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Abstract. We give a simple algorithmic construction of a Heegaard diagram

for an arbitrary twisted face-pairing 3-manifold. One family of meridian curves

in the Heegaard diagram corresponds to the face pairs, and the other family

is obtained from the first by a product of powers of Dehn twists. These Dehn

twists are along curves which correspond to the edge cycles and the powers

are the multipliers. From the Heegaard diagram, one can easily construct a

framed link in the 3-sphere such that Dehn surgery on this framed link gives

the twisted face-pairing manifold.

1. Introduction

Twisted face-pairing gives a powerful technique for constructing 3-manifolds.
Starting with a faceted 3-ball P and an arbitrary orientation-reversing face-pairing
ε on P , one constructs a faceted 3-ball Q and an orientation-reversing face-pairing
δ on Q such that the quotient Q/δ is a manifold. Here Q is obtained from P
by subdividing the edges according to a function which assigns a positive integer
(called a multiplier) to each edge cycle, and δ is obtained from ε by precomposing
each face-pairing map with a twist. Which direction to twist depends on choosing
an orientation of P . Hence for a given faceted 3-ball P , orientation-reversing face-
pairing ε, and multiplier function, one obtains two twisted face-pairing manifolds
M = Q/δ and M∗ = Q/δ∗ (one for each orientation of P ).

In [1] and [2] we introduced twisted face-pairing 3-manifolds and developed their
first properties. A surprising result in [2] is the duality theorem that says that, if
P is a regular faceted 3-ball, then M and M∗ are homeomorphic in a way that
makes their cell structures dual to each other. This duality is instrumental in [3],
where we investigated a special subset of these manifolds, the ample twisted face-
pairing manifolds. We showed that the fundamental group of every ample twisted
face-pairing manifold is Gromov hyperbolic with space at infinity a 2-sphere.

In this paper we connect the twisted face-pairing construction with two standard
3-manifold constructions. Starting with a faceted 3-ball P with 2g faces and an
orientation-reversing face-pairing ε on P , we construct a closed surface S of genus
g and two families γ and β of pairwise disjoint simple closed curves on S. The
elements of γ correspond to the face pairs and the elements of β correspond to the
edge cycles of ε. Given a choice of multipliers for the edge cycles, we then give a
Heegaard diagram for the resulting twisted face-pairing 3-manifold. The surface
S is the Heegaard surface, and the family γ is one of the two families of meridian
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curves. The other family is obtained from γ by a product of powers of Dehn twists
along elements of β; the powers of the Dehn twists are the multipliers. From the
Heegaard diagram, one can easily construct a framed link in the 3-sphere such
that Dehn surgery on this framed link gives the twisted face-pairing manifold. The
components of the framed link fall naturally into two families; each curve in one
family corresponds to a face pair and has framing 0, and each curve in the other
family corresponds to an edge cycle and has framing the sum of the reciprocal of its
multiplier and the blackboard framing of a certain projection of the curve. These
results are very useful for understanding both specific face-pairing manifolds and
entire classes of examples. While we defer most illustrations of these results to a
later paper [4], we give several examples here to illustrate how to easily use these
results to give familiar names to some twisted face-pairing 3-manifolds.
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Figure 1. The complex P .

We give a preliminary example to illustrate the twisted face-pairing construction.
Let P be the tetrahedron with vertices A, B, C, and D, as shown in Figure 1.
Consider the face-pairing ε = {ε1, ε2} on P with map ε1 which takes triangle ABC
to triangle ABD fixing the edge AB and map ε2 which takes triangle ACD to BCD
fixing the edge CD. This example was considered briefly in [1] and in more detail
in [2, Example 3.2]. The edge cycles are the equivalence classes of the edges of P
under the face-pairing maps. The three edge cycles are {AB}, {BC,BD,AD,AC},
and {CD}; the associated diagrams of face-pairing maps are shown below.

AB
ε1−→ AB

BC
ε1−→ BD

ε−1
2−−→ AD

ε−1
1−−→ AC

ε2−→ BC

CD
ε2−→ CD

To construct a twisted face-pairing manifold from P , for each edge cycle [e] we
choose a positive integer mul([e]) called the multiplier of [e]. Let Q be the subdivi-
sion of P obtained by subdividing each edge e of P into #([e]) ·mul([e]) subedges.
The face-pairing maps ε1 and ε2 naturally give face-pairing maps on the faces of
Q. Choose an orientation of ∂Q, and define the twisted face-pairing δ on Q by
precomposing each εi with an orientation-preserving homeomorphism of its domain
which takes each vertex to the vertex that follows it in the induced orientation on
the boundary. By the fundamental theorem of twisted face-pairings (see [1] or [2]),
the quotient Q/δ is a closed 3-manifold.
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Figure 2. The edge diagrams.
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Figure 3. The rectangles that correspond to the edge diagrams.

To construct a Heegaard diagram and framed link for the twisted face-pairing
manifold Q/δ, we first schematically indicate edge diagrams as shown in Figure 2.
We then make rectangles out of the edge diagrams in Figure 3, and add thin horizon-
tal and vertical line segments through the midpoints of each of the subrectangles of
the rectangles. We identify the boundary edges of the rectangles in pairs preserving
the vertex labels (and, for horizontal edges, the order) to get a quotient surface S of
genus two. The image in S of the thin vertical arcs is a union of two disjoint simple
closed curves γ1 and γ2, which correspond to the two face pairs. The image in S
of the thin horizontal arcs is a union of three pairwise disjoint simple closed curves
β1, β2, and β3, which correspond to the three edge cycles. Figure 4 shows S as the
quotient of the union of two annuli, and Figure 5 shows the curve families {γ1, γ2}
and {β1, β2, β3} on S. For i ∈ {1, 2, 3}, let mi be the multiplier of the edge cycle
corresponding to βi and let τi be one of the two Dehn twists along βi. We choose
τ1, τ2, and τ3 so that they are oriented consistently. Let τ = τm1

1 ◦ τm2
2 ◦ τm3

3 . It
follows from Theorem 6.1.1 that S and {γ1, γ2} and {τ(γ1), τ(γ2)} form a Heegaard
diagram for the twisted face-pairing manifold Q/δ. From the Heegaard diagram,
one can use standard techniques to give a framed surgery description for Q/δ. An
algorithmic description for this is given in Theorem 6.1.2. In the present example,
the surgery description is shown in Figure 6 together with a modification of the 1-
skeleton of the tetrahedron P . There are two curves with framing 0, corresponding
to the two pairs of faces. The other three curves correspond to the edge cycles and
have framings the reciprocals of the multipliers.

We now describe our Heegaard diagram construction in greater detail. We
use the notation and terminology of [2]. Let P be a faceted 3-ball, let ε be an
orientation-reversing face-pairing on P and let mul be a multiplier function for ε.
(As in [2], we for now assume that P is a regular CW complex. We drop the
regularity assumption in Section 2.) Let Q be the twisted face-pairing subdivision
of P , let δ be the twisted face-pairing on Q, and let M be the associated twisted
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Figure 4. Another view of the surface S.
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Figure 5. The curve families {γ1, γ2} and {β1, β2, β3} on the sur-
face S.
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Figure 6. The surgery description.

face-pairing manifold. We next construct a closed surface S with the structure of a
cell complex. For this we first construct a cell complex X cellularly homeomorphic
to the 1-skeleton of Q. Suppose given two paired faces f and f−1 of Q. We choose
one of these faces, say f , and we construct ∂f × [0, 1]. We view the interval [0, 1]
as a 1-cell, and we view ∂f × [0, 1] as a 2-complex with the product cell structure.
For every x ∈ ∂f we identify (x, 0) ∈ ∂f × [0, 1] with the point in X correspond-
ing to x and we identify (x, 1) ∈ ∂f × [0, 1] with the point in X corresponding to
δf (x) ∈ ∂f−1. Doing this for every pair of faces of Q yields a cell complex Y on
a closed surface. We define S to be the first dual cap subdivision of Y ; because
every face of Y is a quadrilateral, this simply means that to obtain S from Y we
subdivide every face of Y into four quadrilaterals in the straightforward way. We
say that an edge of S is vertical if it is either contained in X or is disjoint from
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X. We say that an edge of S is diagonal if it is not vertical. The union of the
vertical edges of S which are not edges of Y is a family of simple closed curves in S.
Likewise the union of the diagonal edges of S which are not edges of Y is a family
of simple closed curves in S. Theorem 4.3.1 states that the surface S and these two
families of curves form a Heegaard diagram for M .

In this paragraph we indicate how to associate to a given edge cycle E of ε a
closed subspace of S. To simplify this discussion we assume that E contains three
edges and that mul(E) = 2. When constructing Q from P , every edge of E is
subdivided into 2 · 3 = 6 subedges. So corresponding to the three edges of E, the
complex S contains three 1-complexes, each of them homeomorphic to an interval
and the union of 12 vertical edges of S. These three 1-complexes and part of S
are shown in Figure 7; the three 1-complexes are drawn as four thick vertical line
segments with the left one to be identified with the right one. We refer to the
closed subspace C of S shown in Figure 7 as an edge cycle cylinder or simply as a
cylinder. In Figure 7, vertical edges of S are drawn vertically and diagonal edges
of S are drawn diagonally. Some arcs in Figure 7 are dashed because they are not
contained in the 1-skeleton of S. The thick edges in Figure 7 are the edges of Y in
C. (It is interesting to note that these thick edges essentially give the diagram in
Figure 11 of [2].) Note that the edge cycle cylinder C need not be a closed annulus,
although C is the closure of an open annulus. (Identifications of boundary points
are possible.) We choose these edge cycle cylinders so that their union is S and the
cylinders of distinct ε-edge cycles have disjoint interiors.

Figure 7. The cylinder C corresponding to the edge cycle E.

We define the circumference of an edge cycle cylinder to be the number of edges
in its edge cycle. We define the height of an edge cycle cylinder to be the number of
edges in its edge cycle times the multiplier of its edge cycle. The edge cycle cylinder
C in Figure 7 contains three arcs ρ1, ρ2, ρ3 whose endpoints lie on dashed arcs such
that each of ρ1, ρ2, ρ3 is a union of thin vertical edges. Likewise C contains three
arcs σ1, σ2, σ3 such that each of σ1, σ2, σ3 is a union of thin diagonal edges and the
endpoints of σi equal the endpoints of ρi for every i ∈ {1, 2, 3}. Because the height
of C equals 2 times the circumference of C, it follows that σ1, σ2, σ3 can be realized
as the images of ρ1, ρ2, ρ3 under the second power of a Dehn twist along a waist
of C. This observation and the previous paragraphs essentially give the following.
Let α1, . . . , αn be the simple closed curves in S which are unions of vertical edges
of S but not Y . Let E1, . . . , Em be the edge cycles of ε. For every i ∈ {1, . . . , m}
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construct a waist βi in the edge cycle cylinder of Ei so that β1, . . . , βm are pairwise
disjoint simple closed curves in S. For every i ∈ {1, . . . , m} let τi be one of the
two Dehn twists on S along βi, chosen so that the directions in which we twist
are consistent. Set τmul = τ

mul(E1)
1 ◦ · · · ◦ τ

mul(Em)
m . Then S and α1, . . . , αn and

τmul(α1), . . . , τmul(αn) form a Heegaard diagram for M . The last statement is the
content of Theorem 6.1.1.

