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Abstract. Let T be a regular tiling of R2 which has the origin
0 as a vertex, and suppose that ϕ : R2 → R2 is a homeomorphism
such that i) ϕ(0) = 0, ii) the image under ϕ of each tile of T is
a union of tiles of T , and iii) the images under ϕ of any two tiles
of T are equivalent by an orientation-preserving isometry which
takes vertices to vertices. It is proved here that there is a subset
Λ of the vertices of T such that Λ is a lattice and ϕ|Λ is a group
homomorphism.

The tiling ϕ(T ) is a tiling of R2 by polyiamonds, polyominos,
or polyhexes. These tilings occur often as expansion complexes
of finite subdivision rules. The above theorem is instrumental in
determining when the tiling ϕ(T ) is conjugate to a self-similar
tiling.

1. Introduction

There are three regular tilings of the plane: the tiling by equilateral
triangles in which six meet at each vertex; the tiling by squares in which
four meet at each vertex; and the tiling by regular hexagons in which
three meet at each vertex. We are interested here in tilings of the plane
whose tiles are congruent in an orientation-preserving way and each tile
is an amalgamation of tiles from one of the regular tilings. Moreover,
our tilings satisfy one of the following: each tile is a polyiamond with
three vertices (but possibly many more corners), and six tiles meet at
each vertex; each tile is a polyomino with four vertices, and four tiles
meet at each vertex; each tile is a polyhex, and three tiles meet at each
vertex. Because our tilings are isomorphic to regular tilings, we say
that they are combinatorially regular. For example, Figure 1 shows
parts of two of our combinatorially regular tilings
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Figure 1. A combinatorially regular polyomino tiling
and a combinatorially regular polyiamond tiling

We are interested in these tilings from the point of view of renormal-
ization. Suppose S = S1 is a combinatorially regular tiling as described
above which is obtained from amalgamating tiles of a regular tiling T
with the origin as a vertex. In many (if not all) cases, one can encode
the way a tile of S is decomposed into tiles of T by means of a finite
subdivision rule. One can rescale S1 to get a tiling S ′1 so that (0, 0) and
(1, 0) are adjacent vertices of a tile of S ′1. Using the data of the finite
subdivision rule, one can obtain a new tiling S2 by amalgamating tiles
of S ′1, and can then rescale S2 to a tiling S ′2 so that (0, 0) and (1, 0) are
vertices of a tile of S ′2. One can continue this renormalization process
indefinitely to obtain a sequence {S ′i} of combinatorially regular tilings
by polyiamonds, polyominos, or polyhexes. Special cases of this were
considered in [2] and (without the terminology of finite subdivision
rules) in [4, 5].

Our interest in this centers on the problem of determining when such
a sequence {S ′i} of tilings limits to a (self-similar) tiling of the plane.
A potential problem is that tiles get flatter and flatter as i increases,
and do not converge to tiles in the limit. Since the initial tiling S is
combinatorially regular, there is a homeomorphism ϕ : R2 → R2 which
fixes the origin and takes each tile of T to a tile of S. In this paper
we show that ϕ restricts to a group homomorphism on a subset of the
vertices of T that is a lattice. Hence we can associate to ϕ a 2 × 2
matrix. In [3] we show that the sequence {S ′i} limits to a tiling exactly
if this matrix is either a scalar matrix or its eigenvalues are not real.

Here is a precise statement of the main theorem.
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Main Theorem. Let T be a regular tiling of R2; the tiles of T are ei-
ther equilateral triangles with six meeting at every vertex, squares with
four meeting at every vertex, or regular hexagons with three meeting
at every vertex. Suppose that the origin 0 is a vertex of a tile of T .
Let ϕ : R2 → R2 be a homeomorphism such that

1. ϕ(0)=0;
2. if t is a tile of T , then ϕ(t) is a union of tiles of T ;
3. if s and t are tiles of T , then there exists an orientation-preserving

isometry τ : ϕ(s) → ϕ(t) such that ϕ−1 ◦ τ ◦ ϕ maps the vertices
of s to the vertices of t.

Then there exists a subset Λ of the set of vertices of tiles of T such
that Λ is a lattice in R2 and ϕ

∣
∣
Λ

is a group homomorphism.

The reader might look at the beginning of Section 4, where we discuss
the fact that our proof of the main theorem actually proves something
a bit stronger. See also the next-to-last paragraph of this introduction.

We assume that a tiling of R2 is a set of closed topological disks
called tiles which cover R2 and that the interiors of distinct tiles are
disjoint.

Maintaining the assumptions of the main theorem, let S = {ϕ(t) :
t ∈ T }, a combinatorially regular tiling of R2. In the case of squares,
condition 2 implies that every tile of S is a polyomino. Hence in the
case of squares, we are dealing with combinatorially regular polyomino
tilings of R2. This explains the title of this paper. The tiles of S are
polyiamonds in the case of equilateral triangles, and they are polyhexes
in the case of regular hexagons.

