS networks, and SI(S/T) networks. We give their definitions
in parallel.

An SIR, SIS, or SI(S/I) social network is a labeled finite directed graph N =
(G, 1), where G is a directed graph and p: E — [0,1]. The vertices, elements of
V = V/(G), are people. The edges, elements of E = E(G), are determined by their
endpoints; that is, F C V x V. In the SIR and SIS cases, E C V x V' \ A, where
A denotes the diagonal. The function p assigns a probability to each edge. Given
an edge e = (p, q), we denote its source by dy(e) = p and its target by 0;(e) = gq.

For SIR networks, we take S = {9, I, R}; for SIS and SI(S/I) networks, we take
S = {S,I}. Elements of S are compartments, and S is the compartmental model
or set of compartments. A state of such a network is an assignment of each vertex
to a compartment, i.e. a function ¢ : V — S. That is, the set of states of N is
St(N) = SY. In the case of an SIR network we say that a state is an initial state
if it lies in {S,1}".

For a state ¢ of either an SIR network or an SIS network, we say that an edge
e is in play if p(0dg(e)) = I and ¢(0;(e)) = S. For a state ¢ of an SI(S/T) network
we say that an edge e is in play if p(9p(e)) = I. For each of the models, a vertex v
is in play if it is the target of an edge that is in play.

Given states 1 and @9, we specify when the state g is a possible successor of
1. The rules here differ for the three kinds of networks.

For an SIR network s is a possible successor of oy if the following hold:

(1) If p1(v) = R, then pa(v) = R.

)
(2) If p1(v) = I, then ps(v) = R.
(3) It @1(1}) =5, then 902(1}) € {S?I}
(4) If po(v) = I, then v is in play for ;.

For an SIS network ¢y is a possible successor of ¢y if the following hold:
(1) If p1(v) = I, then pa(v) = S.
(2) If po(v) = I, then v is in play for ¢1.
For an SI(S/I) network ¢ is a possible successor of ¢1 if the following holds:
(1) If po(v) = I, then v is in play for ¢;.
For SIR, SIS, and SI(S/I) networks, we are using a standard simplification in which
the infective period lasts a single time step. Thus SI(S/I) networks differ from SIS
networks in allowing for immediate reinfection without an intervening return to the
susceptible state.

An epidemic is a sequence 1, pa, . .., g (respectively @1, ¢a,...) of states with
©i+1 a possible successor of ¢; for 1 < i < k (respectively, 1 < 7). The state ¢
with @(v) = S for all v € V is called the clearance state. We say that an epidemic
achieves extinction if there is a nonnegative integer i such that ; is the clearance
state and that an epidemic is persistent if it does not achieve extinction.

The probabilities on the edges of N induce a map f on the set of probability
measures on St(A) = SY. This map is determined by its values on those measures
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which concentrate all probability in a single state ¢. Let p, be the measure which
concentrates all probability in ¢. The support of f(u,) is in the set of possible
successor states of ¢. Let us denote the set of edges that are in play for ¢ by P,(E)
and the set of vertices that are in play by P,(V). We assume these edges infect or
fail to infect independently. Then, if v is in play for ¢, the probability that @ infects
v is given by

(1) p(p,v) =1- 11 (1 ple)).

{ee P, (E)[01(e)=v}

The measure f(f,) is non-zero only on the possible successors of ¢, and there it is
given by

2 flee)({¥}) = 11 (e, v) I1 (1= plp,v)).
{veP, (V)9 (v)=I} {veP, (V) |y(v)=5}

Thus, given an initial condition 1, vertex v € V, and time step n € N, we can ask
(for example) what is the probability that v is in a given state at time n. f™(u,,)
gives the probability distribution for all states at time step n and the probability
that v is (say) infected at this time is f"(ue,)({¢ | ¢(v) = I'}). In the case of SIS
and SI(S/T) networks, we denote by u(p1,n,v) the probability that v is infected at
time n. In the case of SIR networks, we use this to denote the probability that v
has become infected at or before time n.