The result of the previous paragraph leads to a link L in S3 such that L has com-
ponents γ1, . . . , γn and δ1, . . . , δm, where γ1, . . . , γn correspond to α1, . . . , αn and
δ1, . . . , δm correspond to β1, . . . , βm. We define a framing of L so that γ1, . . . , γn

have framing 0 and for every i ∈ {1, . . . , m} δi has framing mul(Ei)−1 plus the black-
board framing of δi relative to a certain projection. Then the manifold obtained
by Dehn surgery on L is homeomorphic to M . The last statement is the content
of Theorem 6.1.2. At last we see that multipliers of edge cycles are essentially in-
verses of framings of link components. In Section 6.2 we make the construction of
L algorithmic and simple using what we call the corridor construction.

Although we know of no nice characterization of twisted face-pairing 3-manifolds,
Theorem 5.3.1 gives such a characterization of their Heegaard diagrams. Theo-
rem 5.3.1 and results leading to it give the following statements. Every irreducible
Heegaard diagram for an orientable closed 3-manifold M gives rise to a faceted
3-ball P with orientation-reversing face-pairing ε (in essentially two ways – one
for each family of meridian curves) such that P/ε is homeomorphic to M . Ev-
ery irreducible Heegaard diagram can be decomposed into cylinders, which we call
Heegaard cylinders, essentially just as our above Heegaard diagrams of twisted face-
pairing manifolds are decomposed into edge cycle cylinders. In general heights of
Heegaard cylinders are not multiples of their circumferences. A given irreducible
Heegaard diagram is the Heegaard diagram, as constructed above, of a twisted
face-pairing manifold if and only if the height of each of its Heegaard cylinders is a
multiple of its circumference. Furthermore, if the height of every Heegaard cylinder
is a multiple of its circumference, then the face-pairing ε constructed from the given
Heegaard diagram is a twisted face-pairing.

Thus far we have discussed the construction of Heegaard diagrams for twisted
face-pairing manifolds and the construction of face-pairings from irreducible Hee-
gaard diagrams. In Theorem 4.2.1 we more generally construct (irreducible) Hee-
gaard diagrams for manifolds of the form P/ε, where P is a faceted 3-ball with
orientation-reversing face-pairing ε and the cell complex P/ε is a manifold with
one vertex. In Theorem 5.3.1 we construct for every irreducible Heegaard diagram
for a 3-manifold M a faceted 3-ball P with orientation-reversing face-pairing ε (in
essentially two ways – one for each family of meridian curves) such that P/ε is a cell
complex with one vertex and P/ε is homeomorphic to M . These two constructions
are essentially inverse to each other.

The above statements that every irreducible Heegaard diagram gives rise to a
faceted 3-ball require a more general definition of faceted 3-ball than the one given
in [2]. In [2] faceted 3-balls are regular, that is, for every open cell of a faceted 3-ball
the prescribed homeomorphism of an open Euclidean ball to that cell extends to a
homeomorphism of the closed Euclidean ball to the closed cell. On the other hand,
the cellulation of the boundary of a 3-ball which arises from a Heegaard diagram has
paired faces but otherwise is arbitrary. So we now define a faceted 3-ball P to be an
oriented CW complex such that P is a closed 3-ball, the interior of P is the unique
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open 3-cell of P , and the cell structure of ∂P does not consist of just one 0-cell and
one 2-cell. This generalization presents troublesome minor technical difficulties but
no essential difficulties. In particular, all the results of [1] and [2] hold for these
more general faceted 3-balls. Section 2 deals with this generalization. Except when
the old definition is explicitly discussed, we henceforth in this paper use the new
definition of faceted 3-ball. We know of no reducible twisted face-pairing manifold
which arises from a regular faceted 3-ball; the old twisted face-pairing manifolds all
seem to be irreducible. On the other hand the new twisted face-pairing manifolds
are often reducible. See the related Examples 2.1, 4.3.2 and 7.1 and the related
Examples 2.3, and 6.2.1.

Our construction of Heegaard diagrams from face-pairings uses a subdivision of
cell complexes which we call dual cap subdivision. We define and discuss dual cap
subdivision in Section 3. The term “dual” is motivated by the notion of dual cell
complex, and the term “cap” is motivated by its association with intersection. In-
tuitively, the dual cap subdivision of a cell complex is gotten by “intersecting” the
complex with its “dual complex”. Dual cap subdivision is coarser than barycentric
subdivision, and it is well suited to the constructions at hand. Heegaard decompo-
sitions of 3-manifolds are usually constructed by triangulating the manifolds and
working with their second barycentric subdivisions. Instead of using barycentric
subdivision, we use dual cap subdivision, and we obtain the following. Earlier in
the introduction we construct a surface S with a cell structure. We show that S
is cellularly homeomorphic to a subcomplex of the second dual cap subdivision of
the manifold M , where this subcomplex corresponds to the usual Heegaard surface
gotten by using a triangulation and barycentric subdivision.

In Section 7 we use the corridor construction of Section 6.2 to construct links in
S3 for three different model face-pairings. Simplifying these links using isotopies
and Kirby calculus, we are able to identify the corresponding twisted face-pairing
manifolds. In Example 7.1 we obtain the connected sum of the lens space L(p, 1) and
the lens space L(r, 1) as a twisted face-pairing manifold, where p and r are positive
integers. In Example 7.2 we obtain all integer Dehn surgeries on the figure eight
knot as twisted face-pairing manifolds. In Example 7.3 we obtain the Heisenberg
manifold, the prototype of Nil geometry. In Example 6.2.1 we obtain S2 × S1.

Which orientable closed 3-manifolds are twisted face-pairing manifolds? As far as
we know they all are, although that seems rather unlikely. An interesting problem
is to determine whether the 3-torus is a twisted face-pairing manifold; we do not
know whether it is or not. In a later paper [4] we present a survey of twisted
face-pairing 3-manifolds which indicates the scope of the set of twisted face-pairing
manifolds. Here are some of the results in [4]. We show how to obtain every lens
space as a twisted face-pairing manifold. We consider the faceted 3-balls for which
every face is a digon, and we show that the twisted face-pairing manifolds obtained
from these faceted 3-balls are Seifert fibered manifolds. We show how to obtain
most Seifert fibered manifolds. We show that if M1 and M2 are twisted face-pairing
manifolds, then so is the connected sum of M1 and M2.

2. Generalizing the construction

Our twisted face-pairing construction begins with a faceted 3-ball. In Section
2 of [2] we define a faceted 3-ball P to be an oriented regular CW complex such
that P is a closed 3-ball and P has a single 3-cell. In this section we generalize our
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twisted face-pairing construction by generalizing the notion of faceted 3-ball. This
generalization gives us more freedom in constructing twisted face-pairing manifolds,
and it is natural in the context of Theorem 5.3.1.

We take cells of cell complexes to be closed unless explicitly stated otherwise.
We now define a faceted 3-ball P to be an oriented CW complex such that P is a

closed 3-ball, the interior of P is the unique open 3-cell of P , and the cell structure of
∂P does not consist of just one 0-cell and one 2-cell. Suppose that P is an oriented
CW complex such that P is a closed 3-ball and the interior of P is the unique open
3-cell of P . The condition that the cell structure of ∂P does not consist of just one
0-cell and one 2-cell is equivalent to the following useful condition. For every 2-cell
f of P there exists a CW complex F such that F is a closed disk, the interior of F
is the unique open 2-cell of F , and there exists a continuous cellular map ϕ : F → f
such that the restriction of ϕ to every open cell of F is a homeomorphism. So f
is gotten from F by identifying some vertices and identifying some pairs of edges.
The number of vertices and edges in F is uniquely determined. This definition of
faceted 3-ball allows for faces such as those in Figure 8, which were not allowed
before; part a) of Figure 8 shows a quadrilateral and part b) of Figure 8 shows a
pentagon. To overcome difficulties presented by faces such as those in Figure 8, the
next thing that we do is subdivide P .

a) b)

Figure 8. Faces now allowed in a faceted 3-ball.

In this paragraph we construct a subdivision Ps of a given faceted 3-ball P . The
idea is to not subdivide the 3-cell of P and to construct what might be called the
barycentric subdivision of ∂P . The vertices of Ps are the vertices of P together
with a barycenter for every edge of P and a barycenter for every face of P . Every
face of Ps is a triangle contained in ∂P . If t is one of these triangles, then one
vertex of t is a vertex of P , one vertex of t is a barycenter of an edge of P , and one
vertex of t is a barycenter of a face of P . The only 3-cell of Ps is the 3-cell of P .
This determines Ps. Given a face f of P , we let fs denote the subcomplex of Ps

which consists of the cells of Ps contained in f . Figure 9 shows fs for each of the
faces f in Figure 8.

In this paragraph we make two related definitions. Let P be a faceted 3-ball, and
let f be a face of P . We define a corner of f at a vertex v of f to be a subcomplex
of fs consisting of the union of two faces of fs which both contain an edge e such
that e contains v and the barycenter of f . We define an edge cone of f at an edge
e of f to be a subcomplex of fs consisting of the union of two faces of fs which both
contain an edge e′ such that e′ contains the barycenter of f and the barycenter of
e.

Now a face-pairing ε on a given faceted 3-ball P consists of the following. First,
the faces of P are paired: for every face f of P there exists a face f−1 6= f of P such
that (f−1)−1 = f . Second, the faces of Ps are paired: for every face t of Ps contained
in a face f of P there exists a face t−1 of Ps with t−1 ⊆ f−1 such that (t−1)−1 = t.
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a) b)

Figure 9. The subdivisions of the faces in Figure 8.

Third, for every face t of Ps there exists a cellular homeomorphism εt : t → t−1

called a partial face-pairing map such that εt−1 = ε−1
t . We require that εt maps

the vertex of P in t to the vertex of P in t−1, that εt maps the edge barycenter in
t to the edge barycenter in t−1, and that εt maps the face barycenter in t to the
face barycenter in t−1. Furthermore, the faces of Ps are paired and the partial face-
pairing maps are defined so that if t and t′ are faces of Ps contained in some face f
of P and if e is an edge of t∩ t′ which contains the barycenter of f , then εt|e = εt′ |e.
For every face f of P we set εf = {εt : t is a face of fs}, and we refer to εf as a
multivalued face-pairing map from f to f−1. We set ε = {εf : f is a face of P}. In
a straightforward way we obtain a quotient space Ps/ε consisting of orbits of points
of Ps under ε. Finally, we impose a face-pairing compatibility condition on ε just
as in Section 2 of [2] to ensure that Ps/ε is a cell complex. It is easy to see that
the cell structure of P induces a cell structure on Ps/ε, and it is this cell structure
that we put on Ps/ε, not the cell structure induced from Ps. We usually write P/ε
instead of Ps/ε. We usually want ε to be orientation reversing, which means that
every partial face-pairing map of ε reverses orientation.

Let P be a faceted 3-ball, let f be a face of P , and suppose that ε is an orientation-
reversing face-pairing on P . Then the multivalued face-pairing map εf determines a
function from the set of corners of f to the set of corners of f−1 in a straightforward
way. The image of one corner of f under this function determines the image of every
corner of f under this function. The action of ε on the set of corners of the faces
of P determines Ps/ε up to homeomorphism. Thus for our purposes to define the
multivalued face-pairing map εf of a face f of P , it suffices to give a corner c of f
and the corner of f−1 to which εf maps c.

