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Abstract. Suppose f : S2 → S2 is a postcritically finite branched covering with-
out periodic branch points. If f is the subdivision map of a finite subdivision
rule with mesh going to zero combinatorially, then the virtual endomorphism on
the orbifold fundamental group associated to f is contracting. This is a first step
in a program to clarify the relationships among various notions of expansion for
noninvertible dynamical systems with branching behavior.

0. Introduction

Let T 2 = R2/Z2 denote the real two-dimensional torus, equipped with the Eu-
clidean Riemannian metric ds2 inherited from the usual metric on R

2, and suppose
f : T 2 → T 2 is a continuous orientation-preserving covering map. It is well-known
that a necessary and sufficient condition for f to be homotopic to a covering map
g : T 2 → T 2 which is expanding with respect to ds2 is that the spectrum of the
induced linear map f∗ : H1(T

2,R) → H1(T
2,R) lies outside the closed unit disk.

Thus, there is a complete homotopy-theoretic invariant for detecting those homotopy
classes of coverings which contain expanding maps.

In this note, we take a first step toward a similar detection result for certain
branched self-coverings of the 2-sphere to itself, called Thurston maps, which arise
naturally in the classification of holomorphic dynamical systems in one complex vari-
able [DH]. Our main result asserts that for certain Thurston maps, if one form
of combinatorial expansion property is satisfied, then so is another. It is one part
in a program to clarify the relationships between various notions of expansion for
Thurston maps.

Let S2 denote the 2-sphere equipped with an orientation. An orientation-preserving
branched covering map f : S2 → S2 of degree d ≥ 2 has, by the Riemann-Hurwitz
formula, a set Bf of 2d − 2 branch points, counted with multiplicity. By a branch
point, we mean a point at which the local degree deg(f, x) of f at x is strictly larger
than one. We denote by fn the n-fold composition of f with itself. If the postcritical
set

Pf =
⋃

n>0

fn(Bf)

is finite, we call f a Thurston map. Two Thurston maps f, g are called equivalent pro-
vided there are orientation-preserving homeomorphisms h0, h1 : (S2, Pf) → (S2, Pg)
such that h0◦f = g◦h1 and h0, h1 are homotopic through homeomorphisms fixing Pf .
The condition of being equivalent is a homotopy-theoretic one. Indeed, Nekrashevych
[Nek, Theorem 6.5.2] has shown that checking equivalence can, via fundamental group

Date: August 22, 2008.
2000 Mathematics Subject Classification. Primary 37F10, 52C20; Secondary 20E08.
Key words and phrases. finite subdivision rule, Thurston map, virtual endomorphism.

1



2 J. W. CANNON, W. J. FLOYD, W. R. PARRY, AND K. M. PILGRIM

considerations, be reduced to checking an algebraic condition. This condition can be
phrased in terms of an algebraic invariant, the virtual endomorphism φf of the orbifold
fundamental group associated to f . The precise definition will be given in §2.

When a Thurston map g : S2 → S2 is expanding with respect to some complete
length structure, then a very general result of Nekrashevych shows that the virtual
endomorphism φg satisfies a homotopy-theoretic version of expansion which, since
it is constructed by considering inverse images of f , is naturally called contraction

[Nek, Theorem 5.5.3]. For example, any rational function g : Ĉ → Ĉ from the
Riemann sphere to itself which is also a Thurston map will have the property that
the associated virtual endomorphism φg is contracting. For an arbitrary Thurston
map f , if φf is contracting, the limit space construction of Nekrashevych [Nek, §5]
provides a synthetic construction of a topological dynamical system, living on the
boundary at infinity of a negatively curved one-complex, that is naturally associated
to the equivalence class of f .

Finite subdivision rules provide a wealth of concrete examples of Thurston maps.
They have been extensively studied since they provide insight into how metric con-
formal structures arise as limits of discrete structures; see [CFP1], [CFP2], [CFP3],
[CFP4], [CFKP]. The definition of a finite subdivision rule, and of related concepts,
is given in §1.

Our main result is the following.

Theorem 0.1 (Mesh going to zero implies contracting). Let R be a finite subdivision
rule whose model subdivision complex SR is the 2-sphere and whose subdivision map f
is orientation-preserving. If R has bounded valence, and if the mesh of R approaches
zero combinatorially, then the virtual endomorphism φf on the orbifold fundamental
group is contracting.