For either SIR, SIS, or SI(S/I) networks, if we fix A/ then there is a partial order
on the set of states in VI%/}, We say that ¢o < ¢1 if ¢y '(I) € ¢ (I). There
is also a partial order on the social networks on a fixed graph. Given two social
networks Ny and N7 with the same underlying graph, G, we say Ny < N7 if pg # p1
and for each e € E, po(e) < pi(e). We also write pg < 1.

2.2. Percolation on social networks. Our viewpoint here is that prior to the
unfolding of an epidemic, a grand lottery is held to determine for each edge, whether
it transmits if it ever comes into play. We use the notation of [5]. We define a lottery
¢ to be an element of {0,1}¥. Those edges e with ((e) = 1 are winners. The flat
distribution on the cube [0, 1]¥ induces a measure on the set {0, 1} of lotteries as
follows. Define a map ¢ : [0,1]¥ — {0,1}F by

1 ifze < ple)

0 otherwise

t(z)(e) = {

Thus, an edge e is a winner in the lottery ¢ = ¢(z) if and only if z. < u(e). The
flat distribution on [0, 1]¥ pushes forward under ¢ to a measure on {0,1}%.

A lottery decides which, if any, of the edges that are in play transmit infection
and thus determines the course of an epidemic. This can be formalized in the
obvious way as a map

e:{0,1}" x {S,I,R}V — {S,I,R}".
The map € and measure p are compatible with f in the following sense:

Flie) ({}) = n({Cle(C ) = 9}) -

It follows that given a lottery (, an initial state ¢, and vertex v, the vertex v
becomes infected in the course of an epidemic if and only if there is a path of
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winners from ;' (I) to v. In particular, u(p1,n,v) is the measure of the set of
such (.

2.3. Comparing networks using covering graphs. We now have three types
of social networks—SIR, SIS, and SI(S/I)—and we wish to study the relationships
among them. Our main tool for doing this will be the use of covering graphs. Given
a social network N' = (G, 1) and a choice of compartmental model (SIR, SIS, or
SI(S/1)), its transition graph T'(N) is the labeled directed graph whose vertices
are the elements of St(N') and whose edges are the pairs (¢, 1) such that ¢; is
a successor of ¢g. An edge (po, 1) is labeled with f(uge,)(p1). We say that N;
models N if there is a forward invariant set U C St(N7) and a map m : U — St(N2)
which is onto and preserves probability, that is, if g € U then m restricted to the
successors of ¢y is a bijection to the successors of m(pg). That is, for 1 a successor

of wo, fan (Hwe)(01) = e (Bm(pe))(M(p1)). Let T(U) be the subgraph of T(N7)
with vertex set U. This makes m : T(U) — T'(N2) a covering map. Note that we

do not require N7 and N> to have the same compartmental models.

3. THREE COMPARISON THEOREMS

Having introduced the class of SI(S/I) social networks, we now wish to compare
these with SIS networks. For each of these comparisons, we will make use of covering
graph arguments.

Theorem 3.1. Let N = (G,pu) be a social network. Let v1 : V. — {S,I},
and let n € N. Using psrs(e1,n,v) and psrs/n(p1,n,v) to denote the corre-
sponding probabilities under SIS and SI(S/I) propagation, we have psrs(p1,n,v) <

HSI(S/I) (p1,m,0).

Theorem 3.2. Every SI(S/I) network is modeled by an SIS network which double
covers it.

Theorem 3.3. SI(S/I) networks enjoy the following monotonicity properties:

(1) Let N be an SI(S/I) network and 1, @2 € St(N) with 1 < p2. Then for
any vertex v and n > 0,

(1, m,v) < plpa, n, v).
(2) Given SI(S/I) networks Ny and N1 with Ny < N1, then for any initial state
1 € {8, 1}, vertex v, and n >0,
KN, (Sola n, ’U) S KA, ((1017 n, U)'

SIS networks do not in general exhibit monotonicity.