Let ε be an orientation-reversing face-pairing on a faceted 3-ball P . Essentially
as in Section 2 of [2], ε partitions the edges of P into edge cycles. (We consider the
edges of P , not the edges of Ps.) To every edge cycle E of ε we associate a length
`E and a multiplier mE as before. The function mul : {edge cycles} → N defined
by E 7→ mE is called the multiplier function. We obtain a twisted face-pairing
subdivision Q from P just as before: if e is an edge of P and if E is the edge
cycle of ε containing e, then we subdivide e into `EmE subedges. As before, we
subdivide in an ε-invariant way. We likewise construct Qs in an ε-invariant way. It
follows that ε naturally determines a face-pairing on Q, which we continue to call
ε, abusing notation more than before.

We consider face twists in this paragraph. In the present setting a face twist
is not a single cellular homeomorphism, but instead a collection of cellular homeo-
morphisms. For this, we maintain the situation of the previous paragraph. Let f
be a face of Q. Let t be a face of fs. The orientation of f determines a cyclic order
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on the faces of fs. Let t′ be the second face of fs which follows t relative to this
cyclic order. Let τt be an orientation-preserving cellular homeomorphism from t to
t′ such that τt fixes the barycenter of f . We call τf = {τt : t is a face of fs} the
face twist of f . We assume that if t1 and t2 are faces of fs and if e is an edge of
t1 ∩ t2 which contains the barycenter of f , then τt1 |e = τt2 |e. We also assume that
our face twists are defined ε-invariantly: for each face f of Q and each face t of fs,
we have τt−1 = εt′′ ◦ τ−1

t′′ ◦ εt−1 , where t′′ is the second face of fs which precedes
t. We furthermore impose a compatibility condition on our face twists in the next
paragraph.

Now we are prepared to define a twisted face-pairing δ on Q. We pair the faces
of Q just as the faces of P are paired. The pairing of the faces of Ps likewise induces
a pairing of the faces of Qs. For every face f of Q and every face t of fs, we set
δt = εt′ ◦ τt, where t′ is the second face of fs which follows t. For every face f of
Q we set δf = {δt : t is a face of fs}, and we set δ = {δf : f is a face of Q}. We
assume that the maps τt are defined so that δ satisfies the face-pairing compatibility
condition. Then δ is a face-pairing on Q called the twisted face-pairing.

Finally, we define M = M(ε,mul) to be the quotient space Qs/δ. We emphasize
that for a cell structure on M we take the cell structure induced from Q, not
the cell structure induced from Qs. The cell complex M is determined up to
homeomorphism by the function mul and the action of ε on the corners of the faces
of P .

Let P be a faceted 3-ball, let ε be an orientation-reversing face-pairing on P , and
let mul be a multiplier function for ε. The results of [2] all hold in this more general
setting. So M is an orientable closed 3-dimensional manifold with one vertex. The
dual of the link of that vertex is isomorphic to ∂Q∗ as oriented 2-complexes, where
Q∗ is a faceted 3-ball gotten from Q by reversing orientation. We label and direct
the faces and edges of Q and Q∗ as before. We again obtain a duality between M
and M∗. Et cetera.

The proofs in [2] are valid in the present more general setting with only straight-
forward minor technical modifications and the following. To obtain a duality be-
tween M and M∗ in [2], we construct a dual cap subdivision Qσ of Q. We let
C1, . . . , Ck be the 3-cells of Qσ, and for every i ∈ {1, . . . , k} we let Ai be a cell
complex isomorphic to Ci so that A1, . . . , Ak are pairwise disjoint. Then the ver-
tices of Q can be enumerated as x1, . . . , xk so that Ci is the unique 3-cell of Qσ

which contains xi for i ∈ {1, . . . , k}. If xi has valence vi, then Ai is an alternating
suspension on a 2vi-gon for i ∈ {1, . . . , k}. In the present setting the 3-cells of Qσ

need not be alternating suspensions; they are quotients of alternating suspensions.
See Section 3.2 for a discussion of the 3-cells of Qσ. So in the present setting we
let x1, . . . , xk be the vertices of Q with valences v1, . . . , vk, and for i ∈ {1, . . . , k}
we simply define Ai to be an alternating suspension on a 2vi-gon. As in [2] the
twisted face-pairing δ on Q induces in a straightforward way what might be called
a face-pairing on the disjoint union of A1, . . . , Ak. At this point we proceed as in
[2].

We conclude this section with two simple examples to illustrate some of the new
phenomena which occur for our more general faceted 3-balls.

Example 2.1. Let the model faceted 3-ball P be as indicated in Figure 10 with two
monogons and two quadrilaterals, the outer monogon being at infinity. The inner
monogon has label 1 and is directed outward. The outer monogon has label 1 and is
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1 2 2' 1'AB C

Figure 10. The complex P for Example 2.1.

directed inward. The inner quadrilateral has label 2 and is directed outward. The
outer quadrilateral has label 2 and is directed inward. As usual for faces in figures,
all four faces are oriented clockwise. We construct an orientation-reversing face-
pairing ε on P as follows. Multivalued face-pairing map ε1 maps the inner monogon
to the outer monogon, there being essentially only one way to do this. Multivalued
face-pairing map ε2 maps the inner quadrilateral to the outer quadrilateral fixing
their common edge. Set ε = {ε±1

1 , ε±1
2 }.

We might view this face-pairing as follows. Construct a monogon in the open
northern hemisphere of the 2-sphere S2, put a vertex on the equator of S2 and join
the two vertices with an edge. Now vertically project this cellular decomposition of
the northern hemisphere into the southern hemisphere.

The edge cycles for ε have the following diagrams.

CC
ε2−→ CC AC

ε2−→ BC
ε−1
2−−→ AC BB

ε−1
2−−→ AA

ε1−→ BB(2.2)

For now let the first edge cycle have multiplier 4, let the second have multiplier 1
and let the third have multiplier 1.

1
2 2'

1'AB C
e d

a b

c1

c3

c2

Figure 11. The complex Q for Example 2.1.

Figure 11 shows the faceted 3-ball Q. We label the new vertices of Q arbitrarily.
Figure 12 shows the link of the vertex of M , with conventions as in [2]. Figure 13
shows the faceted 3-ball Q∗ dual to Q with its edge labels and directions. It is easy
to see that ∂Q∗ is dual to the link of the vertex of M . We obtain a presentation
for the fundamental group G of M as follows. Corresponding to the face labels 1
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and 2 we have generators x1 and x2. The boundary of the face of Q∗ labeled 1 and
directed outward gives the relator x1x

−1
2 . The boundary of the face of Q∗ labeled 2

and directed outward gives the relator x5
2x
−1
1 . So

G ∼= 〈x1, x2 : x1x
−1
2 , x5

2x
−1
1 〉 ∼= Z/4Z.

f(A)f(d) f(c2)

f(c3)

f(c1)

f(B) f(C) f(e) f(b) f(a)← ← ← ←
2

2

2
2

2

2

21

1

222
a

a

d

d

B B

B

AA

A

b
b

e

e

C

C
C

C c2

c2

c1

c1 c3

c3

←

←

←

←
←

←
←

←

Figure 12. The link of the vertex of M .

1

1

1

22

2

2

2

2

2 22

22 2'
1'

AB C ed ab

c3

c1

c2

Figure 13. The complex Q∗ with edge labels and directions.

We will see in Example 7.1 that M is the lens space L(4, 1). In general, if the
first edge cycle of ε has multiplier p, if the second edge cycle of ε has multiplier q,
and if the third edge cycle of ε has multiplier r, then we will see in Example 7.1 that
M is the connected sum of the lens space L(p, 1) and the lens space L(r, 1) (and so
in particular M does not depend on q).
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1 1'
A B DC

Figure 14. The complex P for Example 2.3.

Example 2.3. Let the model faceted 3-ball P be as in Figure 14 with two quadri-
laterals, the outer quadrilateral being at infinity. The inner quadrilateral has label
1 and is directed outward. The outer quadrilateral has label 1 and is directed in-
ward. The orientation-reversing multivalued face-pairing map ε1 maps the inner
quadrilateral to the outer quadrilateral taking vertex C to vertex D. Set ε = {ε±1

1 }.
The vertices A and C of P are joined by two edges. We use the subscripts u and

d for up and down to distinguish them. So ACu is the upper edge joining A and C,
and ACd is the lower edge joining A and C. The face-pairing ε has only one edge
cycle, and this edge cycle has the following diagram.

ACu
ε1−→ CD

ε−1
1−−→ ACd

ε−1
1−−→ BA

ε1−→ ACu

For simplicity let this edge cycle have multiplier 1.
Figure 15 shows the faceted 3-ball Q. We label the new vertices of Q arbitrarily.

Figure 16 shows the link of the vertex of M . Figure 17 shows the faceted 3-ball Q∗

dual to Q with its edge labels and directions. It is easy to see that ∂Q∗ is dual to
the link of the vertex of M . We obtain a presentation for the fundamental group
G of M as follows. Corresponding to the face label 1 we have a generator x1. The
boundary of the face of Q∗ labeled 1 and directed outward gives the trivial relator.
So G has one generator and no relators, that is, G ∼= Z.

1 1'
A B DC

b1

a1

c1

d1b2

a2

c2

d2b3

a3

c3
d3

Figure 15. The complex Q for Example 2.3.

We will see in Example 6.2.1 that M is homeomorphic to S2 × S1 for every
choice of multiplier for the edge cycle of ε.

3. Dual cap subdivision
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f(c1)

f(b1)

f(d1)

f(b2)

f(c2)

f(a2)

f(a3)

f(d3)

f(b3)

f(C)f(B)f(A) f(D)← ← ← ←

f(c3) f(d2) f(a1) ←

←

←

←

←

←

←

←

←

←←←

1
1

1
1

1

1
1

1 1 1 11111

1

Figure 16. The link of the vertex of M .

1
1

1
1

1

1

1

1

1

1

111
1'

A B DC

b1

a1 c1

d1

b2

a2

c2

d2

b3

a3c3

d3

1 1 1 1

Figure 17. The complex Q∗ with edge labels and directions.

3.1. Definition. Recall that we discussed dual cap subdivision in Section 4 of [2].
Of course, there our faceted 3-balls are regular. We generalize to our present cell
complexes in a straightforward way.

Let P be a faceted 3-ball. We construct a dual cap subdivision Pσ of P as follows.
The vertices of Pσ consist of the vertices of the subdivision Ps defined in Section 2
together with a barycenter for the 3-cell of P . We next describe the edges of Pσ.

The edges of ∂Pσ consist of the edges of Ps which do not join the barycenter of
a face of P and a vertex of that face. For every face of P , the subdivision Pσ also
contains an edge joining the barycenter of that face and the barycenter of the 3-cell
of P . These are all the edges of Pσ.

Having described the edges of Pσ, the structure of ∂Pσ is determined. The faces
of ∂Pσ are in bijective correspondence with the corners of the faces of P . Every
face of ∂Pσ is a quadrilateral whose underlying space equals the underlying space
of a corner c at a vertex v of a face f of P . Of course, this quadrilateral contains
the barycenter a of f . The first diagram in Figure 18 shows this quadrilateral if c
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has three vertices and f is a monogon. The second diagram in Figure 18 shows this
quadrilateral if c has three vertices and f is not a monogon. The third diagram in
Figure 18 shows this quadrilateral if c has four vertices. In the first two diagrams b
is the barycenter of the edge of f that contains v, and in the third diagram b1 and
b2 are the barycenters of the two edges of f that contain v.

ba v ab vv a

b1

b2

Figure 18. The three types of faces of ∂Pσ.

