
INTRODUCTION TO TWISTED FACE-PAIRINGS

J. W. CANNON, W. J. FLOYD, AND W. R. PARRY

Abstract. We give a mechanical recipe for creating simple face-pairing descriptions of
closed 3-manifolds. We call the technique twisted face-pairing. Among the simpler twisted
face-pairings we have studied, we have discovered manifolds (usually infinite classes of man-
ifolds) which admit geometries based on S3, H3, Solv, Nil, and the universal cover of
PSL(2,R). Our work suggests, but does not resolve, the Conjecture: It is impossible be-
cause of the twisting involved in the construction to obtain, by twisted face-pairing, manifolds
based on the product geometries E3, H2×R, and S2×R. The twisted face-pairing technique
is easily simple enough for use by students, and if used in conjunction with some software
package like SnapPea, serves as a great exploratory playground in 3-manifold theory.

“The most important ingredient in any mathematical theory is a rich source of examples.”

– Mikhael Gromov

1. Introduction

A face-pairing ε of the 3-ball B3 sews together the 2-cells of a cellulation of the boundary
2-sphere S2 of B3 isomorphically in pairs, every 2-cell being identified with a different 2-cell.
This is done in such a way that the resulting quotient space M = M(ε) = B3/ε is naturally
a cell complex. It is well known that every closed 3-manifold can be obtained as the quotient
complex of some face-pairing.
The method of face-pairing has a defect. Namely, the quotient complexM = M(ε) = B3/ε

is always a closed 3-dimensional pseudomanifold, but it may fail to be a manifold because
one or more of its vertices may have a link which is some closed 2-manifold other than the
2-sphere S2. In fact, the following conjecture is surely true. Conjecture: If in the space
of all face-pairings one is chosen at random, then with probability 1 the resulting quotient
complex is not a manifold. Thus, although face-pairing descriptions of closed 3-manifolds
lend themselves very naturally to the algorithmic construction of universal covers, associated
Cayley graphs of π1, and approximations to spaces at infinity, good examples are difficult to
construct because they must either be discovered at random (with probability 0) or deduced
from other 3-manifold descriptions (Heegaard splittings, surgery descriptions, etc.).
The purpose of this paper is to informally report a construction which we discovered by

accident as we were randomly exploring the barren landscape of face-pairings. Frustrated
by our lack of success, we tried to modify our search according to our prior experience with
knot spaces. We made four mistakes in pursuing the analogy, the avoidance of any one of
which would have caused us to overlook the technique which we report here.
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As the title indicates, this paper is only an introduction to twisted face-pairing. Several
other papers will follow beginning with [1] and [2]. Section 7 contains a brief discussion of
further work.
We call our construction the method of twisted face-pairing. It takes as input an

arbitrary orientation-reversing face-pairing ε, as trivial and uninteresting as may be. (Every
face of a cellulated S2 inherits an orientation from any given orientation on S2. The face-
pairing reverses orientation if each face is sewn by an orientation-reversing isomorphism to
its matched face.) As output the method supplies an infinite parametrized family of face-
pairings, each having a closed, orientable 3-manifold as quotient. Even with trivial input,
the output tends to be very interesting. The attendant geometry, fundamental group, first
homology group, etc., are essentially always nontrivial even though the descriptions remain
relatively simple.
We know of no technique which yields simpler face-pairing descriptions of interesting closed

3-manifolds, and certainly none which requires less effort. Among the simpler twisted face-
pairings we have studied, we have discovered manifolds (usually infinite classes of manifolds)
which admit geometries based on S3, H3, Solv, Nil, and the universal cover of PSL(2,R).
Without making an exhaustive search, but rather by trying some likely examples, we have
obtained as twisted face-pairing manifolds approximately one fourth of the seventy-five man-
ifolds with smallest volumes in SnapPea’s [5] census of closed hyperbolic manifolds and also
a few hyperbolic manifolds with relatively small volumes that were not on SnapPea’s census.
Although constructing twisted face-pairings is easy, identifying the manifolds requires some
effort. We postpone the presentation of examples to later papers after we develop a method
to identify twisted face-pairing manifolds. Our work suggests, but does not resolve, the
Conjecture: It is impossible because of the twisting involved in the construction to obtain,
by twisted face-pairing, manifolds based on the product geometries E3, H2×R, and S2×R.
The twisted face-pairing technique is easily simple enough for use by students, and if

used in conjunction with some software package like SnapPea, serves as a great exploratory
playground in 3-manifold theory. We have written two programs, pairsnap.c and partsnap.c,
that provide input to SnapPea for twisted face-pairings and for partial twisted face-pairings
respectively; they are freely available from http://www.math.vt.edu/people/floyd.