The subdivision map f in the statement of the theorem is a Thurston map. The
condition “bounded valence” is equivalent to the condition that no branch point of f is
periodic. The condition “mesh approaching zero combinatorially” is a combinatorial
expansion condition. Unfortunately, we do not know how to show that if f has mesh
going to zero combinatorially, then f is homotopic to a map which is expanding
with respect to some complete length structure. Therefore, we cannot appeal to
Nekrashevych’s result [Nek, Theorem 5.5.3] in our proof. Instead, our proof proceeds
along the same outline as his, but uses a combinatorial version of length structure in
place of usual lengths.

The main result is useful, since in concrete examples checking the condition of
mesh going to zero is much easier than checking the condition of having contracting
virtual endomorphism. As we shall show, the former involves only local calculations
which are independent of the degree of the map.

There are many examples of finite subdivision rules for which the valence is un-
bounded and for which the virtual endomorphism is contracting. However, for such
maps, the condition of mesh going to zero combinatorially does not adequately de-
scribe the relevant expansion properties.

Outline. In §1 we define and discuss finite subdivision rules. In §2, we define the
orbifold, orbifold fundamental group, and virtual endomorphism φf associated to a
Thurston map f . We also reduce the problem of showing that φf is contracting to
showing that a certain finiteness property holds. This property, which is phrased in
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terms of so-called restrictions of elements, is interpreted geometrically in §3. The
proof of Theorem 0.1 is then reduced to checking a geometric condition, Proposition
3.3. In §4, the proof of Theorem 0.1 is completed. We conclude in §5 with a brief
discussion of some examples and of complexity issues.

1. Finite subdivision rules

The definition and basic theory of finite subdivision rules are given more leisurely
and thoroughly in [CFP1].

Definition 1.1. A polygonal disk is a cell structure on the closed 2-disk D such that
there is a single 2-cell, the 1-skeleton of D is the unit circle, and there are at least three
vertices. A finite subdivision rule R consists of the following: i) a finite 2-complex
SR such that SR is the union of its closed 2-cells and each closed 2-cell s ∈ SR is
the image of a polygonal disk t = ts by a continuous cellular map ψt : t→ SR which
restricts to a homeomorphism on each open cell of t; ii) a subdivision R(SR) of SR;
iii) a continuous cellular map σR : R(SR)→ SR whose restriction to each open cell is
a homeomorphism. If R is a finite subdivision rule, an R-complex is a CW-complex
X which is the union of its closed 2-cells together with a continuous cellular map
ψ : X → SR, called the structure map, which restricts to a homeomorphism on each
open cell.

Suppose R is a finite subdivision rule. The complex SR is called the model subdivi-
sion complex ofR, and the map σR is called the subdivision map. If s is a closed 2-cell
of SR, the associated polygonal disk ts is called a tile type. If X is anR-complex, then
the subdivision R(SR) pulls back under the structure map ψ : X → SR to a subdi-
vision R(X). Furthermore, R(X) is an R-complex with structure map σR ◦ f . By
iterating this construction, we can recursively subdivide R-complexes. In particular,
we can recursively subdivide the tile types and the model subdivision complex.

Definition 1.2. A finite subdivision rule R has bounded valence if there is a uniform
upper bound on the valence of vertices in the complexes Rn(SR).

Definition 1.3. A finite subdivision rule R has mesh approaching zero combinato-
rially if there is a positive integer n such that:

(1) every edge in SR is properly subdivided in Rn(SR);
(2) if t is a tile type and e, e′ are disjoint edges of t, then no tile of Rn(t) contains

an edge of the subdivision of e in Rn(t) and an edge of the subdivision of e′

in Rn(t).

Suppose thatR is a finite subdivision rule such that the model subdivision complex
SR is the 2-sphere and the subdivision map σR is orientation preserving. Then σR is
a branched covering and each postcritical point is a vertex of SR, so the postcritical
set is finite and σR is a Thurston map. In this case we usually denote the subdivision
map by f . The condition that R has bounded valence is then equivalent to the
condition that f has no periodic branch points.

2. Virtual endomorphisms

This section summarizes constructions of V. Nekrashevych, specialized to the case
of Thurston maps. We refer to [Nek] for details. We suppress any discussion of
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the elegant and natural general algebraic theory and instead give only the minimal
presentation needed for our proofs.

Let f : S2 → S2 be a Thurston map. For x, y ∈ S2 let ν0(y) = lcm{deg(fn, x) :
fn(x) = y} and ν1(x) = ν0(f(x))/ deg(f, x).

