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Abstract. SupposeR is an orientation-preserving finite subdivision rule with

an edge pairing. Then the subdivision map σR is either a homeomorphism,
a covering of a torus, or a critically finite branched covering of a 2-sphere. If
R has mesh approaching 0 and SR is a 2-sphere, it is proved in Theorem 3.1
that if R is conformal then σR is realizable by a rational map. Furthermore,
a general construction is given which, starting with a one tile rotationally
invariant finite subdivision rule, produces a finite subdivision rule Q with an
edge pairing such that σQ is realizable by a rational map.

In this paper we illustrate a technique for constructing critically finite rational
maps. The starting point for the construction is an orientation-preserving finite
subdivision rule R with an edge pairing. For such a finite subdivision rule the CW
complex SR is a surface, and the map σR : SR → SR is a branched covering. If SR
is orientable, then unless σR is a homeomorphism or a covering of the torus, SR is a
2-sphere and σR is critically finite. In the latter case, SR has an orbifold structure
OR and σR induces a map τR : T (OR) → T (OR) on the Teichmüller space of the
orbifold. By work of Thurston, σR can be realized by a rational map exactly if τR
has a fixed point. Alternatively, we prove in Theorem 3.1 that σR can be realized
by a rational map if R has mesh approaching 0 and is conformal.

We next give a general construction which, starting with a one tile rotationally
invariant finite subdivision rule R, produces an orientation-preserving finite sub-
division rule Q with an edge pairing such that Q is conformal if and only if R is
conformal; we then show in Theorem 3.2 that σQ is realizable by a rational map.
We next give several examples of orientation-preserving finite subdivision rules with
edge pairings. For each example R for which the associated map σR can be realized
by a rational map, we explicitly construct a rational map realizing it. We conclude
with some questions.

A motivation for this work is the Bowers-Stephenson paper [1]. In that paper
they construct an expansion complex for the pentagonal subdivision rule (see Fig-
ure 4) and numerically approximate the expansion constant. In Example 4.4 we
consider an associated finite subdivision ruleQ with an edge pairing and construct a
rational map fQ(z) = 2z(z+9/16)5

27(z−3/128)3(z−1)2 which realizes σQ. The expansion constant
for the pentagonal subdivision rule is (f ′Q(0))1/5 = (−324)1/5.
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1. Finite subdivision rules

The theory of finite subdivision rules arose from an ongoing attempt by three of
the authors and their coworkers to resolve the following:

Conjecture 1.1. Suppose G is a Gromov-hyperbolic discrete group whose space
at infinity is the 2-sphere. Then G acts properly discontinuously, cocompactly, and
isometrically on hyperbolic 3-space H3.

Conjecture 1.1 is closely related to Thurston’s Hyperbolization Conjecture, which
states that if M is a closed 3-manifold whose fundamental group is infinite, is not a
free product, and does not contain a subgroup isomorphic to Z⊕Z, then M admits
a hyperbolic structure.

Our approach to the conjecture is through Cannon’s definition (see [4]) of con-
formality for a sequence of shinglings (locally finite covers by compact, connected
sets) of a topological surface X. Suppose X is a surface and S is a shingling of X.
A weight function on S is a nonzero function ρ : S → R such that ρ(s) ≥ 0 for all
s ∈ S. For s ∈ S, ρ(s) is called the weight of s. One can use a weight function to
give combinatorial definitions of length and area, and can then define the modulus
of an annulus by optimizing height2/area or area/circumference2. If R is an annu-
lus in X and ρ is a weight function on S, then the area A(R, ρ) of R is the sum of
the squares of the weights of the shingles that intersect R, the length L(α, ρ) of a
curve α in R is the sum of the weights of the shingles that intersect α, the height
H(R, ρ) of R is the minimum length of a curve in R joining the ends of R, and the
circumference C(R, ρ) of R is the minimum length of a simple closed curve in R

separating the ends of R. The combinatorial moduli are M(R,S) = supρ{H(R,ρ)2

A(R,ρ) }
and m(R,S) = infρ{ A(R,ρ)

C(R,ρ)2 }. One can similarly define combinatorial moduli for
quadrilaterals in R.

Now suppose that {Si}∞i=1 is a sequence of shinglings of a topological surface
X with mesh locally approaching 0. That is, if X is endowed with a metric that
induces the topology on X then in each compact set the largest diameter of a shingle
converges to 0. The sequence {Si}∞i=1 is conformal if there is a positive real number
K satisfying the following conditions.

Axiom I: For each annulus R in X, there is a positive real number r such that
m(R,Si),M(R,Si) ∈ [r,Kr] for sufficiently large i.

Axiom II: Given a point x ∈ X, a neighborhood N of X, and an integer J ,
there is an annulus R in N which separates x and ∂N such that m(R,Si) > J
and M(R,Si) > J for sufficiently large i.

Cannon’s combinatorial Riemann mapping theorem [4] states that if X is a
topological 2-sphere and {Si} is a conformal sequence of shinglings on X, then
there is a quasiconformal structure (a collection of charts for which the transition
functions are uniformly quasiconformal) on X such that for each annulus R in X
the analytic modulus of R lies within a multiplicative bound (independent of the
annulus) of the asymptotic combinatorial moduli of R.

Now suppose that G is a negatively curved group whose space at infinity is a
2-sphere. Let Γ be a locally finite Cayley graph for G, and let O be a vertex of Γ.
Then given a geodesic ray F : [0,∞) → Γ with F (0) = O and a positive integer n,
one can define a disk at infinity D(F, n) corresponding to the half space of points
closer to the tail of the ray than to the initial segment of the ray (for example, see
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[5] for a definition). For each positive integer n, the collection

D(n) = {D(F, n) : F is a geodesic ray in Γ with F (0) = O}
is a finite cover of the sphere at infinity of G. In [5, Theorem 2.3.1], Cannon and
Swenson prove that G acts properly discontinuously, cocompactly, and isometri-
cally on hyperbolic 3-space if and only if the sequence {D(n)}∞n=1 of disk covers is
conformal in the above sense. Cannon and Swenson also show in [5] that for every
integer n ≥ 2 the elements of D(n) can be obtained from the elements of D(n− 1)
by a finite recursion.

Finite subdivision rules were developed to give models for the above sequences of
disk covers. While the resulting sequences of subdivisions are not as general as the
sequences of disk covers, the reduction from considering sequences of disk covers
to considering subdivisions coming from finite subdivision rules does not appear to
be an essential simplification. Much of the basic theory of finite subdivision rules
is developed in [8].

A finite subdivision rule R consists of a finite CW complex SR which is the
union of its closed 2-cells, a subdivision R(SR) of SR, and a continuous map
σR : R(SR) → SR whose restriction to every open cell is a homeomorphism onto
an open cell. (In particular, σR is cellular.) Furthermore, SR must have the prop-
erty that for each closed 2-cell t̃ of SR, there is a cell structure t on a 2-disk such
that t has at least three vertices, all of the vertices and edges of t are in ∂t, and
the characteristic map ψt : t → SR takes each open cell homeomorphically onto an
open cell. The cell complex t is called a tile type of R. Similarly, if ẽ is a closed
1-cell of SR then a 1-disk e equipped with a characteristic map ψe : e → SR is
called an edge type of R. See, for example, Spanier [22], for basic details about CW
complexes. A CW complex Y is a subdivision of a CW complex X if they have the
same underlying space and every closed cell of Y is contained in a closed cell of X.
A finite subdivision rule R is orientation preserving if there is an orientation on the
union of the open 2-cells of SR such that the restriction of σR to each open 2-cell
of R(SR) is orientation preserving.