2. The construction

We describe the construction by example.
Step 1. The model face-pairing ε. The method allows us to begin with an arbitrary

orientation-reversing face-pairing ε. For example, we realize the 3-ball B3 as a tetrahedron
T having vertices A, B, C and D as in Figure 1. We pair faces in the most trivial of ways:
we sew ABC to ABD by reflection in the common edge AB; we sew ACD to BCD by
reflection in the common edge CD. We call this face-pairing the model face-pairing. It
is not important whether or not the quotient pseudomanifold is a manifold. The quotient
M = M(ε) = B3/ε which results from this particular model face-pairing is the 3-sphere S3.
We summarize the sewings symbolically using permutation notation in the following way:

ε1 :

(
A B C
A B D

)
ε2 :

(
A C D
B C D

)
.

This means that face ABC is identified with face ABD by means of a homeomorphism ε1
which acts on vertices as indicated. Likewise face ACD is identified with face BCD by
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Figure 1. The tetrahedron T .

means of a homeomorphism ε2 which acts on vertices as indicated. We impose compatibility
conditions on these homeomorphisms in Step 2. We call ε1 and ε2 face-pairing maps, and
we set ε = {ε±1

1 , ε±1
2 }.

Step 2. Edge cycles and edge cycle lengths ` of ε. Since ε identifies faces in pairs, it
follows easily that edges are identified in cycles. Our permutation notation for face-pairing
maps is convenient for calculating these edge cycles without referring to Figure 1. Here are
diagrams of the (three) edge cycles of our model face-pairing:

AB
ε1−→ AB

BC
ε1−→ BD

ε−12−−→ AD
ε−11−−→ AC

ε2−→ BC(2.1)

CD
ε2−→ CD.

The notation BC
ε1−→ BD, for example, indicates that the face-pairing map ε1 takes edge

BC to edge BD. We let `i denote the number of distinct edges in edge cycle number i, and
we refer to `i as the length of edge cycle number i. We let ` = (`1, `2, . . . , `k) denote the
corresponding tuple of integers. In our example, ` = (1, 4, 1).
As on page 123 of [4], to ensure that the quotient space B3/ε is a cell complex, we require

that our face-pairing maps satisfy the following face-pairing compatibility condition.
Every edge cycle diagram as in line 2.1 in effect represents a composition of functions, these
functions being face-pairing maps restricted to edges. We require that the composition of
functions arising from every edge cycle diagram be the identity map. For example, for the
second edge cycle diagram in line 2.1 we require that

ε2|AC ◦ ε−1
1 |AD ◦ ε−1

2 |BD ◦ ε1|BC
be the identity map on BC. As in [4, Problem 3.2.10], it follows that the action of the
face-pairing maps on vertices determines B3/ε up to homeomorphism.
Step 3. Edge cycle multipliers m and edge subdivision. Choose an arbitrary

ordered set m = (m1, m2, . . . , mk) of positive integers, one for each edge cycle. We call these
positive integers edge cycle multipliers. The simplest possibility is of course mi = 1. For
our example, we make that choice, so that m = (1, 1, 1). Now, for each edge e of edge cycle
number i, subdivide e into `i ·mi subedges.
In our case, since `1 = m1 = 1, we do not subdivide edge AB. Since `2 = 4 and m2 = 1, we

subdivide each of BC, BD, AD, and AC into `2 ·m2 = 4·1 = 4 subedges. Since `3 = m3 = 1,
we do not subdivide CD. See Figure 2. The face-pairing compatibility condition implies
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Figure 2. The subdivision of T .

that we may choose this subdivision to be ε-invariant. So, for example, a1 is a new vertex
in edge BC, and since the face-pairing map ε1 takes BC to BD, we have ε1(a1) = d3.
Since we assume that our subdivision is ε-invariant, it follows that ε induces a face-pairing,

still denoted by ε, which takes the subdivided cellulation to itself. The quotient pseudoman-
ifold does not change. It is still S3. We now write

ε1 :

(
A B a1 a2 a3 C b1 b2 b3
A B d3 d2 d1 D c3 c2 c1

)

ε2 :

(
A b3 b2 b1 C D c3 c2 c1
B a1 a2 a3 C D d1 d2 d3

)
.