We postpone the proofs of Theorems 3.1 and 3.3, which follow from applying
percolation methods to a covering graph.

Proof of Theorem 3.2. Let Na = ((Va, E2), u2) be an SI(S/I) network. We take (as
an SIS network) N7 = (G4, p1) to be the bipartite labeled directed graph given by

Vi =Va X Zs
Ev={((p,i),(q,i+1)) | (p,q) € E2, i € Za}
pa((ps9), (g7 + 1)) = pa(p, q)-
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(G1 double covers Gy. For i € Zy we take
Sti(N1) = {p € St(M) | ™1 (I) C Vo x {i}}
U = Sto(N7) U Sty (MN).

U is forward invariant. Note that SIS and SI(S/I) propagation coincide on U since
every edge from an infective leads to a susceptible. Thus U double covers St(N>)
preserving probabilities, so A7 models N> as required. ([

4. A MORE ELABORATE COVERING GRAPH

4.1. Definition and basic properties.

Definition 4.1. Let NV = (G, i) be an SIS or SI(S/I) network. The tower network
N = (G, 1) is the infinite network given by the following data:

V=VxN
E={((p,n),(¢n+1)) | (p.q) € E, n € N}
G=(V,E)

w((p,n), (g,n +1)) = u(p, q)

We take é[mm] to be the induced subgraph of G whose vertices are V x {m,...,n}
and we take ./\~/[m,n] to be the corresponding social network.

We leave unspecified for now whether A is an SIR, SIS or SI(S/I) network.
The alert reader will have noticed that N is not, strictly speaking, a_social
network since the underlying graph is not finite. However, we can think of G as

é - U:,ozlé[l,n]'

The properties we discuss (e.g., the probability that (v,n) becomes infected) de-
pend only on finite subsets of G. Accordingly, we are untroubled by this abuse of
terminology.

We now turn to the case where we consider A" as an SI(S/I) network and A as
an SIR network.

Definition 4.2. Suppose that 1,2, ... is a finite or infinite epidemic on N. The
corresponding epidemic on N is the sequence

(I)(SDMQDQ,.. ) = ¢17w27"'
where v, is defined by

S ifn<yj

en(v) ifn=j

R if j <nand g;(v)=1I

S otherwise

A wvalid initial state of N is an initial state in which all infective vertices are confined

to G1,1)- A wvalid state is one which can arise in the course of an epidemic starting
at a valid initial state.
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The idea behind the tower network is that a vertex (v,n) of N corresponds to
the vertex v of N at time n (where the starting time is 1 and the time step is 1).

While a vertex v of A might get infected more than once, vertices of N do not get
reinfected since a vertex (v,n) can only be infective at time n. This allows us to

use percolation methods on N and apply the results to N.

Lemma 4.3. G is a covering graph of G. The following hold:

(1)
(2)

(4)
()

(6)

The map o1 +— 1 is a bijection between St(N) and the set of valid initial
states of N.

The edge ((p,n), (g, n + 1)) is in play for ¥, if and only if (p,q) is in play
for .

Ynt1 1S a possible successor of ¥,. In particular a corresponding epidemic
18 an epidemic.

The epidemic @1, P, ... infects vertex v at time n if and only if the corre-
sponding epidemic infects vertex (v,n) at time n.

As ppy1 varies over all possible successors of @p, Wni1 varies over all
possible successors of V,. In particular, ® is a bijection between the set of
epidemics on N and the set of epidemics on N which start in a valid initial
state.

The map ® preserves probability. That is to say,

f(,ulgon)({%pn-‘rl}) = f(Mwn)({%H})

(1) Consider the map that takes ¢ € St(N) = {S,1}" to the valid
initial state ¢ defined by ¥ (v,1) = ¢(v) and ¥ (v,n) = S for n > 1. This
map is clearly a bijection and is none other than the restriction of ®.

