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Abstract. This paper gives applications of earlier work of the au-
thors on the use of expansion complexes for studying conformality
of finite subdivision rules. The first application is that a one-tile ro-
tationally invariant finite subdivision rule (with bounded valence
and mesh approaching 0) has an invariant conformal structure,
and hence is conformal. The paper next considers one-tile single
valence finite subdivision rules. It is shown that an expansion map
for such a finite subdivision rule can be conjugated to a linear map,
and that the finite subdivision rule is conformal exactly when this
linear map is either a dilation or has eigenvalues that are not real.
Finally, an example is given of an irreducible finite subdivision rule
that has a parabolic expansion complex and a hyperbolic expansion
complex.

1. Introduction

We continue here the study of expansion complexes for finite subdi-
vision rules that was begun in [8]. As explained more deeply there, our
study of expansion complexes arose out of our ongoing effort to resolve
a key part of Thurston’s Hyperbolization Conjecture. Our interest in
the Hyperbolization Conjecture led us to finite subdivision rules and
the problem of determining when a finite subdivision rule is conformal
in the sense of Cannon [3]. The basic theory of finite subdivision rules
and conformality for them is developed in [6].

A finite subdivision rule R consists of i) a finite 2-dimensional CW
complex SR (called the model subdivision complex), ii) a subdivision
R(SR) of SR, and iii) a continuous cellular map σR : R(SR) → SR
(called the subdivision map) which restricts to a homeomorphism on
each open cell of R(SR). The model subdivision complex is the union
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of its closed 2-cells, and each 2-cell is the image of an n-gon (called a tile
type), n ≥ 3, under an attaching map which takes each open cell home-
ommorphically onto an open cell. An R-complex is a 2-dimensional
CW complex X together with a continuous cellular map f : X → SR
(called the structure map) which takes each open cell homeomorphically
onto an open 2-cell. If X is an R-complex, the subdivision R(SR) of
SR pulls back to a subdivision R(X) of X. Furthermore, R(X) is
an R-complex, so we can continue the process and define subdivisions
Rn(X) for n ≥ 1.

In [8] we lay foundations for a new technique for proving confor-
mality of finite subdivision rules. We define conformal structures and
partial conformal structures on subdivision complexes, and prove that
a finite subdivision ruleR with bounded valence and mesh approaching
0 is conformal if the model subdivision complex SR has an invariant
partial conformal structure. The proofs make central use of special R-
complexes called expansion complexes. An expansion R-complex is a
planar R-complex X together with a continuous map ϕ : X → X such
that σR ◦ f = f ◦ ϕ, where f : X → SR is the structure map for X.

Here we give the first applications of this technique. In Section 3
we consider one-tile rotationally invariant finite subdivision rules, for
which the subdivisions of the tile types are cellularly isomorphic to each
other (by orientation-preserving isomorphisms) and the subdivision of
a tile type is invariant under an orientation-preserving cellular isomor-
phism of order the number of edges of the tile type. We prove that
a one-tile rotationally invariant finite subdivision rule with bounded
valence and mesh approaching 0 has an invariant conformal structure.
It then follows from [8] that such a finite subdivision rule is conformal.
It was this theorem that motivated much of the work in [8].

We next consider in Section 4 one-tile single valence finite subdivision
rules. As in the previous paragraph, the expression “one-tile” signifies
that the subdivisions of any two tile types are cellularly isomorphic by
an orientation-preserving isomorphism. The single valence property is
that there is a constant r such that any interior vertex of an arbitrary
subdivision of one of the tile types has valence r. We first use an
Euler characteristic argument to prove that either i) each tile type is
a triangle and r = 6, ii) each tile type is a quadrilateral and r = 4,
or iii) each tile type is a hexagon and r = 3. We then consider an
expansion complex for such a finite subdivision rule R, and show that
the expansion map is conjugate to a linear map. It then follows from
[8] that R is conformal exactly when either this linear map is a dilation
or its eigenvalues are not real.
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The above statement is reminiscent of a special case of Thurston’s
topological characterization of critically finite branched maps. Suppose
f : S2 → S2 is a critically finite branched map with associated orbifold
the rectangular pillowcase (2, 2, 2, 2). Then f lifts to a covering map of
the torus T 2 and there is a 2×2 matrix Af which represents the induced
map on H1(T

2,Z). Thurston’s theorem states that f is equivalent to
a rational map exactly if either Af is a scalar matrix or its eigenvalues
are not real. For a discussion of connections between critically finite
branched maps and finite subdivision rules, see [7].

The above result concerning one-tile single valence finite subdivision
rules is based on [9]. There we prove the following elementary theorem
concerning polyomino tilings of the plane. Let T be a regular tiling
of R2: the tiles of T are either equilateral triangles with six meeting
at every vertex, squares with four meeting at every vertex, or regular
hexagons with three meeting at every vertex. Suppose that the origin
0 is a vertex of a tile of T . Let ϕ : R2 → R2 be a homeomorphism such
that

1. ϕ(0) = 0;
2. if t is a tile of T , then ϕ(t) is a union of tiles of T ;
3. if s and t are tiles of T , then there exists an orientation-preserving

isometry τ : ϕ(s) → ϕ(t) such that ϕ−1 ◦ τ ◦ ϕ maps the vertices
of s to the vertices of t.