The tiles of T have vertices and edges. Abusing terminology, we
refer to these vertices and edges as vertices and edges of T . If v is a
vertex of a tile t of T , then we call ϕ(v) a vertex of ϕ(t). If e is an edge
of a tile t of T , then we call ϕ(e) an edge of ϕ(t). Abusing terminology
again, we refer to these vertices and edges as vertices and edges of S.
Condition 3 states that the tiles of S are mutually congruent by means
of orientation-preserving isometries which map vertices to vertices and
edges to edges.

In Section 2 we define an automorphism of S to be an orientation-
preserving isometry σ : R2 → R2 which maps tiles of S to tiles of S.
The set of all automorphisms of S is a group Aut(S). In Section 2 we
also define a vertex automorphism of S to be an orientation-preserving
isometry σ : R2 → R2 for which there exists a function Fσ : S → S
such that if S ∈ S, then σ maps the vertices of S to the vertices
of Fσ(S). We show that the set of all vertex automorphisms of S is
a group AutV (S). While Aut(S) might be trivial, there is a natural
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action of AutV (S) on S and our proof of the main theorem shows that
this action of AutV (S) on S is transitive.

We maintain the assumptions of the main theorem throughout this
paper. We also let S = {ϕ(t) : t ∈ T }, and we let T be a fixed tile of
S.

2. Isometries

This section consists mainly of definitions together with some ele-
mentary results concerning the action of isometries on S. Let Isom+(R2)
be the group of all orientation-preserving isometries of R2. We orient
the edges of T in the counterclockwise direction.

We say that edges E and F of T are congruent if there exists
σ ∈ Isom+(R2) such that σ(E) = F . We say that edges E and F of
T are properly congruent if there exists σ ∈ Isom+(R2) such that
σ(E) = F and σ

∣
∣
E

preserves orientation. We say that edges E and F

of T are improperly congruent if there exists σ ∈ Isom+(R2) such
that σ(E) = F and σ

∣
∣
E

reverses orientation. We say that edges E

and F of T are parallel if there exists a translation σ ∈ Isom+(R2)
such that σ(E) = F and σ

∣
∣
E

reverses orientation. We say that edges
E and F of T match if there exist distinct tiles T1 and T2 of S and
orientation-preserving isometries σ1 : T → T1 and σ2 : T → T2 such
that σ1(E) = σ2(F ).

The notion of matching puts a symmetric relation on the set of edges
of T : two edges of T are related if and only if they match. This relation
generates an equivalence relation. We refer to the equivalence classes
of this equivalence relation as matching classes.

We say that T has an edge pairing if every edge of T matches
exactly one edge of T (possibly itself).

We say that two distinct edges of T are opposite if the corresponding
edges of ϕ−1(T ) are parallel.

We say that an isometry σ ∈ Isom+(R2) is an automorphism of S
if σ maps tiles of S to tiles of S. The set of all automorphisms of S is a
group, denoted by Aut(S). We likewise have a group of automorphisms
Aut(T ).

We say that an element σ of Isom+(R2) is a vertex automorphism
of S if there exists a function Fσ : S → S such that if S ∈ S, then σ
maps the vertices of S to the vertices of Fσ(S). Let AutV (S) denote
the set of vertex automorphisms of S.

Let σ ∈ AutV (S). The map Fσ is clearly injective. If S and S ′ are
tiles of S with an edge in common, then the definition of vertex auto-
morphism implies that Fσ(S) and Fσ(S ′) have two vertices and hence
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Figure 2. Defining turning angles

an edge in common. In other words, Fσ preserves edge adjacency. A
straightforward argument using this shows that Fσ is surjective. Thus
Fσ is bijective. This implies that σ−1 ∈ AutV (S).

Now we see that AutV (S) is a group. It is clear that Aut(S) is a
subgroup of AutV (S).

Let σ ∈ AutV (S), and let S ∈ S. We obtain an action of AutV (S)
on S by setting σS = Fσ(S).

Let σ ∈ AutV (S), and let t ∈ T . Then ϕ−1 ◦ σ ◦ ϕ maps the
vertices of t to the vertices of ϕ−1(Fσ(ϕ(t))) ∈ T . Since ϕ maps tiles
with an edge in common to tiles with an edge in common and Fσ

preserves edge adjacency, it follows that there exists τ ∈ Aut(T ) such
that ϕ−1 ◦σ ◦ϕ(v) = τ(v) for every vertex v of T . The map σ 7→ τ is a
group homomorphism: there exists an injective group homomorphism
ω : AutV (S) → Aut(T ) such that if σ ∈ AutV (S), then ϕ−1◦σ◦ϕ(v) =
ω(σ)(v) for every vertex v of T .