By definition, j = n is the only value of j for which ¢; may assign I to

(v,m). Further, it assigns I if and only if v, (v) = I. Since N is an SI(S/I)

network, in this case all edges out of v are in play. Since 1, assigns S for

all (g,n + 1), when v, (v,n) = I all edges out of (v,n) are in play.

We need to check that 1,1 is a possible successor of 1,,. By assumption,

wn+1 infects only vertices which are in play for ¢,. Since v,41 infects

(v,n + 1) exactly when @, infects v, by (2), ©¥,41 infects only vertices

which are in play for ¢,. By construction, vertices which are infected by

1, are assigned R by 1,41, and recovered vertices remain recovered.

This is immediate from the definition.

Since P41 (v,n+1) = @, 41(v), the map carrying possible successors @, 11

of ¢, to 1,41 is injective. Given a possible successor of 1, (2) ensures

that the corresponding candidate ¢, 41 is a possible successor of ¢,,.

This now follows from (2) and the fact that u((p,n), (¢,n+ 1)) = u(p, q).
O

Corollary 4.4. N models .

Proof. This follows by taking U to be the set of valid states. (]

Note that the proof of Lemma 4.3 (2) is precisely where we need the distinction
between SIS and SI(S/I) networks.

4.2. Applications.
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Proof of Theorem 3.3. The result for SI(S/T) networks now follows by Lemma 4.3
and the corresponding monotonicity result for SIR networks, Theorem 3.1 of [5].

To see that SIS networks do not in general enjoy monotonicity with respect to
the set of initial infectives, consider a network A" = (G, u) with two initial states:
a state @1 such that each individual is expected to be infected more than once,
and the state 11, with all individuals infected. For 1, extinction is immediately
achieved after one time step. Thus, going from ¢, to ¥ increases the initial set of
infectives but decreases the number of expected infections for each vertex.

We can turn this into a counter-example to monotonicity with respect to edge
probabilities. Expand G to a new graph G by appending a single vertex v to G,
with edges from ¥ to each vertex of G. Leave the probabilities on all edges of G
unchanged but define ji1; on G by setting the probability on each new edge to be 1,
and iy by assigning probability 1 to each edge from o to ] '(I) and 0 to all other
edges from v. For ./\71 = (@, 1) and ./\72 = (@, Ii2), consider the initial state with ©
infective and all other vertices susceptible. For /\71, extinction is achieved after two
time steps. But for ./\72, after the first time step the course of the infection depends
only on ' = (G, ), which is in state ;. Thus, going from J\A/'l to /Vg decreases
edge probabilities but increases the number of expected infections. [

Proof of Theorem 3.1. Suppose we are given a social network A'. We would like
to know the conditions under which the initial state ¢; leads to vertex v being
infected at time n under SI(S/I) propagation. This happens when (v,n) becomes
infected in the course of the corresponding infection of N , and this happens for
those lotteries ¢ which provide at least one path of winners from the set of initial
infectives in V' x {1} to (v, n).

For a path of ¢ to produce infection of (v,n) under SIS propagation, it must
fulfill the additional condition that for each edge e = ((¢,%), (r,i + 1)) of this path
(r,7) must be susceptible. This makes the set of ¢ which produce infection of v at
time n under SIS propagation a subset of those that produce infection of v at time
n under SI(S/I) propagation. The result now follows. O

4.3. Ping-pong infection is the only persistence. Ping-pong infection occurs
when two individuals repeatedly infect each other. When they do this with prob-
ability 1, this gives a persistent epidemic. We shall see that in SIS and SI(S/I)
networks, this is essentially the only form of persistence.

We refer to a sequence of edges (vo,v1), (v1,v2), ..., (Vn—1,v9) With probability
1 on each edge as a cycle. In the SIS case we require n > 1; we allow for n = 1
in the SI(S/I) case. If N does not contain a cycle, we say it is cycle free. In the
SIS case we say it is persistent if it has at least one infected vertex and at least one
uninfected vertex. In the SI(S/I) case we say it is persistent if it contains at least
one infected vertex. The next theorem generalizes the familiar concept of ping-pong
infection.

