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Abstract. We introduce and study finite subdivision rules. A finite subdivi-

sion rule R consists of a finite 2-dimensional CW complex SR, a subdivision
R(SR) of SR, and a continuous cellular map ϕR : R(SR) → SR whose re-
striction to each open cell is a homeomorphism. If R is a finite subdivision
rule, X is a 2-dimensional CW complex, and f : X → SR is a continuous cel-
lular map whose restriction to each open cell is a homeomorphism, then we can
recursively subdivide X to obtain an infinite sequence of tilings. We wish to
determine when this sequence of tilings is conformal in the sense of Cannon’s
combinatorial Riemann mapping theorem. In this setting, it is proved that the
two axioms of conformality can be replaced by a single axiom which is implied
by either of them, and that it suffices to check conformality for finitely many
test annuli. Theorems are given which show how to exploit symmetry, and
many examples are computed.

This paper is concerned with recursive subdivisions of planar complexes. As an
introductory example, we present a finite subdivision rule in Figure 1. There are
two kinds of edges and three kinds of tiles. A thin edge is subdivided into five
subedges (three of these are thick and two are thin) and a thick edge is subdivided
into three subedges (two of these are thick and one is thin). There are three kinds
of tiles: a triangle with thin edges; a quadrilateral with a pair of opposite thin
edges and a pair of opposite thick edges; and a pentagon with thick edges. Each
tile is subdivided into subtiles of those three kinds, and these subdivisions restrict
on the boundary arcs to the subdivisions defined for the edges. Because of this, one
can recursively subdivide planar complexes made up of tiles of these three kinds.
For example, Figure 2 shows the second and third subdivisions of the quadrilateral
tile type. This figure was produced by Kenneth Stephenson’s computer program
CirclePack [16].

Our motivation for the above subdivision rule is illustrated in Figure 3. This
figure, which was drawn from an image produced by Jeffrey Weeks’s computer
program SnapPea [18], shows a right-angled dodecahedron D in the Klein model
of hyperbolic 3-space. The geodesic planes through the twelve faces intersect the
sphere at infinity in twelve thick (red) circles. The group G generated by the
reflections in these twelve geodesic planes is a discrete subgroup of Isom(H3), and
D is a fundamental domain for the action of G on H3.

The images of D under elements of G form a tiling T of H3. Define combinatorial
balls B(n), n ≥ 0, recursively by B(0) = D and B(n+1) = star(B(n), T ) for n ≥ 0.
For each n, the geodesic planes through the faces of ∂B(n) intersect the sphere at
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Figure 1. The dodecahedral subdivision rule

infinity in circles. The thin (blue) circles in Figure 3 are the circles at infinity
corresponding to the faces of ∂B(1). For each n, let S(n) be the tiling of the 2-
sphere determined by the circles coming from faces of ∂B(k) for k ≤ n. The tiles
of S(n) are triangles, quadrilaterals, and pentagons, and the tiles of S(n + 1) are
obtained from the tiles of S(n) by the above subdivision rule.

Unlike substitution tilings, where the tiles are given as rigid geometric objects,
here the complexes are essentially combinatorial. Although a finite subdivision
rule is defined topologically for convenience, it can be thought of as a finite rule
for subdividing planar combinatorial complexes. While the tiles do not come with
prescribed shapes, since we are dealing with cell complexes the intersections of tiles
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Figure 2. The second and third subdivisions of the quadrilateral

is greatly restricted. A central problem is to understand when the subdivisions can
be realized geometrically so that the tiles at all levels are uniformly round.

Our motivation for studying these subdivision rules arises from the wish to an-
swer the following question, which is closely related to Thurston’s hyperbolization
conjecture. Given a negatively curved group G whose space at infinity is the 2-
sphere, does G act properly discontinuously, cocompactly, and isometrically on
hyperbolic 3-space? To see the connection to subdivision rules, let G be a nega-
tively curved group whose space at infinity is the 2-sphere. Let Γ be a locally finite
Cayley graph for G, and let O be a vertex of Γ. Given a geodesic rayR : [0,∞) → Γ
with R(0) = O and a positive integer n, one can define a disk at infinity D(R, n)
(for example, see [6] for a definition). For each positive integer n, the collection

D(n) = {D(R, n) : R is a geodesic ray in Γ with R(0) = O}

is a finite cover of ∂Γ. The main theorem of the Cannon-Swenson paper [6], Theo-
rem 2.3.1, states that G acts properly discontinuously, cocompactly, and isometri-
cally on hyperbolic 3-space if and only if the sequence {D(n)}∞n=1 of disk covers is
conformal in the sense of [3]. Furthermore, [6, line 3.30] states that for every n ≥ 2
the elements of D(n) can be obtained from the elements of D(n − 1) by a finite
recursion.

Finite subdivision rules model the recursive structures of sequences of disk covers
arising from negatively curved groups. The above sequences of disk covers do not
generally arise from finite subdivision rules mainly because pairs of distinct elements
of a disk cover may have large intersection, whereas finite subdivision rules deal with
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Figure 3. An R-complex for the dodecahedral subdivision rule

tilings, in which distinct elements can only intersect in their boundaries. However,
we feel that this passage to tilings is not an oversimplification.

Thus we are interested here in subdivision rules for tilings of surfaces. Our
starting point is a finite set T of closed 2-cells, and a way of subdividing each
element of T into 2-cells which are in turn identified with elements of T . Given a
2-dimensional CW complex X whose 2-cells are identified with elements of T , we use
the subdivision rule on T to recursively define subdivisions Rn(X) for n ∈ N. We
then want to understand the asymptotics of the subdivisions Rn(X). In particular,
we want to be able to tell whether they are conformal in the sense of [3].

In Section 1 we give the basic definitions of finite subdivision rules and recall
the definition of conformality from [3]. We then give some examples. In Section 2
we give the correspondence between the combinatorial and geometric definitions of
mesh approaching 0. We then prove the layer theorem, which gives a subadditivity
formula for combinatorial moduli, in Section 3.

In Section 4, we prove Theorem 4.2. This theorem states that, for bounded
valence finite subdivision rules whose meshes approach 0, the two axioms for con-
formality in [3] can be reduced to a single axiom, Axiom 0, which is weaker than
either of them. This is similar to the analogous result for negatively curved groups in
[5, Theorem 8.2], and most of the material developed in [5] for the proof of Theorem
8.2 is applicable in the present setting. In Section 5 we use this reduction to prove
the 1,2,3,-tile criterion, Theorem 5.1, which reduces the checking of conformality
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to showing that the moduli of a certain finite set of quadrilaterals are uniformly
bounded from 0. This greatly simplifies the problem of proving conformality for a
finite subdivision rule.

Several theorems are proved in Section 6 that exploit symmetry to estimate com-
binatorial moduli. These are especially useful when combined with Theorem 5.1.
In particular, we prove the conformality of every bounded valence finite subdivi-
sion rule whose mesh approaches 0 with one tile type such that the subdivision
of that tile type has dihedral symmetry. It is easy to construct infinitely many
such finite subdivision rules. In Section 7 we use layered subdivision rules to give
examples of nonconformal finite subdivision rules that only satisfy part of the hy-
potheses of Theorem 5.1. Finally, in Section 8 we discuss finite subdivision rules
that have rotational symmetry. We show how to construct infinitely many rota-
tionally symmetric finite subdivision rules with one tile type which are conformal.
Though we did not construct these examples from that point of view, they all give
self-replicating tilings. We then show that in general rotational symmetry is not
enough to imply conformality.

We thank the referee for numerous valuable suggestions. We also thank Richard
Kenyon for suggesting the present form of the definition of a finite subdivision rule.

1. Primary definitions and examples

1.1. Finite subdivision rules. We first recall two definitions about CW com-
plexes. The star of a subset Y of a CW complex X is the CW complex star(Y,X)
which is the union of all closed cells in X which meet Y . A CW complex Y is a
subdivision of a CW complex X if Y = X and each closed cell of Y is contained
in a closed cell of X.

The idea behind a finite subdivision rule is to give a finite combinatorial rule
for recursively subdividing tilings. Since we are mainly interested in tilings up
to cellular homeomorphisms, we think of them as being essentially combinatorial
objects. At its simplest, we envision having finitely many colors, a tile pc of each
color c, and a subdivision Xc of each tile pc into colored tiles so that if t is a tile
of Xc with color c(t), then there is a cellular homeomorphism of t to pc(t). We
want to use these subdivisions to recursively subdivide any colored 2-dimensional
CW complex. A potential problem is incompatibility. If an edge e in a colored 2-
dimensional CW complex Y is in the boundary of two colored tiles t1 and t2, then it
will have induced subdivisions from Xc(t1) and from Xc(t2). If these subdivisions are
not cellularly homeomorphic, then we will not be able to define a subdivision of Y
which on each tile t is isomorphic to Xc(t). To get around this problem, we assume
that we also have finitely many edge colors, an edge of each color, and a subdivision
of that edge into colored edges. We then require that we have edge colorings for
each tile pc and for its subdivision Xc, and that the tile subdivisions coincide with
the edge subdivisions on the boundary of each tile pc. Our introductory example
of the dodecahedral subdivision rule has two edge colors and three tile colors.

To make this precise, one could use cellular homeomorphisms from the open
subtiles (and open subedges) to the original open colored tiles (and open colored
edges). The compatibility requirements between the edge subdivisions and the
tile subdivisions would then be requirements that certain diagrams of maps were
commutative. While this is straightforward to define, the details are messy and
one is burdened with having separate maps for all of the subtiles and subedges.
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To avoid this, we define a finite subdivision rule via a quotient CW complex that
has one open 1-cell for each colored edge and one open 2-cell for each colored tile.
Subdividing the quotient complex creates a subcomplex. The identification of the
edges and tiles of this subcomplex with our original colored edges and tiles is made
by a continuous cellular map from the subcomplex to the quotient complex which
restricts to a homeomorphism on every open cell. We then dispense completely with
the idea of edge and tile colors because the information they carry is determined by
the map from a subtile (or a subedge) to an original tile (or an original edge). For
the dodecahedral subdivision rule, the quotient complex will have a single vertex,
two edges, and three tiles.

The preceding discussion leads us to make the following definition. A finite
subdivision rule R consists of the following:

1. A finite 2-dimensional CW complex SR, called the subdivision complex,
with a fixed cell structure such that SR is the union of its closed 2-cells. We
assume that for each closed 2-cell s̃ of SR there is a CW structure s on a
closed 2-disk such that s has at least three vertices, the vertices and edges of
s are contained in ∂s, and the characteristic map ψs : s → SR which maps
onto s̃ restricts to a homeomorphism on each open cell.

2. A finite 2-dimensional CW complex R(SR) which is a subdivision of SR.
3. A continuous cellular map ϕR : R(SR) → SR, called the subdivision map,

whose restriction to every open cell is a homeomorphism.

We say that R is orientation preserving if there is an orientation on the union
of the open 2-cells of SR such that the restriction of ϕR to each open 2-cell of
R(SR) is orientation preserving. If s̃ is a closed 2-cell in SR, then the CW complex
s in condition 1 is called a tile type. The tile type s comes equipped with the
characteristic map ψs. If ẽ is a closed 1-cell in SR, then a closed 1-disk e equipped
with a characteristic map ψe : e → SR which maps onto ẽ is called an edge type.

SupposeR is a finite subdivision rule. AnR-complex consists of a 2-dimensional
CW complex X which is the union of its closed 2-cells equipped with a continuous
cellular map f : X → SR whose restriction to each open cell is a homeomorphism.
Note that the tile types and the closed tiles of SR are R-complexes.

Suppose thatR is a finite subdivision rule and X is anR-complex with associated
map f : X → SR. The CW structure on R(SR) determines a subdivision R(X) of
X such that the induced map f : R(X) →R(SR) restricts to a homeomorphism on
each open cell. Hence R(X) is an R-complex with map ϕR ◦ f : R(X) → SR. We
can define Rn(X), for n a nonnegative integer, recursively by R0(X) = X (with
map f : X → SR) and Rn(X) = R(Rn−1(X)) (with map ϕn

R ◦ f : Rn(X) → SR)
if n ≥ 1.

Suppose that R is a finite subdivision rule, and X and X ′ are R-complexes with
associated maps f : X → SR and f ′ : X ′ → SR. A cellular map h : X → X ′

is called an R-map if f = f ′ ◦ h. An R-map that is a cellular homeomorphism
is an R-isomorphism. A cellular homeomorphism h : X → X ′ is a weak R-
isomorphism if, for every positive integer n, there exists a cellular homeomorphism
from Rn(X) to Rn(X ′) which agrees with h on the vertices of X.