3. Curvature

This section deals with curvature of oriented piecewise linear arcs
and simple closed curves in R2.

Let γ be an oriented piecewise linear arc or simple closed curve in
R2. We view γ as a 1-complex with vertices and edges. Let v be an
interior vertex of γ. In other words, γ contains edges e1 and e2 so that
e2 immediately follows e1 relative to the orientation of γ and v = e1∩e2.
We define the turning angle of γ at v to be the oriented angle θ from
an extension of e1 to e2 such that −π < θ < π. We orient angles so that
counterclockwise is the positive direction and clockwise is the negative
direction. See Figure 2, which shows a positive turning angle θ.

With γ as in the previous paragraph, we define the total curvature
K(γ) of γ to be the sum of the turning angles of the interior vertices
of γ. As is well known, the Euler formula for a closed topological disk
with the structure of a simplicial complex implies that if γ is a simple
closed curve, then K(γ) = 2π.
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The tile T is a union of tiles of T , and so every edge of T is a union
of edges of T . Hence if E is an edge of T , then we may speak of the
edges of (T in) E. The counterclockwise orientation of ∂T induces an
orientation on every edge E of T , and so we may speak of the initial
and terminal edges of (T in) E.

Lemma 3.1.

1. Let t be a tile of T . Then the turning angle of ∂T at every vertex
of T is equal to the turning angle of ∂t at every vertex of t.

2. If E is an edge of T such that E is improperly congruent to itself,
then K(E) = −K(E), and so K(E) = 0.

Proof. This is clear.

Lemma 3.2. Let v be a vertex of T . Let E1 be the edge of T imme-
diately preceding v, and let E2 be the edge of T immediately following
v. Let γ1 be the line segment joining the vertices of E1, and let γ2 be
the line segment joining the vertices of E2. Let γ be the oriented arc
consisting of γ1 followed by γ2. Let φ be the turning angle of γ at v,
and let θ be the turning angle of ∂T at v.

1. If E1 and E2 are improperly congruent, then φ = θ.
2. If E1 and E2 are properly congruent, then φ ≡ θ + K(E1) modulo

2π.

Proof. If E1 and E2 are improperly congruent, then there exists a ro-
tation σ ∈ Isom+(R2) such that σ(v) = v and σ(E1) = E2. Hence σ
rotates γ1 to γ2, and σ rotates the terminal edge of E1 to the initial
edge of E2. Thus φ = θ. This proves statement 1.

To prove statement 2, suppose that E1 and E2 are properly congru-
ent. See Figure 3. Let α be the angle from the initial edge of E1 to γ1

with −π < α ≤ π. Let β be the angle from an extension of γ1 to an
extension of the terminal edge of E1 with −π < β ≤ π. Then

α + β ≡ K(E1) mod 2π.

Because E1 and E2 are properly congruent, α is the angle from the
initial edge of E2 to γ2. Since φ is the angle from an extension of γ1 to
an extension of the terminal edge of E1 to the initial edge of E2 to γ2,

φ = β + θ + α ≡ θ + K(E1) mod 2π.

This proves Lemma 3.2.

Lemma 3.3. Let E1 and E2 be improperly congruent disjoint edges of
T . Let γ be the oriented subarc of ∂T whose initial edge is the terminal
edge of E1 and whose terminal edge is the initial edge of E2. Suppose
that K(γ) = π. Then E1 and E2 are parallel.



COMBINATORIALLY REGULAR POLYOMINO TILINGS 7

γ2

γ1 E1

E2

v

α

α

θ

β

Figure 3. Proving Lemma 3.2

Proof. Because E1 and E2 are improperly congruent, there exists σ ∈
Isom+(R2) such that σ takes the terminal edge of E1 to the initial edge
of E2. Because K(γ) = π, it follows that σ is a translation. This proves
Lemma 3.3.

4. The three possibilities

Our proof of the main theorem actually proves something stronger.
We prove that one of the following three statements holds.

1. The tile T has an edge pairing.
2. The vertices of T are the vertices of a regular polygon P in order.
3. The tile T has at least four edges; if two distinct edges of T match,

then they are opposite; and at most two edges of T are not parallel
to the opposite edges of T .

In statement 2 the expression “in order” means that adjacent vertices
of T are adjacent vertices of P and that counterclockwise orientation
is preserved. These are the three possibilities mentioned in the title of
this section. In this section we show that each of these three statements
implies the conclusion of the main theorem. Lemmas 4.1, 4.2, and 4.3
show that each of the above three statements implies that AutV (S) acts
transitively on S. In other words, we prove that the hypotheses of the
main theorem imply that AutV (S) acts transitively on S. Lemma 4.4
shows that if AutV (S) acts transitively on S, then the conclusion of
the main theorem is true. We begin with Lemma 4.1.
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Lemma 4.1. Suppose that T has an edge pairing. Then Aut(S) acts
transitively on S, and so AutV (S) acts transitively on S.