The remaining faces of Pσ are in bijective correspondence with the edges of P .
Let e be an edge of P , and let b be the barycenter of e. We have constructed exactly
two edges e1 and e2 in ∂Pσ which contain b and are not contained in e. The edge
e determines a quadrilateral face of Pσ containing e1 ∪ e2 and the barycenter u of
the 3-cell of P . If e is contained in two distinct faces of P , then the face of Pσ

determined by e has four distinct edges as in the first diagram of Figure 19. If e is
contained in just one face of P , then the face of Pσ determined by e is a degenerate
quadrilateral as in the second diagram of Figure 19. We have now described all the
faces of Pσ. This determines Pσ. Note that every vertex of P is in a unique 3-cell
of Pσ.

e1
e1

e2
e2

b

u

b

u

Figure 19. Faces of Pσ not contained in ∂Pσ.

Now that we have defined dual cap subdivisions of faceted 3-balls, we define dual
cap subdivisions of more general cell complexes. Let X be a CW complex which
is the union of its 3-cells, and suppose that for every 3-cell C of X there exists a
faceted 3-ball P and a continuous cellular map ϕ : P → C such that the restriction
of ϕ to every open cell of P is a homeomorphism. We say that a subdivision Xσ of
X is a dual cap subdivision of X if for every such choice of C the cell structure on
C induced from Xσ pulls back via ϕ to give a dual cap subdivision of P .

It is now clear how to also define a dual cap subdivision of every CW complex
with dimension at most 2 such that every 2-cell contains an edge. If X is a cell
complex for which we have defined a dual cap subdivision and k is a positive integer,
then we let Xσk denote the k-th dual cap subdivision of X.
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3.2. Structure of 3-cells. In this subsection we discuss the structure of the 3-cells
which occur in the dual cap subdivision of a faceted 3-ball.

Let P be a regular faceted 3-ball. In Section 4 of [2] we showed that every 3-cell
of Pσ is an alternating suspension. Every 3-cell of Pσ contains exactly one vertex of
P , and every vertex of P is contained in exactly one 3-cell of Pσ. If v is a vertex of
P with valence k, then the 3-cell of Pσ which contains v is an alternating suspension
of a 2k-gon. See Figure 20, which is the same as Figure 15 of [2]. In Figure 20 the
vertex v is a vertex of P and u is the barycenter of the 3-cell of P . Figure 20 shows
an alternating suspension of an octagon.

u

v

Figure 20. The 3-cell of Pσ which contains the vertex v of P .

Now we consider the case of a general faceted 3-ball P . Let v be a vertex of P .
Let e1, . . . , ek be the edges of Pσ which contain v. For every i ∈ {1, . . . , k} let vi

be the vertex of ei unequal to v. There are k corners of faces at v. Let f1, . . . , fk

be the faces which contain these corners. Let u be the barycenter of the 3-cell of
P , and let ui be the barycenter of fi for every i ∈ {1, . . . , k}. If u1, . . . , uk and
v1, . . . , vk are distinct, then just as in the previous paragraph, there is exactly one
3-cell of Pσ which contains v and this 3-cell is an alternating suspension of a 2k-gon
with cone points u and v. In general exactly one 3-cell of Pσ contains v and every
3-cell of Pσ contains exactly one vertex of P . The 3-cell of Pσ which contains v is
a quotient of an alternating suspension of a 2k-gon with cone points mapping to u
and v, the identifications arising as follows. If fi = fj for some i, j ∈ {1, . . . , k},
then ui = uj , and so the edge joining u and ui equals the edge joining u and uj .
If vi = vj for some i, j ∈ {1, . . . , k}, then the face containing u and vi equals the
face containing u and vj . So the 3-cell of Pσ which contains v is a quotient of
an alternating suspension of a 2k-gon with cone points mapping to u and v. The
quotient map performs two kinds of identifications. Edges containing the cone point
which maps to u are identified if some face of P is not locally an embedded disk at
v. Faces containing the cone point which maps to u are identified if some edge of
P is not locally an embedded line segment at v. In every case the restriction of the
quotient map to every open cell of the alternating suspension is a homeomorphism.

3.3. Central balls. In this subsection and the next we investigate the second dual
cap subdivision of a faceted 3-ball.

Let P be a faceted 3-ball. Let u be the vertex of Pσ which is the barycenter
of the 3-cell of P . Let C be a 3-cell of Pσ. Section 3.2 shows that C contains u
and that C is a quotient of an alternating suspension B. One of the cone points
u′ of B maps to u. It easily follows from Section 3.2 that there exists a cellular
homeomorphism θ : star(u′, Bσ) → B such that the action of θ on the vertices of
star(u′, Bσ) is characterized by the property that if x is a vertex of star(u′, Bσ) and
if X is a cell of B for which x ∈ X, then θ(x) ∈ X. It is now easy to see that this
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assertion for B carries over to the following assertion for C. There exists a cellular
homeomorphism ψC : star(u,Cσ) → C such that the action of ψC on the vertices
of star(u,Cσ) is characterized by the property that if x is a vertex of star(u,Cσ)
and if X is a cell of C for which x ∈ X, then ψC(x) ∈ X. It is now easy to see that
there exists a cellular homeomorphism ψ : star(u, Pσ2) → Pσ such that the action
of ψ on the vertices of star(u, Pσ2) is characterized by the property that if x is a
vertex of star(u, Pσ2) and if X is a cell of Pσ for which x ∈ X, then ψ(x) ∈ X. We
call star(u, Pσ2) the central ball of Pσ2 . We have just shown that the central ball
of Pσ2 is cellularly homeomorphic to Pσ in a way which is canonical on vertices.

3.4. Chimneys. Let P be a faceted 3-ball. Let u be the vertex of Pσ which is the
barycenter of the 3-cell of P . Let A1 be the star of u in the 1-skeleton of Pσ. Let
A = star(A1, Pσ2). We call A the chimney assembly for P . This subsection is
devoted to investigating the structure of chimney assemblies.

Let f be a face of P , and let a be the vertex of Pσ which is the barycenter of f .
Then star(a, Pσ2) is a subcomplex of A, which we call the f -chimney of A.

Let f be a face of P . Let F be a CW complex such that F is a closed disk, the
interior of F is the unique open 2-cell of F and there exists a continuous cellular map
ϕ : F → f such that the restriction of ϕ to every open cell of F is a homeomorphism.
Given a dual cap subdivision fσ of f , we choose a dual cap subdivision Fσ of F so
that ϕ induces a cellular map ϕσ : Fσ → fσ. Let Cf be the mapping cylinder of
ϕσ, viewed as a CW complex in the obvious way.

a

v b2

b1

v'g1

g2

u

a'b1'

b2'

v ab

b' v'

u

a'

v a b

g

g

b'v'

u

a'

Figure 21. Part of Pσ2 .

In this and the next four paragraphs we show that Cf is cellularly homeomorphic
to the f -chimney of A. Let a be the barycenter of f and let v be a vertex of f . Recall
from Figure 18 and the discussion in Section 3.1 that there are three possibilities
for a face of ∂Pσ. For each of the three possibilites, Figure 21 shows part of Pσ2 .
Every vertex and edge in Figure 21 is a vertex or edge of Pσ2 except for the dotted
arc in the second diagram which joins b, b′, and u. The barycenter a of f is shown.
In the first two diagrams b is the barycenter of the edge of f that contains v, and
a, b, and v are the vertices of a face h of fσ. In the third diagram b1 and b2 are
the barycenters of the two edges of f that contain v, and a, b1, b2, and v are the
vertices of a face h of fσ. The dual cap subdivision of h is shown in Figure 21. The
barycenter u of P and a are joined by an edge e of Pσ. Let a′ be the barycenter
of e in Pσ2 . Let the map ψ : star(u, Pσ2) → Pσ be as in Section 3.3. Section 3.3
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shows that ψ(a′) = a. Let C be the 3-cell of Pσ which contains v, and let v′ be the
barycenter of C in Pσ2 . Section 3.3 shows that ψ(v′) = v. Let k be the face of hσ

which contains a. In each of the three diagrams in Figure 21 we have drawn in gray
the face k and a face h′ which will be described below. We consider separately the
three possibilities for h shown in Figure 18.

We first consider the case that h has the form of the first diagram in Figure 18.
Then f is a monogon. Let g be the face of Pσ which contains a, b, and u, and let
b′ be the barycenter of g. For clarity, two edges of gσ are not shown. Section 3.3
shows that ψ(b′) = b. Let h′ be the face of Pσ2 with vertices a′, b′, and v′. It
is easy to see in this case that k and h′ are cellularly homeomorphic, star(a, Pσ2)
is the product of a 1-simplex and the dual cap subdivision of a monogon, and so
star(a, Pσ2) is cellularly homeomorphic to Cf .

Now suppose that h has the form of the second diagram in Figure 18. Then v has
valence 1 in ∂f . As in the previous case let g be the face of Pσ which contains a, b,
and u, and let b′ be the barycenter of g. Section 3.3 again shows that ψ(b′) = b. Let
h′ be the face of Pσ2 with vertices a′, b, and v′. Then k is cellularly homeomorphic
to a square and h′ is cellularly homeomorphic to a square with two adjacent edges
identified. It follows that the 3-cell of star(a, Pσ2) which contains v′ is cellularly
homeomorphic to a cube with two adjacent edges identified.

Finally, suppose h has the form of the third diagram in Figure 18. For i ∈ {1, 2},
let gi be the face of Pσ which contains u and bi and let b′i be the vertex of Pσ2

which is the barycenter of gi. For clarity two edges of (g1)σ and two edges of (g2)σ

are omitted in the third diagram in Figure 21. Section 3.3 shows that ψ(b′i) = bi

for i ∈ {1, 2}. Let h′ be the face of Pσ2 with vertices a′, b′1, b′2 and v′. We see
that ψ restricts to a cellular homeomorphism from h′ to h. Then both k and h′ are
cellularly homeomorphic to squares and the 3-cell of star(a, Pσ2) which contains v′

is cellularly homeomorphic to a cube.
If h has the form of the second or third diagram in Figure 18, then star(a, Pσ2)

is a union of complexes as described in the previous two paragraphs. It easily
follows that in these cases star(a, ∂Pσ2) is cellularly homeomorphic to Fσ, that the
restriction of ψ to star(a, Pσ2) ∩ star(u, Pσ2) is a cellular homeomorphism onto fσ

and that star(a, Pσ2) is cellularly homeomorphic to Cf .
So the chimney assembly A for P is the union of the central ball of Pσ2 and the

chimneys of the faces of P . The central ball of Pσ2 is cellularly homeomorphic to
Pσ, and the chimneys of the faces of P are mapping cylinders. Figure 22 shows the
chimney assembly for a cube.

Let f be a face of P , and let Cf be the f -chimney of A. We call f ∩Cf the top
of Cf . We call the intersection of Cf with the central ball of A the bottom of Cf .
We call faces of ∂Cf which are in neither the top nor the bottom of Cf lateral
faces.

4. Constructing Heegaard diagrams from face-pairings

In this section we construct Heegaard diagrams from face-pairings.

4.1. Edge pairing surfaces. We begin by constructing a cellulated closed surface
S from a face-pairing. We call S the edge pairing surface of the face-pairing. See
the introduction, where S is defined for regular faceted 3-balls. Our more general
faceted 3-balls present some complications, but we proceed in much the same way.
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Figure 22. The chimney assembly for a cube.