Theorem 4.5. Suppose that N' = (G, p) is either an SIS or SI(S/I) network. Then
with probability 1 all epidemics achieve extinction if and only if N is cycle free.

Proof. In the SI(S/1) case, if any vertex of a cycle becomes infected, infection will
travel around that cycle forever. It is not hard to see that the same is true in the
SIS case if at least one member of a cycle is infected and one is not. To see this,
notice that in this case there must be an edge from an infected to an uninfected
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member of this cycle. Thus, at least one uninfected member of the cycle becomes
infected, and each infected member must return to the susceptible state.

Now suppose that N does not contain a cycle. It then follows that N has a
longest path o which has probability 1 on each of its edges. Suppose the length
of this path is k. Fix n and consider Mﬂ,n+k+1]7 the induced subgraph of N
whose vertex set is V' x [n,n + k + 1]. Since there is no path of length k + 1 with
probability 1 on each edge, for each pair (p,n) and (¢,n + k + 1), any path from
(p,n) to (g,n + k + 1) contains an edge with probability less than 1. Hence, the
probability of transmission from (p,n) to (¢, n+k+1) is less than 1. Consequently,
the probability of transmission from all of V' x {n} to (¢,n + k + 1) is less than 1,
and so the probability that there is any infected vertex of V' x {n+k+1} is also less
than 1. Further, since edge probabilities are constant, this probability of attaining
extinction between time n and time n+ k41 is bounded away from 0 independent
of n. It follows that there is < 1 so that the probability of persistence of infection
in V for k+1 steps is less than r. Since n was arbitrary, the probability of infection
persisting for m(k + 1) steps is less than ™. Thus the network achieves extinction
with probability 1. O

Notice that in the course of proving Theorem 4.5 we have shown the following.

Proposition 4.6. Suppose N is a cycle-free SIS or SI(S/I) network. Then there
are C and r < 1 so that for any initial condition @, the probability that an epidemic
with initial state ¢ has not achieved extinction after n time steps is less than Cr™.
In particular, the probability that a vertex v is infected at step n is less than Cr™. [

5. SHORTCOMINGS OF THEOREM 4.5

5.1. Long-lived behaviors. There is something unsatisfactory in Theorem 4.5.
As the following example shows, the expected time to extinction can be extraordi-
narily long, rendering Theorem 4.5 useless as a practical guide to network behavior.

Example 5.1. We take N' = N (n,p) to be the network consisting of the full graph
on n vertices with probability p on each edge. We include self-edges at every vertex.
We consider SI(S/T) propagation on N. By Theorem 3.2, the full bipartite graph
K = K(n,p) includes the same dynamics under SIS propagation. Depending on n
and v, we can expect infection on N to persist for many steps. If there is at least
one infected vertex, then at the following step, the expected number of infected
vertices is at least np and the chance of extinction is at most (1 — p)™.

Taking n = 100 and p = .99 gives a very conservative estimate that the expected
time to extinction is greater than 10%2°°. With very high probability, during the
course of the epidemic the network spends most of its time with 99 or 100 infected
vertices. In fact, it spends most of this time with 100 infected vertices.

There are several things to be learned from this example. The first is that while
extinction is the only attracting state of the system, it can take an extremely long
time to reach that state. The second is that prior to extinction, there are states
that act like attractors or stationary points.

Implicit in our discussion of the transition graph T(N') is the Markov chain
viewpoint. Given a cycle-free SIS or SI(S/I) network, we enumerate St(N) as
©1,...,on with N = 2IVIl and take ¢; to be clearance. Taking P to be the
transition matrix and

pP1 = [Pu .. ~p1N]
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to be an initial distribution, this distribution evolves over time as p,, = p; P, and
Theorem 4.5 is simply the assertion that
lim pyP"=[10...0].

n—oo

In [4], Darroch and Seneta consider this phenomenon of long-lived states in a
Markov process with a single absorbing state. They give several approaches to
defining such “almost-stationary” distributions, which they call quasi-stationary
distributions. Here we consider the approach that they call stationary conditional
distributions. These states can be described in terms of conditional probabilities,
i.e., the probability of finding the system in a particular state given that it has not
reached extinction.