Then there exists a subset Λ of the set of vertices of tiles of T such
that Λ is a lattice in R2 and ϕ

∣∣
Λ

is a group homomorphism.
In Section 5 we give an interesting example that indicates some of

the subtleties of expansion complexes. This is an irreducible finite sub-
division rule R with bounded valence and mesh approaching 0 which
has a hyperbolic expansion complex X and a parabolic expansion com-
plex Y . Furthermore, any compact subcomplex of X (respectively Y )
is isomorphic to a subcomplex of Y (respectively X).

2. Regular conformal structures

In Section 3 of [8] we introduce conformal structures on subdivision
complexes. One might ask whether any such conformal structures exist.
The purpose of this section is to construct one. We call this conformal
structure the regular conformal structure. We learned of the regular
conformal structure in [2]. It led us to the notion of a general conformal
structure, which is essential for our investigation of finite subdivision
rules. We define the notion of regular conformal structure following
[2, Section 2 and Section 3] and [1, Subsection 3.3]. Our definition is
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slightly different from that in [2] and [1] mainly because our complexes
are more general. Let R be a finite subdivision rule.

In this paragraph we put a piecewise metric structure on SR, that
is, we put a metric structure on every open cell of SR in a compatible
way. There is only one way to put a metric on a vertex. To put a
metric on an open edge of SR, we identify that open edge with the
open unit interval. Now let t be a tile of SR with tile type s. The
characteristic map from s to t determines a metric on every open edge
of s. Maintaining compatibility with these metrics, we identify s with
a regular polygon in C whose edges have length 1. This defines a
metric on int(s) and thereby a metric on int(t). We now have a metric
structure on every open cell of SR.

We choose the face barycenter triangulation £(SR) of SR to be com-
patible with the piecewise metric structure of SR. In other words, the
barycenter of every tile is chosen to be the metric central point of the
tile, and every edge is chosen to be geodesic.

We put a conformal structure on SR as follows. We orient the open
tiles and butterflies of SR. We also orient C. Let t be a tile of SR.
Suppose that the tile type of t has n edges. Let T be a regular polygon
in C with n edges of length 1. We let µt : int(t) → int(T ) be an
orientation-preserving isometry from the interior of t to the interior of
T . The map µt defines a chart for int(t). Now let b be a butterfly of
SR. Suppose that b is the union of int(e), int(s1), and int(s2), where e
is an edge of SR and where s1 and s2 are distinct tiles of £(SR) which
contain e. Suppose that the tile type of the tile ti of SR containing
si has ni edges for i ∈ {1, 2}. In C we form the union of a regular
n1-gon T1 and a regular n2-gon T2 which have an edge E of length 1
in common. We triangulate T1 ∪ T2 by introducing the central points
of T1 and T2 as new vertices and line segments joining them to old
vertices in the straightforward way. Let B be the union of int(E),
int(S1) and int(S2), where S1 ⊆ T1 and S2 ⊆ T2 are the triangles
of T1 ∪ T2 which contain E. We define µb : b → B to be the unique
orientation-preserving homeomorphism such that µb(int(si)) = int(Si)
for i ∈ {1, 2} and the restrictions of µb to int(e), int(s1) and int(s2)
are isometries. The map µb is a chart for b. This gives us an atlas A
for SR, and it is a straightforward matter to verify that A is a partial
conformal structure on SR.

In this paragraph we show that A is a conformal structure on SR.
By the definitions in Section 3 of [8], it suffices to show that if X is any
R-complex which is an oriented surface, thenA determines a conformal
structure on int(X). So let X be an R-complex which is an oriented
surface. It is shown in Section 3 of [8] that the pullback ofA determines
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a conformal structure at every point of int(X) which is not a vertex.
So let v be a vertex of X. The piecewise metric on X determines a
shortest path metric on X, and we let B ⊆ X be the open ball of
radius 1/3 centered at v for this shortest path metric. The open ball B
is a topological disk. Intersecting B with the tiles of X which contain
v yields sectors B1, . . . , Bd, where d is the valence of v. The shortest
path metric on Bi determines an angle θi at v for i ∈ {1, . . . , d}. Let

α = 2π/
∑d

i=1 θi. For i ∈ {1, . . . , d}, we map Bi isometrically and in
an orientation-preserving way to

{z ∈ C : |z| < 1

3
,

i−1∑
j=1

θj ≤ arg(z) ≤
i∑

j=1

θj},

and then we follow this map with an appropriate branch of the map
z 7→ zα. These composition maps assemble to yield a homeomorphism

µv : B → {z ∈ C : |z| < (1/3)α}.
These maps µv are compatible with the pullback of A to X, and so the
pullback of A defines a conformal structure on int(X). We call this
conformal structure the regular conformal structure on int(X).