Let P be a faceted 3-ball with orientation-reversing face-pairing ε. We first
construct a cell complex X cellularly homeomorphic to the 1-skeleton of P . Let f
and f−1 be two paired faces of P . Next construct a CW complex F such that F
is a closed disk, the interior of F is the unique open 2-cell of F and there exists
a continuous cellular map ϕ : F → f such that the restriction of ϕ to every open
cell of F is a homeomorphism. There also exists a corresponding cellular map
ψ : F → f−1 such that ϕ and ψ are related as follows. Recall that to define ε we
construct subdivisions fs and f−1

s of f and f−1 in Section 2. Let t be a face of fs.
Then there exists a corresponding face t−1 of f−1

s and a partial face-pairing map
εt : t → t−1. There also exists a subspace T of F such that the restriction of ϕ
to T is a homeomorphism onto t. We may, and do, choose the maps ϕ and ψ so
that if x ∈ T , then ψ(x) = εt(ϕ(x)). We next construct ∂F × [0, 1]. We view the
interval [0, 1] as a 1-cell, and we view ∂F × [0, 1] as a 2-complex with the product
cell structure. For every x ∈ ∂F we identify (x, 0) ∈ ∂F × [0, 1] with the point of
X corresponding to ϕ(x) ∈ ∂f and we identify (x, 1) ∈ ∂F × [0, 1] with the point
of X corresponding to ψ(x) ∈ ∂f−1. Doing this for every pair of faces of P yields
a cell complex Y whose underlying space is a closed surface. We define S to be
the dual cap subdivision of Y . We say that an edge of S is vertical if it is either
contained in X or is disjoint from X. We say that an edge of S is diagonal if it is
not vertical. We say that an edge of S is a meridian edge if it is not an edge of
Y . We refer to edges of Y as nonmeridian edges of S.

1

1'

A

BC

Figure 23. The complex P for Example 4.1.1.

Example 4.1.1. We illustrate the above edge pairing surface construction using
the simple example of the lens space L(3, 1). To obtain L(3, 1) we take a faceted
3-ball P with just two faces which are triangles as in Figure 23, where one face is at
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infinity. The orientation-reversing face-pairing map ε1 maps the inner triangle to
the outer triangle taking vertex A to vertex B. We set ε = {ε±1

1 }. Let S be the edge
pairing surface of ε, and let Ã, B̃ and C̃ be the vertices of S which correspond to
A, B and C. Figure 24 shows S as an annulus whose boundary components are to
be identified in a straightforward way. Similarly, Figure 25 shows S as a quotient
of a quadrilateral. This quadrilateral is gotten from the edge cycle of ε, shown in
Figure 26, in a straightforward way. The meridian edges of S are drawn with thin
arcs, and the nonmeridian edges of S are drawn with thick arcs. We see that S is
a torus. The union of the vertical meridian edges is a simple closed curve on the
torus, and the union of the diagonal meridian edges is a simple closed curve on the
torus. The torus and these two curves form a Heegaard diagram for L(3, 1). This
is a special case of Theorem 4.2.1.

A
~

A
~

B
~

B
~

C
~

C
~

Figure 24. The edge pairing surface of ε viewed as a quotient of
an annulus.

A B C A

B

~ ~ ~ ~

~
A
~

C
~

B
~

Figure 25. The edge pairing surface of ε viewed as a quotient of a quadrilateral.

→

A B C A

BACB

ε1 →
ε1 →

ε1

Figure 26. A diagram of the edge cycle of ε.
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4.2. Heegaard diagrams for general face-pairings.

Theorem 4.2.1. Let P be a faceted 3-ball with orientation-reversing face-pairing
ε. Suppose that the cell complex N = P/ε is a manifold with one vertex. Let H1

be the star of the barycenter of the 3-cell of N in the 1-skeleton of Nσ, and let
H = star(H1, Nσ2). Then H is a handlebody in N such that ∂H is a Heegaard
surface for N . Furthermore ∂H is cellularly homeomorphic to the edge pairing
surface S of ε. The union of the edges of ∂H corresponding to the vertical meridian
edges of S forms a basis of meridian curves for H, and the union of the edges of
∂H corresponding to the diagonal meridian edges of S forms a basis of meridian
curves for the closure of the complement of H in N . So S and its two families of
curves which are unions of meridian edges form a Heegaard diagram for N .

Proof. We view Nσ2 as a quotient of Pσ2 . The preimage of H in Pσ2 is the chimney
assembly A for P . Hence it is easy to see that H is a handlebody in N and that
the closure of the complement of H in N is the star of the 1-skeleton of N in Nσ2 .
Hence the closure of the complement of H in N is also a handlebody, and so ∂H is
a Heegaard surface for N .

In this paragraph we show that ∂H is cellularly homeomorphic to S. The preim-
age of ∂H in Pσ2 is the union of all the lateral faces of the chimneys of A. Section 3.4
shows that every chimney of A is a mapping cylinder, and so the union of the lateral
faces of every chimney of A is a mapping cylinder. It is now easy to see that S is
defined so that S is cellularly homeomorphic to ∂H.

Let f be a face of P . The top of the f -chimney Cf of A meets the union of
the lateral faces of Cf in a simple closed edge path in A. This edge path maps
to a meridian curve for H, and every edge in this meridian curve corresponds to
a vertical meridian edge of S. It easily follows that the union of the edges of ∂H
corresponding to the vertical meridian edges of S forms a basis of meridian curves
for H.

Let H ′ denote the closure of the complement of H in N . Suppose given an edge
cycle of ε consisting of j distinct edges e1, . . . , ej of P with diagram

e1

εf1−−→ e2

εf2−−→ · · · εfj−1−−−→ ej

εfj−−→ e1.

Let u be the vertex of Pσ2 which is the barycenter of the 3-cell of P , and let
ψ : star(u, Pσ2) → Pσ be the cellular homeomorphism of Section 3.3. Let e′i =
ψ−1((ei)σ), let vi be the vertex of e′i such that ψ(vi) is the barycenter of ei and let
Cfi

be the fi-chimney of A for every i ∈ {1, . . . , j}. For every i ∈ {1, . . . , j} the
chimney Cfi

contains two lateral faces and the chimney Cf−1
i

contains two lateral
faces with the following properties, where i + 1 is taken modulo j. See Figure 27.
The two lateral faces of Cfi

both contain an edge which contains vi and a vertex
xi in the top of Cfi

, and the two lateral faces of Cf−1
i

both contain an edge which
contains vi+1 and a vertex yi in the top of Cf−1

i
. Furthermore the image in ∂H of xi

equals the image in ∂H of yi, and both the edge containing vi and xi and the edge
containing vi+1 and yi map to edges of ∂H which correspond to diagonal meridian
edges of S. It is easy to see that the union of these 2j edges of ∂H is a closed edge
path in ∂H = ∂H ′ which bounds a subcomplex of H ′ which is a properly embedded
closed disk. If ε has m edge cycles, then we obtain m such disks D1, . . . , Dm in H ′.
It is easy to see that D1, . . . , Dm are pairwise disjoint and that H ′ \ ⋃m

i=1 Di has
one connected component for every vertex of N and that each of these connected
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components contracts to the corresponding vertex. Since N has only one vertex, it
follows that D1, . . . , Dm form a basis of meridian disks for H ′, and so the union of
the edges of ∂H corresponding to the diagonal meridian edges of S forms a basis
of meridian curves for H ′.

vi xi
ei+1'ei' yi vi+1

Figure 27. Two lateral faces of Cfi
and two lateral faces of Cf−1

i
.

This proves Theorem 4.2.1.

4.3. Heegaard diagrams for twisted face-pairing 3-manifolds. In this sub-
section we interpret Theorem 4.2.1 for twisted face-pairing 3-manifolds.

Let P be a faceted 3-ball with orientation-reversing face-pairing ε, and suppose
given a multiplier function for ε. Let Q be the associated twisted face-pairing
subdivision of P , let δ be the associated twisted face-pairing on Q, and let M = Q/δ
be the associated twisted face-pairing manifold. Let S be the edge pairing surface
of δ.

Theorem 4.2.1 implies that S is cellularly homeomorphic to a Heegaard surface
for M . We view S as a union of subspaces, one for every edge cycle of ε as follows.
Let E be an edge cycle of ε. Suppose that E has length j, multiplier k and edge
cycle diagram

e1

εf1−−→ e2

εf2−−→ · · · εfj−1−−−→ ej

εfj−−→ e1.

To construct Q from P we subdivide each of the edges e1, . . . , ej into jk subedges.
Every edge of Q gives rise to two edges of S. So the edges e1, . . . , ej of P give rise
to subcomplexes ẽ1, . . . , ẽj of S each of which is the union of 2jk edges of S. As
in Figure 11 of [2], δ maps subedge m of ei relative to fi to subedge m + 1 of ei+1

relative to fi+1 for every i ∈ {1, . . . , j} and m ∈ {1, . . . , jk−1}, where i+1 is taken
modulo j. It follows that E gives rise to a subspace C of S as shown in Figure 28.
We call C an edge cycle cylinder. Certain arcs contained in C are not edges of S,
and so they are drawn with dashes. The edges of S are drawn with two thicknesses
simply to distinguish the thin meridian edges from the thick nonmeridian edges of
S. In general C need not be homeomorphic to a closed annulus, but there exists
a closed annulus A and a surjective continuous map ϕ : A → C such that the
restriction of ϕ to the interior of A is a homeomorphism and ϕ maps the boundary
of A to the union of the arcs drawn with dashes in Figure 28. We refer to the
images under ϕ of the two boundary components of A as the ends of C. The ends
of C are chosen so that the edge cycle cylinders corresponding to different ε-edge
cycles meet only along their boundaries and their union is S. If γ is an arc in A
which joins the boundary components of A, then we say that the curve ϕ(γ) joins
the ends of C. If γ is a simple closed curve in the interior of A which separates the
boundary components of A, then we say that the curve ϕ(γ) separates the ends
of C. We define the circumference of C to be j, and we define the height of C to
be jk. Now we see that Figure 11 of [2] essentially shows an edge cycle cylinder in
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a Heegaard surface for M . The thick vertical edges in Figure 28 arise from P , and
the thick diagonal edges in Figure 28 arise from P ∗. Vertical edges of S are drawn
vertically, and diagonal edges of S are drawn diagonally. The following theorem is
now clear.

e1
~ e2

~ e3
~

Figure 28. The edge cycle cylinder corresponding to the ε-edge
cycle E.

Theorem 4.3.1. Let P be a faceted 3-ball with orientation-reversing face-pairing
ε, and suppose given a multiplier function for ε. Let δ be the associated twisted
face-pairing, and let M be the associated twisted face-pairing manifold. The edge
pairing surface S of δ is homeomorphic to a Heegaard surface for M . The surface S
can be constructed as a union of edge cycle cylinders as in the previous paragraph.
These edge cycle cylinders contain vertical meridian edges and diagonal meridian
edges. The union of the vertical meridian edges of S is a basis of meridian curves
for S, and the union of the diagonal meridian edges of S is a basis of meridian
curves for S. Finally, S and these two families of curves form a Heegaard diagram
for M .

Example 4.3.2. We return to Example 2.1. The model face-pairing in Exam-
ple 2.1 has three edge cycles. Line 2.2 gives diagrams for them. As in Example 2.1,
we choose multipliers to be 4, 1 and 1. Each of these three edge cycles gives rise to
an edge cycle cylinder as in Figure 28. These three edge cycle cylinders are shown
in Figure 29. They are drawn as quadrilaterals with their left sides to be identified
with their right sides. The first edge cycle cylinder has circumference 1 and height
4, the second has circumference 2 and height 2 and the third has circumference
2 and height 2. The thin dotted arcs in Figure 29 indicate how the ends of the
cylinders are to be identified. These identifications respect the face-pairing maps,
which are also shown. After performing the required identifications we obtain a
closed orientable surface S of genus 2. The union of its vertical meridian edges is
a basis of meridian curves for S, and the union of its diagonal meridian edges is
a basis of meridian curves for S. The result is a Heegaard diagram for our twisted
face-pairing manifold.