Thus, rather than starting with an arbitrary distribution considering the recur-
sion

p1 = [p11...piN] = P2 = 1P = [p21...pan],

we start with a distribution p; = [0 p12...p1n] and consider the recursion

p1— C(p1) = [0 p22 . ..p2nN],

P21
the result of conditioning on non-extinction. (Note that this requires that extinc-
tion not be the only possible outcome starting at p;.) A distribution is then almost
stationary if it is stationary for C'. A distribution or set of distributions is a con-
ditional attractor if it is an attractor for C. It is well known that P has a single
eigenvector with eigenvalue 1, and all other eigenvalues have norm less than 1. It
is not hard to see that each eigenvector (other than clearance) is almost stationary
and that the subspace spanned by the eigenvectors of the second largest eigenvalue
or eigenvalues is a conditional attractor. For generic P there will be a single such
attractor. An extensive bibliography on quasi-stationary distributions is given at

http://www.maths.uq.edu.au/ pkp/papers/qsds/qsds.pdf.

5.2. Spontaneous reinfection. There is another reason that Theorem 4.5 may
not be appropriate for some real-world applications. Real-world networks are nei-
ther constant nor isolated over the long term. This argues for including spontaneous
infection from outside the network. (Indeed, we can assume that this is how the
network got into its initial state.) Formally, we define an SI(S/I) network with rein-
fection to be the pair N* = (N, i), where N is an SI(S/I) network and fi : V' — [0, 1]
gives the probability of spontaneous infection of each vertex. We assume that all
infections take place or fail to take place independently. This gives the following
modifications to our basic results concerning SI(S/I) networks.

(1) A vertex v is in play if it is the target of an edge that is in play or if
a(v) > 0. If fi(v) > 0, for all v € V, all vertices are always in play.

(2) A state s is a N* possible successor of a given state ¢ if and only if every
infected vertex v of s is either in play for A or has ji(v) > 0. In particular,
if A has no edges with probability 1 and 0 < fi(v) < 1 for all v € V, then
every state is a N* possible successor of every other state.

(3) Following equation 1, the probability that ¢ infects v in N'* is given by

p(pv) =1 = (1= p(p,v))(1 = a(v))
(4) Equation 2 changes only in that p*(¢,v) is substituted for p(p,v) and
different vertices are in play.
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Proposition 5.2. Suppose that N* consists of the SI(S/I) network N together
with a reinfection function fi(v). Then there is an SI(S/I) network N which models
N*.

Proof. We take N to consist of A together with an additional vertex ¥. We append
edges (U, v) with transmission probabilities fi(v) and an edge (v, D) with probability
1. We then model N* using the set of states in which ¥ is infected. It is clear that
the obvious bijection carries fg to far+. O

5.3. Spontaneous reinfection, covering graphs and lotteries. We would like
to adapt the method of covering graphs and lotteries to networks with spontaneous

reinfection. We do this by applying these methods to the covering graph N of the
network A of Proposition 5.2. We then have

V=VU{i} xN

E=FU Evcrtical U Ercinfcction

where
Evertical = {((v,n), (U,n + 1)) | n € N}
Ereintection = {((U,n), (v,n+1)) [n €N, p(v) # 0}
We have
B(Evertical) = 1
a((@,n), (v,n + 1)) = fi(v)
fi((p,n), (g;n + 1)) = p(p, q)

As before, a lottery ¢ of N causes (v,n) to become infected if and only if there
is a path of winners from an initial infective to (v,n). The measure of such ({ gives

~

the probability that v is infected at time n in N.