Let R and R′ be finite subdivision rules with associated CW complexes SR
and SR′ and maps ϕR : R(SR) → SR and ϕR′ : R′(SR′) → SR′ . Then R and
R′ are isomorphic if there is a cellular homeomorphism h : SR → SR′ such that
ϕR′ ◦ h = h ◦ ϕR. We call h an isomorphism from R to R′.
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The last condition is fairly strong and implies that h is a “change of coordi-
nates” between R and R′. We define a weak isomorphism between two finite
subdivision rules by relaxing this condition. Let R and R′ be finite subdivision
rules with associated CW complexes SR and SR′ and maps ϕR : R(SR) → SR and
ϕR′ : R′(SR′) → SR′ . Then R and R′ are weakly isomorphic if there is a cel-
lular homeomorphism h : SR → SR′ such that h is cellularly isotopic to a cellular
homeomorphism g : SR → SR′ such that ϕR′ ◦ g = h ◦ ϕR. We call h a weak
isomorphism from R to R′.

We discuss the notion of weak isomorphism in this paragraph. We begin with a
finite subdivision rule R, and we make the following observation. If k1 : SR → SR
is a cellular homeomorphism which is cellularly isotopic to the identity map, then
there exists another cellular homeomorphism k2 : SR → SR cellularly isotopic to
the identity map such that k1 ◦ ϕR = ϕR ◦ k2. (The map k2 is even cellular on
R(SR).) Now let R and R′ be weakly isomorphic finite subdivision rules with
h and g as in the definition. We have that h ◦ ϕR = ϕR′ ◦ g. It follows that
g : R(SR) → R′(SR′) is a cellular homeomorphism. Furthermore h ◦ ϕR ◦ h−1 =
ϕR′ ◦ g ◦ h−1, and k1 = g ◦ h−1 : SR′ → SR′ is a cellular homeomorphism which is
cellularly isotopic to the identity map. Hence h ◦ ϕ2

R ◦ h−1 = ϕR′ ◦ k1 ◦ ϕR′ ◦ k1 =
ϕ2
R′ ◦ k2 ◦ k1 = ϕ2

R′ ◦ k3, where k3 : SR′ → SR′ is a cellular homeomorphism
which is cellularly isotopic to the identity map. Hence h ◦ ϕ2

R = ϕ2
R′ ◦ k3 ◦ h,

and k3 ◦ h : SR → SR′ is a cellular homeomorphism which is cellularly isotopic
to h. It follows that k3 ◦ h : R2(SR) → (R′)2(SR′) is a cellular homeomorphism.
By induction we see for every nonnegative integer n that Rn(SR) is cellularly
homeomorphic to (R′)n(SR′) by means of a map which is cellularly isotopic to h.
For this reason it might be said that weakly isomorphic finite subdivision rules are
combinatorially equivalent. Weak isomorphism is the natural equivalence relation
on finite subdivision rules for dealing with combinatorial moduli.

Suppose that R and R′ are isomorphic (respectively weakly isomorphic) finite
subdivision rules, and that h is an isomorphism (respectively weak isomorphism)
from R to R′. Let X be an R-complex, with associated map f : X → SR. Let X ′

be the R′-complex with X ′ = X and with associated map h ◦ f : X ′ → SR′ . Then
for every nonnegative integer n, Rn(X) and (R′)n(X ′) are identical (respectively
cellularly homeomorphic) as CW complexes.

Given a finite subdivision rule R, let t1, . . . , tm be an enumeration of the open
tiles of SR. The tile recursion matrix is the m×m matrix (aij) with entry aij

equal to the number of open tiles in R(SR) ∩ tj which map to ti under ϕR.
Suppose R is a finite subdivision rule and X is an R-complex. Let i, j be

nonnegative integers with i < j, let u be a cell in Ri(X), and let w be a cell in
Rj(X). Then u is a predecessor of w if w ⊆ u.

We say that a finite subdivision rule R has bounded valence if for every finite
R-complex X there is an upper bound on the vertex valences of the subdivisions
Rn(X) for every n ∈ N. This condition will hold if it holds when X = SR or if it
holds whenever X is a tile type.

Given a finite subdivision rule R, we say that its mesh approaches 0 if given
an open cover of SR there exists a positive integer n such that every tile in Rn(SR)
is contained in one of the sets of the open cover of SR. If the mesh of R approaches
0 and if X is a finite R-complex equipped with a metric whose topology coincides
with the given topology on X, then it easily follows that given a positive real number



8 J. W. CANNON, W. J. FLOYD, AND W. R. PARRY

ε there exists a positive integer n such that every tile in Rn(X) has diameter less
than ε.

Let R be a bounded valence finite subdivision rule. We say that its mesh
approaches 0 combinatorially if i) given a closed edge e in SR, there exists a
positive integer n such that e contains more than one edge in Rn(SR) and ii) given
a tile type t of R and disjoint edges e and f of t, there exists a positive integer n
such that if e′ and f ′ are edges of Rn(t) with e′ ⊆ e and f ′ ⊆ f , then there does
not exist a tile of Rn(t) containing both e′ and f ′. We will show in Section 2 that a
bounded valence finite subdivision rule R has mesh approaching 0 combinatorially
exactly if it is weakly isomorphic to a finite subdivision rule with mesh approaching
0.

1.2. Conformality. We review the definition of conformality from [3]. Let X
be a topological surface. A shingling S of X is a locally finite cover of X by
compact connected sets, which are called shingles. A weight function on a
shingling S is a nonzero function ρ : S → R such that ρ(s) ≥ 0 for all s ∈
S. A weight function can be thought of as an approximate metric on X; it
gives a way to assign lengths to curves in X and areas to subsets of X. If
ρ is a weight function on S, then the length of a curve α in X is L(α, ρ) =∑

s∈S : s∩α6=0 ρ(s) and the area of a subset Y of X is A(Y, ρ) =
∑

s∈S : s∩Y 6=0 ρ(s)2.
Let Y be either a ring or a quadrilateral. If Y is a quadrilateral, let two dis-
joint edges of Y be called the “ends” of Y . The height of Y is H(Y, ρ) =
inf{L(α, ρ) : α is a curve in Y joining the ends of Y } and the circumference of
Y is C(Y, ρ) = inf{L(α, ρ) : α is a curve in Y separating the ends of Y }. If α is a
curve in Y which joins the ends of Y , then the collection of shingles which intersect
α is called a fat flow. Similarly, if α is a curve in Y which separates the ends
of Y , then the collection of shingles which intersect α is called a fat cut. The
combinatorial moduli of Y are the fat flow modulus M(Y,S) = supρ{

H(Y,ρ)2

A(Y,ρ) }
and the fat cut modulus m(Y,S) = infρ{ A(Y,ρ)

C(Y,ρ)2 }.
A weight function ρ which attains the supremum in the definition of M(Y,S) is

called an optimal weight function if ρ(s) = 0 for every s ∈ S with s ∩ Y = ∅.
Similarly we have optimal weight functions for m(Y,S). Optimal weight functions
exist and are unique up to scaling. (See, for example, [4] for a proof.)

Suppose we are given a surface X, a subset A of X, and a neighborhood N of
A in X. We say that a ring R surrounds A in N if R ⊆ N \ A and one of the
connected components of N \R is an open disk D such that ∂D is one of the ends
of R and D contains A. When N = X we simply say that R surrounds A. If
x ∈ X, we say that R surrounds x in N if R surrounds {x} in N .

Now suppose that {Sn}∞n=1 is a sequence of shinglings of a topological surface
X. The sequence {Sn}∞n=1 has mesh locally approaching 0 if, given a compact
subset W of X and a cover U of W by open subsets of X, then there is a positive
integer n such that if m ≥ n and s ∈ Sm with s∩W 6= ∅ then s is contained in one
of the elements of U . Suppose that {Sn}∞n=1 has mesh locally approaching 0. Let
Y be an open subsurface of X. Then for each ring or quadrilateral in Y one gets
two sequences of combinatorial moduli. The sequence {Sn}∞n=1 is conformal (K)
in Y if there is a real number K > 1 satisfying the following conditions.

Axiom I: For each ring R in Y , there exists r > 0 such that m(R,Sn), M(R,Sn)
∈ [r,Kr] for sufficiently large n.
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Axiom II: Given x ∈ Y , a neighborhood N of x, and an integer J , there is a
ring R surrounding x in N such that m(R,Sn),M(R,Sn) > J for sufficiently
large n.

When X = Y we say that {Sn}∞n=1 is conformal (K) or simply conformal. The
combinatorial Riemann mapping theorem in [3] states that, given a conformal se-
quence of shinglings of an open topological surface X, there is a quasiconformal
structure on X such that the analytic moduli of rings in X are within a global
multiplicative bound of the asymptotic combinatorial moduli.

Suppose that {Sn}∞n=1 is a sequence of shinglings of a topological surface X with
mesh locally approaching 0, and let R be a ring or quadrilateral in X. Then R has
nondegenerate asymptotic moduli if {m(R,Sn) : n ∈ N} ∪ {M(R,Sn) : n ∈
N} is contained in a compact subset of (0,∞) and has degenerate asymptotic
moduli otherwise.

In our setting, X will be an R-complex and the sequence of shinglings will be the
sequence of collections of closed tiles in successive subdivisions of X. Suppose R is
a finite subdivision rule and X is an R-complex such that X is a surface. For each
nonnegative integer n, denote by Sn(X) the shingling of X whose elements are the
closed tiles of Rn(X). The pair (X,R) is conformal if the sequence of shinglings
{Sn(X)} is conformal in int(X). The finite subdivision rule R is conformal if
(X,R) is conformal whenever X is a bounded valence R-complex such that X is a
surface.

Suppose R is a finite subdivision rule, X is an R-complex contained in R2, n
is a nonnegative integer, and K is a positive real number. Following [3], Sn(X) is
almost round (K) if for each tile t ∈ Sn(X) there are concentric circular disks
C(t) and D(t) such that C(t) ⊆ t ⊆ D(t), and radius(D(t)) ≤ K ·radius(C(t)). The
pair (X,R) is almost round if there is a positive real number K such that Sn(X)
is almost round (K) for each nonnnegative integer n. The finite subdivision rule R
is almost round if every tile type is R-isomorphic to an R-complex t ⊆ R2 such
that (t,R) is almost round. Note that even if a finite subdivision rule R is almost
round, it does not follow that (X,R) is almost round for every R-complex X. See
Example 1.3.2 and Figure 7. The relevance of almost roundness to conformality
comes from [3, Theorem 7.1], which states that if X is a compact subset of C and
{Sn} is a sequence of shinglings of X such that the mesh of {Sn} goes to 0 and
{Sn} is almost round (K) for some K, then {Sn} is conformal.

We sometimes wish to apply [3, Theorem 7.1] to conclude that combinatorial
moduli of quadrilaterals are bounded from 0. Because the definition of conformality
deals with rings, not quadrilaterals, this does not quite follow, and so we include
the following lemma.

Lemma 1.2.1. Let X be an open topological surface. Let {Sn} be a sequence of
shinglings of X with mesh locally approaching 0 which is conformal. Let Q be a
quadrilateral in X. Then the moduli M(Q,Sn) are uniformly bounded from 0.

Proof. Let R be a ring in X which separates the ends of Q. See Figure 4. Let n
be a nonnegative integer. Let ρ be an optimal weight function on Sn for R. Then
A(Q, ρ) ≤ A(R, ρ) and H(Q, ρ) ≥ H(R, ρ). Hence

M(Q,Sn) ≥ H(Q, ρ)2

A(Q, ρ)
≥ H(R, ρ)2

A(R, ρ)
= M(R,Sn).
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Figure 4. A ring R separating the ends of Q

Figure 5. The tile type t and its subdivisionR(t) for the barycen-
tric subdivision rule

Because {Sn} is conformal, the moduli M(R,Sn) are uniformly bounded from 0,
and so the moduli M(Q,Sn) are uniformly bounded from 0.

This proves Lemma 1.2.1.

1.3. Examples. We now give some examples of finite subdivision rules. Since we
only consider them one at a time, for convenience we will denote each example byR.
For each example, we give a figure which indicates how each tile type is subdivided.
Edges which are distinct in SR are distinguished by how they are drawn.

In each example given in this section, we orient the edges of the tile types and
of their subdivisions to show how edges are identified in SR and to help indicate
the subdivision map ϕR : R(SR) → SR. But once we verify that it is possible to
orient the edges compatibly in such a figure, then the orientations only clutter the
figure. Because of the symmetries in these examples, it is clear how to subdivide
further without edge orientations.