Proof. The hypotheses of the main theorem imply that if S1, S2 ∈ S,
then there exists ψ ∈ Isom+(R2) such that ψ(S1) = S2 and ψ maps
the vertices of S1 to the vertices of S2. To prove Lemma 4.1, it suffices
to prove that ψ ∈ Aut(S), which is what we do. A straightforward
argument shows that to prove that ψ ∈ Aut(S), it suffices to prove the
following. Let ψ ∈ Isom+(R2), and suppose that R and S are tiles of
S such that R ∩ S is an edge of S and that ψ maps R to a tile of S
taking vertices of R to vertices of ψ(R). Then ψ maps S to a tile of S
taking vertices of S to vertices of ψ(S).

So suppose that ψ ∈ Isom+(R2) and that R and S are tiles of S such
that R∩S is an edge E of S and that ψ maps R to a tile R′ of S taking
vertices of R to vertices of R′. Let E ′ = ψ(E), and let S ′ be the tile of
S such that R′∩S ′ = E ′. The assumptions of the main theorem imply
that there exist ρ, σ, τ ∈ Isom+(R2) such that ρ maps T to R taking
vertices to vertices, σ maps T to S taking vertices to vertices, and τ
maps S to S ′ taking vertices to vertices.

Then ρ−1(E) matches σ−1(E) and ρ−1 ◦ ψ−1(E ′) matches σ−1 ◦
τ−1(E ′). Since ρ−1(E) = ρ−1 ◦ ψ−1(E ′) and T has an edge pairing,
σ−1(E) = σ−1 ◦ τ−1(E ′). Hence τ(E) = E ′. Thus the isometries ψ and
τ agree on E, and so they are equal.

This proves Lemma 4.1.

Lemma 4.2. Suppose that the vertices of T are the vertices of a regular
polygon in order. Then AutV (S) acts transitively on S.

Proof. We proceed as in the proof of Lemma 4.1. The hypotheses of the
main theorem imply that if S1, S2 ∈ S, then there exists ψ ∈ Isom+(R2)
such that ψ(S1) = S2 and ψ maps the vertices of S1 to the vertices of
S2. To prove Lemma 4.2, it suffices to prove that ψ ∈ AutV (S), which
is what we do. To prove that ψ ∈ AutV (S), it suffices to prove the
following. Let ψ ∈ Isom+(R2), and suppose that R and S are tiles of
S such that R ∩ S is an edge of S and that ψ maps the vertices of R
to the vertices of a tile of S in order. Then ψ maps the vertices of S
to the vertices of a tile of S in order. But this is clear.

This proves Lemma 4.2.

Lemma 4.3. Suppose that T has at least four edges, that if two distinct
edges of T match, then they are opposite, and that at most two edges
of T are not parallel to the opposite edges of T . Then AutV (S) acts
transitively on S.



COMBINATORIALLY REGULAR POLYOMINO TILINGS 9

Proof. One verifies that the parallel edge condition implies that there
exists a rotation in Isom+(R2) of order 2 which maps vertices of T
to vertices of T in order. If there exists a rotation in Isom+(R2) of
order greater than 2 which maps vertices of T to vertices of T in order,
then the vertices of T are the vertices of a regular polygon in order.
Hence Lemma 4.2 implies that AutV (S) acts transitively on S. Thus
we may assume that there does not exist a rotation in Isom+(R2) of
order greater than 2 which maps vertices of T to vertices of T in order.

In this paragraph we partition the edges of S into q/2 types, where
q is the number of edges of T . We say that two edges of T have the
same type if and only if they are either equal or opposite. Let E be
an edge of S. Let S be a tile of S containing E, and let σ : S → T
be an orientation-preserving isometry which maps vertices to vertices.
We define the type of E to be the type of σ(E). We must show that
this definition is independent of the choices of σ and S. If τ : S → T
is an orientation-preserving isometry which maps vertices to vertices,
then σ ◦ τ−1(T ) = T . By the previous paragraph, the order of σ ◦ τ−1

is either 1 or 2. Hence σ(E) and τ(E) are either equal or opposite,
and so our definition is independent of the choice of σ. Now let S ′

be the tile of S other than S such that E ⊆ S ′, and let σ′ : S ′ → T
be an orientation-preserving isometry which maps vertices to vertices.
Then σ′(E) matches σ(E). Hence σ′(E) and σ(E) are either equal or
opposite. Thus we have partitioned the edges of S into q/2 types. This
partition has the following property. If S1 and S2 are tiles of S, if E is
an edge of S1, and if ρ : S1 → S2 is an orientation-preserving isometry
which maps vertices to vertices, then ρ(E) has the same type as E.