5.4. Spontaneous reinfection and Markov chains. It is clear that in the pres-
ence of spontaneous reinfection, clearance is no longer an absorbing state.

Given a network with spontaneous reinfection N* = (N, 1), we say that N* is
cycle free if N is cycle free and there is no vertex v such that ji(v) = 1.

We say that a state of N* is spontaneous if it can arise in the course of an
epidemic starting in the infection-free state.

Proposition 5.3. Let N* = (N, 1) be a cycle-free SI(S/I) network with reinfection.
Then a state of N* is recurrent if and only if it is spontaneous. These form an
aperiodic set of communicating states. In particular, N* has a unique stationary
distribution.

Proof. We claim that there is £ > 0 such that for any state ¢, there is a positive
probability that N'* arrives at clearance within k steps starting at ¢. This follows by
recapitulating the proof of Theorem 4.5 and using the additional observation that
at each step there is a positive probability that no reinfection occurs. In particular,
there is € > 0 such that for each state, there is probability at least e that clearance
occurs within k£ steps. It follows that clearance recurs almost surely. Now every
spontaneous state can with positive probability arise in the course of an epidemic
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starting at clearance. It follows that these are all recurrent and communicate with
clearance. Further, since clearance can immediately follow clearance, this recurrent
class is aperiodic.

It remains to check that these are the only recurrent states. Let us suppose that
¢ can occur in an epidemic with initial state @1, but cannot occur in an epidemic
starting with clearance. Let us suppose that it occurs at time n. It follows that it
results from a lottery which contains a path in A/[lm from some infected vertex of
1 to an infected vertex (v,n). By the argument of Proposition 4.6, there are C'
and r < 1 so that the probability of such an epidemic is bounded above by Cr™.
In particular, the probability of state ¢ falls off exponentially as a function of n.
However, any recurrent state occurs almost surely for arbitrarily high n. Hence ¢
is not recurrent. O

6. DISCUSSION

In a previous paper [5], we considered the SIR model for epidemics in social
networks. Using bond percolation, we established that SIR epidemic models satisfy
monotonicity with respect to edge probabilities and with respect to the number
of infectives. In this paper we extend this analysis to SIS and SIS-like epidemic
models. The bond percolation technique does not apply directly to an SIS model,
but it does apply to a suitable covering graph of an SIS or SI(S/I) model. Switching
to a covering graph to use bond percolation was done in [5] for the STR model, and
it seems to be implicit in [6]. We use covering graphs more systematically here as
a tool for comparing different compartmental models and extending results across
compartmental models.

In the SIS model, an infective individual must return to susceptibility before
becoming infective again. In the simplified model where the infective period only
lasts a single time step, this means that an infective individual at one time step
cannot be infective at the next time step. We introduce an SIS-like model called
the SI(S/I) model. The SI(S/I) model differs from the SIS model precisely in
allowing an infective individual to be reinfected while still infective. Although we
haven’t found this model in the literature, from personal experience we know that
an infected computer can get reinfected with a virus while it already has the virus.
(Some computer viruses disable reinfections but other viruses don’t.) While SIS
models do not in general satisfy monotonicity with respect to edge probabilities or
the number of infectives, SI(S/I) models satisfy monotonicity with respect to both.

When used in conjunction with covering graphs, the Markov chain approach
that we use here allows us to relate social networks with different compartmental
models. This is convenient for a theoretical study of these networks, since results for
networks with one compartmental model may be extended to networks with other
models. Unfortunately, the Markov chain analysis that we use here is intractable
from a computational viewpoint. For a social network N' = (G, 1) with either the
SIS or the SI(S/I) model, if G has n vertices then the transition graph T'(N) has
2™ vertices. This exponential growth in the number of vertices prevents explicit
computation of the transition graph for large networks. Indeed, computing the
probability of an individual becoming infected in an SIR network is NP-hard (see
the paper [7] by Delgado-Eckert and Shapiro). Still, covering graphs give structural
insight into the relationships between these different compartmental models.
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