Step 4. Twisting. In general we orient B3; hence either the boundary of every face is
oriented in the clockwise direction or the boundary of every face is oriented in the counter-
clockwise direction. For our example we orient the boundary of every face of our tetrahedron
T in the clockwise direction. Before applying the induced face-pairing maps, we twist each
face one subedge in the direction of the orientation of the boundary. The result is a twisted
face-pairing δ. Of course we twist so that δ satisfies the face-pairing compatibility condi-
tion. This step completes the twisted face-pairing construction. For example, ε1 maps face
ABC to face ABD. Twisting ABC one subedge in the clockwise direction takes the vertex
B to a1, and ε1(a1) = d3. Thus δ1(B) = d3. So for our example we have

δ1 :

(
b3 A B a1 a2 a3 C b1 b2
A B d3 d2 d1 D c3 c2 c1

)

δ2 :

(
c1 A b3 b2 b1 C D c3 c2
B a1 a2 a3 C D d1 d2 d3

)
,

and δ = {δ±1
1 , δ±1

2 }. The quotient after twisting is, as guaranteed by the theory of twisted
face-pairings, a closed, orientable 3-manifold.

Caution. We emphasize that we obtain δ from ε by either always twisting clockwise or
always twisting counterclockwise.

Main Theorem. If ε is an arbitrary orientation-reversing face-pairing, ifm = (m1, . . . , mk)
is an arbitrary ordered set of positive integer multipliers, one for each edge cycle of ε, and
if M = M(ε,m) = B3/δ is the resulting twisted face-pairing pseudomanifold, then M is
a closed, orientable 3-manifold. (Note that we need not mention the tuple ` since it is
determined by ε.)
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The simple proof will be given in Section 4 after we have reviewed the necessary properties
of Euler characteristic needed in the proof.
Our sample twisted face-pairing manifold is in fact a homology 3-sphere with infinite fun-

damental group which can be obtained by Dehn surgery on the figure eight knot. We shall
be more precise about the relationship with the figure eight knot in Section 6, where we indi-
cate how a modified version of twisted face-pairing can be used to construct pseudomanifolds
with controlled nonsphere vertex links.
Here are diagrams of the (two) edge cycles for our sample twisted face-pairing:

b3A
δ1−→ AB

δ1−→Bd3
δ−12−−→ c1c2

δ−11−−→ b2b1
δ2−→

a3C
δ1−→ Dc3

δ2−→ d1d2
δ−11−−→ a2a1

δ−12−−→ b3A

b1C
δ2−→ CD

δ2−→Dd1
δ−11−−→ a3a2

δ−12−−→ b2b3
δ1−→

c1A
δ2−→ Ba1

δ1−→ d3d2
δ−12−−→ c2c3

δ−11−−→ b1C.

(2.2)

Now we let x1 and x2 form a basis of a free group. We obtain words in this free group by
replacing the ε’s and δ’s atop the arrows in our edge cycle diagrams by x’s. From the model
face-pairing ε the words are x1, x1x

−1
2 x−1

1 x2, and x2. The following theorem asserts that
these words give defining relators for π1(B

3/ε) = π1(S
3). From the twisted face-pairing δ

the words are

x1x1x
−1
2 x−1

1 x2x1x2x
−1
1 x−1

2 and x2x2x
−1
1 x−1

2 x1x2x1x
−1
2 x−1

1 .

These words likewise give defining relators for π1(B
3/δ). In general, given a face-pairing ε,

let M = B3/ε and let M0 be the open manifold obtained by deleting the vertices from M .
If M is already a manifold, then M and M0 have the same fundamental group. Here is a
classical theorem.