Now we proceed as in Lemmas 4.1 and 4.2. The hypotheses of the
main theorem imply that if S1, S2 ∈ S, then there exists ψ ∈ Isom+(R2)
such that ψ(S1) = S2 and ψ maps the vertices of S1 to the vertices of
S2. To prove Lemma 4.3, it suffices to prove that ψ ∈ AutV (S), which
is what we do. To prove that ψ ∈ AutV (S), it suffices to prove the
following. Let ψ ∈ Isom+(R2), and suppose that R, S and R′ are tiles
of S such that R ∩ S is an edge of S and that for every edge E of R
there exists an edge E ′ of R′ such that E ′ has the same type as E and
ψ maps the vertices of E to the vertices of E ′ in order. Then there
exists a tile S ′ of S so that for every edge E of S there exists an edge
E ′ of S ′ such that E ′ has the same type as E and ψ maps the vertices
of E to the vertices of E ′ in order.

So suppose that ψ ∈ Isom+(R2) and that R, S, and R′ are tiles of S
such that R ∩ S is an edge of S and that for every edge E of R there
exists an edge E ′ of R′ such that E ′ has the same type as E and ψ maps
the vertices of E to the vertices of E ′ in order. Let E = R∩S, and let
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E ′ be the edge of R′ such that ψ maps the vertices of E to the vertices
of E ′. Let S ′ be the tile of S such that R′ ∩ S ′ = E ′. The assumptions
of the main theorem imply that there exists τ ∈ Isom+(R2) such that
τ maps S to S ′ taking vertices to vertices. Then E ′ and τ(E) both
have the same type as E. So E ′ and τ(E) are edges of S ′ with the
same type. It follows that either τ(E) = E ′ or there exists a rotation
ρ ∈ Isom+(R2) of order 2 which maps the vertices of S ′ to the vertices
of S ′ in order such that ρ◦τ(E) = E ′. If τ(E) = E ′, then ψ and τ agree
on the vertices of E. This implies that ψ = τ , which proves Lemma 4.3
in this case. In the other case ψ and ρ ◦ τ agree on the vertices of E.
This implies that ψ = ρ ◦ τ , which proves Lemma 4.3 in this case.

This proves Lemma 4.3.

Lemma 4.4. Suppose that AutV (S) acts transitively on S. Then the
conclusion of the main theorem is true.

Proof. Let ω : AutV (S) → Aut(T ) be the group homomorphism from
the end of Section 2. As in [1, 1.7.5.2], because AutV (S) acts transi-
tively on S, AutV (S) contains a subgroup G generated by two trans-
lations which translate by vectors which are linearly independent over
R. As in [1, 9.3.4], every element of Isom+(R2) is either a translation
or a rotation. Every rotation in AutV (S) or Aut(T ) has finite order
and every nontrivial translation has infinite order. Hence a nontrivial
element of AutV (S) or Aut(T ) is a translation if and only if it has
infinite order. Thus every element of ω(G) is a translation. It follows
that if σ and τ are both elements of G or both elements of ω(G), then
σ ◦ τ(0) = σ(0) + τ(0).

Let Λ′ be the orbit of 0 under G. It follows that Λ′ is a lattice.
Let λ1, λ2 ∈ Λ′. Then there exist γ1, γ2 ∈ G such that λ1 = γ1(0)
and λ2 = γ2(0). We have for every σ ∈ AutV (S) that ω(σ)(0) =
ϕ−1(σ(ϕ(0))) = ϕ−1(σ(0)). Moreover

ϕ−1(λ1 + λ2) = ϕ−1(γ1(0) + γ2(0)) = ϕ−1(γ1 ◦ γ2(0)) = ω(γ1 ◦ γ2)(0)

= ω(γ1) ◦ ω(γ2)(0) = ω(γ1)(0) + ω(γ2)(0)

= ϕ−1(γ1(0)) + ϕ−1(γ2(0)) = ϕ−1(λ1) + ϕ−1(λ2).

This shows that ϕ−1
∣
∣
Λ′ is a group homomorphism. Let Λ = ϕ−1(Λ′).

Then Λ consists of vertices of T , and Λ is a lattice because it is a
discrete subgroup of R2 isomorphic to Z2. Moreover, ϕ

∣
∣
Λ

is a group
homomorphism.

This proves Lemma 4.4.
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Corollary 4.5. Suppose that one of the three displayed statements at
the beginning of this section holds. Then the conclusion of the main
theorem is true.

Proof. This follows from Lemmas 4.1, 4.2, 4.3, and 4.4.

5. Proof of the main theorem

Our proof of the main theorem proceeds by way of a case analysis.
In every case we show either that the assumptions of that case lead
to a contradiction or that one of the three displayed statements at the
beginning of Section 4 holds. The conclusion of the main theorem then
follows from Corollary 4.5.