Example 1.3.1 (The barycentric subdivision rule). The single tile type t is a 2-
simplex, and its subdivision is shown in Figure 5. We see that the subdivision
complex SR is the quotient of a triangle in which the three edges are identified
preserving the orientations shown in the left of Figure 5. If X is an R-complex
and n is a positive integer, then Rn(X) is the n-th barycentric subdivision of X.
Hence R does not have bounded valence. It was shown in [4, Section 6.3.1] that if
X is an R-complex whose underlying space is the Euclidean plane, then (X,R) is
not conformal. Hence R is not conformal.
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Figure 6. The subdivision of the tile type for the binary quadri-
lateral subdivision rule

Example 1.3.2 (The binary quadrilateral subdivision rule). In this example the
single tile type is a Euclidean square, and the subdivision complex SR is the torus
obtained from the square by identifying opposite edges. The subdivision of the square
is into four smaller squares as shown in Figure 6. This finite subdivision rule R is
almost round, and the dihedral symmetries of the square are weak R-isomorphisms.
Because of this, it follows from Theorem 6.4 that R is conformal.

An interesting example of an R-complex for the binary quadrilateral subdivision
rule is shown in the top left of Figure 7. The R-complex X is a square divided
into three tiles, with two of the tiles having a pair of adjacent edges in common.
Figure 7 shows the first three subdivisions of X. Even though the subdivision ruleR
is conformal, the pair (X,R) is not almost round. However, one could also consider
a copy X ′ of this CW complex on the Riemann surface (with a singular point with
cone angle π and a boundary point with angle π

2 ) made up out of three squares
glued together as indicated. Then (X ′,R) is almost round, and the Riemann map
from this quadrilateral to a rectangle, followed by an affine map from the rectangle
to the square, would show how to redefine the map X → SR so that (X,R) is
almost round.

Example 1.3.3 (The pentagonal subdivision rule). In this example, the single tile
type p is a pentagon and there is a single edge type. The subdivision of the pentagon
is into six smaller pentagons as shown in Figure 8. As with the previous example,
the dihedral symmetries of the pentagon are weak R-isomorphisms. Hence it follows
from Theorem 6.4 that R is conformal.

When we first started studying this example before we had proved Theorem 6.4,
we were wondering if we could define R so that the tiles of the subdivisions Rn(p)
were almost round (K) for some constant K that did not depend on n. After
learning of this example from us, Kenneth Stephenson realized that his circlepacking
program, CirclePack [16], might be an efficient computational tool for figuring out
how to do this. (See [1] for details of this approach.) Figure 9 shows circle packing
figures for R2(p) and R3(p), as computed from CirclePack. Note that although the
cell complex for R3(p) is a combinatorial subdivision of the cell complex for R2(p),
it need not be a geometric subdivision of the cell complex for R2(p), since they were
drawn independently using the circle packing algorithm. What is most impressive
to us about the figures is that for each tile t in R2(p), the shape of t in R2(p) is very
close to the shape of R(t) in R3(p). This persists with further subdivisions, and
is a strong indicator of conformality, since it suggests the sequence of subdivisions
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Figure 7. Subdivisions of an R-complex for the binary quadri-
lateral subdivision rule

Figure 8. The subdivision of the tile type for the pentagonal
subdivision rule

will be almost round. This example has been extensively studied by Bowers and
Stephenson in [1].

In this paragraph we introduce a “barycenter trick”. Suppose we are given
the following information, which is essentially what is contained in Figure 1 if we
delete the edge orientations. We have finitely many edge types with distinct labels.
For each edge type we have a subdivision whose edges are labeled by the edge
type labels. We have finitely many tile types with distinct labels whose edges are
labeled with edge type labels. For each tile type we have a subdivision whose edges
and tiles are labeled in a way which is compatible with the labeling of the edge
type subdivisions and with the labeling of the tile types. We furthermore assume
that the labeled subdivision of every edge type is invariant under the operation
of interchanging the vertices of the edge type; in other words, the labels of the
subdivision of every edge type are palindromic. At this point we do not quite have
a finite subdivision rule. The barycenter trick produces a finite subdivision rule.
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Figure 9. R2(p) and R3(p)

C CA A

B B

D

E

Figure 10. The subdivision of the tile type

The barycenter trick proceeds as follows. We orient every edge type arbitrarily.
We insert a barycenter in every edge of the subdivision of every edge type. The
subdivision of every edge type now has an even number of edges. We delete the
edges in the second half. We label the remaining edges with the labels of the
original edges which contain them, and we orient the remaining edges toward the
barycenters which they contain. We likewise insert a barycenter in every edge of
every tile type and in every edge of the subdivision of every tile type, labeling the
new edges as before and orienting them toward the barycenters which they contain.
The result is a compatible orientation of all of the new edges, allowing us to define
a finite subdivision rule. Although the barycenter trick changes every tile type and
its subdivision, the change is to only add a barycenter to every edge.

We close this section with a simple example to illustrate somewhat the con-
straints and the choices in constructing a finite subdivision rule. In Figure 10 we
show a subdivision of a triangle ABC into three subtriangles. We want to construct
a finite subdivision rule R so that ABC is the single tile type and R(ABC) is the
subdivision of ABC shown in Figure 10. We first consider the possible edge types.

Since each of the edges BC and AC is subdivided into two edges and AB is not
properly subdivided, AB cannot have the same edge type as BC or AC. We first
investigate the possibilities for having exactly two edge types. First suppose that
the directed edges BC and AC have the same type. Then their subdivisions must
be the same, so the directed edges DC and EC must have the same type. See
Figure 11. But then the directed edges DC, EC, EA, DA, and BA all must have
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C CA A

B B

D

E

Figure 11. Checking one possible choice with two edge types

the same type. This is impossible, since it implies that EA and DB have different
types. Now suppose that the the directed edges AC and CB have the same edge
type. Then AE and CD have the same type, and EC and DB have the same type.
One of the directed edges in the boundary of triangle EDC has the same type as
AB. There are six choices, and it is easy to see that each is impossible. Hence we
cannot have only two edge types.

So the only possibility for having a finite subdivision rule with a single tile type
which is subdivided as in Figure 10 is for all three of the edges of ABC to have
different types. There are six possibilities for the edge type of the directed edge AB
in R(ABC), and each can be realized by a finite subdivision rule. The six possible
subdivisions of the tile type are shown in Figure 12, and Figure 13 shows R2(ABC)
(without edge labels and orientations) for the six different choices. Three of the
six finite subdivision rules do not have bounded valence, and two of the six do not
have mesh approaching 0 combinatorially.

2. Mesh approaching 0

In this section we prove that a bounded valence finite subdivision rule has mesh
approaching 0 combinatorially exactly if it is weakly isomorphic to a finite subdi-
vision rule whose mesh approaches 0. This is convenient because we usually want
to apply the geometric definition of mesh approaching 0 and the combinatorial
definition is easier to prove.

We begin with two lemmas.

Lemma 2.1. Let R be a bounded valence finite subdivision rule whose mesh ap-
proaches 0 combinatorially. Let t be a tile type of R.

1. Let u and v be distinct vertices of t. Then there exists a positive integer n
such that no tile of Rn(t) contains both u and v.

2. Let v be a vertex of t and let e be an edge of t not containing v. Then there
exists a positive integer n such that no tile of Rn(t) contains both v and an
edge contained in e.

Proof. To prove statement 1 of Lemma 2.1, let u and v be disjoint vertices of
t. Because R has bounded valence, there exists a positive integer n such that
the valences of u and v in Rn(t) are maximal with respect to all subdivisions of
t. Because every edge type of R eventually subdivides properly, we furthermore
assume without loss of generality that every edge of Rn(t) which contains u is
disjoint from every edge of Rn(t) which contains v. Let e be an edge of Rn(t)
containing u, and let f be an edge of Rn(t) containing v. Suppose that there
is a tile s of Rn(t) containing both e and f . Since the mesh of R approaches 0
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Figure 12. The six possibilities with three edge types

Figure 13. R2(ABC) for each of the six possibilities

combinatorially, there exists a subdivision of s for which there does not exist a tile
containing both an edge in e and an edge in f . It follows that n may be chosen so
large that no tile of Rn(t) contains an edge containing u and an edge containing v.
This proves statement 1.
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Statement 2 can be proved similarly, and so the proof of Lemma 2.1 is complete.

Lemma 2.2. Let R be a bounded valence finite subdivision rule whose mesh ap-
proaches 0 combinatorially. Let X be an R-complex which is homeomorphic to a
closed disk. Let e1, . . . , ek and f1, . . . , fk be disjoint edges in the boundary of X
such that if i, j ∈ {1, . . . , k} with i 6= j, then ei and fi do not separate ej and fj in
∂X. Let p1, . . . , pk be points in e1, . . . , ek, and let q1, . . . , qk be points in f1, . . . , fk.
Then there exists a subdivision Rn(X) of X and arcs γ1, . . . , γk in X such that if
i ∈ {1, . . . , k}, then γi joins pi and qi and every tile of Rn(X) which meets γi is
disjoint from γj with j ∈ {1, . . . , k} and j 6= i.

Proof. The assumptions imply that ∂X \ (e1 ∪ f1) has two connected components.
Let a and b denote the closures of these connected components. Let a′ be a con-
nected union of edges in the interior of a and let b′ be a connected union of edges in
the interior of b such that a′∪b′ contains ei and fi for i ∈ {2, . . . , k}. Using the fact
that the mesh of R approaches 0 combinatorially and Lemma 2.1, it is easy to see
that there exists a positive integer n such that no tile of Rn(X) meets both a and b
and no tile of Rn(X) meets both a′∪b′ and e1∪f1. Similarly, we may increase n so
that star2(a,Rn(X)) is disjoint from star2(b,Rn(X)) and star2(a′ ∪ b′,Rn(X)) is
disjoint from star2(e1∪f1,Rn(X)). It follows that there exists an arc γ1 in X which
separates star2(a,Rn(X)) and star2(b,Rn(X)). Hence γ1 joins e1 and f1 and γ1 is
disjoint from star2(a ∪ b,Rn(X)). We now modify γ1 within star(e1 ∪ f1,Rn(X))
so that γ1 joins p1 and q1 and γ1 is disjoint from star2(a′ ∪ b′,Rn(X)). It easily
follows that if a′ 6= ∅, then there exists an R-subcomplex Y of Rn(X) which con-
tains a′, is homeomorphic to a closed disk, and is disjoint from star(γ1,Rn(X)).
Likewise if b′ 6= ∅, then there exists an R-subcomplex Z of Rn(X) which contains
b′, is homeomorphic to a closed disk, and is disjoint from star(γ1,Rn(X)). It easily
follows that we may inductively construct arcs γ1, . . . , γk which have the properties
stated in Lemma 2.2.

This proves Lemma 2.2.

Theorem 2.3. Let R be a bounded valence finite subdivision rule. Then the mesh
of R approaches 0 combinatorially if and only if R is weakly isomorphic to a finite
subdivision rule whose mesh approaches 0.

Proof. It is clear that if R is weakly isomorphic to a finite subdivision rule whose
mesh approaches 0, then the mesh of R approaches 0 combinatorially.

To prove the converse, let R be a bounded valence finite subdivision rule whose
mesh approaches 0 combinatorially. Let t be a tile type of R with characteristic
map ψt : t → SR. We identify t with a convex polygon in R2. We will prove for
every nonnegative integer n that there exists a cellular subdivision Qn(t) of t such
that Qn+1(t) is a subdivision of Qn(t), Qn(t) is cellularly homeomorphic to Rn(t),
the edges of Qn(t) are piecewise linear, and the diameters of the tiles of Qn(t)
approach 0 as n goes to ∞.

We define Q0(t) to have just one tile, t. We now suppose that Qn(t) is defined
for some nonnegative integer n, and we inductively define Qn+1(t) and probably
even some finer subdivisions of Qn(t). Let ε be a positive real number. Let L be
a union of a finite family of parallel lines in R2 such that L contains no vertex of
Qn(t), every point of t is within ε/2 of L, and if s′ is a tile of Qn(t) which meets L,
then L ∩ s′ is a disjoint union of line segments whose interiors are both nonempty
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and lie in the interior of s′. Let s′ be a tile of Qn(t) which meets L. Then L∩ s′ is
a disjoint union of line segments L1, . . . , Lk whose interiors are both nonempty and
lie in the interior of s′. Using the fact that the edge types of R eventually subdivide
properly, we now construct finitely many more subdivisions Qn+1(t), . . . ,Qn+l(t) if
necessary, which are cellularly homeomorphic to Rn+1(t), . . . ,Rn+l(t) and whose
edges are piecewise linear such that Li has endpoints p′i and q′i in interiors of edges
e′i and f ′i of Qn+l(t) for i ∈ {1, . . . , k} and e′1, . . . , e

′
k, f ′1, . . . , f

′
k are disjoint.