Example 1.2. We give a preliminary example to illustrate the definition. For this
finite subdivision rule R the complex SR is the 2-sphere Ĉ, with a cell structure
consisting of 4 vertices, three 1-cells, and one 2-cell. The complexes SR and R(SR)
are shown in Figure 1. The vertices of SR are labeled 0, 1, α, and ∞, and the
1-cells of SR are labeled e1, e2, and e3. The vertices 0, 1, α, and ∞ of R(SR) all
map to 0 under σR, the vertices ai all map to α, the vertex b maps to ∞, and the
vertices cj all map to 1. The 1-cells of R(SR) are labeled by the labels of their
images under σR. The map σR is orientation preserving. The single tile type is a
hexagon. It is shown in Figure 2, with its 1-cells labeled by their images in SR.

Suppose R is a finite subdivision rule. An R-complex is a 2-dimensional CW
complex X which is a union of its closed 2-cells together with a continuous map
f : X → SR such that the restriction of f to each open cell is a homeomorphism onto
an open cell. (In particular, f is cellular.) In this case there is a subdivision R(X)
of X such that the induced map f : R(X) → R(SR) restricts to a homeomorphism
on each open cell. Furthermore, R(X) is also an R-complex with associated map
σR ◦ f : R(X) → SR. One can inductively define Rn(X) for n > 1 by Rn(X) =
R(Rn−1(X)), with associated map σn

R ◦ f : Rn(X) → SR. Note that SR is an
R-complex with associated map the identity map. Also, each tile type of R is an
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Figure 1. The complexes SR and R(SR) for Example 1.2
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Figure 2. The tile type t for Example 1.2

R-complex with associated map its characteristic map. The first three subdivisions
R(t), R2(t), and R3(t) of the tile type t for Example 1.2 are shown in Figure 3.
Figure 3 was drawn using Stephenson’s program CirclePack [21].

Figure 3. The subdivisions R(t), R2(t), and R3(t) for Example 1.2

A finite subdivision rule R has bounded valence if there is an upper bound to
the set of valences of vertices of Rn(SR), the nth subdivision of SR, where n is any
positive integer. Suppose R is a finite subdivision rule and X is an R-complex that
is also a surface. For each nonnegative integer n, let Sn(X) be the shingling of X
whose elements are the closed tiles of Rn(X). Then (X,R) is conformal if {Sn(X)}
is conformal in int(X). If (X,R) is conformal whenever X is a bounded valence
R-complex that is a surface, then the finite subdivision rule R is conformal.
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Suppose that R and Q are finite subdivision rules with associated complexes SR
and SQ and maps σR : R(SR) → SR and σQ : Q(SQ) → SQ. Then R and Q are
isomorphic if there is a cellular homeomorphism h : SR → SQ such that σQ ◦ h =
h ◦ σR. If there are cellularly isotopic cellular homeomorphisms g, h : SR → SQ
such that σQ ◦ g = h ◦ σR, then R and Q are weakly isomorphic.

A finite subdivision rule R has mesh approaching 0 if given an open cover U of
SR there is a positive integer n such that each tile of Rn(SR) is contained in an
element of U . If a finite subdivision rule has mesh approaching 0, then for any point
x ∈ SR, {x} = ∩{t : t is a closed 2-cell of Rn(SR) for some nonnegative integer
n and x ∈ t}. This condition is very convenient, since it implies that each point
of SR is determined by its forward orbit under σR. It can be difficult to verify,
however, since it depends on more than just the combinatorics of SR, R(SR), and
σR. From the point of view of subdivision rules, the following definition is easier
to work with.

A finite subdivision rule R has mesh approaching 0 combinatorially if there is
a positive integer n satisfying the following: i) each closed edge of SR is properly
subdivided in the subdivision Rn(SR) of SR; ii) if t is a tile type and e1 and e2 are
disjoint edges of t, then no tile of Rn(t) contains an edge of the nth subdivision of e1

and an edge of the nth subdivision of e2. It is shown in [8] that if a finite subdivision
rule R has mesh approaching 0 combinatorially, then R is weakly isomorphic to a
finite subdivision rule Q with mesh approaching 0 and hence for each nonnegative
integer n Rn(SR) and Qn(SQ) are cellularly homeomorphic.

Let R be an orientation-preserving finite subdivision rule with bounded valence
and mesh approaching 0, and let the tile types be given the orientations induced
from the orientations on the open tiles of SR. We say thatR is a one tile rotationally
invariant finite subdivision rule if it satisfies the following two conditions:

1. If s and t are tile types of R, then there exists an orientation-preserving
cellular isomorphism from s to t which takes R(s) to R(t).

2. If t is a tile type of R with q edges, then there exists an orientation-preserving
cellular automorphism of t of order q which is also a cellular automorphism
of R(t).

If in addition for each tile type t of R there is an orientation-reversing cellular
automorphism of t that is also a cellular automorphism of R(t), then R is a one
tile dihedrally invariant finite subdivision rule. A straightforward argument (which
is given in [10]) shows that if R is a one tile rotationally invariant finite subdivision
rule, t1 and t2 are tile types of R, e1 is an edge of t1, and e2 is an edge of t2,
then there is an orientation preserving complete cellular isomorphism from t1 to t2
which takes e1 to e2. (A cellular isomorphism from t1 to t2 is a complete cellular
isomorphism if for every positive integer n it is a cellular isomorphism from Rn(t1)
to Rn(t2).)

Let R be an orientation-preserving finite subdivision rule. We say that R has
an edge pairing if SR is a closed surface. If this is true, then σR is a branched
covering. By the Riemann-Hurwitz formula, if SR is connected and orientable then
either i) σR is a homeomorphism, ii) SR is a torus and σR is a covering map, or iii)
SR is a 2-sphere. Case i) cannot occur if R properly subdivides any tile type. Case
ii) occurs, for example, for the binary square subdivision rule L of Example 4.3.
In this example, the rational functions that realize σL include a classical example
due to Lattès [14] of a rational map whose Julia set is the 2-sphere. We are most



6 J. W. CANNON, W. J. FLOYD, R. KENYON, AND W. R. PARRY

interested in case iii), and wish to understand for that case when σR can be realized
by a rational map. We first recall Thurston’s characterization theorem for critically
finite branched maps.

2. Thurston’s characterization theorem

We give here a brief summary of Thurston’s characterization theorem for criti-
cally finite branched maps. Our sources are [25], [11], and [16]. Let f : S2 → S2 be
an orientation-preserving branched map. Given x ∈ S2, let degx(f) be the topo-
logical degree of f at x. The critical set of f is Ωf = {x : degx(f) > 1}, and the
post-critical set is Pf = ∪n>0f

◦n(Ωf ). The mapping f is called critically finite if Pf

is finite. Two maps f, g : S2 → S2 are called equivalent if there is a homeomorphism
h : S2 → S2 such that h(Pf ) = Pg, (h ◦ f)

∣∣
Pf

= (g ◦ h)
∣∣
Pf

, and h ◦ f is isotopic, rel
Pf , to g ◦ h. In this case, if g is a rational map then we also say that f is realized
by g.

Suppose that f : S2 → S2 is an orientation-preserving, critically finite branched
map. For each x ∈ S2, let Df (x) = {n ∈ Z+ : there exists a positive integer m such
that f◦m has degree n at some y ∈ S2 with f◦m(y) = x}. We have Df (x) 6= {1} if
and only if x ∈ Pf . Define νf : S2 → Z+ ∪ {∞} by

νf (x) =

{
lcm(Df (x)) if Df (x) is finite,
∞ if Df (x) is infinite.

Let Of be the orbifold (S2, νf ). A point x ∈ Of with νf (x) > 1 is called a
distinguished point. These are the points in Pf . The Euler characteristic of Of is

χ(Of ) = 2−
∑

x∈Pf

(
1− 1

νf (x)

)
.

That is, the definition of the Euler characteristic of the orbifold is like the definition
of the Euler characteristic of the underlying space except that the contribution of
a vertex x to the Euler characteristic is 1/νf (x) instead of 1. With this definition,
the orbifold Euler characteristic is multiplicative for orbifold covering maps. An
orbifold is hyperbolic if it has a hyperbolic structure in the complement of the set
of distinguished points and in a neighborhood of a distinguished point x the metric
is the metric of a hyperbolic cone with cone angle 2π/νf (x). The orbifold Of is
hyperbolic if and only if χ(Of ) < 0.