We denote the edges of T by a, b, c, . . . in counterclockwise order.
In the cases which we consider we make assumptions on the edges of
T . Suppose that the assumptions in one case are given by a logical
proposition P (a, b, c, . . . ). If the conclusion of the main theorem is
true assuming P (a, b, c, . . . ), then it is also true for P with its variables
permuted cyclically in any way. By reflecting both T and S, we see
that the conclusion of the main theorem is also true for P with the
order of its variables reversed. After we prove that the conclusion of
the main theorem is true for P (a, b, c, . . . ), we say that by symmetry
it is true for these other orderings of the variables of P .

Let S be a tile of S. Then there exists an orientation-preserving
isometry σ : T → S (possibly not unique) which maps vertices of T
to vertices of S. This induces a labeling of the edges of S using the
letters a, b, c, . . . . Conversely, σ is determined by this labeling. We
draw diagrams with edge labels as in Figure 4 to indicate one way in
which the tiles of S can be identified with T .

First suppose that the tiles of T are equilateral triangles. If every
edge of T matches only itself, then T has an edge pairing, and we are
done. Otherwise there exist two distinct edges of T which match each
other. These two edges of T have a vertex in common. Statement
1 of Lemma 3.2 implies that the vertices of T are the vertices of an
equilateral triangle in order. This proves the main theorem if the tiles
of T are equilateral triangles.

Now suppose that the tiles of T are squares.
Case 1. Edges a and b match only themselves. This implies that R2

is a union of infinite strips labeled as in Figure 4. It follows that T has
an edge pairing, and we are done.

Case 2. Edge a matches edge b. Statement 1 of Lemma 3.2 implies
that the vertices of a ∪ b are three vertices of a square in order. If c
matches b, then for the same reason, the vertices of T are the vertices of
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Figure 4. Part of an infinite strip for Case 1 (squares)

a square in order, and we are done. If c matches d, then the vertices of
c∪d are three vertices of a square in order. Hence the vertices of T are
the vertices of a square in order, and we are done. So we may assume
that c matches only either a or c and by symmetry that d matches
only either b or d. By Case 1 and symmetry we may assume that c
matches a. If d matches itself, then K(d) = 0 by Lemma 3.1, and then
a and c are parallel by Lemmas 3.1 and 3.3. Since the vertices of a∪ b
are three vertices of a square in order, it follows that the vertices of T
are the vertices of a square in order, and we are done. If d matches
b, then because b matches a and a matches c, it follows that c and d
are improperly congruent. Lemma 3.2 implies that the vertices of c∪d
are three vertices of a square in order. Thus the vertices of T are the
vertices of a square in order, and we are done.

Case 3. If two distinct edges of T match, then they are opposite.
If T has an edge pairing, then we are done. So by symmetry we may
assume that a matches itself and c. If b matches itself, then K(b) = 0
by Lemma 3.1, and so a and c are parallel by Lemmas 3.1 and 3.3.
Hence statement 3 at the beginning of Section 4 is true, and so we are
done. If b matches d, then we use the fact that K(a) = 0 and argue in
the same way.

By symmetry, Case 2 and Case 3 prove the main theorem if the tiles
of T are squares.

Now suppose that the tiles of T are regular hexagons.
Case 1. Edges a and b match only themselves. This implies that R2

is a union of infinite strips labeled as in Figure 5. It follows that T has
an edge pairing, and we are done.

Case 2. Edges a and c match only themselves. This implies that R2

is a union of infinite strips labeled as in Figure 6. Again it follows that
T has an edge pairing, and we are done.

Case 3. Edges a and d match only each other. This implies that R2

is a union of infinite strips labeled as in Figure 7. If T has an edge
pairing, then we are done, and so we may assume that the matching
classes are {a, d}, {b, e}, {c, f} and that b, c, e, and f are improperly
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Figure 5. Part of an infinite strip for Case 1 (hexagons)
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Figure 6. Part of an infinite strip for Case 2
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Figure 7. Part of an infinite strip for Case 3

congruent to themselves. Lemma 3.1 implies that K(b) = K(c) = 0.
Now Lemmas 3.1 and 3.3 combine to imply that a and d are parallel.
The assumptions imply that b and e are properly congruent to each
other, and so there exists σ ∈ Isom+(R2) such that σ(b) = e and
σ
∣
∣
b

preserves orientation. There likewise exists τ ∈ Isom+(R2) such

that τ(c) = f and τ
∣
∣
c

preserves orientation. We see that σ(b ∩ c) =
τ(b ∩ c), and statement 1 of Lemma 3.1 implies moreover that σ = τ .
So σ(a∩ b) = d∩ e and σ(c∩ d) = a∩ f . Because a and d are parallel,
this implies that σ is a rotation of order 2. Hence since σ(b) = e, there
exists a translation which takes the vertices of b to the vertices of e.
Because b and e match, this translation in fact takes b to e. Thus b
and e are parallel. We therefore are in the situation of statement 3 at
the beginning of Section 4, and so we are done.
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Figure 8. Ruling out possibilities in Case 4
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Figure 9. Showing that Case 5 is impossible