We fix a cellular homeomorphism ft,n : Qn(t) →Rn(t) with ft,n(v) = v for each
vertex v of t, which gives us a correspondence between the cells of Qn(t) and Rn(t).
Let s be the tile in Rn(t) corresponding to s′. Let e1, . . . , ek, f1, . . . , fk be the edges
of Rl(s) corresponding to e′1, . . . , e

′
k, f ′1, . . . , f

′
k, and let p1, . . . , pk, q1, . . . , qk be

points in the interiors of e1, . . . , ek, f1, . . . , fk. We next apply Lemma 2.2 to the R-
complex Rl(s) and the points p1, . . . , pk, q1, . . . , qk and edges e1, . . . , ek, f1, . . . , fk

of Rl(s). The result is a subdivision Rl+m(s) of Rl(s) and arcs γ1, . . . , γk in s such
that if i ∈ {1, . . . , k}, then γi joins pi and qi and every tile of Rl+m(s) which meets
γi is disjoint from γj with j ∈ {1, . . . , k} and j 6= i. Maintaining the properties of
the previous sentence, we modify γi for i ∈ {1, . . . , k} so that the intersection of γi

with every tile of Rl+m(s) is an arc such that only its endpoints lie in the boundary
of that tile. We choose l and m so that the previous sentence holds for every tile
s′ of Qn(t) which meets L.

It follows that it is possible to modify Qn+1(t), . . . ,Qn+l(t) in the interiors of the
tiles of Qn(t) if necessary and it is possible to construct subdivisions Qn+l+1(t), . . . ,
Qn+l+m(t) which are cellularly homeomorphic to Rn+l+1(t), . . . ,Rn+l+m(t) such
that the edges of Qn+l+m(t) are piecewise linear, and every tile of Qn+l+m(t) lies
in the ε-neighborhood of one of the lines of L. We now choose a sequence of such
unions L of families of lines with successively smaller values of ε approaching 0 so
that our lines form rectangular grids with successively smaller meshes. It follows
that for every tile type t of R and every nonnegative integer n there exists a cellular
subdivision Qn(t) and a cellular homeomorphism ft,n : Qn(t) → Rn(t) such that
Qn+1(t) is a subdivision of Qn(t), ft,n(v) = v for every vertex v of t, and the
diameters of the tiles of Qn(t) approach 0 as n goes to ∞.

We now define the finite subdivision rule Q. Let t1, . . . , tp be the tile types of
R, with associated characteristic maps ψt1 : t1 → SR, . . . , ψtp

: tp → SR. The
tile types of Q will be t1, . . . , tp. We will denote the characteristic maps for Q by
ψ′t1 : t1 → SQ, . . . , ψ′tp

: tp → SQ. We will define the restrictions of ψ′t1 , . . . , ψ
′
tp

to ∂t1, . . . , ∂tp as maps to the 1-skeleton of SR, and we will define SQ to be the
quotient space of the disjoint union of t1, . . . , tp by the equivalence relation induced
by these maps. Hence the 1-skeleton of SQ will equal the 1-skeleton of SR.

In this paragraph we define the restrictions of ψ′t1 , . . . , ψ
′
tp

to ∂t1, . . . , ∂tp. We
define ψ′t1 , . . . , ψ

′
tp

on the vertices of t1, . . . , tp by ψ′ti
(v) = ψti

(v) if i ∈ {1, . . . , p}
and v is a vertex of ti. We next define ψ′t1 , . . . , ψ

′
tp

on the edges of t1, . . . , tp. Let
e be an edge in SR, and let e1 be an edge in a tile type ti with ψti

(e1) = e.
We define ψ′ti

on e1 by ψ′ti

∣∣
e1

= ψti

∣∣
e1

. Now suppose that e2 6= e1 is an edge
in a tile type tj with ψtj

(e2) = e. There is a homeomorphism ψe1
e2

: e2 → e1

such that ψtj

∣∣
e2

= ψti

∣∣
e1
◦ ψe1

e2
. Let x ∈ e2. Since the diameters of the tiles of

Qn(tj) go to 0 as n → ∞, {x} = ∩n∈Nstar(x,Qn(tj)). For each n, the image
of star(x,Qn(tj)) ∩ e2 under f−1

ti,n ◦ ψe1
e2
◦ ftj ,n is a star in Qn(ti) ∩ e1. That is,

star(x,Qn(tj)) ∩ e2 corresponds to a star in Qn(ti) ∩ e1 via the correspondences
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of Qn(tj) ∩ e2 to Rn(tj) ∩ e2, Rn(tj) ∩ e2 to Rn(ti) ∩ e1 (which is by way of
Rn(SR) ∩ e), and Rn(ti) ∩ e1 to Qn(ti) ∩ e1. Since the diameters of the tiles of
Qn(ti) go to 0 as n → ∞, the intersection of these stars is a point y ∈ e1. We
define ψ′tj

(x) = ψ′ti
(y). We define the restrictions of ψ′t1 , . . . , ψ

′
tp

to ∂t1, . . . , ∂tp by
repeating this construction. This completes the construction of SQ.

For each tile type t of SR, we have already defined a subdivision Q(t) of t. These
subdivisions induce a subdivision Q(SQ) of SQ.

We now define ϕQ : Q(SQ) → SQ. Let x ∈ Q(SQ). Let i ∈ {1, . . . , p} such that
x ∈ ψ′ti

(ti), let y ∈ ti with ψ′ti
(y) = x, and let s1 be the open cell of Q(ti) with

y ∈ s1. Let s2 = fti,1(s1) ⊂ R(ti), let s3 = ψti
(s2) ⊂ R(SR), and let s4 = ϕR(s3) ⊂

SR. Let j ∈ {1, . . . , p} with s4 ⊂ ψtj
(tj), let s5 be an open cell in tj such that

ψtj

∣∣
s5

maps s5 homeomorphically onto s4, and let s6 = f−1
tj ,1(s5). For each positive

integer n, the image of star(y,Qn(ti))∩s1 under f−1
tj ,n−1 ◦(ψtj

∣∣
s5

)−1 ◦ϕR ◦ψti
◦fti,n

is the intersection of s6 with a star in Qn−1(tj). As n → ∞, the intersections of
these sets is a point y′ ∈ s6. We define ϕQ(x) = ψ′tj

(y′). One can check that ϕQ is
well defined and that Q is a finite subdivision rule.

To complete the proof, it remains to show that R and Q are weakly isomorphic.
To do this, it suffices to find cellularly isotopic cellular homeomorphisms h, g : SQ →
SR such that h ◦ ϕQ = ϕR ◦ g. It is a straightforward matter to see that SQ and
SR are cellularly homeomorphic. We take h : SQ → SR to be such a cellular
homeomorphism. Furthermore, we may and do assume that if s is an open cell of
ti with i ∈ {1, . . . , p}, then h(ψ′ti

(s)) = ψti
(s).

We next define g. Let s be an open cell in Q(SQ). Let i ∈ {1, . . . , p} such
that s ⊂ ψ′ti

(ti), and let s1 be the open cell in Q(ti) with s = ψ′ti
(s1). Let s2 =

fti,1(s1) ⊂ R(ti), and let s3 = ψti
(s2) ⊂ R(SR). Note that h(ϕQ(s)) = ϕR(s3).

We define g on s by g
∣∣
s

= ϕR
∣∣−1

s3
◦ (h ◦ϕQ)

∣∣
s
. One can check that g is well defined,

g is a cellular homeomorphism, and g and h give a weak isomorphism between R
and Q.

This proves Theorem 2.3.

3. The layer theorem

In preparation for the proof of Theorem 4.2, we prove a subadditivity formula for
combinatorial moduli called the layer theorem. A special case of this for combinato-
rial moduli of rings was given in [5, Theorem 1.7]. The proof given there generalizes
to this more general layer theorem. Since the proof is short, we reproduce it here.

Theorem 3.1 (Layer Theorem). Let X be a quadrilateral or ring. If X is a ring,
then let X1, . . . , Xn be rings contained in X which separate the ends of X. If X is
a quadrilateral, then let X1, . . . , Xn be quadrilaterals contained in X which separate
the ends of X and whose left and right sides are contained in the left and right sides
of X. Let S be a finite shingling of X which contains disjoint subsets S1, . . . ,Sn such
that Si is a shingling of Xi for i ∈ {1, . . . , n}. Then M(X,S) ≥

∑n
i=1 M(Xi,Si).

Proof. For each i ∈ {1, . . . , n}, let ρi be an optimal weight function for the fat flow
modulus M(Xi,Si). Define a weight function ρ on S by ρ(s) = 0 if s /∈ Si for all
i ∈ {1, . . . , n} and ρ(s) = H(Xi,ρi)

A(Xi,ρi)
ρi(s) if s ∈ Si. Then

H(X, ρ) ≥
n∑

i=1

H(Xi, ρi)
A(Xi, ρi)

H(Xi, ρi) =
n∑

i=1

M(Xi, ρi).
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Similarly

A(X, ρ) =
n∑

i=1

(
H(Xi, ρi)
A(Xi, ρi)

)2

A(Xi, ρi) =
n∑

i=1

M(Xi, ρi).

Thus

M(X,S) ≥ M(X, ρ) =
H2(X, ρ)
A(X, ρ)

≥
n∑

i=1

M(Xi, ρi) =
n∑

i=1

M(Xi,Si).

This proves Theorem 3.1.

Corollary 3.2. We return to the setting of Axiom I and Axiom II in Subsec-
tion 1.2. Let L be a positive real number. If the sequence of shinglings {Si}∞i=1 has
bounded valence, then Axiom II can be weakened to the following statement. Given
a point x ∈ Y and a neighborhood N of x there is a ring R surrounding x in N
such that m(R,Si) > L for sufficiently large i.

Remark. The main point is that here L is fixed but the integer J in Axiom II
may be arbitrarily large.

Proof. We must verify Axiom II, which states that given a point x ∈ Y , a neighbor-
hood N of x and an integer J , there is a ring R surrounding x in N such that for
sufficiently large i the combinatorial moduli of R are all greater than J . According
to [5, Corollary 1.4] we have m(R,Si) ≤ M(R,Si) for every ring R contained in
X. So the inequality satisfied by the fat cut modulus m(R,Si) in the statement of
Corollary 3.2 is also satisfied by the fat flow modulus M(R,Si). To obtain Axiom
II, apply this modification of the form of Axiom II in the corollary I times, where
I ≥ J/L, to successively smaller neighborhoods of x to obtain I disjoint rings with
fat flow moduli greater than L surrounding x each of which is surrounded by the
previous ring. Theorem 3.1 implies that every ring in N surrounding x and con-
taining these I rings has fat flow modulus at least J relative to all shinglings Si

with i sufficiently large. The bounded valence theorem [5, Theorem 1.6] now yields
a corresponding estimate for fat cut moduli. This proves Corollary 3.2.

4. Axiom 0 implies conformality

Theorem 4.2 shows that, for bounded valence finite subdivision rules, Axiom
I and Axiom II are implied by the following axiom, which is implied by either of
them. Theorem 4.2 is similar to [5, Theorem 8.2], and the proof relies heavily on [5].
(Historically, Theorem 4.2 was proved first and the argument was then generalized
to prove [5, Theorem 8.2].)

Suppose we are given a finite subdivision rule R, an R-complex X which is a
surface, and an open subsurface Y of X.

Axiom 0: Given x ∈ Y and a neighborhood N of x, there is a ring R surround-
ing x in N such that the moduli m(R,Si(X)) are uniformly bounded from
0.

We use the following lemma in the proof of Theorem 4.2.

Lemma 4.1. Let R be a finite subdivision rule and let Z be an R-complex which is
a surface. Let Y be an R-complex which is a connected surface, and let ϕ1, ϕ2 : Y →
Z be R-maps which are injective on int(Y ). If ϕ1(t) = ϕ2(t) for some tile t of Y ,
then ϕ1 = ϕ2.
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Proof. Let t be a tile of Y such that ϕ1(t) = ϕ2(t). It follows easily from the
definition of R-map that there exists at most one R-map from one tile to another.
Hence ϕ1|t = ϕ2|t. It is likewise easy to see that ϕ1 and ϕ2 agree on every point of
every tile in Y which has an edge in common with t. Lemma 4.1 now follows from
the connectivity of Y .

Theorem 4.2 (Axiom 0 Implies Conformality). Let R be a bounded valence finite
subdivision rule whose mesh approaches 0. Let X be a bounded valence R-complex
which is a surface. Assume that the sequence {Si(X)} satisfies Axiom 0 in the
interior of X. Then the sequence {Si(X)} is conformal in the interior of X.