5. Constructing face-pairings from Heegaard diagrams

In Section 4 we construct Heegaard diagrams from face-pairings. Theorem 4.3.1
shows that every twisted face-pairing manifold has a Heegaard diagram which can
be decomposed into cylinders which correspond to the edge cycles of the model
face-pairing. The height of every such cylinder is a multiple of its circumference,
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C C C

CC

C Cε2

ε2 ε1ε2
-1 ε2

-1B B

BBB

A

AAA

Figure 29. A Heegaard diagram decomposed into three edge cy-
cle cylinders.

the multiple being the multiplier of the corresponding edge cycle. In this section
we show that the decomposition of Heegaard diagrams into analogous cylinders
is a general phenomenon, not one restricted to twisted face-pairing manifolds. In
general the heights of the cylinders need not be multiples of their circumferences.
In fact, Theorem 5.3.1 shows that the height of every such cylinder coming from
a given Heegaard diagram is a multiple of its circumference if and only if the
Heegaard diagram arises from a twisted face-pairing manifold as in Theorem 4.3.1.
This provides a characterization of the Heegaard diagrams which we construct for
twisted face-pairing manifolds.

5.1. Generalities concerning Heegaard diagrams. For us a Heegaard diagram
is a Heegaard diagram for a closed orientable 3-manifold. It consists of an orientable
closed surface S with positive genus and two bases of meridian curves for S. We
assume that there exists a triangulation of S for which each of these meridian curves
is piecewise linear, and we assume that these curves intersect transversely in only
finitely many points. Let U be the union of the two bases of meridian curves for S.
We say that our Heegaard diagram is irreducible if every connected component
of S \ U is homeomorphic to an open disk.

Suppose given an irreducible Heegaard diagram consisting of an orientable closed
surface S and two bases of meridian curves for S. We refer to the meridian curves
in one basis as vertical meridian curves, and we refer to the meridian curves in
the other basis as diagonal meridian curves. The assumptions imply that the
meridian curves of our Heegaard diagram determine a cell structure on S whose
vertices are the intersections of the meridian curves and whose faces are the closures
of the connected components of the complement in S of the union of the meridian
curves. We refer to the edges of S which are contained in vertical meridian curves
as vertical (meridian) edges, and we refer to the edges of S which are contained
in diagonal meridian curves as diagonal (meridian) edges. It is easy to see that
every vertex of S has valence 4. It is also easy to see that the edges of every face of
S are alternately vertical and diagonal, and so every face of S has an even number
of edges.
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5.2. Heegaard cylinders. Suppose given an irreducible Heegaard diagram with
surface S. We view S as having a cell structure as in the last paragraph. This
subsection is devoted to defining subspaces of S called Heegaard cylinders.

In this paragraph we construct what we call temporary horizontal segments of
S. For this we choose an orientation of S. This orientation of S determines an
orientation of the boundary of every face of S. Let f be a face of S. Let v1 be a
vertex of f such that a diagonal edge e1 of f follows v1 (relative to f). See Figure 30,
where, as usual, faces are oriented in the clockwise direction. The vertex v1 and
the edge e1 determine a vertical edge e2 of f which follows e1 (relative to f) and a
terminal vertex v2 of e2 (relative to f). We choose an open arc in the interior of f
whose closure joins v1 and v2. We call the closure of this open arc a temporary
horizontal segment of S. In Figure 30, e1 is drawn with a dashed line segment,
e2 is drawn with a line segment, the rest of the boundary of f is drawn with a
broken arc and the temporary horizontal segment s joining v1 and v2 is drawn with
a dotted line segment. We choose a temporary horizontal segment for every such
choice of e1 and e2 so that the temporary horizontal segments associated to distinct
choices of e1 and e2 meet only at vertices of S. Figure 31 shows a complete set of
temporary horizontal segments for a digon, a quadrilateral, and a hexagon, with
conventions as in Figure 30.

f

sv2 v1

e1e2

Figure 30. The temporary horizontal segment s of f .

Figure 31. A complete set of temporary horizontal segments for
a digon, a quadrilateral and a hexagon.

In this paragraph we define what it means for one temporary horizontal segment
to follow another. Every vertex v of S has a neighborhood as in Figure 32. The
vertex v is contained in temporary horizontal segments s1, s2, s3, s4, which need
not be distinct. Rotating about v in the clockwise direction from s1, we encounter
a vertical edge, then a diagonal edge and then s2. We say that s2 follows s1 and
likewise that s4 follows s3. If faces are oriented in the counterclockwise direction,
then we rotate about v in the counterclockwise direction. For every temporary
horizontal segment s1 of S there exists a unique temporary horizontal segment s2

of S such that s2 follows s1. Furthermore, s1 is the unique temporary horizontal
segment of S such that s2 follows s1.
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v s1s2

s3 s4

Figure 32. A neighborhood of a vertex v of S.

In this paragraph we use the temporary horizontal segments of S to construct
annuli in S. For this let s1 be a temporary horizontal segment of S. The previous
paragraph implies that there exist temporary horizontal segments s2, . . . , sk such
that si+1 follows si for every i ∈ {1, . . . , k}, where i + 1 is taken modulo k. The
union of s1, . . . , sk is a closed curve σ which intersects itself at most tangentially,
not transversely. The temporary horizontal segment s1 is contained in a face f of
S, and s1 is related to a diagonal edge e of f as in Figure 33. Across e from f is
a face f ′ of S, and just as e is related to s1, the edge e is related to a temporary
horizontal segment s′1 in f ′ as in Figure 33. Just as s1 determines the closed curve
σ, the temporary horizontal segment s′1 determines a closed curve σ′. It is easy
to see that σ and σ′ are the boundary components of an open annulus in S which
contains the interior of e.

f

f '

e

s1

s1

'

Figure 33. The temporary horizontal segment s′1 of f ′.

A defect of the annuli constructed in the previous paragraph is that the union
of their closures is not all of S. To remedy this defect, we homotop the temporary
horizontal segments of S as indicated in Figure 34. More precisely, for every face f of
S choose a barycenter b in the open subset of f bounded by temporary horizontal
segments and join b with an arc to the initial vertex(s) (relative to f) of every
diagonal edge of f so that these arcs meet only at b and they meet the temporary
horizontal segments only at vertices. Then homotop (isotop except for a digon) the
temporary horizontal segments of S contained in f to the union of these arcs, fixing
endpoints. We refer to the image of a temporary horizontal segment under such a
homotopy as a horizontal segment. The result of these homotopies is to enlarge
the annuli of the previous paragraph so that the union of their closures is S. We
refer to the closures of these enlarged annuli as simple cylinders. The union of
the horizontal segments in a simple cylinder has two connected components, which
we call the ends of the simple cylinder.

Suppose that C1, . . . , Ck are simple cylinders, and suppose that Ci has ends Ei

and E′
i for every i ∈ {1, . . . , k}. Also suppose that the horizontal segments in E′

i

equal the horizontal segments in Ei+1 for every i ∈ {1, . . . , k − 1}. Then we call
C1∪· · ·∪Ck a cylinder. We define a Heegaard cylinder to be a cylinder which is
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Figure 34. Homotoping the temporary horizontal segments in Figure 31.

maximal with respect to containment. We define the height of a Heegaard cylinder
to be the number of simple cylinders contained in it. We define the circumference
of a Heegaard cylinder to be the number of diagonal edges in any simple cylinder
contained in the given Heegaard cylinder. The interiors of the simple cylinders of
S are pairwise disjoint, and the union of the simple cylinders of S is S. It easily
follows that the interiors of the Heegaard cylinders of S are pairwise disjoint, and
the union of the Heegaard cylinders of S is S.

5.3. Face-pairings for general Heegaard diagrams.

Theorem 5.3.1. Suppose given an irreducible Heegaard diagram D. Then there
exists a faceted 3-ball P with orientation-reversing face-pairing ε such that N = P/ε
is a manifold with one vertex and D is the Heegaard diagram of N described in
Theorem 4.2.1. Furthermore, D is the Heegaard diagram of a twisted face-pairing
manifold as described in Theorem 4.3.1 if and only if the height of every Heegaard
cylinder of D is a multiple of its circumference.

Proof. Let S be the surface of the Heegaard diagram D. We begin by defining a
1-complex K, which is a subspace of S. Recall that homotoping the temporary
horizontal segments to the horizontal segments in Section 5.2 involves choosing a
barycenter for every face of S. These barycenters are the vertices of K. The edges
of K are dual to the diagonal edges of S. In other words, for every diagonal edge
e of S there are faces f1 and f2 of S on either side of e, and there is an edge of K
corresponding to e which joins the barycenters of f1 and f2.

Let V be the union of the vertical meridian curves of D. Then S \ V is home-
omorphic to the 2-sphere with 2g holes, where g is the genus of S. Of course, we
construct K so that K ⊆ S\V . Now it is easy to see that K is a strong deformation
retract of S \ V . Figure 35 indicates how to retract S \ V to K. In Figure 35 hori-
zontal segments are drawn with dotted arcs, diagonal edges are drawn with dashed
arcs, edges of K are drawn with thick arcs, vertical edges are drawn with medium
thick arcs and retraction fibers are drawn with thin arcs and dotted arcs. It easily
follows that K is cellularly homeomorphic to the 1-skeleton of a faceted 3-ball P
with 2g faces such that a neighborhood of K in ∂P is homeomorphic to S \ V . We
identify K with the 1-skeleton of P .

There exists an orientation-reversing face-pairing ε on P which acts on the ver-
tices and edges of K as follows. Let e be an edge of K with vertices v1 and v2. By
definition e is dual to a diagonal edge d of S. Let v be a vertex of this diagonal edge
of S. See Figure 36, where conventions are as in Figure 35. A vertical meridian
curve of D passes through v. Let d′ be the diagonal edge of S incident to v across
this vertical meridian curve from d. Let e′ be the edge of K dual to d′, and let
v′1 and v′2 be the vertices of e′ corresponding to the vertices v1 and v2 of e as in
Figure 36. The vertex v determines a face f of P which contains e and a face f−1
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Figure 35. Fibers of a retraction from S \ V to K.

which contains e′. Then the (multivalued) face-pairing map εf maps e to e′ taking
v1 to v′1 and v2 to v′2.

v
d d'e e'

v1

v2

v1

v2

'

'

Figure 36. Part of S near v.

In this paragraph we show that the cell complex N = P/ε is a manifold with
one vertex. As in the proof of the main theorem of [1], to prove that N is a
manifold, it suffices to prove that the Euler characteristic of N is 0. It is clear that
N has one 3-cell and g faces. So as in the proof of the main theorem of [1], to
prove that N is a manifold, it suffices to prove that N has one vertex and g edges.
The description of ε in the previous paragraph shows that the ε-edge cycles are in
bijective correspondence with the diagonal meridian curves of D. Since D has g
diagonal meridian curves, it follows that N has g edges. Just as we defined the
1-complex K with edges dual to the diagonal edges of S, it is possible to define
a 1-complex K∗ with edges dual to the vertical edges of S. See Figure 37, which
is the same as Figure 36, except that two edges of K∗ are added as thick dashed
line segments. Just as the complex K is connected, so is the complex K∗. The
connectivity of K∗ and the description of ε in the previous paragraph imply that
N has one vertex. Thus N is a manifold with one vertex.

v
d d'

e e'
v1

v2

v1

v2

'

'

Figure 37. Part of S near v.