Theorem. The open manifold M0 has fundamental group given by the generators and rela-
tors

〈x1, x2, . . . |W1,W2, . . . 〉,
where the generators x1, x2, . . . correspond to the face-pairing maps and the relators W1,
W2, . . . are the words arising from the edge cycles as above.

Thus, for both our sample model face-pairing and twisted face-pairing, M and M0 have
the same fundamental group, and the group presentations are the following:

〈x1, x2 | x1, x1x−1
2 x−1

1 x2, x2〉
and

〈x1, x2 | x1[x1, x−1
2 ][x1, x2], x2[x2, x

−1
1 ][x2, x1]〉,

where the symbol [a, b] denotes the commutator aba−1b−1. The first group is obviously trivial.
The second obviously has trivial abelianization.
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3. Euler characteristic of 3-dimensional pseudomanifolds

In this section we recall a simple combinatorial proof of the following classical theorem
which we learned from [3]. This theorem will be used in Section 4 to prove the main theorem.

Theorem. Let M be a triangulated closed pseudomanifold of dimension 3. Let v1, v2, . . . , vk
denote the vertices of M . Let link(σ,M) denote the link of a simplex σ in M . Let χ denote
Euler characteristic. Then

2 · χ(M) =
k∑

i=1

[2− χ(link(vi,M))] ≥ 0,

with equality if and only if M is a manifold.

Remark. Although the proof will make use of the triangulation of M , the result applies
to any pseudomanifold arising from a face-pairing, for the pseudomanifold can easily be
triangulated.

Proof. We will sum the Euler characteristics of the links of every simplex ofM , dimension by
dimension. We calculate the answers in two different ways. In the first, we use our knowledge
that vertex links are 2-manifolds, edge links are 1-spheres, face links are 0-spheres, and 3-cell
links are empty. In the second, we consider the contribution of each simplex to all link Euler
characteristics and sum over all simplexes.
First calculation: Each 0-simplex (vertex) has link equal to a closed 2-manifold, and a

closed manifold which is a connected sum of a 2-sphere with t tori and p projective planes
has Euler characteristic 2−2t−p. Each 1-simplex has link equal to a circle which has Euler
characteristic 0. Each 2-simplex has link equal to a 0-sphere (two points) which has Euler
characteristic 2. Each 3-simplex has empty link. Let Ci denote the number of simplexes of
M having dimension i. Then we have∑

v a vertex

χ(link(v)) =
∑

v a vertex

[2− 2t(v)− p(v)] = 2 · C0 −
∑

v a vertex

[2t(v) + p(v)],

∑
e an edge

χ(link(e)) =
∑

e an edge

0 = 0,

∑
f a face

χ(link(f)) =
∑

f a face

2 = 2 · C2, and

∑
c a 3-cell

χ(link(c)) =
∑

c a 3-cell

0 = 0.

Second calculation: We fix a simplex α of dimension j and consider any i-dimensional face
β of α, with i < j. Then there is a complementary face β∗ of α such that α is the join of β
and β∗. The dimension of β∗ is j − i − 1, and β∗ is in the link of β in M . We say that α
contributes (−1)j−i−1 to the Euler characteristic of the link of β. Note that there are exactly(
j+1
i+1

)
i-simplexes β having link Euler characteristics to which α contributes. Thus we have

∑
v a vertex

χ(link(v)) = C1

(
2

1

)
− C2

(
3

1

)
+ C3

(
4

1

)
,
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∑
e an edge

χ(link(e)) = C2

(
3

2

)
− C3

(
4

2

)
, and

∑
f a face

χ(link(f)) = C3

(
4

3

)
.

If we sum and equate the two sides, we find

2 · C0 + 2 · C2 −
∑

v a vertex

[2t(v) + p(v)] = 2 · C1 + 2 · C3, or

2χ(M) =
∑
v

[2t(v) + p(v)] ≥ 0.

Thus the Euler characteristic is 0 if and only if each t(v) and each p(v) is 0 if and only if
each vertex link is a 2-sphere. The theorem follows.

Exercise. Modify the proof to see that the Euler characteristic of any odd-dimensional sim-
plicial manifold is 0.