Proof. To begin the proof of Theorem 4.2 we construct a finite set of R-complexes,
called neighborhood models, which model stars of tiles of the complexes Ri(X).
A neighborhood model is a finite R-complex N with a distinguished tile t
such that there exists a nonnegative integer i, a tile s in the interior of Ri(X),
and an R-isomorphism ϕ : N → star(s,Ri(X)) ⊆ Ri(X) such that ϕ(t) = s. We
construct neighborhood models so that for every nonnegative integer i and every
tile s in the interior of Ri(X) we have an R-map as in the previous sentence, but if
N and N ′ are neighborhood models with corresponding distinguished tiles t and t′

and R-maps ϕ, ϕ′ with ϕ(t) = ϕ′(t′), then N = N ′ and hence t = t′ and so ϕ = ϕ′

by Lemma 4.1. So for every nonnegative integer i and every tile s in the interior
of Ri(X) we have a unique neighborhood model N and a unique corresponding
R-map ϕ : N → star(s,Ri(X)). Because R and X have bounded valence, the set
of neighborhood models is finite.

In this paragraph we transfer the assumptions on X to neighborhood models.
Let N be a neighborhood model with distinguished tile t. By definition there exists
an injective R-map from N to Ri(X) for some nonnegative integer i which takes t
to the interior of X. Using the compactness of t, it follows that there exist finitely
many rings R in N such that every point in t is surrounded by one of these rings
and the moduli m(R,Si(N)) are uniformly bounded from 0 for every such ring R.
We fix these rings and call them the distinguished rings of N .

In this paragraph we use Corollary 3.2 to prove that Axiom II holds for every
point in the interior of X relative to the sequence {Si(X)}. Let i be a nonnegative
integer. For every tile t of Ri(X) which is contained in the interior of X there exists
a unique corresponding neighborhood model N . We have constructed finitely many
distinguished rings in N . By identifying star(t,Ri(X)) with N for every such tile t,
we obtain a collection Ci of rings in X such that i) every point contained in a tile t of
Ri(X) with t ⊆ int(X) is surrounded by one of the rings in Ci and ii) there exists
a positive real number L which is independent of i such that m(R,Sj(X)) ≥ L
for every R ∈ Ci and every integer j ≥ i. Now let x ∈ int(X), and let U be a
neighborhood of x. Because the mesh of R approaches 0, it is possible to choose i
so large that x is contained in a tile t of Ri(X) such that star(t,Ri(X)) ⊆ U . It
follows that the hypotheses of Corollary 3.2 are satisfied. Thus Corollary 3.2 shows
that Axiom II holds for every point in the interior of X relative to the sequence
{Si(X)}.

Having verified Axiom II, we turn to Axiom I. We will use the sufficiently rich
theorem [5, Theorem 7.1] to verify Axiom I. This leads us to buffered rings.

As a first step toward constructing models for buffered rings, in this paragraph
we construct models for outer boundary rings in the neighborhood models. For
this we essentially repeat the choice of distinguished rings in the neighborhood



FINITE SUBDIVISION RULES 21

models except that where before we chose finitely many rings R in the interior of
a neighborhood model N so that the moduli m(R,Si(N)) are uniformly bounded
from 0, we now require that m(R,Si(N)) > 18e2K(2) for every sufficiently large
positive integer i, where K(2) is the constant occurring in the quadratic area es-
timate [3, Theorem 4.2.1]. We call such rings outer boundary ring models.
We assume that if N is a neighborhood model with distinguished tile t, then every
outer boundary ring model of N surrounds at least one point of t.

Let N be a neighborhood model with distinguished tile t. We have chosen finitely
many outer boundary ring models in N such that every point of t is surrounded
by at least one outer boundary ring model, and every outer boundary ring model
surrounds at least one point of t. It easily follows that to every outer boundary
ring model R in N we can associate an open disk contained in t that is surrounded
by R such that the open disks associated to distinct outer boundary ring models
are disjoint. This extends to the following property. Suppose that N and N ′ are
neighborhood models, that R and R′ are outer boundary ring models of N and N ′,
respectively, and that D and D′ are the open disks associated to (N,R) and (N ′, R′),
respectively. Suppose that i is a nonnegative integer and that ϕ : N →Ri(X) and
ϕ′ : N ′ → Ri(X) are injective R-maps. Then either N = N ′, R = R′, and ϕ = ϕ′

or ϕ(D) ∩ ϕ′(D′) = ∅.
In this paragraph we construct buffered ring models in the neighborhood models.

Let N be a neighborhood model, and let R be an outer boundary ring model of N .
Let D be the open disk associated to the pair (N,R) in the previous paragraph.
Recall that R was chosen so that m(R,Si(N)) > 18e2K(2) for every sufficiently
large positive integer i. Using Axiom II we now choose a ring R′ contained in D
such that m(R′,Si(N)) > 18e2K(2) for every sufficiently large positive integer i.
Let R′′ be the ring in N which contains R and R′ and whose boundary is contained
in ∂R ∪ ∂R′. The bounded valence theorem, [4, Theorem 6.2.4] or [5, Theorem
1.6], and the bounds on moduli given by the separation theorem in [5, Theorem
4.2] imply that there exists a positive real number L such that M(R′′,Si(N)) ≤ L
for every sufficiently large positive integer i. It follows that the ring between R and
R′ is a buffered ring (L), and we call this ring a buffered ring model. Because
there are only finitely many pairs (N,R), we may assume that L is independent of
(N,R).

In this paragraph we complete the proof of Theorem 4.2. Let Y be an open
subsurface of X whose closure is compact and is contained in the interior of X. We
choose a metric on X whose topology coincides with the given topology on X. Let
ε be a positive real number. Because the mesh of R approaches 0, there exists a
positive integer i such that the star of every tile of Ri(X) which meets Y is in the
interior of X and has diameter less than ε. Fix such a positive integer i. Let s be a
tile of Ri(X) which meets Y . Let N be the neighborhood model with distinguished
tile t, and let ϕ : N → star(s,Ri(X)) ⊆ Ri(X) be the R-isomorphism such that
ϕ(t) = s. It is clear that the image under ϕ of every buffered ring model in N is
a buffered ring (L) in X. It easily follows that the set of all such buffered rings
in X as s varies over the tiles in Ri(X) which meet Y yield a buffered ring cover
(L) of Y with spanning ring mesh at most ε having bounded valence with respect
to a parameter which is independent of ε and Y . The sufficiently rich theorem [5,
Theorem 7.1] now implies that the sequence {Si(X)} is conformal (M) in Y , where
M is a positive real number which is independent of Y . The sequence {Si(X)} is
therefore conformal in the interior of X.
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Figure 14. The three types of test quadrilaterals

This proves Theorem 4.2.

5. The 1,2,3-tile criterion

We now use Theorem 4.2 to prove Theorem 5.1, which shows that to check
whether or not a bounded valence finite subdivision rule is conformal it suffices to
check that the moduli of a finite number of very special quadrilaterals are uniformly
bounded from 0.

We begin by defining these very special quadrilaterals, which we call test quadri-
laterals. Let R be a finite subdivision rule. A test quadrilateral for R is an
R-complex Q which is a quadrilateral of one of the following three types. See Fig-
ure 14. There are two Type II test quadrilaterals in Figure 14 to indicate that the
top and bottom may or may not belong to a single tile.

Type I. The quadrilateral Q consists of one tile, and each of the ends of Q consists
of one edge.

Type II. The quadrilateral Q consists of two tiles whose intersection consists of
one edge f , and each of the ends of Q consists of one edge which meets f . We call
f the interior edge of Q.

Type III. The quadrilateral Q consists of three tiles t1, t2, and t3, where t2 is
a triangle with edges f1, f2, and f3. The intersection of t1 and t2 is f1, and the
intersection of t2 and t3 is f3. The intersection of t1 and t3 is a vertex v. The top
of Q consists of an edge containing v, and the bottom of Q is f2. We call f1 and
f3 the interior edges of Q.

We say that R satisfies the 1-tile criterion (resp. 2-tile criterion, resp. 3-
tile criterion) if the moduli M(Q,Si(Q)) are uniformly bounded from 0 for every
test quadrilateral of Type I (resp. Type II, resp. Type III) for R.

Theorem 5.1 (The 1,2,3-tile Criterion). Let R be a bounded valence finite subdi-
vision rule whose mesh approaches 0. Suppose that the moduli M(Q,Si(Q)) are
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uniformly bounded from 0 for every test quadrilateral Q for R. Then R is confor-
mal.

Proof. Let X be a bounded valence R-complex which is a surface. According to
Theorem 4.2, it suffices to prove the following. Given a point x in int(X) and a
neighborhood N of x in X, there exists a ring R surrounding x in N such that the
moduli m(R,Si(X)) are uniformly bounded from 0. So let x be a point in int(X),
and let N be a neighborhood of x in X. Let R be a ring in N surrounding x. We
prove that the moduli m(R,Si(X)) are uniformly bounded from 0.

In this paragraph we choose a sufficiently large positive integer i and construct a
special R-subcomplex S of Ri(X). Let α be a simple closed curve in the interior of
R separating the ends of R. Because the mesh of R approaches 0, star(α,Ri(X)) is
contained in R and the union of three tiles of Ri(X) does not separate the ends of
R for every sufficiently large positive integer i. We suppose that i is this large and
fix it for the rest of the proof of Theorem 5.1. We modify α slightly if necessary
so that not only is star(α,Ri(X)) contained in R but also α contains no vertex of
Ri(X). Now the argument in the long paragraph between lines 7.13 and 7.14 of [5]
shows that there exist distinct tiles s1, . . . , sn in Ri(X) which meet α such that i)
sk ∩ sk+1 contains an edge fk for every integer k taken modulo n, ii) sk contains
a path βk whose interior is contained in the interior of sk joining fk−1 and fk for
every integer k taken modulo n, and iii) the cyclic concatenation β of β1, . . . , βn

is a closed curve separating the ends of R. Let S be the R-subcomplex of Ri(X)
which is the union of s1, . . . , sn. See Figure 15. Note that S need not be a ring.
We partition the edges of S into three disjoint sets as follows. We call f1, . . . , fn

vertical edges of S. The union of the remaining edges of S decomposes into two
connected components, which naturally correspond to the top and bottom of R.
We call the edges in the connected component corresponding to the top of R top
edges of S. We call the edges in the other connected component bottom edges
of S.

In this paragraph we define the notion of test quadrilateral image in S. A
test quadrilateral image in S is an ordered pair (Q,E), where Q is an R-
subcomplex of S and E is a set of two distinct edges of Q satisfying the following
condition. There exists a test quadrilateral Q′ with set of ends E′ and an R-map
ϕ : Q′ → Q such that the restriction to the interior of Q′ is a homeomorphism with
ϕ(E′) = E and the image under ϕ of every interior edge of Q′ is a vertical edge of
S. Since the union of three tiles of Ri(X) does not separate the ends of R, every
test quadrilateral image (Q,E) in S determines a corresponding test quadrilateral
Q′ and map ϕ : Q′ → Q up to R-isomorphism.

Let j be a nonnegative integer, which we fix for the rest of the proof of Theo-
rem 5.1.

In this paragraph we define a weight function ρj on Ri+j(X). Let π = (Q,E)
be a test quadrilateral image in S, and choose a corresponding test quadrilateral
Q′ and R-map ϕ : Q′ → Q. The fat flow optimal weight function on Rj(Q′) with
area 1 induces a weight function on Rj(Q). We extend this weight function on
Rj(Q) to a weight function ρπ,j on Ri+j(X) by defining the weight of every tile
in Ri+j(X) which is not in Rj(Q) to be 0. Since there are only finitely many test
quadrilateral images π in S, there are only finitely many such weight functions ρπ,j ,
and we define ρj to be the sum of the ρπ,j ’s.
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Figure 15. The R-complex S

A simpler version of the argument used to construct β shows that every fat flow
of R for the complex Ri+j(X) has a fat subflow with an underlying flow curve
γ of the following form. The flow curve γ is the concatenation of finitely many
subcurves, each of whose interior lies in the interior of a tile of Ri(X) and whose
endpoints lie in the interiors of edges of that tile with the possible exception that
the endpoints of γ might lie in interiors of tiles of Ri(X). Furthermore, successive
subcurves lie in different tiles of Ri(X). To compute the fat height of R relative
to any weight function on Ri+j(X), we need consider only such flow curves. For
the rest of the proof of Theorem 5.1 we assume that γ is such a flow curve of R for
Ri+j(X) beginning at the bottom of R and ending at the top of R.