We consider the Teichmüller space T (Of ) of Of as the space of complex struc-
tures on Of , up to the equivalence of isotopy fixing the distinguished points. A com-
plex structure on Of pulls back under f to a complex structure on (S2, f−1(νf )),
and this extends to a complex structure on Of . In this way we obtain a map
τf : T (Of ) → T (Of ). The map τf is analytic and does not increase the distances
between points in Of . Douady and Hubbard show in [11] that if Of is hyperbolic
then τ◦2f decreases the distances between points in Of .

Theorem 2.1 (Thurston). An orientation-preserving critically finite branched map
f : S2 → S2 is equivalent to a rational map if and only if τf has a fixed point.

When Of is hyperbolic, Thurston gives the following topological characteriza-
tion of when τf has a fixed point. To state this, we first need some terminology.
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An f-stable curve system is a finite set Γ of simple, closed, disjoint, essential, non-
peripheral, non-homotopic curves in S2 \Pf such that for each γ ∈ Γ, each compo-
nent of f−1(γ) is either null-homotopic, peripheral, or homotopic in S2 \ Pf to an
element of Γ. Suppose Γ is an f -stable curve system. The matrix AΓ : RΓ → RΓ is
defined in coordinates by

AΓ
γδ =

∑
α

1
deg(f : α → δ)

,

where the sum is taken over components α of f−1(δ) which are isotopic to γ in
S2 \Pf . (We think of the matrix AΓ as estimating the change in moduli under f−1

of a family of annuli around the curves in Γ.) Since AΓ has non-negative entries,
by the Perron-Frobenius theorem its spectral radius λ(Γ) is an eigenvalue with a
non-negative eigenvector.

Theorem 2.2 (Thurston’s characterization theorem). An orientation-preserving
critically finite branched map f : S2 → S2 with hyperbolic orbifold is equivalent
to a rational function if and only if for any f-stable curve system Γ, λ(Γ) < 1. In
that case, the rational function is unique up to conformal conjugation.

If Of is not hyperbolic, then T (Of ) is a single point unless Of is the orbifold
(2, 2, 2, 2) (the rectangular pillowcase). In that case, Of is double-covered by a
torus Tf , f lifts to a covering map of this torus, and there is a 2 × 2 matrix Af

which represents the induced map H1(Tf , Z) → H1(Tf , Z). In this case, Thurston’s
characterization is the following.

Theorem 2.3 (Thurston). An orientation-preserving critically finite branched map
f : S2 → S2 with Of the orbifold (2, 2, 2, 2) is equivalent to a rational map if and
only if Af is either a multiple of the identity or the eigenvalues of Af are not real.

3. Constructing rational maps from finite subdivision rules

Let R be an orientation-preserving finite subdivision rule with an edge pairing,
and assume furthermore that SR is a 2-sphere. The branched covering σR preserves
orientation and is cellular as a map from R(SR) to SR, and so in particular it takes
vertices of SR to vertices of SR. Since the critical points of σR are all vertices of
R(SR), this implies that σR is critically finite. We are interested in understanding
when σR can be realized by a rational map fR. For convenience, we will denote the
orbifold OσR by OR and we will denote the map τσR : T (OR) → T (OR) by τR.

By Theorem 2.1, σR can be realized by a rational map exactly if τR has a fixed
point. In particular, σR can be realized by a rational map if the orbifold OR
has at most three distinguished points. When T (OR) has more than one point,
Theorems 2.2 and 2.3 give topological characterizations of when τR has a fixed
point.

In some cases, one can also use techniques from finite subdivision rules to deter-
mine when σR can be realized by a rational map.

Theorem 3.1. Let R be an orientation-preserving finite subdivision rule with an
edge pairing such that SR is a 2-sphere and the mesh of R approaches 0. If R is
conformal, then σR is realizable by a rational map.

Proof. Suppose that R is conformal. By the combinatorial Riemann mapping the-
orem [4], there is a quasiconformal structure on SR such that the analytic moduli
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of annuli in SR are uniformly approximated by their asymptotic combinatorial
moduli. We adopt an argument from Cannon and Swenson [5] to show that the
sequence {σ◦nR } is uniformly quasiregular with respect to the quasiconformal struc-
ture on SR that is given above. By a theorem of Kuusalo [13] the quasiconformal
structure on SR is quasiconformally equivalent to a conformal structure. Hence SR
has a conformal structure so that there is a positive constant K such that for any
annulus A in SR, there is a positive real number r so that for n sufficiently large
the analytic modulus mod(A) of A and the combinatorial moduli M(A,Sn(SR))
and m(A,Sn(SR)) lie in the interval [r,Kr], where Sn(SR) denotes the shingling
of SR by the tiles of Rn(SR).

We show that for each positive integer k, σ◦kR is K2-quasiregular. Let k be a
positive integer, let x ∈ SR be a point which is not a branch point of σ◦kR , let U
be a neighborhood of x such that σ◦kR

∣∣
U

is injective, and let A be an annulus in U .
Then there are positive real numbers r1 and r2 such that for n sufficiently large i)
mod(A) and M(A,Sn(SR)) lie in the interval [r1,Kr1] and ii) mod(σ◦kR (A)) and
M(σ◦kR (A),Sn(SR)) lie in the interval [r2,Kr2]. For each positive integer n, the
cell structure on Sn+k(SR) is the inverse image under σ◦kR of the cell structure on
Sn(SR). Since σ◦kR is injective on A, for each positive integer n M(A,Sn+k(SR)) =
M(σ◦kR (A),Sn(SR)) and so 1

K2 ≤ mod(A)

mod(σ◦k
R (A))

≤ K2. Hence the restriction of

σ◦kR to U is K2-quasiconformal, σ◦kR is K2-quasiregular, and {σ◦kR } is uniformly
quasiregular. By a theorem of Sullivan [24, Theorem 9], σR is realizable by a
rational map.

Since σR is critically finite, if σR can be realized by a rational map fR then it
follows from Sullivan’s classification of stable Fatou regions (see, for example, [18,
Corollary 16.5]) that the only possible periodic Fatou domains are superattracting
domains. The Fatou set for fR has a superattracting domain exactly if R does not
have bounded valence. Since by Sullivan’s nonwandering theorem [23] every Fatou
domain is eventually periodic, if R has bounded valence then the Julia set of fR is
the 2-sphere.

Before giving specific examples in Section 4, we present here a general construc-
tion of finite subdivision rules with edge pairings that are realized by rational maps.
Let R be a one tile rotationally invariant finite subdivision rule. Figures 4 and 5
show the subdivisions of the tile types for two such finite subdivision rules, the
pentagonal subdivision rule and the twisted pentagonal subdivision rule.