4. Proof of the main theorem

Let ε be a model face-pairing, m an associated ordered set of positive integer multipliers,
and δ the twisted face-pairing associated with ε and m. Let M = M(ε,m) = B3/δ be the
associated quotient complex. By the theorem on Euler characteristics in Section 3, in order
to show that M is a closed 3-manifold it suffices to show that the Euler characteristic χ of
M is 0.
Let Ci denote the number of i-cells that M possesses. Then C3 = 1, and C2 is the number

of face-pairs of the model face-pairing ε. We shall complete the proof by showing that all the
vertices of the subdivided B3 are equivalent under δ so that C0 = 1(= C3) and that there
are exactly C2 edge cycles of δ so that C1 = C2. It will follow that χ = 0, so that M is a
closed manifold.
We next introduce some notation and terminology. Given a face f of B3, we let f−1 denote

the face with which f is paired. We have face-pairing maps ε1, ε2, . . . , one for every face-pair.
We may assume that every face-pair of the subdivided B3 has the form {Fi, F

−1
i }, where εi

maps the face Fi to the face F−1
i , and so given a ∈ {±1}, we have that εai maps F a

i to F−a
i .

We refer to the vertices and edges of the original cellulation of B3 as original vertices and
edges of B3. We refer to the edges of the subdivided B3 as new edges, and we refer to the
vertices of the subdivided B3 which are not original vertices as new vertices.
The argument concentrates on a single edge cycle of the model face-pairing ε:

e1
ε
a1
i1−→ e2

ε
a2
i2−→ · · ·

ε
aj−1
ij−1−−−→ ej

ε
aj
ij−→ e1,

where e1, . . . , ej are distinct original edges and every exponent a1, . . . , aj is ±1. The number
of edges in this edge cycle is j. Let k be the multiplier associated with this edge cycle. Then
each of the edges in this edge cycle is subdivided into j · k subedges in defining δ.
Relative to the orientation of F

aj
ij
, we concentrate on the new edge e′ of F aj

ij
which imme-

diately precedes the original edge ej . See Figure 3, where faces are oriented in the clockwise
direction. Edges in the twisted face-pairing edge cycle of e′ are drawn with thick arcs in
Figure 3. For the twisted face-pairing δ, edge e′ is carried by δ

aj
ij

to the first new edge of e1



8 J. W. CANNON, W. J. FLOYD, AND W. R. PARRY

F
i

-a

4

4 F
i

-a

1

1 F
i

-a

2

2 F
i

-a

3

3F
i

a

1

1

ε
i
a

1
1

ε
i
a

4
4

ε
i
a

2
2 ε

i
a

2
2

F
i

a

2

2 F
i

a

3

3 F
i

a

4

4

eeee

e''

e'

1 2 3 4

Figure 3. Part of the edge cycle of e′ for j = 4 and k = 1.

relative to F a1
i1
, thence onward by δa1i1 to the second new edge of e2 relative to F a2

i2
, then to

the third new edge of e3 relative to F
a3
i3
, and so forth, eventually to the j-th new edge of ej

relative to F
aj
ij
, and is passed around the given edge cycle of ε a total of k times before it

comes finally to the last new edge e′′ of ej relative to F
aj
ij
. It is as though e′ has been moving

systematically around the face F
aj
ij

from the new edge immediately preceding ej, “along” the
subdivided ej , to the last new edge of ej . In actuality, of course, it is jumping from edge to
edge in the given edge cycle of ε. But all is arranged so that it comes back to F

aj
ij

at exactly
the correct time to begin a similar passage along the edge cycle of ε associated with the next
original edge of F

aj
ij
. This analysis when carried to its obvious conclusion precisely identifies

the twisted face-pairing edge cycle of e′.
Now given a face f of the subdivided B3, we choose an original vertex v of f , and to f we

associate the twisted face-pairing edge cycle of the new edge of f which immediately precedes
v. The above discussion shows that this edge cycle is independent of v. Furthermore, because
of the twist and the reversal of orientation in pairing f with f−1, it follows that the twisted
face-pairing edge cycle associated to f−1 equals the twisted face-pairing edge cycle associated
to f . This gives us a function from face-pairs of B3 to twisted face-pairing edge cycles. From
the above discussion it is easy to see that this function is bijective. Thus C1 = C2.
The same argument shows that all of the original vertices of B3 are equivalent under the

twisted face-pairing δ; indeed, the terminal endpoint of e′ relative to F
aj
ij

is identified with

the terminal endpoint of e′′ relative to F aj
ij

so that adjacent original vertices are equivalent.