Note that by the triangle inequality the area of R relative to ρj is bounded above
by the square of the number of test quadrilateral images in S. This gives an upper
bound on the area of R relative to ρj which is independent of j. Using [5, Theorem
1.6], the bounded valence theorem, it easily follows that to prove Theorem 5.1 it
suffices to prove that there exists a positive real number H which is independent of
j and γ such that Lj(γ) ≥ H, where Lj(γ) is the ρj-length of γ. To prove that there
is such an H, we introduce the notion of joining the ends of a test quadrilateral
image. Suppose given a test quadrilateral image π = (Q,E) in S, corresponding
test quadrilateral Q′, and R-map ϕ : Q′ → Q. If a curve σ in R contains the
image under ϕ of a flow curve in Q′, then we say that σ joins the ends of a
test quadrilateral image. Suppose that γ joins the ends of a test quadrilateral
image π = (Q,E) with test quadrilateral Q′ as above. Since Lj(γ) is at least the
ρπ,j-length of γ, this implies that Lj(γ) is at least the square root of the fat flow
modulus of Q′ relative to the complex Rj(Q′). By hypothesis there is a uniform
lower bound on all such moduli. This proves that Lj(γ) is at least the square root of
this uniform lower bound if γ joins the ends of a test quadrilateral image. Thus to
prove Theorem 5.1, it suffices to prove that γ joins the ends of a test quadrilateral
image.
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Figure 16. The graph G

In this paragraph we construct a graph G from S. We begin by choosing a
barycenter for every tile and edge of S. Let t be a tile of S. The barycenter of t
is a vertex of G. If t contains any bottom edges, then choose one. The barycenter
of this bottom edge is a vertex of G. It and the barycenter of t are joined by an
edge. Likewise if t contains any top edges, then choose one. The barycenter of this
top edge is a vertex of G. It and the barycenter of t are joined by an edge. The
set of barycenters gotten in this way as t varies over all the tiles in S is the set of
vertices of G. In addition to the edges of G already defined, the barycenters of two
distinct tiles of S are joined by an edge if and only if the tiles have a vertical edge
in common. This defines the graph G. See Figure 16. We define the valence of a
tile of S to be the valence of its barycenter. Each tile of S has valence either 3 or
4.

In this paragraph we assign an edge path in G to γ. Since β separates the ends
of R, it follows that γ meets β. It easily follows that γ meets a bottom edge of S
and a top edge of S. Let x1 be the last point in γ relative to the parametrization
of γ which is in a bottom edge of S. We construct an edge path δ in G as follows.
From x1 the path γ enters a tile t1 of S. The initial vertex of δ is the vertex of G
which is a barycenter in the boundary of t1 which is in a bottom edge of S. From
this vertex δ goes to the barycenter of t1. Let x2 be the first point in γ beyond
x1 which is in the boundary of t1. If x2 is in a top edge of S, then δ goes from
the barycenter of t1 to the vertex of G which is a barycenter in the boundary of t1
which is in a top edge of S. If x2 is in a vertical edge of S, then from x2 the curve
γ enters a tile t2 6= t1 of S, and δ goes from the barycenter of t1 to the barycenter
of t2. In this way we define δ one edge at a time until reaching the terminal vertex
of δ, which is the first such barycenter of a top edge of S.

Since S is contained in the ring R, we may orient S. Let t be a tile of S such that
δ passes through the barycenter of t. If t has valence 3, then as δ passes through
the barycenter of t it either reverses direction or turns left or turns right. If t has
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Figure 17. Proving that γ joins the ends of a test quadrilateral image

valence 4, then as δ passes through the barycenter of t it either reverses direction
or turns left or turns right or goes straight.

Suppose that δ goes straight through the barycenter of a tile t with valence 4.
Then some subcurve of γ lies in t and joins two edges e1 and e2 of t such that
(t, {e1, e2}) is a test quadrilateral image. So γ joins the ends of a test quadrilateral
image if δ goes straight through the barycenter of some tile with valence 4.

Hence we may assume that δ does not go straight through the barycenter of a
tile with valence 4. It is easy to see that δ cannot either always turn left or always
turn right. Moreover, either there exists a tile barycenter at which δ turns, then
reverses direction an even number of times (possibly 0 times) and then turns in
the direction opposite to the first turn or there exists a tile barycenter at which δ
turns, then reverses direction an odd number of times and then turns in the same
direction as the first turn.

Suppose that δ contains a sub-edge path which at first turns at the barycenter
of some tile t1, then reverses direction an even number of times and then finally
turns in the direction opposite to the first turn at the barycenter of the tile t2. Let
f be the vertical edge in t1 ∩ t2. Corresponding to the sub-edge path of δ under
consideration, there exists a subcurve of γ in t1 ∪ t2 which joins an edge e1 6= f of
t1 and an edge e2 6= f of t2. If e1 and f are disjoint, then γ joins the ends of the
test quadrilateral image (t1, {e1, f}). Thus we may assume that e1 meets f . We
may likewise assume that e2 meets f . It easily follows that γ joins the ends of the
test quadrilateral image (t1 ∪ t2, {e1, e2}).

Finally suppose that δ contains a sub-edge path which at first turns at the
barycenter of some tile t1, then reverses direction an odd number of times between
the barycenter of t1 and the barycenter of the tile t2 and then finally turns in the
same direction as the first turn at the barycenter of t1. Let f be the vertical edge in
t1 ∩ t2. Corresponding to the sub-edge path of δ under consideration, there exists
a subcurve of γ in t1 ∪ t2 which meets f and goes from an edge e1 of t1 to an edge
e2 of t1 such that e1 6= f , e2 6= f and e1 6= e2. As in the previous paragraph, we
may assume that, e1 and e2 meet f . If t1 is not a triangle, then γ joins the ends
of the test quadrilateral image (t1 ∪ t2, {e1, e2}). Hence we may assume that t1 is
a triangle with edges f , e1, and e2.

Either e1 or e2 is a vertical edge. Suppose that e2 is a vertical edge. See
Figure 17. Then e1 is a bottom edge of S. Suppose that t3 is the tile in S other
than t1 which contains e2. Then γ contains a subcurve in t1 ∪ t2 ∪ t3 which meets
f and e2 and joins e1 and an edge e3 of either t2 or t3 such that e3 6= f and
e3 6= e2. Suppose that e3 ⊆ t2. As before, we may assume that e3 meets f . Let
v be the vertex common to f and e2. If v /∈ e3, then γ joins the ends of the test
quadrilateral image (t1 ∪ t2, {e2, e3}). If v ∈ e3, then γ joins the ends of the test
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quadrilateral image (t1 ∪ t2 ∪ t3, {e1, e3}). It is likewise true that γ joins the ends
of a test quadrilateral image if e3 ⊆ t3. Finally, with respect to this argument, the
case in which e1 is a vertical edge is identical to the case in which e2 is a vertical
edge.

This completes the proof of Theorem 5.1.

6. Finite subdivision rules with symmetry

Given a finite subdivision rule R and an R-complex X which is a quadrilat-
eral or a ring, it is generally difficult to determine the moduli m(X,Sn(X)) and
M(X,Sn(X)). If X is a quadrilateral and has enough symmetry, one can make
qualitative statements about the moduli. This is most useful when combined with
Theorem 5.1, as we will see in Theorem 6.4.

Theorem 6.1. Let R be a finite subdivision rule, let X be an R-complex, and let
Q be a subset of X which is a quadrilateral. Suppose that f : X → X is a cellular
homeomorphism such that f(Q) = Q and f takes the top and the bottom of Q into
disjoint sides of Q. Then M(Q,S(X)) ≥ 1.

Proof. By [4, Section 2.3], there exist an optimal weight function ρ for M(Q,S(X)),
a positive integer k, and minimal fat flows α1, . . . , αk such that ρ is the sum of the
characteristic functions α1, . . . , αk and A(Q, ρ) = k ·H(Q, ρ). Hence M(Q,S(X)) =
H(Q,ρ)2

A(Q,ρ) = H(Q,ρ)
k .

Let f∗(ρ) be the weight function on S(X) defined by f∗(ρ)(t) = ρ(f−1(t)) for
every t ∈ S(X). Given a subset S of S(X), let f∗(S) = {f(s) : s ∈ S}. Then
f∗(ρ) =

∑k
j=1 f∗(αj) and A(Q, f∗(ρ)) = A(Q, ρ). Since each minimal fat flow

for f∗(ρ) must intersect each cut f∗(αj), 1 ≤ j ≤ k, H(Q, f∗(ρ)) ≥ k. But
H(Q,ρ)2

A(Q,ρ) = M(Q,S(X)) ≥ M(Q, f∗(ρ)) ≥ k2

A(Q,ρ) , so H(Q, ρ) ≥ k. This implies
that M(Q,S(X)) ≥ 1, proving the theorem.

Corollary 6.2. Let R be a finite subdivision rule and let Q be a finite R-complex
which is a quadrilateral whose top and bottom are unions of edges. Suppose that
f : Q → Q is a weak R-isomorphism such that f takes the top and the bottom of Q
into disjoint sides of Q. Then M(Q,Sn(Q)) ≥ 1 for every integer n ≥ 0.

We next define the notion of a weak R-folding. Let R be a finite subdivision
rule. Let X, Y , and Z be finite R-complexes such that 1) X, Y , and Z are closed
topological disks, 2) int(X)∩int(Y ) = ∅, and 3) Z = X∪Y . See Figure 18. Suppose
that there exists a weak R-isomorphism f from X to an R-subcomplex of Y such
that the restriction of f to X ∩ Y is the identity map. Then there exists a cellular
map g : Z → Y such that g|X = f and g|Y is the identity map on Y . We call g a
weak R-folding. We say that Z admits a weak R-folding of X into Y .

Theorem 6.3. Let R be a finite subdivision rule. Let X, Y and Z be finite R-
complexes such that 1) X, Y and Z are closed topological disks, 2) int(X)∩int(Y ) =
∅, and 3) Z = X ∪ Y . Suppose that f : Z → Y is a weak R-folding of X into Y .
Suppose that Z is a quadrilateral whose top T and bottom B are unions of edges.
Suppose that Y is a quadrilateral with top f(T ) and bottom f(B). Then

M(Z,Sn(Z)) ≥ 1
2
M(Y,Sn(Y ))

for every nonnegative integer n.
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Figure 18. The complexes X, Y , and Z for a weak R-folding

Proof. Let n be a nonnegative integer. Let ρ be an optimal weight function on
Sn(Y ) for M(Y,Sn(Y )). Then there exists a cellular map g : Rn(Z) → Rn(Y )
such that g|Rn(X) is a cellular homeomorphism from Rn(X) to a subcomplex of
Rn(Y ) which agrees with f on the vertices of X and g|Rn(Y ) is the identity map.
Let g∗(ρ) be the weight function on Sn(Z) defined by g∗(ρ)(t) = ρ(g(t)) for every
t ∈ Sn(Z).

It is clear that A(Z, g∗(ρ)) ≤ 2A(Y, ρ). It is also easy to see that H(Z, g∗(ρ)) ≥
H(Y, ρ). Hence

M(Z,Sn(Z)) ≥ H(Z, g∗(ρ))2

A(Z, g∗(ρ))
≥ 1

2
H(Y, ρ)2

A(Y, ρ)
=

1
2
M(Y, ρ) =

1
2
M(Y,Sn(Y )).

This proves Theorem 6.3.

Theorem 6.4. Let R be a bounded valence finite subdivision rule whose mesh ap-
proaches 0. Suppose that R has a single tile type t with p edges. Let the dihedral
group G of order 2p act cellularly on t in the usual way. Suppose for this action
that every element of G is a weak R-automorphism of t. Then R is conformal.

Proof. We show that R satisfies the 1,2,3-tile criterion, Theorem 5.1. Note that
the 1-tile criterion is vacuous if p = 3, and the 3-tile criterion is vacuous if p > 3.
Applying Corollary 6.2 with Q in Corollary 6.2 replaced by t and f in Corollary 6.2
replaced by a rotation in G which takes every edge of t to an adjacent edge shows
that R satisfies the 1-tile criterion. Because G contains every reflection of t, every
test quadrilateral Q for R consisting of two tiles admits a weak R-folding of one tile
of Q into the other. Hence Theorem 6.3 shows that R satisfies the 2-tile criterion
unless t is a triangle. If t is a triangle, then there exists a weak R-automorphism of
Q which interchanges the tiles of Q and is the identity map on their intersection.
Hence Corollary 6.2 shows that R satisfies the 2-tile criterion in this case. An
argument involving Theorem 6.3 similar to the one just used to verify the 2-tile
criterion shows that R satisfies the 3-tile criterion. Thus the 1,2,3-tile criterion
implies that R is conformal.

This proves Theorem 6.4.
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Figure 19. Constructing conformal finite subdivision rules

As an immediate corollary of Theorem 6.4 we get that the binary quadrilat-
eral subdivision rule (Example 1.3.2) and the pentagonal subdivision rule (Exam-
ple 1.3.3) are conformal. But Theorem 6.4 is much stronger than this. Let t be a
p-gon with p ≥ 3, and let t′ be a nontrivial subdivision of t into p-gons such that the
corners of t are not subdivided and the dihedral group of order 2p acts cellularly as
symmetries of t′. Then the barycenter trick of Section 1.3 yields a conformal finite
subdivision rule R with single tile type a 2p-gon t′′ (obtained from t by adding
a barycenter to each edge) such that R(t′′) and the complex obtained from t′ by
adding a barycenter to each edge are identical subdivisions. Hence it is easy to
construct conformal finite subdivision rules. Some simple examples are shown in
Figure 19.