Since R has mesh approaching 0, there is a tile type t such that there is a tile
of type t in the interior of a subdivision Rn(u) of some tile type u. Let n(t) be the
number of edges of t. Then there is an orientation-preserving cellular automorphism
θ : t → t which has order n(t) and is also a cellular automorphism of R(t). As
remarked earlier, we can assume that θ is a complete cellular isomorphism. Since
θ has finite order, it has a unique fixed point. We define the barycenter b(t) of t
to be this fixed point. Choose orientations for the open tiles of SR with respect
to which σR is orientation preserving, and choose an orientation for each tile type
s so that its characteristic map ψs is orientation preserving. For each tile type s
use the orientation on s to orient the edges of ∂s. By possibly replacing θ by a
power, we can assume that θ maps each vertex of ∂t to the vertex that follows
it in the orientation of ∂t. Let α be an edge of t. Let t′ be a tile type such
that there is a tile of type t′ adjacent in Rn(u) to a tile of type t along an edge
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Figure 5. The subdivisions of the tile types for the twisted pen-
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which corresponds to α in t and which corresponds to an edge α′ in t′. Then
there is a complete cellular isomorphism h : t → t′ such that h(α) = α′. Then(
ψt

∣∣
int(α)

)−1

◦ ψt′
∣∣
int(α′)) ◦ h

∣∣
int(α)

is an orientation-reversing homeomorphism of
int(α) which extends to a homeomorphism ια : α → α. We define the barycenter
b(α) of α to be the fixed point of ια. For each tile type s we define the barycenter
b(s) to be the image of b(t) under a complete cellular isomorphism that takes t to
s. For each edge e of a tile type s we define the barycenter b(e) to be the image of
b(α) under a complete cellular isomorphism from t to s which takes α to e. Now
subdivide the tile type t by adding the barycenter b(t) to t, for each edge e of t
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adding the barycenter b(e) of e, for each vertex v of t adding an edge from v to b(t),
and for each edge e of t adding an edge from b(e) to b(t). This gives a subdivision
4(t) of t into triangles, and one can do this so that θ is a cellular map from 4(t)
to 4(t). For every other tile type s we define a subdivision 4(s) by taking the
image of 4(t) under a complete cellular isomorphism from t to s. This induces a
subdivision of every tile of R(s), and so we obtain a subdivision 4(R(s)) of R(s)
by triangles. Figure 6 shows the subdivisions 4(t) and 4(R(t)) for a tile type of
the pentagonal subdivision rule, and Figure 7 shows the same thing for a tile type
of the twisted pentagonal subdivision rule.

Fix a vertex v of t. It is easy to see that there is an edgepath ρ in 4(R(t)) that
joins v to b(t) and has ρ∩ ∂t = {v}. Let ρv be an edgepath in 4(R(t)) of minimal
length such that ρv ∩ ∂t = {v} and ρv joins v and b(t). Let e1, . . . , em be the edges
of ρv, and for 1 ≤ i ≤ m let vi−1 be the initial vertex of ei and let vi be the terminal
vertex of ei. Then v0 = v and vm = b(t). By minimality of m, vi 6= vj if i 6= j
and hence ρv is a simple edgepath. We prove by contradiction that if 1 ≤ k < n(t)
then ρv ∩ θ◦k(ρv) = {b(t)}. Suppose not. Then there are integers i, j, k such that
1 ≤ k < n(t), 0 ≤ i, j < m, and vi = θ◦k(vj). Since ρv∩∂t = {v0} and θ◦k(ρv)∩∂t =
{θ◦k(v0)}, i, j > 0. Since vm = b(t) is the only fixed point of θ◦k, i 6= j. If i < j, then
e1, . . . , ei, θ

◦k(ej+1), . . . , θ◦k(em) is a shorter edgepath from v to b(t), contradicting
minimality of m. If i > j, then e1, . . . , ej , θ

◦−k(ei+1), . . . , θ◦−k(em) is a shorter
edgepath from v to b(t), contradicting minimality of m. Hence if 1 ≤ k < n(t) then
θ◦k(ρv) ∩ ρv = {b(t)}.

b(e)v

b(t)

Figure 6. The pentagons subdivided into triangles for the pen-
tagonal subdivision rule

b(e)v

b(t)

Figure 7. The pentagons subdivided into triangles for the twisted
pentagonal subdivision rule

Let e be the edge of t with ∂e = {v, θ(v)}. By the previous paragraph there
exists an edgepath ρv in 4(R(t)) such that ρv joins v and b(t), ρv ∩ ∂t = {v}, and
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ρv∩θ◦k(ρ(v)) = {b(t)} for k ∈ {1, . . . , n(t)−1}. We say thatR is amply triangulated
if for some such edgepath ρv there is an edgepath ρe in 4(R(t)) from b(e) to b(t)
such that ρe ∩ ∂t = b(e) and for each k ∈ {1, . . . , n(t)}, θ◦k(ρv) ∩ ρe = {b(t)}. The
existence of such an edgepath ρe is independent of the choice of vertex v in t, but
it does depend on the choice of the edgepath ρv. It is clear from Figure 8 that
the pentagonal subdivision rule is amply triangulated but the twisted pentagonal
subdivision rule is not amply triangulated.

Figure 8. Choices of ρv and its cyclic images for a tile type of
the pentagonal subdivision rule and for a tile type of the twisted
pentagonal subdivision rule

We first suppose that R is amply triangulated, and let ρv and ρe be suitable
edgepaths as above. Let e1 be the edge in 4(t) from b(e) to v, let e′1 be the edge
in 4(t) from b(e) to θ(v), let e2 be the edge in 4(t) from v to b(t), let e′2 be θ(e2),
and let e3 be the edge in 4(t) from b(t) to b(e). Let t1 be the triangle in 4(t)
whose boundary consists of e1, e2, and e3, and let t2 be the triangle in 4(t) whose
boundary consists of e′1, e′2, and e3.

We will define a finite subdivision rule Q. We define the complex SQ to be the
CW complex obtained from t1 ∪ t2 by identifying e2 with e′2 via θ and identifying
the edge e1 with e′1 by ιe

∣∣
e1

. The map p : t1 ∪ t2 → SQ extends to a cellular map
p′ : 4(t) → SQ with p′ = p′ ◦ θ. Using the complete cellular isomorphisms between
different tile types, for each tile type s we can define a map p′s : 4(s) → SQ.
These maps descend to a map p′′ : SR → SQ. Let f : t → t be a homeomorphism
such that f is the identity on ∂t, θ ◦ f = f ◦ θ, f(e2) = ρv, and f(e3) = ρe.
The cell structure on 4(R(t)) pulls back under f to a subdivision of 4(t), and
this subdivision projects under p′ to a subdivision Q(SQ) of SQ. We next define
σQ : Q(SQ) → SQ. Let x ∈ Q(SQ). Then there exists a point y ∈ 4(t) with
p′(y) = x. Define σQ(x) = p′′(σR(ψt(f(y)))). One can check that σQ is well
defined and that with this definition Q is a finite subdivision rule. Figure 9 shows
the subdivision of the tile types for the finite subdivision rule Q associated with
the pentagonal subdivision rule. Here we are labeling the edge types by e1, e2, and
e3 and are labeling each edge by its edge type. Since σQ is orientation preserving,
one can tell the tile type of each 2-cell from the edge labels.

The subdivision rules R and Q are closely related. If X is an R-complex, then
it has a triangulation 4(X) that is a Q-complex. For any positive integer n,
4(Rn(X)) is combinatorially isomorphic to Qn(4(X)). Hence it follows from [6,
Theorem 6.2.7] that R is conformal if and only if Q is conformal.

Now suppose that R is not amply triangulated. Since the mesh of R ap-
proaches 0, there is a positive integer m such that star (b(t),Rm(t)) ∩ ∂t = ∅,
∪{star

(
θk(b(e)),Rm(t)

)
: k = 1, . . . , n(t)} does not separate v and b(t), and there
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→e2 e3

e1

t1
→e2

t2

e2

e2

e2

e2

e1

e3

e3

e3

e3

e3e2 e2

e2

e2

e3

e3

e3

e3

e1 e1

e1

e1

e1

e1e1

e1

e1

e1

Figure 9. The subdivision of the tile types for the finite subdivi-
sion rule Q associated with the pentagonal subdivision rule

is an edgepath inRm(t) from star (b(e),Rm(t)) to star (b(t),Rm(t)) which is disjoint
from ∂t. Let ρ be a minimal edgepath from star (b(e),Rm(t)) to star (b(t),Rm(t))
which is disjoint from ∂t. By minimality, ρ is disjoint from its images under θ◦k

for 1 ≤ k < n(t). Note that if s is a tile of Rm(t) and w and w′ are barycenters of
distinct edges of s, then there is an edgepath in 4(Rm(t)) which joins w and w′

and whose interior is in the interior of s. Using this, one can show that there are
edgepaths ρv and ρe in 4(Rm(t)) such that ρv is an arc from v to b(t), ρe is an arc
from b(e) to b(t), ρv ∩ θ◦k(ρv) = {b(t)} for 1 ≤ k < n(t), ρe ∩ θ◦k(ρe) = {b(t)} for
1 ≤ k < n(t), and ρe ∩ θ◦k(ρv) = {b(t)} for 0 ≤ k < n(t).