From Figure 37 it is easy to see that there exists a homeomorphism from S to
the edge pairing surface S′ of ε such that the vertical edges of S map to vertical
meridian edges of S′ and diagonal edges of S map to diagonal meridian edges of
S′. It follows that D is the Heegaard diagram of N described in Theorem 4.2.1.

Now suppose that ε is a twisted face-pairing. The height of every edge cycle
cylinder of ε’s edge pairing surface is a multiple of its circumference. It is easy to
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see that every Heegaard cylinder of D is a union of such edge cycle cylinders with
pairwise disjoint interiors. Hence the height of every Heegaard cylinder of D is a
multiple of its circumference.

Finally suppose that the height of every Heegaard cylinder of D is a multiple of
its circumference. It is now easy to see that ε is a twisted face-pairing and that a
model face-pairing can be chosen for ε so that the Heegaard cylinders of D are the
edge cycle cylinders of ε’s edge pairing surface.

This proves Theorem 5.3.1.

6. Surgery descriptions for twisted face-pairing manifolds

The Heegaard diagrams of twisted face-pairing manifolds described in Theo-
rem 4.3.1 easily yield surgery descriptions for these manifolds. This section deals
with these surgery descriptions.

6.1. Initial surgery descriptions. Let P be a faceted 3-ball with orientation-
reversing face-pairing ε, and suppose given a multiplier function for ε. Let M be
the associated twisted face-pairing manifold. Theorem 4.3.1 describes a Heegaard
diagram D for M . Let S be the surface of D. Let C be an edge cycle cylinder of D.
Let α be a minimal union of vertical meridian edges of C which joins the ends of C.
Figure 38 shows C as a quadrilateral whose left and right sides are to be identified,
and α is shown as a union of vertical dotted edges. Let α′ be the minimal union of
diagonal meridian edges of C which joins the endpoints of α as in Figure 38. Let
β be a simple closed curve in C which separates the ends of C. If the height of C
equals the circumference of C, then α′ is isotopic (relative endpoints) to a Dehn
twist of α along β. Let τ be the appropriate Dehn twist, so that α′ is isotopic
(relative endpoints) to τ(α). In general, if the ε-edge cycle corresponding to C has
multiplier m, then the height of C divided by the circumference of C equals m and
α′ is isotopic (relative endpoints) to τm(α) for the appropriate Dehn twist τ along
β. In Figure 38, m = 2. This discussion essentially proves the following theorem.

α α'

Figure 38. The curves α and α′.

Theorem 6.1.1. Let P be a faceted 3-ball with orientation-reversing face-pairing
ε, and suppose given a multiplier function mul for ε. Let M = M(ε,mul). Let
E1, . . . , Em be the edge cycles of ε. Let D be the Heegaard diagram of M described
in Theorem 4.3.1. Let S be the surface of D. Suppose that P has n pairs of faces,
so that S has genus n. For every i ∈ {1, . . . , m} let Ci be the edge cycle cylinder of
S corresponding to Ei. For every i ∈ {1, . . . , m} let τi be a Dehn twist on S along a
simple closed curve in Ci which separates the ends of Ci. We choose τ1, . . . , τm so
that the directions in which they twist are consistent relative to a fixed orientation
of S. Let τmul = τ

mul(E1)
1 ◦ · · · ◦ τ

mul(Em)
m . Let α1, . . . , αn be the vertical meridian
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curves of D. Then S and α1, . . . , αn and τmul(α1), . . . , τmul(αn) form a Heegaard
diagram for M .

Proof. The theorem follows from the previous discussion except for the matter of
the directions of the Dehn twists. The previous discussion shows that every edge
cycle cylinder determines a Dehn twist. It is easy to see that the twisting directions
of these Dehn twists are consistent relative to a fixed orientation of S. So there
are two choices for τmul. For one choice of τmul the curves τmul(α1), . . . , τmul(αn)
are isotopic to the diagonal meridian curves of D, and Theorem 6.1.1 is clear.
For the other choice of τmul the curves τmul(α1), . . . , τmul(αn) are isotopic to the
diagonal meridian curves, not of D, but of the corresponding Heegaard diagram for
the twisted face-pairing manifold M∗ dual to M . Theorem 6.1.1 follows because
Theorem 4.6 of [2] (together with its generalization in Section 2 if P isn’t regular)
shows that M∗ is homeomorphic to M .

We are now prepared for the following theorem, which shows how to obtain
twisted face-pairing manifolds by Dehn surgery on framed links in S3.

Theorem 6.1.2. Let P be a faceted 3-ball with orientation-reversing face-pairing
ε, and suppose given a multiplier function mul for ε. Let M = M(ε,mul). Let
E1, . . . , Em be the edge cycles of ε. Let D be the Heegaard diagram of M described
in Theorem 4.3.1. Let S be the surface of D. For every i ∈ {1, . . . , m} let Ci be the
edge cycle cylinder of S corresponding to Ei. Suppose that P has n pairs of faces,
so that S has genus n. Let α1, . . . , αn be the vertical meridian curves of D, and
for every i ∈ {1, . . . , m} let βi be a simple closed curve in Ci which separates the
ends of Ci. Let H be a handlebody in S3 with genus n such that the closure H ′ of
S3 \H is also a handlebody. Let γ1, . . . , γn and γ′1, . . . , γ

′
n be curves in ∂H = ∂H ′

such that the curves γ1, . . . , γn bound a basis of meridian disks for H, the curves
γ′1, . . . , γ

′
n bound a basis of meridian disks for H ′, the intersection γi ∩ γ′i consists

of one point for i ∈ {1, . . . , n} and γi ∩ γ′j = ∅ for i 6= j. Let ϕ : S → ∂H be a
homeomorphism such that ϕ(αi) = γi for every i ∈ {1, . . . , n}. Let A1, . . . , Am be
pairwise disjoint closed annuli in H such that for every i ∈ {1, . . . , m} one boundary
component of Ai is ϕ(βi) = Ai ∩ ∂H, and let δi be the boundary component of Ai

other than ϕ(βi) for every i ∈ {1, . . . , m}. We obtain a link L in S3 by taking
L = γ1 ∪ . . . ∪ γn ∪ δ1 ∪ . . . ∪ δm. We define a framing of L as follows. The
components γ1, . . . , γn have framing 0. For every i ∈ {1, . . . , m} the component δi

has framing lk(δi, ϕ(βi)) ± mul(Ei)−1, where lk(δi, ϕ(βi)) is the linking number of
δi and ϕ(βi) after they are compatibly oriented and the sign is either + for every
i ∈ {1, . . . , m} or − for every i ∈ {1, . . . , m}. Then the manifold obtained by Dehn
surgery on this framed link L is homeomorphic to M .

Proof. The surface ∂H and the curves γ1, . . . , γn and γ′1, . . . , γ
′
n form a Heegaard

diagram for S3. By performing Dehn surgery on γ1, . . . , γn, each with framing 0,
we obtain a connected sum of n copies of S2 × S1, which has a Heegaard diagram
consisting of the surface ∂H, the curves γ1, . . . , γn and the curves γ1, . . . , γn. (The
bases of meridian curves are equal.) For every i ∈ {1, . . . , m} let τi be a Dehn twist
on ∂H along ϕ(βi), choosing τ1, . . . , τm so that the directions in which they twist are
consistent relative to a fixed orientation of ∂H. Set τmul = τ

mul(E1)
1 ◦ · · · ◦ τ

mul(Em)
m .

Theorem 6.1.1 easily implies that M has a Heegaard diagram consisting of the
surface ∂H, the curves γ1, . . . , γn and the curves τmul(γ1), . . . , τmul(γn). The fact
that M is obtained by Dehn surgery on γ1, . . . , γn and δ1, . . . , δm now easily follows
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from a standard argument which appears, for example, in the proof of the Dehn-
Lickorish Theorem on page 84 of [6]. It only remains to determine the framings of
δ1, . . . , δm.

We determine the framings of δ1, . . . , δm in this paragraph. Let i ∈ {1, . . . , m}.
Let T be a solid torus regular neighborhood of δi such that ϕ(βi) ⊆ ∂T . Let α ⊆ ∂T
be the boundary of a meridian disk of T . The curve α and part of ϕ(βi) are shown
in part a) of Figure 39. Using our usual orientation convention for figures as in
Figure 38, our Dehn twist takes α to a curve γ as shown in part b) of Figure 39.
Let m = mul(Ei). It is easy to see that γ is homologous in ∂T to α − mϕ(βi) =
(1−mlk(δi, ϕ(βi)))α−m`i, where `i = ϕ(βi)− lk(δi, ϕ(βi))α is parallel to δi and
hence is a longitude for T . Thus the framing of δi is lk(δi, ϕ(βi)) − 1/m. If our
Dehn twist is in the opposite direction, then the framing of δi is lk(δi, ϕ(βi))+1/m.

ϕ(βi) ϕ(βi)

γα

a) b)

Figure 39. Determining the framing of δi.

This proves Theorem 6.1.2.

6.2. The corridor construction. Theorem 6.1.2 describes a framed link L in S3

such that Dehn surgery on L obtains a given twisted face-pairing manifold. The
goal of this subsection is to make the construction of such links L algorithmic and
simple. We call the method which we use the corridor construction.

Let P be a faceted 3-ball, and let ε be an orientation-reversing face-pairing on
P . In this paragraph we construct corridors between the paired faces of P . Let f
be a face of P . The face f is paired with the face f−1. Let c be a corner of f at the
vertex v of f , and suppose that εf takes c to the corner c′ of f−1 at the vertex v′

of f−1. Let γ be an edge path arc in P with endpoints v and v′. See the left part
of Figure 40, where f and f−1 are triangles, γ is drawn with thick line segments
and the corners c and c′ are indicated with dotted edges. From ∂P we construct
a new cell complex with underlying space the 2-sphere as follows. We choose an
arbitrarily small neighborhood of γ in ∂P and modify the cell structure of ∂P only
in this neighborhood as indicated in Figure 40. The right part of Figure 40 shows
the new cell complex. We refer to this modification of ∂P as constructing a
corridor between f and f−1. In a straightforward way we continue to successively
construct corridors between all the paired faces of P . We call the resulting cell
complex C a corridor complex for ε. Every face of C is in some sense the union
of two paired faces of P and a corridor.

Again let P be a faceted 3-ball, and let ε be an orientation-reversing face-pairing
on P . In this paragraph we describe a planar diagram D of a link L in S3. Let
C be a corridor complex for ε. We view the underlying space of C as the one-
point compactification R2 ∪ {∞} of R2, where the point ∞ lies in the interior
of some face of C. The diagram D lies in C \ {∞}. Let g be a face of C. We



32 J. W. CANNON, W. J. FLOYD, AND W. R. PARRY

γ

v
f

v'
f -1c'

c

Figure 40. Constructing a corridor between f and f−1.

next describe the part of D which lies in g. One component of L has a projection
α in the interior of g \ {∞} with no self-crossings; it is unknotted. We call this
component of L a face component of L. To describe the rest of D which lies in
g, we construct a continuous map ϕ : C → ∂P (which is independent of g) such
that 1) ϕ maps vertices to vertices in the canonical way, 2) the restriction of ϕ to
every edge of C is a homeomorphism onto the canonically corresponding edge of P
and 3) the restriction of ϕ to the inverse image of the interior of every face of P
is a homeomorphism. The face g of C corresponds to two paired faces f and f−1

of P . Let c be an edge cone of f at an edge e (as defined in the fifth paragraph
of Section 2). The face-pairing ε pairs c with an edge cone c′ of f−1 at an edge
e′. Then part of one component of L has a projection β in g \ {∞} such that 1)
only the endpoints of β lie in an edge of g, 2) ϕ(β) begins at the barycenter of e,
3) then an initial segment of ϕ(β) lies in c, 4) then β crosses under α, 5) then β
crosses over α, 6) then a terminal segment of ϕ(β) lies in c′ and 7) finally ϕ(β) ends
at the barycenter of e′. The corridor complex C is constructed so that we may,
and do, choose the projections β for a fixed g (and f) and varying c to have no
self-crossings and no crossings with each other. Constructing such projections for
every face g of C obtains D. The components of L other than the face components
are in bijective correspondence with the edge cycles of ε. We call these components
of L edge components. We call D a corridor complex link diagram for ε.
We call L a corridor complex link for ε.