For i = 0, 1 let Σi = {x ∈ S2 : νi(x) > 1}, and let Oi be the orbifold whose
underlying topological space is {x ∈ S2 : νi(x) < ∞} and whose weight function is
νi. The sets Σi are called the singular sets of Oi. There are no singular points of
infinite weight if and only if there are no periodic branch points of f . In this case, the
orbifolds Oi are compact. The singular sets satisfy f−1(Σ0) ⊃ Σ1. Set U0 = S2 − Σ0

and U1 = S2 − f−1(Σ0). Then U1 ⊂ U0 and f : U1 → U0 is a covering map.
Let b0 ∈ U0 be a basepoint and b1 ∈ f−1(b0) be one of its preimages. For i = 0, 1

let Ni denote the normal subgroup of π1(Ui, bi) generated by the set of elements of
the form gk, where g is represented by a simple closed peripheral loop γ surrounding
a puncture x of Ui, and the exponent k is the weight νi(x) < ∞; if the weight is
infinite, we do not add such a loop as a generator. The orbifold fundamental groups
π1(Oi, bi) are by definition the quotient groups π1(Ui, bi)/Ni.

Let f∗ : π1(U1, b1)→ π1(U0, b0) be the injective homomorphism induced by the cov-
ering f : U1 → U0. Since f sends peripheral loops to peripheral loops, it follows from
the definitions of the weight functions νi that f∗ : N1 → N0 is an isomorphism. This
observation and the “Five Lemma” of homological algebra imply that the homomor-
phism f∗ descends to a well-defined and injective map f ∗ : π1(O1, b1) → π1(O0, b0).
We denote the image group f ∗(π1(O1, b1)) by H .

Let α : [0, 1] → U0 be a path joining b1 to b0 and α∗ : π1(U0, b1) → π1(U0, b0) the
induced isomorphism. LetN ′

0 = α−1
∗ (N0). Since N0 is normal, the subgroup N ′

0 is nor-
mal and is independent of the choice of path α. Set π1(O0, b1) = π1(U0, b1)/N

′
1. Again,

the map α∗ descends to a well-defined isomorphism α∗ : π1(O0, b1)→ π1(O0, b0).
Since the inclusion ι : U1 →֒ U0 sends peripheral loops to loops which are either

peripheral or trivial, and since ν0(x) divides ν1(x) for all x, the induced map ι∗ :
π1(U1, b1) → π1(U0, b1) is surjective and sends N1 to N ′

0. It easily follows that the
map ι∗ also descends to a surjective map ι∗ : π1(O1, b1)→ π1(O0, b1).

Definition 2.1. The virtual endomorphism induced by f is the homomorphism φ :
H → π1(O0, b0) defined by

φ = α∗ ◦ ι∗ ◦ (f ∗)
−1.

By construction, the virtual endomorphism φ associated to f is surjective.
The virtual endomorphism depends on the choice of basepoint b0, preimage b1, and

homotopy class of path α. Different choices yield virtual endomorphisms which differ
by pre- and/or post-composition by inner automorphisms. For n ≥ 2, the nth iterate
φn is the homomorphism whose domain is defined inductively by

domφ = H ; domφn = {g ∈ H : φ(g) ∈ domφn−1}

and whose rule is given by iterating φ a total of n times.
In what follows, we denote the orbifold fundamental group π1(O0, b0) by G.
Suppose S is a finite generating set for G. We denote by ||g|| the word length of g

in the generators S, and we let φ = φf .
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Definition 2.2. The virtual endomorphism φ : H → G is called contracting if the
contraction ratio

ρφ = lim sup
n→∞

(
lim sup
||g||→∞

||φn(g)||

||g||

)1/n

< 1.

The contraction ratio of the virtual endomorphism φ is independent of the choices
used in its construction. Hence, the property of being contracting is independent
of such choices, and so one may speak meaningfully about whether the virtual en-
domorphism of a Thurston map is contracting. Moreover, Nekrashevych has shown
that the property of having a contracting virtual endomorphism is preserved under
equivalence.

The contracting property is easy to state. But in practice, it is often easier to
verify a certain equivalent property. In order to formulate it, we require several more
definitions.

Fix a bijection Λ : A→ f−1(b0) where A is a finite alphabet. Since b0 is chosen to be
a nonsingular point, #A = deg(f). For a ∈ A choose an oriented path λa : [0, 1]→ U0

joining b0 to Λ(a). For n ∈ N let An denote the set of words of length n in the alphabet
A; set A0 = {∅} where ∅ is the empty word. Let A∗ = ∪nA

n. We denote by |w| the
length of a word w.

The restriction fn : f−n(U0)→ U0 is an unramified covering map for all n ≥ 1; in
particular, any path β in U0 can be lifted under any iterate fn of f .