But since the 1-skeleton of B3 is connected, all original vertices are equivalent. Furthermore,
every new vertex also obviously cycles to an original vertex. Hence C0 = 1.
The proof that χ = 0 is therefore complete.

5. More model face-pairings

How does one easily construct model face-pairings?
It is an easy matter to construct all of the orientation-reversing face-pairings of a tetra-

hedron. By symmetry we may pair the faces in any way. We obtain nine face-pairings in
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a straightforward way. Some of these are equivalent to others by further symmetries. It
turns out that there are four isomorphism classes of orientation-reversing face-pairings on
a tetrahedron. Similarly, it is an easy matter to write down face-pairings with the other
Platonic solids.
Having one face-pairing, one gets many more by invariant subdivision. The subdivision

has no effect on the original quotient, but it changes the twisted face-pairings substantially.
For example, divide the 2-sphere into a northern and a southern hemisphere along the

equator. Put some number of vertices on the equator. Then vertical projection from northern
hemisphere to southern hemisphere is orientation reversing. Now subdivide the northern
hemisphere in any way whatsoever and carry that subdivision to the southern hemisphere
by projection. This construction supplies a huge number of trivial model face-pairings with
very interesting twisted face-pairings.
Similarly, the antipodal map of the 2-sphere is orientation reversing. Subdivide via the

equator. Subdivide the equator symmetrically under the antipodal map. Extend that sub-
division to the northern hemisphere in any way whatsoever. Carry that subdivision to the
southern hemisphere by the antipodal map.
One obtains interesting face-pairings by dividing the 2-sphere into an even number of

digons joining north pole to south pole. One can pair these digons in many ways.
Etc.
The important thing to realize is that no face-pairing is a bad face-pairing when it comes

to the construction of twisted face-pairings.

6. Partial twisted face-pairings

By a slight modification of the twisted face-pairing construction we can construct pseudo-
manifolds with controlled vertex links. There are two ways of viewing the construction. We
explain them here. But first we give an example.
This partial twisted face-pairing is based on our model above. The theory of partial

twisted face-pairings is more complicated than that of twisted face-pairings, and so we will
give, but not explain until later, the dictated procedure in this case. We again begin with
the tetrahedron in Figure 1. Proceeding according to formula, we collapse the edge AB to a
single vertex A and we insert a single vertex into each of the four edges AC, AD, BC, and
BD. See Figure 4. As in Step 3 of Section 2, there is an induced face-pairing before twisting
still denoted by ε:

ε1 :

(
A a C b
A d D c

)
ε2 :

(
A b C D c
A a C D d

)
.

The partial twisted face-pairing ∂ twists only the second of these face identifications:

∂1 :

(
A a C b
A d D c

)
∂2 :

(
c A b C D
A a C D d

)
,

where ∂ = {∂±1
1 , ∂±1

2 }. For both of these two face-pairings, the resulting pseudomanifold
has one vertex whose link is a torus instead of a 2-sphere. If one removes the bad vertex
from the untwisted quotient pseudomanifold, one obtains the uninteresting complement of
an unknotted simple closed curve in S3. The partial twisted face-pairing, on the other hand,
has vertex complement homeomorphic to the complement of the figure eight knot in S3. The
partial twisted face-pairing is the simplest face-pairing description of the figure eight knot
complement of which we are aware.
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Figure 4. The cellulation for the partial twisted face-pairing.

First description of partial twisted face-pairing. Begin with a model face-pairing
ε and form a twisted face-pairing δ associated with multiplier sequence m. Choose some
collection E1, . . . , Ek of edge cycles of δ. Collapse each component of the union of all edges
in E1, . . . , Ek to a point. If the union does not separate the 2-sphere S2 = ∂(B3), then
one obtains a new cellulation of S2 and induced face-pairing ∂, which is the partial twisted
face-pairing. If the union does separate S2, then the collapse yields a new space B′ which
is not the 3-ball B3 but which is a CW-complex with one 3-cell. The boundary of B′ is a
wedge of 2-spheres rather than a single 2-sphere, but B′ is perfectly suitable for a theory
of (orientation-reversing) face-pairings. There is an induced face-pairing ∂ in this case as
well, and the induced face-pairing is the partial twisted face-pairing. We have the following
theorem.