We prove one more symmetry theorem for use in Section 7.

Theorem 6.5. Let R be a finite subdivision rule with bounded valence, let Q be an
R-complex which is a quadrilateral whose top and bottom are unions of edges, and
let f : Q → Q be a weak R-isomorphism such that f takes the top and the bottom
of Q bijectively to disjoint sides of Q. Then there is a positive real number K such
that for each integer n ≥ 0, 1 ≤ M(Q,Sn(Q)) ≤ K.

Proof. Let V be an upper bound on the valences of Rj(Q), j ≥ 0. Fix an integer
n ≥ 0. Let Q′ be the quadrilateral whose underlying complex is Q but whose ends
are the sides of Q. By Corollary 6.2, 1 ≤ M(Q′,Sn(Q)). Since f interchanges
the sides of Q and the ends of Q, m(Q,Sn(Q)) = 1/M(Q′,Sn(Q)) ≤ 1. By the
bounded valence theorem [4, Theorem 6.2.4], M(Q,Sn(Q)) ≤ 4V 2m(Q,Sn(Q)).
Hence M(Q,Sn(Q)) ≤ 4V 2, which proves the theorem.

7. Layered subdivision rules

As we mentioned previously, it is generally difficult to compute the moduli
m(X,Sn(X)) and M(X,Sn(X)) for a quadrilateral or ring X which is a R-complex
with respect to a finite subdivision rule R. A class of examples for which one can
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Figure 20. The subdivisions of the tile types for the diamond
chains subdivision rule

sometimes reasonably estimate moduli are those for which each Rn(X) can be nat-
urally subdivided into layers, since one can then use Theorem 3.1. We use the term
layered subdivision rules as a general (and loose) description for this class.

We give three examples. The first one shows that it does not suffice to check
a single quadrilateral to show that a finite subdivision rule satisfies the 1-tile cri-
terion. The second example, which is a modification of the first one, shows that
this persists even if the tile recursion matrix is irreducible. The third example is
of a finite subdivision rule that satisfies the 1-tile criterion but does not satisfy the
2-tile criterion. Furthermore there exists a quadrilateral for the third example with
nondegenerate asymptotic moduli such that if this quadrilateral is split into two
quadrilaterals in any way by an arc joining its sides, then the moduli of the two
quadrilaterals degenerate to 0.

7.1. The diamond chains subdivision rule.

Example 7.1.1 (The diamond chains subdivision rule). In this finite subdivision
rule R the subdivision complex SR contains a single edge and two tiles. Tile type t is
an equilateral triangle, and R(t) is the obvious subdivision of t into four subtriangles
that are congruent to t. Tile type q is a quadrilateral. Its subdivision is shown in
Figure 20; quadrilaterals in R(q) are identified with the image of q in SQ so that
horizontal edges go to horizontal edges. The subdivisions R(q), R2(q), and R3(q)
are shown in Figure 21.

We view q as a quadrilateral with top and bottom as indicated in Figure 20. We
will use the layer theorem to show that q has degenerate asymptotic moduli. To use
the layer theorem we first rotate q 90◦ to obtain a quadrilateral q′. Note that for
each positive integer n, Rn(q′) is naturally divided into 2n vertical layers (strips).
More importantly for us, it is also divided into horizontal layers, each horizontal
layer consisting of a chain of quadrilaterals or a chain of diamonds. The chains
of diamonds come in different sizes; we say that a chain of diamonds has size i if
the maximum number of triangles in a vertical layer of the chain is 2i − 1. Then
Rn(q′) has 2n chains of quadrilaterals. For each i ∈ {1, ..., n}, Rn(q′) has 2n−i
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Figure 21. Ri(q), i = 1, 2, 3

chains of diamonds of size i. Although the chains of diamonds are not actually
quadrilaterals, the proof of the layer theorem goes through as before.

Let n be a fixed positive integer, let i ∈ {1, . . . , n}, and let Di be a chain of
diamonds of size i. Let ρi be the weight function on the set of tiles of Di defined
such that the weight of a triangle is the reciprocal of the number of triangles in its
vertical strip. The fat flow height is H(Di, ρi) = 1. For each odd integer k with
1 ≤ k ≤ 2i − 1, there are 2n+1−i vertical strips in Di with k triangles. Hence

A(Di, ρi) = 2n+1−i

(
1 +

1
3

+
1
5

+ · · ·+ 1
2i − 1

)
≤ 2n−i(2 + ln(2i)),

and so M(Di, ρi) ≥ 1/(2n−i(2 + ln(2i))). The fat flow modulus of a chain of
quadrilaterals is 1/2n, with the constant weight function which assigns 1 to each
tile in the chain being an optimal weight function. By the layer theorem,

M(q′,Sn(q′)) ≥ 2n 1
2n

+
n∑

i=1

2n−i

2n−i(2 + ln(2i))
≥ 1 +

1
2 + ln(2)

n∑
i=1

1
i
.

Since the harmonic series is divergent, q′ and q have degenerate asymptotic moduli.
While q has degenerate asymptotic moduli, the quadrilateral X made up of two

triangles with an edge in common has nondegenerate asymptotic moduli by Theo-
rem 6.5, taking the map in Theorem 6.5 to be reflection in the common edge. Since
the tile recursion matrix for R is reducible (see [8, Chapter XIII] for the definition),
it is not so surprising that some quadrilaterals have degenerate asymptotic moduli
and some have nondegenerate asymptotic moduli. The next example, which was
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1 2 2
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11

1

2 1

1

1
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Figure 22. The subdivisions of the tile types for the finite subdi-
vision rule of Example 7.1.2

inspired by this one, shows that this can occur even if the tile recursion matrix is
irreducible.

Example 7.1.2. In this example the subdivision complex SR has two edges and
two tiles. The subdivisions of the tile types are shown in Figure 22.

Let X be the quadrilateral with a single tile labeled 1, oriented as in Figure 22.
Given a positive integer n, define a weight function ρn on Sn(X) which assigns
weight 1 to every tile labeled 1 which has no predecessor which is a tile labeled 2,
and assigns weight 0 to every other tile. The fat cut circumference is C(X, ρn) =
3n and the area is A(X, ρn) = 6n, so m(X,Sn(X)) ≤ m(X, ρn) = A(X,ρn)

C(X,ρn)2 =
6n

9n , limn→∞m(X,Sn(X)) = 0, and X has degenerate asymptotic moduli. Since
the tile labeled 2 has rotational symmetry, the quadrilateral Y with single tile
this tile and orientation as in Figure 22 has nondegenerate asymptotic moduli by
Theorem 6.5. The tile recursion matrix, with respect to the obvious ordering of the

tiles, is
(

6 4
4 0

)
, which is irreducible.

7.2. A layered subdivision rule that satisfies the 1-tile criterion but not
the 2-tile criterion.

Example 7.2.1. We start with two edge types and a single tile type, with the sub-
division of the tile type shown in Figure 23. We then apply the barycenter trick of
Section 1.3 to obtain a finite subdivision rule R such that the subdivision complex
SR has two edges and a single tile q.

Since the tile type q is the subdivision of a quadrilateral and reflection in one of
the diagonals of the quadrilateral is a weak R-isomorphism, q has nondegenerate
asymptotic moduli by Theorem 6.5 and hence R satisfies the 1-tile criterion of
Section 5. To see that R does not satisfy the 2-tile criterion of Section 5, let X be
the quadrilateral shown in Figure 24.a). Given a positive integer n, Rn(X) can be
divided into 4n vertical layers. Figure 24.b) shows the case where n = 1. Let ρn be
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Figure 23. The subdivision of the tile type for the finite subdi-
vision rule of Example 7.2.1

top

bottom

b)

a)

top

bottom

Figure 24. A quadrilateral X with degenerate asymptotic moduli

the weight function on Sn(X) which assigns weight 1 to each tile. Then C(X, ρn) ≥
4n and A(X, ρn) = 2 · 13n, so m(X,Sn(X)) ≤ m(X, ρn) = A(X,ρn)

C(X,ρn)2 ≤
2·13n

16n and
hence limn→∞m(X,Sn(X)) = 0. Now the bounded valence theorem, [4, Theorem
6.2.4] or [5, Theorem 1.6], implies that limn→∞M(X,Sn(X)) = 0. Thus R does
not satisfy the 2-tile criterion of Section 5. In particular, R is not conformal.
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top top

top

bottom bottombottom

Figure 25. Y , R(Y ), and W

Now consider the quadrilateral Y shown in Figure 25. This quadrilateral occurs
in R(q), and hence occurs whenever one considers subdivisions of an R-complex.
Since the reflection in one of the diagonals of Y is a weak R-isomorphism, Y has
nondegenerate asymptotic moduli by Theorem 6.5. Let α be a simple edge-path in
some subdivision Rj(Y ), j > 0, that irreducibly joins the sides of Y and is disjoint
from the ends of Y , and let W be the quadrilateral that is contained in Y , has
bottom the bottom of Y , has top α, and has sides contained in the sides of Y . We
will show that limi→∞M(W,Si(W )) = 0. It will then follow by symmetry that
the same is true of the quadrilateral with bottom α, with top the top of Y , and
with sides contained in the sides of Y . This shows that a quadrilateral can have
nondegenerate asymptotic moduli even if whenever it is divided into horizontal
layers the layers have asymptotic moduli converging to 0.

Although the layers in Rj(Y ) each join one of the sides with one of the ends,
one of the two layers of W that is adjacent to the diagonal joins the bottom of
W to the top of W . Let i be a nonnegative integer. Then Ri(W ) has at least
4i layers that join the bottom of W to the top of W . Let ρ be the weight func-
tion on Si(W ) that assigns weight 1 to each tile. Then A(W,ρ) ≤ 2 · 13i+j and
C(W,ρ) ≥ 4i, so m(W,Si(W )) ≤ m(W,ρ) = A(W,ρ)

C(W,ρ)2 ≤
2·13i+j

16i . This implies that
limi→∞m(W,Si(W )) = 0 and hence, by the bounded valence theorem, [4, Theorem
6.2.4] or [5, Theorem 1.6], limi→∞M(W,Si(W )) = 0.

8. Finite subdivision rules with rotational symmetry

A finite subdivision rule R has rotational symmetry, or is rotationally
symmetric, if for each tile type t there exists an orientation-preserving weak R-
automorphism of t which takes every edge of t to an adjacent edge.

We look now at finite subdivision rules that have a single tile type and have
rotational symmetry. We first consider a class of examples which gives rotationally
symmetric self-replicating tilings. Finally, we give an example of a nonconformal
finite subdivision rule with bounded valence which has a single tile type and is
rotationally symmetric.

8.1. A construction of rotationally symmetric self-replicating tilings. We
begin the section by giving a general construction of rotationally symmetric subdi-
vision rules. The construction can be done starting from the tiling of the Euclidean



FINITE SUBDIVISION RULES 35

plane by equilateral triangles, squares, or regular hexagons. By area considerations,
it can not be done using tilings of the hyperbolic plane. In these examples, we are
starting with a finite subdivision rule R and are constructing an almost round finite
subdivision rule R′ which is weakly isomorphic to it. It follows that R is confor-
mal. Furthermore, translates of the single tile type of R′ give a self-replicating
tiling of R2 with rotational symmetry. Self-replicating tilings have been studied
extensively. In particular, Thurston [17] and Kenyon [13] constructed them from
generalizations of the usual base 10 decimal expansion of a number with respect
to bases which are complex numbers, and Dekking [7] constructed them from free
group endomorphisms. Our approach starts instead with the combinatorics of the
subdivision, and is similar in spirit to that of Giles [10, 11].

For convenience, we will start with the square tiling of the plane. Several exam-
ples of this construction can be found in Mandelbrot [14].

To begin the construction, choose vertices v1, v2, v3, and v4 in the square lattice
that are vertices of a square. We assume that they are not the vertices of a square
in the square tiling, since this case is trivial. Label them so that they occur in
clockwise order as vertices of a square. Now choose an arc γ1 from v1 to v2 which
is an edge path in the square tiling. There are two requirements on γ1. Let γ2 be
the image of γ1 under rotation of π/2 about v2, let γ3 be the image of γ2 under
rotation of π/2 about v3, let γ4 be the image of γ3 under rotation of π/2 about v4,
and let γ be the closed curve in the plane whose image is γ1 ∪ γ2 ∪ γ3 ∪ γ4. The
first requirement is that γ1 be invariant under rotation of π about the midpoint of
the line segment v1v2. The second condition is that γ be a simple closed curve.