Given a point x ∈ U0, a point x̃ ∈ f−n(x), and a path or loop β starting at x, we
denote by f−n(β)[x̃] the lift of β under fn based at x̃. By induction and path-lifting,
there is a map

Λ : A∗ →
⋃

n

f−n(b0)

given by
Λ(aw) = the endpoint of the pathf−n(λa)[Λ(w)]

where a ∈ A and w ∈ An are arbitrary. Notice that

f(Λ(wa)) = Λ(w)

for all w ∈ A∗ and all a ∈ A, i.e. that the dynamics acts as the right-shift.
For each n ∈ N, the map An → f−n(b0) × {n} defined by w 7→ Λ(w) × {n}, is a

bijection. We obtain therefore a bijection A∗ → ∪nf
−n(b0) × {n}. For each n ∈ N,

the projection onto the first coordinate gives an injection

f−n(b0)× {n} → f−n(U0).

Since the restriction fn : f−n(U0) → U0 is an unramified covering, the fundamental
group π1(U0, b0) acts by path-lifting on the fiber f−n(b0) and hence, by means of the
bijection constructed above, on the set An of words of length n. We obtain in this
way an action of π1(U0, b0) on the set A∗ of words of arbitrary finite length which
preserves the length of a word and which acts transitively on words of a given fixed
length.

We now show that this action descends to an action of G. Let γk be a closed loop
in U0 about some point y ∈ Σ0 representing a generator gk of the normal subgroup
N0 of π1(U0, b0) as constructed above. By the definition of the weight function ν0, if
fn(x) = y for some point x ∈ O1 and some integer n ≥ 1, then k = ν0(y) is a multiple
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of the local degree of fn at x, and so γk lifts under fn to a closed loop surrounding x.
It follows that the path-lifting action of the subgroup N0 on A∗ is trivial, and hence
that the action descends to a well-defined action of G on A∗. We denote by g.w the
image of w under the action of g.

Given w = an · · ·a2a1 ∈ A∗ we denote by λw the path in U0 starting at b0 and
given by

λw = λ̃a1
∗ λ̃a2

∗ · · · ∗ λ̃an

where λ̃a1
= λa1

is traversed first, and where for 2 ≤ i ≤ n the path λ̃ai
=

f−(i−1)(λai
)[Λ(a1a2 · · ·ai−1)]. See Figure 1.

Figure 1. The dashed arrow shows f(λ̃a2
) = λa2

.

Given w ∈ An and g ∈ G, the restriction of g at w, denoted g|w, is the element
of G defined as follows. Represent g by a loop γ based at b0, and let g|w denote the
element of G = π1(U0, b0)/N0 represented by the path

λw ∗ f
−n(γ)[Λ(w)] ∗ λ−1

g.w

where λw is traversed first and the exponent −1 in λ−1
g.w indicates that the path is

traversed in the opposite direction. See Figure 2. The resulting element is well-defined
independent of the choice of representative γ for g.

We are now ready to state our reformulation of the contracting property.

Proposition 2.3 ([Nek, Prop. 2.11.11]). The virtual endomorphism φ is contracting
if and only if there is a finite set N ⊂ G with the following property: for every
integer L ≥ 1, there exists an integer “magic level” m(L) such that for all g ∈ G with
||g|| ≤ L, and for all w ∈ A∗ with |w| ≥ m(L), the restriction g|w belongs to N .

3. The geometry of restriction

In this section, we reformulate the criterion for contracting spelled out in Proposi-
tion 2.3 in geometric terms.

Let f be the subdivision Thurston map arising from a finite subdivision rule R. We
assume that the basepoint b0, bijection Λ, arcs λa, a ∈ A, and a generating set for G
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Figure 2. The restriction g|w is represented by λw ∗ f
−n(γ)[Λ(w)] ∗ λ−1

g.w.

have been chosen as in the previous section. We drop the subscript 0 in the definition
of the previous section and refer to the base orbifold, singular set, punctured surface,
basepoint, and normal subgroup as O,Σ, U, b, and N , respectively.

The universal orbifold covering π : Õ → O is defined as follows. Let π : Ũ → U

denote the covering corresponding to the subgroup N . As a topological space, Ũ is
homeomorphic to a plane (or disk) punctured at a countably (and possibly empty)
infinite discrete set of points. A small peripheral loop about one of these punctures
maps under π in a k to 1 fashion to a peripheral loop surrounding a singular point
x of O of finite weight k = ν0(x). By filling in the punctures, π extends to a
continuous map. Doing this for all punctures yields an orbifold universal covering

map π : Õ → O.
The group G acts freely and properly discontinuously as the group of covering

transformations of the covering map π : Ũ → U . The latter means that g : Ũ → Ũ is
a homeomorphism satisfying π ◦ g = π for all g ∈ G. Upon filling in the punctures,

each covering transformation g extends continuously to a homeomorphism g : Õ → Õ
which satisfies π ◦ g = π where now π : Õ → O is the orbifold universal covering.
The resulting action of G on Õ is again properly discontinuous. Furthermore, it acts
transitively on the fibers of π. If there are singular points of finite weight, the action
of G on Õ is not free. For g ∈ G and x̃ ∈ Õ we denote by g.x̃ the image of x̃ under
the action of g.