Case 4. The set {a, d} is a union of matching classes. Figure 8 shows
that it is impossible for b to match either c or f . This and symmetry
imply that {b, e} and {c, f} are unions of matching classes. By Case
3 and symmetry we may assume that every edge of T is improperly
congruent to itself. By Case 1 and symmetry we may assume that a
matches d and b matches e. Lemma 3.1 implies that every edge of T
has total curvature 0. Lemma 3.3 implies that a is parallel to d and
b is parallel to e. Hence we are in the situation of statement 3 at the
beginning of Section 4, and so we are done.

Thus far we have proved the main theorem for regular hexagons if T
has at least two edges which match only themselves.

Case 5. The set {a, c} is a matching class. We choose two tiles as in
either part a) or part b) of Figure 9 with a common edge labeled with
a and c and reduce the labeling of the tile S to one of the two labelings
shown. This case is impossible.

Case 6. One matching class contains only one edge, and one match-
ing class contains at least four edges. By symmetry we may assume
that a matches only itself. Since we have proved the main theorem if
T has two edges which match only themselves, we may assume that
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Figure 10. Verifying Case 7

{b, c, d, e, f} is a matching class. We have that K(∂T ) = 2π. We ob-
tain K(∂T ) by summing the total curvatures of the edges of T plus the
turning angles of ∂T at the vertices of T . Lemma 3.1 shows that these
six turning angles are all π/3 and K(a) = 0. Hence the sum of the total
curvatures of b, c, d, e and f is 0. These total curvatures have the same
absolute value. It follows that they are 0. Now we apply Lemma 3.2
to every vertex of T not in a. We conclude that the vertices of T are
the vertices of a regular hexagon in order, and so we are done.

Case 7. Some matching class contains only one edge. We may assume
that a matches only itself. We may assume that d does not match only
itself by Case 4. If d matches c, then part a) of Figure 10 shows that
no matter how the edges of tile S are labeled, there is a matching class
with at least four edges, and so we are done by Case 6. So we may
assume that d does not match c and, by symmetry, that d does not
match e. By symmetry we may assume that d matches b. Part b) of
Figure 10 shows that e matches f . Because neither a nor d matches
c, label x in part b) of Figure 10 is either a or d. If x = d, then it is
impossible to find y and z because d does not match a, c or e. If x = a,
then y = f . This implies that b, d, e, f are in a matching class, and
we are done by Case 6.

Case 8. All matching classes have two edges. By Cases 4 and 5 and
symmetry, we may assume that the matching classes are {a, b}, {c, d}
and {e, f}. If some edge of T matches itself, then we may assume that
a matches itself. Figure 11 shows that this is impossible. Hence T has
an edge pairing, and so we are done.

Case 9. One matching class has two edges, and one matching class
has four edges. By Cases 4 and 5 and symmetry, we may assume
that the matching classes are {a, b} and {c, d, e, f}. If one of c, d, e,
or f matches itself, then c, d, e, and f are improperly congruent to
each other. In this situation Lemma 3.2 implies that the vertices of
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Figure 11. Ruling out a possibility in Case 8
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Figure 12. Verifying Case 9

c∪d∪e∪f are five vertices of a regular hexagon in order. The vertices
of a∪ b are likewise three vertices of a regular hexagon in order. Hence
the vertices of T are the vertices of a regular hexagon in order, and so
we are done. This shows that whenever we have two tiles as in part a)
of Figure 12 for which a and b match, we may assume that the edges
of S1 are labeled as indicated. It follows that if a matches only b, then
f matches only e, and so the edges of S2 are labeled as indicated. This
implies that e matches only f , and so {e, f} is a matching class, which
is not true. Hence a matches itself, and so S has a configuration of tiles
with edges labeled as in part b) of Figure 12. Hence c is improperly
congruent to d, which is improperly congruent to e (by means of three
matches), which is improperly congruent to f . Lemma 3.2 again shows
that the vertices of c ∪ d ∪ e ∪ f are five vertices of a regular hexagon
in order. Again it follows that the vertices of T are the vertices of a
regular hexagon in order, and so we are done.

We have reduced the proof of the main theorem for regular hexagons
to the case in which every matching class has at least three edges.