Let R′ be the finite subdivision rule defined by SR′ = SR, R′(SR′) = Rm(SR),
and σR′ = σ◦mR . Then R′ is a one tile rotationally invariant finite subdivision rule.
Furthermore, R′ is amply triangulated. We let Q be the finite subdivision rule
obtained from the above construction starting with R′. It easily follows from [6,
Theorem 6.2.7] that R is conformal if and only if R′ is conformal, and hence that
R is conformal if and only if Q is conformal.

Theorem 3.2. Let R be a one tile rotationally invariant finite subdivision rule,
and let Q be the finite subdivision rule obtained from R as described above. Then
σQ can be realized by a rational map.

Proof. By construction, σQ is orientation-preserving and has an edge pairing. Since
OQ has at most three distinguished points, T (OQ) has a single point. Hence τQ
has a fixed point and by Theorem 2.1 σQ can be realized by a rational map.

Theorem 3.2 also follows from [9, 10], where it is proved thatR is conformal (and
hence Q is conformal), and Theorem 3.1. In [17] D. Meyer shows how in certain
cases a concrete construction of the corresponding rational map can be obtained.

4. Examples

In this section we give several examples of finite subdivision rules with edge
pairings. For each such example R, if σR can be realized by a rational map we
explicitly construct a rational map realizing it. When we construct a rational map
fR realizing σR, we also identify SR with Ĉ so that for every positive integer n the
cell complex f◦−n

R (SR) subdivides f
◦−(n−1)
R (SR) and f◦−n

R (SR) is combinatorially
equivalent to Rn(SR) in a way which respects fR and σR. If σR is topologically
conjugate to fR, then it is possible to identify SR with Ĉ so that we may assume
the much stronger condition that σR = fR.
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Example 4.1. We first consider the finite subdivision rule R that was shown in
Example 1.2. The subdivision complex SR and its subdivision R(SR) are shown in
Figure 1, the single tile type is shown in Figure 2, and the first three subdivisions
of the tile type are shown in Figure 3.

The branching data are as follows: 0 7→ 0 with degree 1, 1 7→ 0 with degree 2,
α 7→ 0 with degree 2, ∞ 7→ 0 with degree 1, for each i ai 7→ α with degree 1, b 7→ ∞
with degree 6, and for each j cj 7→ 1 with degree 2. We can easily see in two ways
that σR can be realized by a rational map fR. It follows from the branching data
that OR is the orbifold (2, 6, 12). Hence T (OR) is a single point and by Theorem 2.1
σR can be realized by a rational map. Alternatively, sinceR has dihedral symmetry
it follows from [8, Theorem 6.4] that R is conformal and hence by Theorem 3.1
that σR can be realized by a rational map. If follows from the branching data that
fR = kz(z−1)2(z−α)2

(z−b)6 for some constants k, α, and b. Let p(z) be the numerator of(
f ′R(z)
fR(z)

)2

, and let q(z) be the numerator of fR(z)−1. Then p and q are polynomials

of degree 6 that have c1, c2, and c3 as zeroes of degree 2. Using Mathematica1, one
can solve for k, α, and b to get the solution fR = 108z(z−1)2(z−9)2

(z+3)6 . Furthermore,

c1 = 3(7−4
√

3), c2 = 3, and c3 = 3(7+4
√

3). One can choose e1 = [0, 1], e2 = [1, 9],
and e3 = [9,∞]. (Here, for x ∈ R, we are denoting [x,∞) ∪ {∞} by [x,∞].) It
easily follows that f◦−1

R ([0,∞]) is combinatorially equivalent to the 1-skeleton of
R(SR). It follows inductively that for each positive integer n, f◦−n

R ([0,∞]) is
combinatorially equivalent to the 1-skeleton of Rn(SR), the nth subdivision of SR.
Figure 10 shows Mathematica approximations of the intersection of the rectangle
[−4, 4]× [−4, 4] with f◦−1

R ([0,∞]) and f◦−2
R ([0,∞]). Since R has bounded valence,

the Julia set of fR is the 2-sphere.

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

Figure 10. f◦−1
R ([0,∞]) and f◦−2

R ([0,∞])

Example 4.2. We next consider a variant S of the binary square subdivision rule
with a single tile type t and two edge types. The subdivision of the tile type is shown

1A computer software system available from Wolfram Research, Inc., 100 Trade Center Drive,
Champaign, IL 61820, USA.
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in Figure 11. This is an orientation-preserving finite subdivision rule with mesh
approaching 0, bounded valence, and an edge pairing. Each edge of the tile type t
and of S(t) is labeled by its edge type and oriented so that σS preserves the induced
orientations of the edges of SS and S(SS). Since S is orientation preserving, the
edge labels and orientations determine σS up to a cellular isomorphism of S(SS)
fixing the vertices.

The surface SS is topologically a 2-sphere. We can assume without loss of
generality that SS is Ĉ and that its vertices are 1, 0, and ∞. The branched
covering σS : SS → SS is shown in Figure 12. It is cellular as a map from S(SS) to
SS and preserves the labels and orientations of the edges. The branching data are
as follows: 0 7→ 0 with degree 1, 1 7→ 0 with degree 2, ∞ 7→ 0 with degree 1, a 7→ ∞
with degree 4, b 7→ 1 with degree 2, and c 7→ 1 with degree 2. It follows that OS
is the orbifold (2, 4, 4). Since T (OS) is a single point, we know from Theorem 2.1
that σS can be realized by a rational map fS . (Since S has dihedral symmetry, this
also follows from [8, Theorem 6.4] and Theorem 3.1.)

By the branching data, fS(z) = kz(z−1)2

(z−a)4 for some constants a, k ∈ C with

a /∈ {0, 1} and k 6= 0. Let p(z) be the numerator of
(

f ′S(z)
fS(z)

)2

, and let q(z) be the
numerator of fS(z)− 1. Then p and q are each polynomials of degree 4 which have
b and c as zeroes of order 2. Since p(0) = a2 and q(0) = −a4, g(z) = a2p(z) + q(z)
is the zero function. A straightforward computation shows that

g(z) =
(
k + 10a3 − 6a4

)
z +

(
−2k + 3a2 − 20a3 + 9a4

)
z2

+
(
k + 4a− 6a2 + 6a3

)
z3 +

(
a2 − 1

)
z4.

Since g is the zero function, a2 − 1 = 0 and so a = −1. This implies that k = 16
and

fS(z) =
16z(z − 1)2

(z + 1)4
.

Since S has bounded valence, the Julia set of fS is the 2-sphere. One can easily
see that fS maps each of the intervals [0, 3 − 2

√
2], [3 − 2

√
2, 1], [1, 3 + 2

√
2], and

[3 + 2
√

2,∞] bijectively onto the interval [0, 1]. This leads us to choose e1 = [1,∞]
and e2 = [0, 1]. As for the previous example, one can show that for each positive
integer n, f◦−n

S ([0,∞]) is combinatorially equivalent to the 1-skeleton of Sn(SS),
the nth subdivision of SS . Figure 13 shows Mathematica approximations of the
intersection of the rectangle [−3, 7]× [−5, 5] with f◦−1

S ([0,∞]) and f◦−2
S ([0,∞]).