Theorem. If k edge cycles are collapsed in forming a partial twisted face-pairing ∂ from
a twisted face-pairing δ, then the quotient complex M(∂) is a closed 3-dimensional pseu-
domanifold with one vertex. The link of that vertex is an orientable surface of genus k.
If M0(∂) denotes the open 3-manifold formed by deleting the one vertex from M(∂), then
the fundamental group of M0(∂) has presentation formed by deleting those relators from the
presentation of π1(M(ε,m)) which correspond to the collapsed edge cycles.

Proof. Collapsing edges reduces the number of edge cycles by k. Hence the new C1 is
C2 − k. Collapsing edges cannot increase the number of vertex classes. Hence the new
C0 is still 1. Hence the Euler characteristic is k. Since links are orientable in an orientable
pseudomanifold, the link is a surface of genus k. Roger Vogeler pointed out to us the following
way to see that this link is an orientable surface of genus k. We know that the 1-skeleton
of M(ε,m) has one vertex and is isomorphic to a wedge of circles. In passing from M(ε,m)
to M(∂) we collapse k of the circles to a point. So the complement of the vertex in M(∂)
is homeomorphic to the complement of the wedge of k circles in M(ε,m). It easily follows
that the link of the vertex of M(∂) is an orientable surface of genus k.
The fundamental group assertion follows from the theorem near the end of Section 2; the

group relators mentioned vanish precisely because the corresponding edge cycles vanish.

Second description of partial twisted face-pairing. Partial twisted face-pairing can
be described without passage through a complete twisted face-pairing. One calculates the
model face-pairing edge cycles as before. But one calculates the tuple ` of edge cycle lengths
differently. In our first description of partial twisted face-pairings we choose a collection
E1, . . . , Ek of twisted face-pairing edge cycles. The proof of the main theorem shows that
this collection of edge cycles corresponds to a collection of faces; we have two faces Fj and
F−1
j for every edge cycle. In turn we have a corresponding collection of face-pairing maps
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with two face-pairing maps εj and ε−1
j for every edge cycle. For a twisted face-pairing, one

counts the number of face-pairing maps in the i-th edge cycle diagram to find `i. For a partial
twisted face-pairing, one counts only those face-pairing maps which are not from our chosen
collection of face-pairing maps. It may happen now that some of the integers `i are 0. Next
subdivide each edge of B3 into `i ·mi subedges as before, where subdivision into 0 subedges
indicates a total collapse of that edge to a point. There is an induced face-pairing on the
new (possibly collapsed) complex. For those faces not in the collection of faces mentioned
above, perform a twist as before. Those paired faces in our collection are to be sewn together
without twisting.

Theorem. The second description of partial twisted face-pairing is equivalent to the first.

Proof. We return to the proof of the main theorem. As there we consider an edge cycle of
the model face-pairing ε:

e1
ε
a1
i1−→ e2

ε
a2
i2−→ · · ·

ε
aj−1
ij−1−−−→ ej

ε
aj
ij−→ e1.(6.1)

We constructed a bijection between the twisted face-pairing edge cycles and the set of face-
pairs of B3. In this bijection the twisted face-pairing edge cycle of the new edge of F

aj
ij

immediately preceding ej corresponds to the face-pair consisting of F
aj
ij

and F
−aj
ij

. We saw

that the new edge of F
aj
ij

which immediately precedes ej is mapped by the twisted face-

pairing to the first new edge of e1 relative to F
a1
i1
, then to the second new edge of e2 relative

to F a2
i2

and so on, and it eventually reaches the last new edge of ej relative to F
aj
ij
. If the

edge cycle in line 6.1 is the p-th model face-pairing edge cycle with multiplier mp, then this
accounts for mp new edges in each of the original edges e1, . . . , ej. It follows that if ε±1

ij

occurs kij times in line 6.1, then the twisted face-pairing edge cycle corresponding to F
aj
ij