Fix now a universal orbifold covering map π : Õ → O, a basepoint b ∈ U , and a
preimage b̃ ∈ π−1(b).

In the remainder of this section, we assume R has bounded valence. This is the
case if and only if the orbifold O has no singular points of infinite weight, i.e. if and

only if f has no periodic branch points. The universal orbifold covering π : Õ → O
then gives the underlying space Õ the structure of an R-complex with structure map
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π. Therefore, we may speak meaningfully of edges, tiles, etc. at level n in Õ. Such

tiles are compact subsets of Õ.

Definition 3.1 (Skinny path pseudometric). Suppose x̃, ỹ ∈ Õ and n ∈ N. The
skinny path pseudodistance dn(x̃, ỹ) is defined to be the minimum number m such

that there exists n-tiles t̃0, t̃1, . . . , t̃m in Õ such that x̃ ∈ t̃0, ỹ ∈ t̃m, and t̃i−1 ∩ t̃i 6= ∅
for i ∈ {1, . . . , m}.

The skinny path pseudometrics dn are proper in the sense that given any n, any

fixed x̃ ∈ Õ, and any r > 0, the “closed ball” {ỹ ∈ Õ : dn(x̃, ỹ) ≤ r} is compact. The

fact that the action of G on Õ is properly discontinuous then immediately implies
the following fact.

Proposition 3.2. Fix an integer r ≥ 1. Then

C(r) := #{g ∈ G : d0(b̃, g.̃b) ≤ r} <∞.

Combining Propositions 3.2 and 2.3, we obtain

Proposition 3.3. The virtual endomorphism is contracting if and only if the follow-
ing condition holds. There is an integer C ≥ 1 (depending on the choice of paths
λa, a ∈ A) such that for every integer L ≥ 1, there exists an integer “magic level”
m(L) such that for all g ∈ G with ||g|| ≤ L, and for all w ∈ A∗ with |w| ≥ m(L), the
restriction g|w satisfies

d0(b̃, (g|w).̃b) ≤ C.

4. Proof of Theorem

We are now ready to prove Theorem 0.1. We assume that we are in the setup of
the previous section. Given g ∈ G and w ∈ A∗, represent g by a loop γ, and recall
from the definition that the restriction g|w is represented by the path

λw︸︷︷︸
1st

∗ f−n(γ)[Λ(w)]︸ ︷︷ ︸
2nd=γ̃w

∗ λ−1
g.w︸︷︷︸

3rd

traversed in the order indicated. The 1st and 3rd paths, as well as the 2nd, which we

denote by γ̃w, can be lifted to the universal cover Õ. Given a path β ⊂ U starting at
a nonsingular point x and a preimage x̃ of x under π, we denote by β.x̃ the endpoint
of the path obtained by lifting β under π starting at x̃. By the triangle inequality,
and using the fact that by definition γ̃w joins λw .̃b to λg.w .̃b,

d0(b̃, (g|w).̃b) ≤ d0(b̃, λw .̃b) + d0(λw .̃b, γ̃w.(λw .̃b)) + d0(b̃, λg.w .̃b).

By Proposition 3.3, the proof is finished once we establish the following two claims.

Claim 1. There is an integer C1, depending on the choice of arcs λa, a ∈ A, such
that for every w ∈ A∗,

d0(b̃, λw .̃b) ≤ C1.

Informally speaking, Claim 1 says that the “combinatorial 0-length” of any path λw

is uniformly bounded independent of w.
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Claim 2. There is an integer C2 such that for every integer L ≥ 1, there is an
integer “magic level” m(L) such that for all g ∈ G with ||g|| ≤ L, and for all w ∈ A∗

with |w| ≥ m(L), there exists a loop γ representing g such that

d0(λw .̃b, γ̃w.(λw .̃b)) ≤ C2.

Claim 2 says that for such a loop representing an element of g, the “combinatorial
0-length” of an iterated preimage of this loop can be made uniformly small by using
a suitably high iterate of f .