0

1/m

Figure 41. A framed corridor complex link diagram for Example 2.3.

Example 6.2.1. We return to the model face-pairing in Example 2.3. A corri-
dor complex for it appears in Figure 41, drawn with thin arcs. A framed corridor
complex link diagram for it also appears in Figure 41, drawn with thick arcs. The
model face-pairing has only one edge cycle, and we let it have multiplier m. Theo-
rem 6.2.2 states that the associated twisted face-pairing manifold M is obtained by
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Dehn surgery on the framed link in Figure 41. It is easy to see that the framed link
in Figure 41 is isotopic to a link consisting of two unlinked circles, one with fram-
ing 0 and one with framing 1/m. As in Proposition 14.4 of [6], Dehn surgery on a
circle in S3 with framing 0 gives S2 × S1, and as in Proposition 14.6 of [6], Dehn
surgery on a circle in S3 with framing 1/m gives S3. Thus M is the connected sum
of S2 ×S1 and S3. In other words, M is S2 ×S1 for every choice of the multiplier
m.

Theorem 6.2.2. Let P be a faceted 3-ball with orientation-reversing face-pairing
ε, and suppose given a multiplier function mul for ε. Let M = M(ε,mul). Let
E1, . . . , Em be the edge cycles of ε. Let D be a corridor complex link diagram for
ε. Let L be a link in S3 with diagram D. We define a framing of L as follows.
Every face component of L has framing 0. The edge component of L corresponding
to Ei has framing mul(Ei)−1 plus its blackboard framing relative to D for every
i ∈ {1, . . . , m}. Then the manifold obtained by Dehn surgery on the framed link L
is homeomorphic to M .

Proof. Let C be the corridor complex for ε from which D is constructed. As in the
construction of D, we view the underlying space of C as the one-point compactifi-
cation R2 ∪ {∞} of R2, where the point ∞ lies in the interior of some face of C.
We choose standard coordinates x, y and z for R3, and we identify C \ {∞} with
the xy-plane in R3. We choose a closed standard metric ball in R3 centered at the
origin so large that it contains every edge of C in its interior. Let X be the solid
hemisphere consisting of all points of this ball on and below the xy-plane.

In this paragraph we construct a handlebody in R3 by attaching handles to X.
Let f and f−1 be two paired faces of P . Let g be the face of C corresponding to
f and f−1. If ∞ /∈ g, then g ⊆ ∂X. If ∞ ∈ g, then g ∩ ∂X has nonempty interior
and is the complement in g of a neighborhood of ∞. We attach a standard handle
to g ∩ X. This handle is embedded in R3 so that its vertical projection to the
xy-plane lies both in X and in the interior of g. Figure 42 gives a view from above
of g and the handle attached to g, where both f and f−1 are squares joined by a
simple corridor. Figure 43 gives another view of this handle. For every two paired
faces of P we attach a handle to X in this way. We denote the result by H. It is
clear that H is a handlebody and that the closure of the complement of H in S3 is
also a handlebody.

Figure 42. Top view of the handle attached to g.

We next construct simple closed curves in ∂H as follows. First choose a barycen-
ter for every edge of C. Again let f and f−1 be two paired faces of P , and let g be
the corresponding face of C. Just as in the construction of D, construct curves in
∂H which lie in and above g; these curves cross the handle and they join barycen-
ters of edges of g which correspond to edges of f and barycenters of edges of g
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Figure 43. Another view of the handle attached to g.

which correspond to edges of f−1. For every corridor edge e of g construct an arc
in g in the obvious way which joins the barycenter of e and the barycenter of the
edge of g across the corridor from e. We construct all these curves so that only
their endpoints lie in edges of g and they are pairwise disjoint except possibly at
endpoints. Finally, construct a meridian curve for the handle of H attached to
g such that this meridian curve meets each of the curves which cross the handle
exactly once. Figure 44 shows a top view of g and the handle of H attached to g
with the curves just constructed drawn with thick solid and dashed arcs. Doing
this for every two paired faces of P , we obtain two families of simple closed curves
in ∂H. The curves γ1, . . . , γn in one family are the meridian curves of the handles
of H. The curves δ1, . . . , δm in the other family correspond canonically to the edge
cycles of ε.

Figure 44. Constructing curves in the part of ∂H which project
vertically to g.

Let S be the surface which appears in Theorem 6.1.2; S is the edge pairing
surface of ε. Let the curves α1, . . . , αn and β1, . . . , βm be as in Theorem 6.1.2. It is
easy to see that the curves γ1, . . . , γn and δ1, . . . , δm can be indexed so that there
exists a homeomorphism ϕ : S → ∂H such that ϕ(αi) = γi and ϕ(βj) = δj for
every i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. Theorem 6.1.2 produces a framed link
L in S3 such that the manifold obtained by Dehn surgery on L is homeomorphic
to M . Finally, it is clear that D is a diagram of L and that the framings are as
claimed.

This proves Theorem 6.2.2.

7. Examples

In this section we present some examples in which we use Theorem 6.2.2 to iden-
tify some twisted face-pairing manifolds. We have already given such an example in
Example 6.2.1, where we constructed a framed link in S3 for the model face-pairing
in Example 2.3. Using this we showed that the twisted face-pairing manifolds in
Example 2.3 are all homeomorphic to S2 × S1.
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0

0
1/r

1/p

1/q

Figure 45. The corridor complex and framed link diagram for Example 2.1.

1/p 0 1/r 0 1/q

Figure 46. A simpler framed link.

1/p 0 1/r 0

Figure 47. Preparing for a Kirby move of type 2.

0 1/p 0 1/r

Figure 48. A simpler framed link.

Example 7.1. We return to the model face-pairing in Example 2.1. We choose
multipliers of the edge cycles in line 2.2 to be p, q, and r, in order. A corridor
complex for Example 2.1 appears in Figure 45, drawn with thin arcs. A framed link
diagram for it also appears in Figure 45, drawn with thick arcs. Theorem 6.2.2 states
that the associated twisted face-pairing manifold M is obtained by Dehn surgery on
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the framed link in Figure 45. It is easy to see that the framed link in Figure 45 is
isotopic to the framed link in Figure 46. The component of the link in Figure 46 with
framing 1/q corresponds to a connected summand of M . But, as in Example 6.2.1,
this connected summand is S3. So we delete the component of the link in Figure 46
with framing 1/q. We modify the component of the link in Figure 46 with framing
0 which links the components with framings 1/p and 1/r by means of a Kirby move
of type 2. For this we orient the components with framing 0 and connect them with
an arc as shown in Figure 47. The result is a link isotopic to the one in Figure 48.
It easily follows from Proposition 17.3 of [6] that M is a connected sum of the lens
space L(p,−1) = L(p, 1) and the lens space L(r,−1) = L(r, 1).

0 0

1

1 1/m
-1 -m

1

a) b)

Figure 49. Two framed links for Example 7.2.

-1 1
m

m

a) b)

Figure 50. Two more framed links for Example 7.2.

Example 7.2. We return to the model face-pairing which we described at the be-
ginning of the introduction. We choose multipliers m1 = 1, m2 = 1, and m3 = m.
A corridor complex for this example appears in Figure 6, drawn with thin arcs, and
a framed link diagram for it also appears in Figure 6, drawn with thick arcs. It is
easy to see that the part of the link in Figure 6 which is the union of the components
with framing 0 and the component which in the diagram crosses both components
with framing 0 is isotopic to the Borromean rings. So the framed link in Figure 6 is
isotopic to the link in part a) of Figure 49. We simplify the framed link in part a)
of Figure 49 using Kirby calculus by performing twist moves, which are discussed
in Sections 16.4, 16.5 and 19.4 of [6] under the name Fenn-Rourke moves. Twist-
ing −m times along the component with framing 1/m, twisting −1 times along the
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similar component with framing 1, and deleting resulting components with framing
∞ yields the link in part b) of Figure 49. Because the link in part b) of Figure 49 is
amphicheiral we may, and do, multiply every framing by −1. We isotop the result
to the framed link in part a) of Figure 50. Now we perform twist moves on the link
in part a) of Figure 50. We twist 1 time along the component with framing −1,
twist −1 times along the component with framing 1, and delete resulting components
with framing ∞. The result is shown in part b) of Figure 50. This is the figure
eight knot with framing m. If m = 1, then M is the Brieskorn homology sphere
Σ(2, 3, 7), which has the geometry of the universal cover of PSL(2,R). According
to Theorem 4.7 of [7], M is hyperbolic if m ≥ 5.

1 2'1'

A

B

2

Figure 51. The complex P for Example 7.3.

0 0 1/m

Figure 52. A corridor complex and framed link diagram for Example 7.3.

0 -1/(m+1)
0 ∞0 -1/m

0

a) b)

Figure 53. Two framed links for Example 7.3.

Example 7.3. This example is closely related to the previous one. The model
faceted 3-ball for this example is gotten from the faceted 3-ball given in Figure 1 by
collapsing the edge AB to a point and collapsing the edge CD to a point. The result
is the faceted 3-ball P given in Figure 51. Because the edges AB and CD in Figure 1
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0 1 m/(m+1)
0

0 0 m
0

a) b)

Figure 54. Two more framed links for Example 7.3.

are both fixed by the model face-pairing of Example 7.2, the model face-pairing of
Example 7.2 induces a model face-pairing ε on P . The face-pairing ε pairs the faces
of P as indicated in Figure 51, and the face-pairing maps of ε fix the vertices A
and B. The model face-pairing ε has one edge cycle. This edge cycle has length
4 and corresponds to the edge cycle of length 4 in Example 7.2. We let this edge
cycle of ε have multiplier m. A corridor complex for ε appears in Figure 52, drawn
with thin arcs, and a framed link diagram for it also appears in Figure 52, drawn
with thick arcs. This link is the Borromean rings. As in Example 7.2 we may, and
do, multiply the framings by −1 and we isotop the link in Figure 52 to obtain the
framed link in part a) of Figure 53. Now we perform a twist move by twisting −1
times along the component with framing −1/m and we introduce a component with
framing ∞ to obtain the framed link in part b) of Figure 53. Next we twist 1 time
along the component with framing ∞ to obtain the link in part a) of Figure 54.
Finally, we twist −1 times along the component with framing m/(m + 1) to obtain
the link in part b) of Figure 54. The link in part b) of Figure 54 is a special case
of the link at the top of Figure 12 on page 146 of [5]. It easily follows that M is
the Seifert fibered manifold 〈Oo1|0; (m, 1)〉 in the notation of [5]. This means that
M is orientable with an orientable base surface of genus 1, that the Euler number
of M is 0 and that M has one exceptional fiber of type (m, 1). When m = 1, the
manifold M is the Heisenberg manifold, the prototype for Nil geometry.
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