→e2

e2

e2

e2

e2

e2

e1 e1e1

e1

e1

e1 e2 e2

e2e2

Figure 11. The subdivision of the tile type for the binary square
subdivision rule S with one tile type
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e1 e1

∞∞ 11

0

b

c

a
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→

Figure 12. The branched covering σS

-2 2 4 6

-4

-2

2

4

-2 2 4 6

-4

-2

2

4

Figure 13. f◦−1
S ([0,∞]) and f◦−2

S ([0,∞])

Example 4.3. We next consider the binary square subdivision rule L with two tile
types, as shown in Figure 14. There are two tile types (t1 and t2) and four edge
types (e1, e2, e3, and e4). Since the edge and tile labels on L(SL) determine the
map σL up to a cellular isomorphism fixing the vertices, we have also labeled the
edges and tiles of L(t1) and L(t2) to indicate the map σL. This finite subdivision
rule is orientation preserving and has an edge pairing.

SL is a 2-sphere obtained by gluing t1 and t2 by a homeomorphism of their
boundaries which preserves the labels and the orientations of the edges (i.e., SL is
a rectangular pillowcase). We can topologically identify SL with Ĉ; we do this in
such a way that 0, 1, and ∞ are vertices of the cell structure on SL. Figure 15
indicates the map σL : SL → SL; it is cellular as a map from L(SL) to SL and
preserves labels of edges and tiles. The branching data are as follows: 0 7→ ∞
with degree 1, 1 7→ ∞ with degree 1, ∞ 7→ ∞ with degree 1, α 7→ ∞ with degree
1, a 7→ 1 with degree 2, b 7→ α with degree 2, c 7→ 1 with degree 2, d 7→ α
with degree 2, g 7→ 0 with degree 2, and h 7→ 0 with degree 2. OL is the orbifold

(2, 2, 2, 2). Since AσL =
(

2 0
0 2

)
, by Theorem 2.3 σL can be realized by a rational

map fL. (Once again, this also follows from [8, Theorem 6.4] and Theorem 3.1.)
Again by the branching data, fL(z) = k(z−g)2(z−h)2

z(z−1)(z−α) for some constants k, g, h,
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Figure 14. The subdivisions of the tile types for the binary square
subdivision rule L with two tile types
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∞ ∞
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b
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a →

Figure 15. The branched covering σL

and α. Let p(z) be the numerator of
(

f ′L(z)
fL(z)

)2

, and let q(z) be the numerator of
(fL(z)− 1)(fL(z)− α). Then p and q are each polynomials of degree 8 which have
a, b, c, and d as zeroes of order two.

We will not try to characterize all of the rational functions that realize this
branching data. One can get an infinite family of solutions as follows: given α ∈
C \ {0, 1}, let

fL,α(z) =
(z2 − α)2

4z(z − 1)(z − α)
.

When α = −1, this is Lattès’s example [14] from 1918 of a rational map whose
Julia set is the 2-sphere. Since L has bounded valence, for each choice of α the
Julia set is the 2-sphere.

In the Lattès example with α = −1, we may take the 1-skeleton of SL to be
R ∪ {∞}. One can verify that for each positive integer n, f◦−n

L,−1(R ∪ {∞}) is
combinatorially equivalent to the 1-skeleton of Ln(SL). Figure 16 shows Math-
ematica approximations of the intersection of the rectangle [−3, 3] × [−3, 3] with
f◦−1
L,−1(R ∪ {∞}) and f◦−2

L,−1(R ∪ {∞}).
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Figure 16. f◦−1
L,−1(R ∪ {∞}) and f◦−2

L,−1(R ∪ {∞}) for the Lattès example

Example 4.4. We next consider the pentagonal subdivision rule P, which is a one
tile dihedrally invariant finite subdivision rule with two tile types and one edge type.
Each tile type is a pentagon that is subdivided into six pentagons, and the edge
type is subdivided into two subedges. The subdivisions of the tile types are shown
in Figure 4. The subdivision complex SP is obtained from t1 ∪ t2 by identifying all
of the edges together preserving orientations. It is easy to see that P does not have
an edge pairing.

One can identify t1 with the central pentagon of P(t1), and hence can identify
Pi(t1) with a subcomplex of Pj(t1) if i < j. Figure 17 shows P(t1), P2(t1),
and P3(t1); all three figures were drawn using Stephenson’s program CirclePack
[21]. We denote by EP the direct limit of the Pi(t1)’s and call EP the expansion
complex (see [9] for details about expansion complexes). There is an expansion map
ϕ : EP → EP such that Pi+1(t1) is the P-subdivision of ϕ(Pi(t1)) for each i ≥ 0.
This complex was studied by Bowers and Stephenson in [1], where they constructed
a conformal structure on EP in which all of the pentagons are conformally regular.
They then showed that EP is conformally equivalent to C, and that under this
equivalence the expansion map ϕ corresponds to a dilation z 7→ λz of C. Using
circle packing methods, they gave the estimate |λ| ≈ 3.2.

Figure 17. P(t1), P2(t1), and P3(t1)
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Although the pentagonal subdivision rule does not have an edge pairing, as we
saw in Section 3 we can construct from it an orientation-preserving finite subdivision
rule Q with two tile types which does have an edge pairing. The subdivision of the
tile types of Q is shown in Figure 9. We can assume without loss of generality that
SQ is Ĉ and its vertices are 0, 1, and ∞. By Theorem 3.2 or Theorem 3.1, σQ can
be realized by a rational map.

We can subdivide the expansion complex EP to get a Q-complex EQ as follows.
Since each pentagon in EP is conformally regular, it has a unique conformal center
and is invariant under a conformal action of the dihedral group of order ten. Each
pentagon in EP can be uniquely subdivided, as in the left-hand part of Figure 6,
into ten triangles, each of which is equivalent to its adjacent triangles under anti-
conformal reflections. Doing this for each pentagon gives a triangulation EQ of EP .
Furthermore, one can define a map f : EQ → SQ which turns EQ into an expansion
Q-complex with expansion map z 7→ λz.

Since the tiling EQ is invariant under the action of Z5 by rotations fixing the
origin, its image under the map z 7→ z5 gives a tiling E of C by triangles such
that each triangle can be mapped to any adjacent triangle by an anticonformal
reflection. E is an expansion Q-complex with expansion map z 7→ λ5z.

e2e3

e1 ∞

0

1 1

→e2

e2

e2

e2

e3

e3

e3

e3

e1

e1

e1

e1

e1

c

a

b

d

e ∞

0

Figure 18. The branched cover σQ

The branched cover σQ : SQ → SQ is shown in Figure 18. The branching data
are as follows: 0 7→ 0 with degree 1, b 7→ ∞ with degree 3, c 7→ 0 with degree 5,
1 7→ ∞ with degree 2, ∞ 7→ ∞ with degree 1, a 7→ 1 with degree 2, d 7→ 1 with
degree 2, and e 7→ 1 with degree 2. It easily follows that OQ is the orbifold (5, 2, 12)

and that the rational function is fQ(z) =
kz(z − c)5

(z − b)3(z − 1)2
for some constants k, b,

and c. Since there are three double roots of fQ(z) − 1, the numerator p(z) of(
f ′Q(z)

fQ(z)

)2

and the numerator q(z) of fQ(z) − 1 are multiples of each other. Using
Mathematica, one can solve this to get k = 2/27, b = 3/128, and c = −9/16, which
gives

fQ(z) =
2z(z + 9/16)5

27(z − 3/128)3(z − 1)2
.

Simply by viewing fQ as a function of a real variable and considering its behavior
at zeros and poles, it is easy to see that fQ has a local maximum between c and
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0, a local minimum between b and 1, and a local minimum greater than 1. These
local extrema must be a, d, and e. We take a to be the local maximum between c
and 0, we take d to be the local minimum between b and 1, and we take e to be
the local minimum greater than 1. We take R ∪ {∞} to be the 1-skeleton of SQ.
It is now a routine matter to verify that f◦−1

Q (SQ) is combinatorially equivalent to
Q(SQ) in a way which respects fQ and σQ. It follows by induction that f◦−n

Q (SQ)
is combinatorially equivalent to Qn(SQ) in a way which respects fQ and σQ for
every positive integer n. Since the two triangles of SQ are complex conjugates of
each other, it follows that each triangle of f◦−n

Q (SQ) can be mapped to any adjacent
triangle by an anticonformal reflection for every positive integer n.