Let us make this precise. Let β : [0, 1] → U be a path in U and n ∈ N. The
combinatorial n-length ln(β) of β is

#{n-tiles in Õ meeting β̃} − 1

where β̃ is a lift of β under π to Õ. Since the group of covering transformations G
sends n-tiles to n-tiles and acts transitively on lifts of β, the definition is independent
of the chosen lift β̃. Like ordinary lengths, combinatorial n-lengths are subadditive.
That is, if β = β1 ∗ β2 is the concatenation of paths β1, β2, then

(1) ln(β1 ∗ β2) ≤ ln(β1) + ln(β2).

Unlike ordinary lengths, however, equality need not hold. For example, suppose
x is a singular point of O of weight k and the 0-cell of SR determined by x lies
on the boundary of l distinct 2-cells of SR. Let γ be a small loop surrounding x.
Then l0(γ

pk) = kl − 1, which is independent of p; here γpk denotes the (pk)-fold
concatenation of γ with itself.

The remainder of this section is devoted to the proof of these two claims. For the
proof of each claim, we will need the following key facts.

Proposition 4.1. Suppose x̃, ỹ ∈ Õ. Then there is a positive integer m with the
following property. Let k be a nonnegative integer, and let x̃, ỹ be points in Õ such
that dk(x̃, ỹ) ≥ 2. Then dk+m(x̃, ỹ) ≥ 2 · dk(x̃, ỹ).

Proposition 4.1 follows from Lemma 2.7 of [CFP2].

Lemma 4.2. Suppose n ∈ N, βn is a path in U , and βn+1 is a lift of βn under f .
Then ln+1(βn+1) ≤ ln(βn).

Proof: Consider again the pair U0, U1 defined in Section 2. Let a0 = βn(0) denote
the starting point of the path β and a1 = βn+1(0) be the starting point of the lift βn+1.

Denote by Ũ0 = π−1(U0). The set Ũ0 typically is the complement in Õ of a countably
infinite set of points. Then f : (U1, a1) → (U0, a0) is a covering map sending a1 to
a0. Let ã0 ∈ π−1(a0) and ã1 ∈ π−1(a1). Using a standard monodromy argument,
it follows easily from the definitions of the weight functions and the covering π that
there exists a lift q of f−1 making the diagram

(Ũ1, ã1)
q
←− (Ũ0, ã0)

π ↓ ↓ π

(U1, a1)
f
→ (U0, a0)

commute. Denote by β̃n and β̃n+1 the lifts under π of βn and βn+1 starting at ã0 and
ã1, respectively. Then q(β̃n) = β̃n+1. By definition, f takes (n+ 1)-tiles in Rn+1(SR)
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to n-tiles in Rn(SR). Hence the lift q of the inverse of f takes an n-tile in Õ to an

(n+ 1)-tile in Õ. It follows that ln+1(βn+1) ≤ ln(βn) as required. �

We remark that in the conclusion of Lemma 4.2, equality need not hold. For
example, suppose that x is a critical point of f at which f has degree 2. Suppose

that ν0(x) = 1, that y = f(x), and that ν0(y) = 6. Choose ỹ ∈ Õ such that π(ỹ) = y,
and set x̃ = q(ỹ), so that π(x̃) = x. Then π has degree 6 at ỹ and degree 1 at x̃.
Furthermore, q has degree 3 at ỹ. So we would expect a small simple closed curve
about ỹ to meet 3 times as many tiles as its image under q, which winds 3 times
about x̃.

4.1. Proof of Claim 1. Let C = max{l0(λa) : a ∈ A}. By Lemma 4.2 and induction,

for any n ∈ N, any a ∈ A, and any lift λ̃a of λa under f−n, we have ln(λ̃a) ≤ C as
well. By the definition of combinatorial length, it follows that for every nonnegative

integer n, for every a ∈ A, and every w ∈ An, the lift of f−n(λa) to Õ based at λw .̃b
meets at most C tiles at level n. So for every nonnegative integer n we have that

dn(λw .̃b, λwa.̃b) ≤ C for every a ∈ A and w ∈ An.
Now let w ∈ A∗ as in the statement of Claim 1. We may assume that |w| > 0.

Let w = an · · ·a2a1. For k ∈ {0, . . . , n} let wk = ak · · ·a2a1, so that w0 = ∅ and

wn = w, and let b̃k = λwk
.̃b, so that b̃0 = b̃ and b̃n = λw .̃b. According to the previous

paragraph,

(2) dk(b̃k, b̃k+1) ≤ C

for every k ∈ {0, . . . , n− 1}.
Let m be as in Proposition 4.1. We will prove Claim 1 for C1 = 2mC. Arguing by

contradiction, we suppose that d0(̃b, λw .̃b) > C1. We will show that this assumption
implies the following:

(*) for every nonnegative integer r for which n ≥ rm, the inequality

(3) drm(b̃rm, b̃n) > C1

is satisfied.