Case 10. There is a matching class with three edges which are not
improperly congruent to themselves. Then two of them match only the
third. We may assume that the third is a. Part a) of Figure 13 shows
that if b matches only a, then a matches only b, which is impossible.
Part b) of Figure 13 shows that it is impossible for c to match only a.
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Figure 13. Showing that Case 10 is impossible

So it is impossible for either b or c to match only a. By symmetry the
same is true for e and f . Thus Case 10 is impossible.

Case 11. The matching classes are {a, b, c} and {d, e, f}. By Case 10
the edge a is improperly congruent to b, which is improperly congruent
to c. Hence Lemma 3.2 implies that the vertices of a ∪ b ∪ c are four
vertices of a regular hexagon in order. The same is true for d ∪ e ∪ f .
Hence the vertices of T are the vertices of a regular hexagon in order,
and so we are done.

Case 12. The matching classes are {a, b, d} and {c, e, f}. By Case
10, the edges a, b and d are properly and improperly congruent to each
other. The same is true of c, e and f . Statement 2 of Lemma 3.1
implies that K(b) = K(c) = 0. Now Lemmas 3.1 and 3.3 imply that a
and d are parallel. Since a and d are properly congruent, there exists
σ ∈ Isom+(R2) such that σ(a) = d and σ

∣
∣
a

preserves orientation.
Because a and d are parallel, σ is a rotation of order 2. Because the
turning angle of ∂T at c∩d equals the turning angle of ∂T at a∩f and
the edges c and f are properly congruent, σ(c) = f . So σ permutes
the vertices of T in order. Statement 1 of Lemma 3.2 implies that
the vertices of a ∪ b are three vertices of a regular hexagon in order.
Applying σ, we see that the same is true of the vertices of d ∪ e. As
for a∪ b, the vertices of e∪ f are three vertices of a regular hexagon in
order. From this we see that the vertices of d ∪ e ∪ f are four vertices
of a regular hexagon in order. Applying σ, we see that the vertices
of a ∪ b ∪ c are four vertices of a regular hexagon in order. Thus the
vertices of T are the vertices of a regular hexagon in order, and we are
done.

Case 13. There are two matching classes containing three edges.
Suppose that the matching classes are {a, c, e} and {b, d, f}. By sym-
metry we may assume that a matches c. Figure 14 shows that this
is impossible. Hence there exists a matching class with two adjacent
edges. We may assume that a and b are in a matching class. Cases 11
and 12 and symmetry handle all the possibilities.
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Figure 14. Ruling out one possibility in Case 13

We have proved the main theorem if there are at least two matching
classes.

Case 14. Edges a, c and e are properly congruent to each other
and improperly congruent to b, d and f . Lemma 3.2 implies that every
three consecutive vertices of T are three consecutive vertices of a regular
hexagon in order. Hence the vertices of T are the vertices of a regular
hexagon in order, and we are done.

Case 15. Edges a, b and d are properly congruent to each other and
improperly congruent to c, e and f . As in Case 14, Lemma 3.2 implies
that the vertices of a ∪ f are three vertices of a regular hexagon in
order. Similarly, the vertices of b∪ c∪d∪ e are the vertices of a regular
hexagon in order. It follows that the vertices of T are the vertices of a
regular hexagon in order, and we are done.

Case 16. Edges a, b and c are properly congruent to each other
and improperly congruent to d, e and f . Since K(a) = −K(d), by
symmetry we may assume that 0 ≤ K(a) ≤ π modulo 2π. If K(a) ≡ π
modulo 2π, then Lemma 3.2 implies that the turning angle at a ∩ b
determined by the two line segments joining a ∩ f , a ∩ b and b ∩ c is
congruent to 4π/3 modulo 2π. The same is true at b∩ c. But then the
vertices of a ∪ b ∪ c are the vertices of an equilateral triangle, which is
impossible. If K(a) ≡ 2π/3 modulo 2π, then Lemma 3.2 implies that
this turning angle at a ∩ b is congruent to π modulo 2π. This means
that a∩f = b∩ c, which is impossible. If K(a) ≡ π/3 modulo 2π, then
the vertices of a ∪ b are again the vertices of an equilateral triangle,
which is impossible. Thus we may assume that K(a) ≡ 0 modulo 2π,
and so each edge has total curvature 0 modulo 2π. Now Lemma 3.2
implies that the vertices of T are the vertices of a regular hexagon in
order, and we are done.

Case 17. There is only one matching class. The total curvatures
of the edges of T have the same absolute value. As we have seen in
Case 6, the sum of these total curvatures is 0. Cases 14, 15 and 16 and
symmetry handle the cases in which three of these total curvatures
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have some value K 6= 0 and the other three total curvatures equal −K.
Hence we may assume that the total curvature of every edge of T is
0. Now Lemma 3.2 implies that the vertices of T are the vertices of a
regular hexagon in order, and we are done.

This proves the main theorem.
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