Let ÕQ be the universal covering orbifold of OQ, and suppose that p ∈ ÕQ
maps to 0 ∈ OQ. The multivalued function inverse to fQ lifts to a function
f̃◦−1
Q : ÕQ → ÕQ which fixes p. The orbifold ÕQ is hyperbolic, and f̃◦−1

Q strictly de-
creases hyperbolic distances. The Q-complex structure on OQ lifts to a Q-complex
structure on ÕQ. For every positive integer n the complex f̃◦−n

Q (ÕQ) is combinato-
rially equivalent to Qn(ÕQ), and the diameters of the cells of f̃◦−n

Q (ÕQ) converge
to 0 uniformly with respect to n. This yields the following conclusion. Given any
finite subcomplex C of E and any neighborhood U of 0 in SQ there is a positive
integer n such that U contains a subcomplex of f◦−n

Q (SQ) that is cellularly isomor-
phic to C. Furthermore, using the Koenigs linearization theorem (see, for example,
[18, Theorem 8.2]) about the repelling fixed point 0 of fQ, one can define an ex-
pansion Q-complex E′ which is combinatorially equivalent to E and has expansion
map z 7→ f ′Q(0)z. Since each triangle of E′ can be mapped to any adjacent triangle
by an anticonformal reflection and the same is true of E, it follows that E and
E′ are also conformally equivalent, and so λ5 = f ′Q(0). Hence the expansion con-

stant for the pentagonal subdivision rule is
(
f ′Q(0)

)1/5 = (−324)1/5; its modulus is
approximately 3.178.

Since one can take R∪ {∞} to be the 1-skeleton of SQ, for each positive integer
n f◦−n

Q (R ∪ {∞}) is combinatorially equivalent to the 1-skeleton of Qn(SQ). Since
the edges of Qn(SQ) that correspond to the pentagonal subdivision rule P are
those labeled by e1, for each positive integer n f◦−n

Q ([1,∞]) gives the edges of
f◦−n
Q (SQ) that correspond to pentagonal edges. One can get a glimpse of the above

construction by looking at the inverse images of these pentagonal edges under the
map z 7→ z5. Figure 19 shows Mathematica approximations of the intersection
of the rectangle [−0.5, 0.5] × [−0.5, 0.5] with the inverse images under z 7→ z5 of
f◦−1
Q ([1,∞]), f◦−2

Q ([1,∞]), and f◦−3
Q ([1,∞]).

Example 4.5. In this example, the finite subdivision rule H has a single tile type
t and three edge types, e1, e2, and e3. The tile type t is a hexagon, and it is
subdivided in H(t) into seven tiles. See Figure 20. Since the edge labels on H(SH)
determine the map σH up to a cellular isomorphism fixing the vertices, we have also
labeled the edges of H(t) to indicate the map σH. Figure 20 shows the edge labels
for the tile type t and for the edges in H(t). The subdivision rule H is orientation
preserving and has an edge pairing.

The surface SH is a 2-sphere. The branched map σH is indicated in Figure 21; it
is cellular as a map from H(SH) to SH and preserves edge labels and orientations.
OH is the orbifold (2, 2, 2, 6). Since T (OH) is not just a point, one cannot conclude
trivially from Theorem 2.1 that σH can be realized by a rational map. Figure 22
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Figure 19. The inverse images under z 7→ z5 of f◦−1
Q ([1,∞]),

f◦−2
Q ([1,∞]) and f◦−3

Q ([1,∞])

shows a σH-stable curve system Γ = {γ} and its inverse image {γ1, γ2, γ3}. To help
the reader, edges of H(SH) which are not edges of SH are shown as dashed arcs
and vertices of H(SH) which are not vertices of SH are shown as hollow dots. Note
that AΓ =

(
1
3 + 1

2 + 1
2

)
=

(
4
3

)
. Hence by Theorem 2.2 the branched map σH can

not be realized by a rational map.

→

e3

e3

e3

e3

e3

e3

e3

e3

e3

e3

e2

e2

e2

e2

e2

e2 e2 e2

e2

e2

e1

e1

e1

e1

e1

e1

e1

e1 e1 e1

e3e2

e2

e1

e1

Figure 20. The subdivision of the tile type for the subdivision
rule H
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Figure 21. The branched covering σH
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γ

→
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Figure 22. A σH-stable curve system and its inverse image

Example 4.6. For a final example, consider the barycentric subdivision rule B, as
shown in Figure 23. This finite subdivision rule is orientation preserving and has
an edge pairing.

SB is a 2-sphere with exactly two tiles (it is a triangular pillowcase). We can
assume without loss of generality that SB = Ĉ and that the vertices of SB are 0, 1,
and ∞. The map σB : SB → SB is shown in Figure 24. The branching data are as
follows: 0 7→ ∞ with degree 2, 1 7→ ∞ with degree 2, ∞ 7→ ∞ with degree 2, a 7→ 0
with degree 3, b 7→ 0 with degree 3, c 7→ 1 with degree 2, d 7→ 1 with degree 2, and
e 7→ 1 with degree 2. The associated orbifold OB is the orbifold (2, 3,∞). Since
its Teichmüller space is a single point, it follows from Theorem 2.1 that σB can be
realized by a rational map fB. From the branching data, fB(z) = k(z−a)3(z−b)3

z2(z−1)2 for
some constants k, a, and b. Using the same overall strategy that was used before,
one can solve for the constants and get that

fB(z) =
4(z2 − z + 1)3

27z2(z − 1)2
.

Since there is a periodic critical point, the Julia set of fB is not the entire 2-sphere.
A Mathematica approximation of the Julia set, produced by plotting preimages of
a repelling fixed point, is shown in Figure 25. We can take R ∪ {∞} to be the
1-skeleton of SB. One can verify that for each positive integer n f◦−n

B (R ∪ {∞})
is combinatorially equivalent to the 1-skeleton of Bn(SB), the nth barycentric sub-
division of SB. Figure 26 shows Mathematica approximations of the intersections
of the rectangle [−1.5, 2.5]× [−2, 2] with f◦−1

B (R∪ {∞}) and with f◦−2
B (R∪ {∞}).

This example seems especially interesting because of the modular equation (see, for
example, [12, Section 69] or [15, Section 1.1E])

J =
4(λ2 − λ + 1)3

27λ2(λ− 1)2

relating the J-invariant and the modular function λ.
The appearance of J and λ can be explained as follows. We use the upper

half complex plane H as our model for the hyperbolic plane. The function J is
the unique conformal function which bijectively maps the hyperbolic triangle T

with vertices − 1
2 +

√
3

2 i, i, and ∞ to H with J(−1
2 +

√
3

2 i) = 0, J(i) = 1, and
J(∞) = ∞. The triangle T is a fundamental domain for the action of PGL(2, Z)
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Figure 23. The subdivisions of the tile types for the barycentric
subdivision rule B
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Figure 24. The branched covering σB

(the (2,3,∞)-Coxeter group) on H. The figure on page 5 of [15] shows part of the
corresponding tesselation of H. The domain of definition of J can be extended
to H using this tesselation and the reflection principle. The function J is then a
branched covering from H to C with degi(J) = 2 and deg− 1

2+
√

3
2 i

(J) = 3. In other
words, we may identify OB with C and we may identify the universal cover of OB
with H so that J is the universal covering. The group of covering transformations is
PSL(2, Z). The function λ is the unique conformal function which bijectively maps
the hyperbolic triangle with vertices ∞, 0, and 1 to H with λ(∞) = 0, λ(0) = 1,
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Figure 25. An approximation of the Julia set of fB
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Figure 26. f◦−1
B (R ∪ {∞}) and f◦−2

B (R ∪ {∞})

and λ(1) = ∞. The domain of definition of λ can also be extended to H using the
reflection principle, and λ is also a branched covering. Let Γ(2) denote the subgroup
of SL(2, Z) consisting of all matrices in SL(2, Z) which are congruent to the identity
matrix modulo 2, and let Γ(2) denote the image of Γ(2) in PSL(2, Z). The branched
covering λ is regular and Γ(2) is its group of covering transformations. The figure on
page 358 of [15] shows a fundamental domain for Γ(2). This fundamental domain
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is the union of the hyperbolic triangle with vertices 0, 1, and ∞ (λ◦−1(t1)) and
the hyperbolic triangle with vertices 0, −1, and ∞ (λ◦−1(t2)). The tesselation of
H corresponding to PGL(2, Z) subdivides these two triangles barycentrically. It
follows that J ◦ λ◦−1, which is fB, is an analytic function from Ĉ to Ĉ such that
the pullback of SB under this function subdivides SB barycentrically.