This is impossible for the following reason. Suppose r is a maximal such integer, so
that 0 ≤ n − rm < m. If n − rm = 0 then b̃rm = b̃n and so drm(b̃rm, b̃n) = 0 6> C1.
Otherwise, we have

drm(b̃rm, b̃n) ≤
n−rm−1∑

j=0

drm(b̃rm+j , b̃rm+j+1) by ∆ inequality

≤
n−rm−1∑

j=0

drm+j(b̃rm+j , b̃rm+j+1) since drm ≤ drm+j

≤
n−rm−1∑

j=0

C by (2)

≤ mC since r is maximal

< 2mC = C1.
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We now establish condition (*) by induction on the nonnegative integer r. The
case r = 0 follows from the assumption, to the contrary of our desired conclusion,

that d0(̃b, λw .̃b) = d0(b̃0, b̃n) > C1.
As our inductive hypothesis, we assume that the inequality (3) holds for a nonneg-

ative integer r with rm < n. We may assume that (r + 1)m ≤ n. By the triangle
inequality,

drm(b̃rm, bn) ≤ drm(b̃rm, b̃(r+1)m) + drm(b̃(r+1)m, b̃n).

Rewriting this inequality, we conclude

drm(b̃(r+1)m, b̃n) ≥ drm(b̃rm, bn)− drm(b̃rm, b̃(r+1)m)

> C1 − drm(b̃rm, b̃(r+1)m) by inductive hypothesis

≥ C1 −mC by ∆ inequality

≥ 2mC −mC = mC by def. of C1

> 1.

Proposition 4.1 and the second-to-the-last inequality above imply, respectively, that

d(r+1)m(b̃(r+1)m, b̃n) ≥ 2 · drm(b̃(r+1)m, b̃n) > 2 ·mC = C1.

This completes the proof of the induction step, and so the proof of Claim 1 is complete.
�

4.2. Proof of Claim 2. For the proof of Claim 2, we will need the following Lemma.

Lemma 4.3. There is a positive integer B such that for all g ∈ G, there exists a
representative γ of g for which

l0(γ) ≤ B · ||g||.

Proof: Suppose {g1, g2, . . . , gr} is the chosen set of generators used in the definition
of the word length || · ||. For each gi, choose a representative γi ⊂ U . Let B =
max{l0(γi) : 1 ≤ i ≤ r}. Now suppose g ∈ G is arbitrary and g = gi1gi2 . . . gik

where k = ||g||. Then γ = γi1 ∗ γi2 ∗ · · · ∗ γik represents g and so by (1) we have

l0(γ) ≤
∑k

j=1 l0(γij) ≤ B||g|| as required. �

Proof of Claim 2. Suppose ||g|| ≤ L. By Lemma 4.3, g is represented by a path γ
for which l0(γ) ≤ BL. By Lemma 4.2, for any n ∈ N, the combinatorial n-length of
any lift γ̃w of γ under f−n satisfies ln(γ̃w) ≤ BL. For convenience, given k ∈ N denote

by dk = dk(λw .̃b, γ̃w.(λw .̃b)). So by definition dn ≤ BL for any n ∈ N. Let m be as
in Proposition 4.1 and let r be a positive integer with r ≥ log2(L). Let m(L) = rm.
Then if n ≥ m(L) we have that

BL ≥ dn ≥ drm.

If d0 ≥ 2 then Proposition 4.1 implies that in turn

drm ≥ 2rd0 ≥ Ld0

and so d0 ≤ B. Thus we may always take C2 = B. �
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5. Complexity issues

The theorem below says that in order to check the condition mesh going to zero
combinatorially, it suffices to check finitely many local conditions. The proof is
constructive and gives, for concrete examples, an algorithm for determining when
conditions (1) and (2) hold in the definition of mesh going to zero combinatorially.

Theorem 5.1. Suppose R is a finite subdivision rule. Let k be the number of tiles in
SR, and let l be the maximum number of edges in a tile type of SR. Then R has mesh
going to zero combinatorially if and only if conditions (1) and (2) in the definition
are satisfied whenn = kl2.

Note that the quantity n depends only on SR and not on R(SR). In particular,
the bound n is independent of the degree.

Proof: Sufficiency is trivial. So suppose R has mesh going to zero combinatorially.
Consider first condition (1) in the definition. Form a directed graph G as follows.