and F
−aj
ij

contains kijmp new edges in each of the original edges e1, . . . , ej . This implies
that for the partial twisted face-pairing, the number of edges into which each of the original
edges e1, . . . , ej subdivides, as given by the first description, equals mp times the number of
face-pairing maps in line 6.1 which are not from our chosen collection of face-pairing maps,
in agreement with the second description.
Now let f be a face of the new complex gotten from the original cellulation of B3. If the

pair of faces f and f−1 corresponds to one of the twisted face-pairing edge cycles E1, . . . , Ek,
then the last new edge of every original edge of f collapses to a point. It is easy to see that
this implies that the partial twisted face-pairing maps f to f−1 taking original vertices to
original vertices. In other words, the partial twisted face-pairing maps f to f−1 without a
twist. On the other hand, if the pair of faces f and f−1 does not correspond to one of the
twisted face-pairing edge cycles E1, . . . , Ek, then the last new edge of every original edge of
f does not collapse to a point, and the partial twisted face-pairing maps f to f−1 with a
twist.
This proves that the second description of partial twisted face-pairing is equivalent to the

first.

Our example from Section 2 gives rise to the example of this section. We collapse the
edges in the first twisted face-pairing edge cycle in line 2.2. Recall from the end of Section
2 that the fundamental group of our twisted face-pairing manifold has presentation

〈x1, x2 | x1[x1, x−1
2 ][x1, x2], x2[x2, x

−1
1 ][x2, x1]〉.
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Given that the complement of the vertex of our partial twisted face-pairing pseudomanifold
is the complement of the figure eight knot, then the first theorem of this section implies that
the fundamental group of the figure eight knot has presentation

〈x1, x2 | x2[x2, x−1
1 ][x2, x1]〉.

We shall see elsewhere that the partial twisted face-pairing pseudomanifolds give rise to
the complete twisted face-pairing manifolds by Dehn filling. Hence our homology sphere of
Section 2 is obtained from the figure eight knot complement by Dehn filling.

7. Questions and references to further work

Our most tantalizing question is this:
Question 1. Which closed 3-manifolds are twisted face-pairing manifolds?
Question 1’. Which knot complements are partial twisted face-pairing manifolds?
In other papers we consider the following items.
(1) In [1] we investigate duality, homology, and fundamental groups of twisted face-pairing

manifolds.
(2) In [2] we introduce ample twisted face-pairing manifolds, a combinatorially defined

infinite subclass of all twisted face-pairing manifolds, and show that they all have Gromov
hyperbolic fundamental groups and 2-spheres as spaces at infinity.
Question 2. Are there combinatorial criteria for recognizing twisted face-pairing mani-

folds from various of the Thurston geometries? Are there combinatorial criteria for recogniz-
ing twisted or partial twisted face-pairing manifolds whose groups are Kleinian (cocompact,
finite volume, infinite volume)?
Question 3. Are there combinatorial or analytic relationships between twisted face-

pairing manifolds and associated partial twisted face-pairing pseudomanifolds that have
Kleinian structures?
(3) We combinatorially construct natural Heegaard diagrams of twisted face-pairing man-

ifolds. These diagrams suggest that twisted face-pairing manifolds might be thought of as
a sort of integer lattice in the space of all closed 3-manifolds. We also show that every
irreducible Heegaard diagram has an underlying model face-pairing analogous to that in a
twisted face-pairing.
Question 4. Is there a fractional twisted face-pairing construction analogous to the

method of twisted face-pairings that yields all 3-dimensional manifolds?
(4) We show that the Heegaard diagram of a twisted face-pairing manifold gives rise to

a framed link in S3 such that Dehn surgery on the framed link yields the given manifold.
This allows us to explicitly identify many twisted face-pairing manifolds as lens spaces, more
general Seifert fibered manifolds, Solv manifolds, etc.
(5) We give a survey of twisted face-pairing manifolds.
(6) We develop a general theory of face-pairings, including those which arise from partial

twisted face-pairings. Among other things, we show how every face-pairing pseudomanifold
can be built up by surgery from simpler face-pairing pseudomanifolds by a process called
edge constitution. Edge constitution requires one to find nonseparating curves in a closed
2-manifold given by edge pairing on a family of planar polygons.
Question 5. What is the simplest method for finding families of nonseparating curves in

a closed 2-manifold given by edge pairing on a family of planar polygons?
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