We next show that the Julia set of fB is a Sierpinski carpet, and hence that each
component of the boundary of the Fatou set is a Jordan curve. By Corollary 5.18 of
Pilgrim’s thesis [19], to prove this it suffices to show that if α : (I, ∂I) → (S2, PfB)
is an essential arc with α(int(I)) ∩ PfB = ∅ and if n is a positive integer, then no
component of f◦−n

B (α(int(I))) has closure the image of an arc which is isotopic to
α rel PfB . Since this condition only depends on the isotopy class of α in (S2, PfB),
one can assume that α(I) is either an edge of SB or a loop based at a vertex of
SB which is a union of two medians. For such an arc α and any positive integer
n, the closure of a component of f◦−n

B (int(I)) is either an edge in Bn(SB) or the
union of two medians in adjacent triangles in Bn(SB). Since Bn(SB) is the nth

barycentric subdivision of SB, it follows easily that it is impossible for one of these
inverse images to have closure isotopic to α rel PfB . Hence the Julia set of fB is a
Sierpinski carpet.

Let D∞ be the component of the Fatou set which contains ∞. Since D∞ is
simply connected and ∂D∞ is disjoint from PfB , it follows from [3, Theorem 9.1]
that ∂D∞ cannot be differentiable at a single point unless it is either a line or
a circle. Furthermore, it follows from the proof of [3, Theorem 9.1] that ∂D∞
cannot be a line or a circle unless it is the entire Julia set. Thus ∂D∞ cannot be
differentiable at a single point. Since each boundary component of the Fatou set
is mapped by an iterate of fB onto ∂D∞, none of the boundary components of the
Fatou set can be differentiable at a single point.

Figure 25 was created by taking inverse images under fB of the repelling fixed
point p. While this is not the best method for approximating the Julia set in
terms of exhibiting fractal properties of boundary curves, approximations using the
escape-time algorithm have failed to show signs of logarithmic spiralling in ∂D∞.
The Julia set of fB does contain repelling periodic points with logarithmic spiralling,
but possibly no such point is in the boundary of a component of the Fatou set.

5. Questions

We conclude with several questions.

Question 5.1. Is there an efficient method for explicitly constructing a rational
map which realizes a given critically finite branched map?

While we managed to explicitly construct rational maps for all of our examples
that were realizable by rational maps, we do not know of an algorithm to explicitly
construct a rational map realizing specific branching data. Note that a critically
finite rational map with hyperbolic orbifold is conformally conjugate to one with
algebraic coefficients. This follows, for example, from Theorems 3.6, 3.17, and 3.20
of [2]. An affirmative answer to the question is known for quadratic polynomials
and for certain other classes of rational maps.

Question 5.2. Given a critically finite branched map f : S2 → S2, how can you
decide whether or not there is a finite subdivision rule R with an edge pairing such
that f is equivalent to σR?
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If f is a critically finite rational map such that all of the coefficients of f are
real, |Pf | ≥ 2, and all of the post-critical points of f are real, then there is a
finite subdivision rule R such that SR is a CW complex on Ĉ with vertices the
postcritical points and with open edges the components of (R ∪ ∞) \ Pf . The
1-skeleton of R(SR) is f◦−1(R ∪ ∞), and σR = f . The finite subdivision rules
Q in Example 4.4 and B in Example 4.6 could have been discovered from their
corresponding rational maps by this construction.

If a critically finite rational map f has Julia set the 2-sphere, then it is expanding
with respect to an orbifold metric on its Julia set. Hence f is a quotient of a subshift
of finite type, and satisfies a subdivision or replacement rule. But it’s not clear from
this that it comes from a finite subdivision rule.

Question 5.3. Suppose R is an orientation-preserving finite subdivision rule with
an edge pairing, and suppose that SR is a 2-sphere. How do you tell fromR whether
σR can be realized by a rational map?

Pilgrim [20] shows that one can strengthen Theorem 2.2 by showing that it
suffices to check the obstruction on a single, canonically defined f -stable curve
system, but it isn’t clear how to effectively find this curve system in terms of R.

If R has mesh approaching 0, by Theorem 3.1 if R is conformal then σR can be
realized by a rational map. We believe that the converse is true if R has bounded
valence, but it is not true in general. Indeed, the barycentric subdivision rule from
Example 4.6 is not conformal by [6, Theorem 6.3.1.1], but the subdivision map is
realizable by a rational map. We also believe that one should be able to refine the
definition of conformality for a finite subdivision rule with unbounded valence so
that if R is a finite subdivision rule with unbounded valence, mesh approaching 0,
and an edge pairing, and if SR is a 2-sphere, then R is conformal exactly if σR can
be realized by a rational map.

The expansion constant for the pentagonal subdivision rule, which is (−324)1/5,
is algebraic because the corresponding rational map fQ has algebraic (in fact ratio-
nal) coefficients. Hence if z is a periodic point of period n for fQ, then (f◦nQ )′(z) is
algebraic. We conjecture that this algebraicity of derivatives is always the case for
a finite subdivision rule with an invariant (partial) conformal structure. We first
introduce some terminology.

Let R be an orientation-preserving finite subdivision rule. For each tile type
t we define a triangulation £(t) of t by adding a barycenter b(t) to t and joining
b(t) to each vertex of t by an arc. These triangulations push forward under the
characteristic maps to give a triangulation £(SR) of SR. A butterfly in SR consists
of an open edge e in SR together with two open triangles t1 and t2 in £(SR) such
that e is contained in the closure of t1 and of t2, and t1 and t2 induce opposite
orientations on e.

We define a “partial conformal structure” on SR via charts. Let F = {open
tiles of SR} ∪ {butterflies of SR}. A chart for an element s ∈ F is an open set
ŝ ⊆ C together with a orientation-preserving homeomorphism µs : s → ŝ. A partial
conformal structure on SR is an atlas A = {µs : s ∈ F} of charts which satisfies the
following compatibility condition: if s1 is an open tile in F and s2 is a butterfly
in F such that s1 ∩ s2 6= ∅, then the map µs2 ◦ µ−1

s1
: µs1(s1 ∩ s2) → µs2(s1 ∩ s2)

is conformal if it is orientation preserving and is anticonformal if it is orientation
reversing.
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A partial conformal structure A on SR is called R-invariant if it satisfies the
following. Suppose s ∈ F , x ∈ s, U is an neighborhood of µs(x) in ŝ, and t ∈ F
such that σR maps µ−1

s (U) injectively into t. Then µt ◦ σR ◦ µ−1
s

∣∣
U

is conformal if
it is orientation preserving and is aniconformal if it is orientation reversing.

Question 5.4. Let R be an orientation-preserving finite subdivision rule with
bounded valence and mesh approaching zero. Suppose A = {µs : s ∈ F} is an
R-invariant partial conformal structure, and let z be a periodic point for σR
with period n such that z is not a vertex of SR. Let s ∈ F with z ∈ s. Is(
µs ◦ σ◦nR ◦ µ−1

s

)′ (µs(z)) an algebraic number?
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