(In what follows, a directed graph may have a loop from a vertex to itself, but multiple
loops from a vertex to itself and multiple directed edges between two given vertices
are not permitted.) As vertex set, take the disjoint union, over all tiles s of SR, of
the 1-cells in the tile type ts of s. Thus, there are at most kl vertices. Join a vertex
corresponding to a 1-cell e1 of a tile of type t1 to a vertex corresponding to a 1-cell e2
of a tile of type t2 if and only if the subdivision R(t1) contains a tile u of type t2 such
that the 1-cell of u corresponding to e2 coincides with e1. Less formally: vertices e1
and e2 are joined if and only if σR sends e2 homeomorphically to e1. A vertex of G
corresponding to a 1-cell e has an outgoing edge if and only if it fails to be properly
subdivided. By induction, given a positive integer n, there is a directed edge-path of
length n starting at a vertex corresponding to a 1-cell e if and only if e fails to be
properly subdivided after n subdivisions. If condition (1) fails when n = kl2, then
there is a directed edge-path of length greater than or equal to the number of vertices
of G. It follows that some vertex of G is visited twice in this directed edge-path, and
hence G must contain a directed cycle. Therefore, there exists a 1-cell which is never
properly subdivided. This contradicts the assumption that condition (1) holds for
some value of n.

Now consider condition (2). We argue similarly. Form a different directed graph
G as follows. As vertices, we take triples (t, e1, e2), where t is a tile type, and e1, e2
are disjoint 1-cells in t. Thus there are at most kl2 vertices of G. Two triples
(t, e1, e2), (t

′, e′1, e
′
2) are joined by a directed edge in G if and only if the subdivision

R(t) contains a tile of type t′ such that the 1-cell of t′ corresponding to e′1 is contained
in e1 and the 1-cell of t′ corresponding to e′2 is contained in e2. As before, it follows
that given a positive integer n, a triple (t, e1, e2) fails condition (2) for this value of
n if and only if there is a directed edge-path of length n starting at this triple. The
proof concludes as in the previous paragraph. �

We finish with two examples.
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Figure 3. The branched map f .
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Figure 4. The subdivision of the tile type for R.

Example 1. This example is analyzed in more detail in [CFPP]. Consider the
branched map f shown in Figure 3. It is orientation-preserving and cellular with
respect to the cell structures whose edges are drawn with bold arcs, and preserves edge
labels (though for clarity not all edges are labelled). The map f is the subdivision map
of a finite subdivision rule R with a single tile type; the tile type t and its subdvision
R(t) are shown in Figure 4. Since none of the corners of t are properly subdivided
in R(t), R has bounded valence. Since every edge of t is properly subdivided in
R(t), the first graph constructed in the proof of Theorem 5.1 has no edges and so R
satisfies condition (1). Similarly, since no tile of R(t) intersects two disjoint edges of
t, the subdivision rule R satisfies condition (2). Hence R has mesh approaching zero
combinatorially. By Theorem 0.1, the virtual endomorphism of f is contracting.

Example 2. Now consider the branched map g shown in Figure 5. The map g is
orientation-preserving and cellular, and preserves edge labels. It is the subdivision
map of a finite subdivision rule Q with two tile types. The subdivisions of the tile
types are shown in Figure 6, where edges are labelled by the labels of their images in
SQ. The two tile types t1 and t2 have the same subdivisions but correspond to the
two possible orientations on a hexagon. Since none of the corners of t1 and t2 are
properly subdivided in Q(t1) and Q(t2), Q has bounded valence.

The corresponding directed graph for checking condition (1) has twelve vertices
and eight edges. The directed edges are

(t1, b)→ (t1, a), (t1, c)→ (t1, b), (t1, e)→ (t2, b), (t1, f)→ (t2, a)

(t2, b)→ (t2, a), (t2, c)→ (t2, b), (t2, e)→ (t1, b), (t2, f)→ (t1, a).

There are directed edge-paths of length 2 but not of length 3; that is why in Figure 7
a tile type t has edges that are not properly subdivided in Q2(t) but every edge of t
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is properly subdivded in Q3(t). Therefore, there are no directed cycles, so condition
(1) is satisfied.

It is also easy to construct the directed graph for checking condition (2). It has 36
vertices and 24 edges. Again, it turns out that there are directed edge-paths of length
2 (e.g., ((t1, b, d), (t1, a, c)) followed by ((t1, a, c), (t1, f, b))), but no directed cycles.

Since Q satisfies conditions (1) and (2), it has mesh approaching zero combinato-
rially.

Figure 5. The branched map g.

Figure 6. The subdivisions of the tile types for Q.
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Figure 7. The first three subdvisions of a tile type for Q.
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