Another way to look at these conditions is to pass to a quotient space. Let u be
the center of the square with vertices v1, v2, v3, and v4, and let w be the midpoint
of v1v2. Let S be the quotient of the triangle with vertices v1, v2, and u obtained
by identifying uv1 with uv2 and identifying wv1 with wv2. Then S is a sphere with
branch points u′, v′, and w′ (the images of u, v1, and w, respectively) of order 4,
4, and 2. The 1-skeleton of the square tiling of the plane projects to a graph on S.
S is a quotient of the plane, and under this quotient map a curve γ as described
in the previous paragraph projects to an arc in the graph on S joining v′ and w′.
Arcs γ1 from v1 to v2 which satisfy the two requirements of the previous paragraph
correspond exactly in the quotient to arcs from v′ to w′ which lie in the graph
coming from the 1-skeleton of the square tiling.

Before continuing the construction, we give two examples.

Example 8.1.1. In this example, v2 − v1 = (2, 2). The curve γ is shown in Fig-
ure 26 and the image of γ in S is shown in Figure 27.

Example 8.1.2. In this example, v2 − v1 = (9, 0). The curve γ is shown in Fig-
ure 28 and the image of γ in S is shown in Figure 29.

We return now to the general construction. Suppose that γ1 is an arc satisfying
our two requirements above, and that γ is the corresponding curve. Since v1, v2,
v3, and v4 are vertices of a square, there is an orientation-preserving similarity of
the plane that takes v1, v2, v3, and v4 to the vertices of the unit square D with v1

going to (0, 0). Let α1 be the image of γ under this map, and let D1 be the disk
enclosed by α1. We consider α1 as a function α1 : [0, 1] → R2 with α1(0) = (0, 0),
parametrized with constant speed.
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w

Figure 26. The curve γ for Example 8.1.1

v'

u'

w'

Figure 27. The image of γ in S for Example 8.1.1

The Euclidean plane can be tiled by translates of D1, and this tiling is combi-
natorially equivalent to the square tiling of the plane, so one can repeat the above
construction beginning with the tiling by translates of D1. One can recursively
continue this process to produce curves αi (with αi(0) = (0, 0), parametrized with
constant speed) and disks Di for each positive integer i. Figure 30 shows the disks
D1, D2, and D3 for Example 8.1.1, and Figure 31 shows the disk D2 for Exam-
ple 8.1.2.

The αi’s can be recursively generated by simple edge replacement rules. Fig-
ure 32 shows the edge replacement rule for Example 8.1.1, and Figure 33 shows the
edge replacement rule for Example 8.1.2.

Let β0 be the line segment from v1 to v2. Choose orientation-preserving con-
stant speed parametrizations f0 : [0, 1] → β0 and f1 : [0, 1] → γ1. Let K =
sup{d(f1(t), f0(t)) : t ∈ [0, 1]}, and let d = d(v1, v2). Then for any positive in-
teger j, sup{d(αj+1(t), αj(t)) : t ∈ [0, 1]} = K/dj+1. Hence the αi’s converge
uniformly to a continuous curve α : [0, 1] → R2. Note that for any positive integer
i and any t ∈ [0, 1], d(α(t), αi(t)) ≤ K

di(d−1) .
We associate to γ a finite subdivision rule R as follows. R has a single tile type,

which is a quadrilateral. If we view this tile type as the quadrilateral Q in R2 with
boundary γ and with vertices v1, v2, v3, and v4, then the subdivision of this tile type
is given by the subdivision of Q by squares in the intersection of Q with the square
tiling of R2. Orient the edges in Q and in the subdivision of Q so that each vertex
in Q (resp. in the subdivision of Q) is either an initial vertex or a terminal vertex
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v1

v4 v3

v2

Figure 28. The curve γ for Example 8.1.2

w'

v'

u'

Figure 29. The image of γ in S for Example 8.1.2

of every edge in Q (resp. in the subdivision of Q) that meets it. The subdivision
complex SR is obtained from Q by identifying the four edges by order-preserving
isomorphisms. There is a single edge type e, and it is subdivided into length(γ1)
edges. The subdivision map ϕR is defined so that it is order preserving and the
edge of SR can be ordered so that the maps Q → SR and R(Q) → SR are order
preserving on the edges. Note that, by construction of γ, the subdivision of Q is
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Figure 30. The disks D1, D2, and D3 for Example 8.1.1

Figure 31. The disk D2 for Example 8.1.2

Figure 32. The edge replacement rule for Example 8.1.1
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Figure 33. The edge replacement rule for Example 8.1.2

Figure 34. The subdivision of the tile type for Example 8.1.1

Figure 35. The subdivision of the tile type for Example 8.1.2

invariant under a rotation by angle π/2. Figure 34 shows the subdivision of the
tile type for Example 8.1.1, and Figure 35 shows the subdivision of the tile type for
Example 8.1.2.
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In the above construction of the Di’s, D1 is the image of Q under a similarity
of the plane. The intersection of Q with the square tiling of R2 maps under this
similarity to give a tiling of D1 by squares with side lengths 1/d. By repeating this
under the recursive construction of the Di’s, each Di has a tiling by squares with
side lengths 1/di. Combinatorially, this tiling is Ri(Q).

We next show that α is a simple closed curve. In order to do this, we first show
that R has mesh approaching 0 combinatorially.

Since there is a single edge type and d(v1, v2) > 1, each edge type of R is
subdivided into more than one edge. Now suppose that one of the subtiles of Q has
edges in disjoint edges of Q. Since this subtile is a quadrilateral, it must have an
edge joining disjoint edges in Q. But then this edge disconnects Q, so Q cannot have
a subtile with an edge in each of the other two edges of Q. This is impossible, since
the subdivision of Q is rotationally symmetric. Thus the mesh of R approaches 0
combinatorially.

It follows from Theorem 2.3 that R is weakly isomorphic to a finite subdivision
rule whose mesh approaches 0, and so we assume that the mesh of R approaches
0. For convenience we assume that the tile type is the unit square D. Let X
be the square tiling of R2, viewed as an R-complex. As noted above, Di has a
natural tiling by squares with side lengths 1/di, which gives Di the structure of a
CW complex which is cellularly homeomorphic to Ri(D). In particular, for every
positive integer i there exists a cellular homeomorphism ϕi : ∂Di → ∂Ri(D) which
preserves clockwise orientation such that ϕi(0, 0) = (0, 0). Let s, t ∈ [0, 1) with
s 6= t. Then because the mesh of R approaches 0, the sequences {ϕi(αi(s))} and
{ϕi(αi(t))} converge to points u, v ∈ ∂D. Moreover u 6= v. For every positive
integer i let di(u, v) denote the skinny path pseudometric; di(u, v) is the smallest
nonnegative integer n such that there exist tiles t0, . . . , tn ofRi(X) such that u ∈ t0,
v ∈ tn, and tj ∩ tj+1 6= ∅ for j ∈ {0, . . . , n − 1}. Then because the mesh of R
approaches 0, there exists a positive integer i such that di(u, v) > 1+ 2K

d−1 . It follows
that d(αi(s), αi(t)) > 1

di
2K
d−1 = 2K

di(d−1) . Hence d(α(s), α(t)) ≥ d(αi(s), αi(t)) −
d(α(s), αi(s))− d(α(t), αi(t)) > 0, so α(s) 6= α(t). Thus α is a simple closed curve,
and hence α([0, 1]) bounds a disk D∞.

By construction, R2 is tiled by translates of D∞. Furthermore, D∞ has a sub-
tiling, by tiles that are equivalent to D∞ under similarities, that is cellularly home-
omorphic to R(Q). It is straightforward to define a finite subdivision rule R′ which
is weakly isomorphic to R, has D∞ as the single tile type, and has the property
that for each closed tile t of R′(D∞) the map t → SR′ is the composition of ψD∞
and a similarity from t onto D∞. Hence if we let X ′ be R2 viewed as an R′-complex
using the tiling by translates of D∞, then (X ′,R′) is almost round. By [3, Theorem
7.1], (X ′,R′) and (X,R) are conformal.

Note that in the edge replacement rule for Example 8.1.2, each edge is replaced
by a union of 41 edges, each of length one ninth the length of the original edge. It
follows from this that the Hausdorff dimension of ∂D∞ is the similarity dimension,
which is log(41)

log(9) . Example 8.1.2 is one of an infinite family of examples with the
property that the Hausdorff dimensions of the boundaries of the disks D∞ converge
to 2. To see this, suppose that v2 − v1 = (4s + 1, 0) for some positive integer s.
Then the graph on S which comes from the grid on R2 has 4s2 +2s+1 vertices. It
is easy to see that the maximum number of edges that an edge can be subdivided
into in the edge replacement rule is 2(4s2 +2s+1)−1 = 8s2 +4s+1, and that this
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Figure 36. The curve γ for the case s = 3

number of edges can be achieved. (Example 8.1.2 illustrates the case s = 2, and
Figure 36 shows the curve γ for an example achieving the maximum number when
s = 3.) When this maximum number of edges is achieved, the Hausdorff dimension
of ∂D∞ is log(8s2+4s+1)

log(4s+1) , which converges to 2 as s → ∞. This was also noted in
[14, caption to Plate 53].

8.2. A rotationally symmetric finite subdivision rule which is not confor-
mal. Our final example is a rotationally symmetric finite subdivision rule R with
a single tile type which is not conformal. It is crucial for the construction that R
is not orientation preserving. However, by making a tile type for each orientation,
the example could easily be modified to a an orientation-preserving, rotationally
symmetric finite subdivision rule with two tile types.

Example 8.2.1. In this example there are a single edge type and a single tile type.
The tile type t is a quadrilateral viewed as a subset of the Euclidean plane. The
tile type t is subdivided into forty-five tiles, and the edge type is subdivided into
twenty-three edges. Figure 37 shows the subdivision of t. We apply the barycenter
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Figure 37. The subdivision of the tile type t
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Figure 38. The quadrilateral Q

trick of Section 1.3 to obtain a finite subdivision rule R. We choose orientations
for the open tile in SR and for the interior of t so that the restriction of ψt to int(t)
is orientation preserving. A tile s in R(t) is labeled with a plus sign in Figure 37 if
ϕR is orientation preserving on ψt(int(s)) and is labeled with a minus sign if ϕR
is orientation reversing on ψt(int(s)). If s is not labeled, then it does not matter
for the construction whether ϕR is orientation preserving or orientation reversing
on ψt(int(s)). It is clear that ϕR can be defined so that this finite subdivision rule
is rotationally symmetric.

Since this finite subdivision ruleR is rotationally symmetric, it satisfies the 1-tile
criterion. We next show that R does not satisfy the 2-tile criterion, and hence is not
conformal. Let Q be the quadrilateral shown in Figure 38 viewed as a subset of the
Euclidean plane, given the structure of an R-complex with associated map f : Q →
SR so that (with suitable orientations on Q and on the open tile of SR) f preserves
orientation on each of the open tiles of Q. We use the layer theorem to show that
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Figure 39. The quadrilateral R(Q)
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Figure 40. The subdivision of a block of height 2

limn→∞M(Q,Sn(Q)) = 0. By the bounded valence theorem, [4, Theorem 6.2.4]
or [5, Theorem 1.6], it suffices to prove that limn→∞m(Q,Sn(Q)) = 0. We first
define blocks.

Let k be a positive, even integer. A block of height k is a subcomplex B of
Rn(Q), for some positive integer n, which satisfies the following: B is cellularly
homeomorphic to a tiling by unit squares of a rectangle of height k and width 3
(we will use this cellular homeomorphism in describing the other conditions on B);
in any row of B, all of the tiles have the same orientation; in any column of B, the
orientations of the tiles alternate; and the ends of B are in distinct ends of Rn(Q).
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Note that R(Q) has two blocks of height 2 (see Figure 39). If B is a block
of height k, then R(B) contains four blocks of height 2k. See Figure 40 for the
subdivision of a block of height 2. It follows by induction that, if n is a positive
integer, then Rn(Q) contains 2 · 4n−1 blocks of height 2n. Let n be a positive
integer, and let ρn be the weight function on Sn(Q) for which each tile in a block
has weight 1 and each tile which is not in a block has weight 0. Since each block
contains three vertical layers, C(Q, ρn) = 3 · 2 · 4n−1. Then

m(Q,Sn(Q)) ≤ m(Q, ρn) =
6 · 4n−1 · 2n

36 · 42n−2
=

1
3 · 2n−1

.

Hence limn→∞m(Q,Sn(Q)) = 0, and R is not conformal.
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