3. One-tile rotationally invariant finite subdivision rules

Recall that a finite subdivision rule R is orientation-preserving if
there is an orientation on the union of the open tiles of SR such that the
restriction of σR to each open tile of R(SR) preserves orientation. Note
that an orientation on the union of the open tiles of SR determines an
orientation on the union of the tile types of R.

We define a one-tile rotationally invariant finite subdivision
rule R as follows. We assume that R has bounded valence, that R
is orientation preserving, and that the mesh of R approaches 0. We
fix an orientation on the union of the open tiles of SR such that the
restriction of σR to each open tile of R(SR) preserves orientation. We
make the following two further assumptions.

1. If s and t are tile types of R, then there exists an orientation-
preserving cellular isomorphism from s to t which takes R(s) to
R(t).

2. If t is a tile type ofR with q sides, then there exists an orientation-
preserving cellular automorphism of t of order q which is also a
cellular automorphism of R(t).

Even though R may have more than one tile type, we still call R a
one-tile rotationally invariant finite subdivision rule because the sub-
divisions of the tile types of R look the same.
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Constructing finite subdivision rules with specified properties can
be challenging. The following lemma can be used to construct many
one-tile rotationally invariant finite subdivision rules.

Lemma 3.1. Let X be a closed topological disk with the cell structure
of a polygon with q ≥ 3 sides. Let Y be a CW complex subdivision of X
with the following properties. Every edge of X properly subdivides in Y .
Only one tile of Y contains a given vertex of X. Every tile of Y has q
sides. There exists an orientation-preserving cellular automorphism of
Y of order q which is also a cellular automorphism of X. Then there
exists a one-tile rotationally invariant finite subdivision rule R such
that if t is a tile type of R, then there exists a cellular isomorphism from
t to X which maps R(t) to Y . We may furthermore choose R so that
there exists an expansion R-complex whose structure map preserves
orientation.

Proof. We construct R so that SR has one vertex and one edge e.
The orientation-preserving cellular automorphism of Y acts transitively
on the edges of X, and so they subdivide into the same number of
subedges. We subdivide e into the same number of edges, and we
denote the resulting complex by R(e). We orient e, which induces
orientations on the edges of R(e).

Now we fix an orientation of X, which induces an orientation of Y .
We orient the edges of X arbitrarily. We orient the edges of Y in any
way so that if d is an edge of X, then the orientations of the subedges
of d agree with the orientation of d. For every orientation of the edges
of X and every such orientation of the edges of Y we construct a tile
type for R as follows. Let t be a closed topological disk. We choose a
homeomorphism f : t → X, which gives t the structure of an oriented
CW complex. The map f also induces orientations on the edges of t,
and Y pulls back to a subdivision of t, which we denote by R(t). Hence
we have a subdivision of ∂t, which we denote by R(∂t). We construct a
continuous cellular map from ∂t to e such that the vertices of t map to
the vertex of SR and the restriction of this map to every open edge of
R(∂t) is an orientation-preserving homeomorphism onto an open edge
of R(e). We attach t to e by means of this map. Attaching all the tile
types of R to e yields SR.

The subdivisions of e and the tile types of R are compatible, giving
a subdivision R(SR) of SR.

We define the subdivision map σR in this paragraph. We define σR
on the 1-skeleton of R(SR) so that σR is a continuous function which
maps the open edges of R(SR) to the open 1-cell of e by means of
orientation-preserving homeomorphisms. Next let t be a tile of R(SR).
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We arbitrarily choose one tile t′ of SR for which there exists a cellu-
lar isomorphism from t to t′ which preserves orientations of faces and
edges. We continuously extend the definition of σR from ∂t to t so that
the restriction of σR to the open 2-cell of t is an orientation-preserving
homeomorphism onto the open 2-cell of t′. This completes the defini-
tion of σR.

We now have a finite subdivision rule R. For every tile type t of R
there exists a cellular isomorphism from t to X which maps R(t) to
Y . Because only one tile of Y contains a given vertex of X, the finite
subdivision rule R has bounded valence. Using the facts that every
edge of X properly subdivides in Y and there exists a cellular auto-
morphism of Y of order q, one checks that the mesh of R approaches 0
combinatorially. (See Section 1.1 of [6] for a definition of approaching
0 combinatorially.) Theorem 2.3 of [6] implies that R can be defined
so that its mesh approaches 0. Now it is clear that R is a one-tile
rotationally invariant finite subdivision rule.

Finally we turn to the construction of an expansion R-complex. By
construction, if t is a tile type of R and v is a vertex of t, then only one
tile of R(t) contains v. Let t be a tile type of R with vertex v such that
the edges of t which contain v are oriented away from v. Let f : t → SR
be the structure map for t. Let s be the tile of R(t) which contains
v, and let g : s → SR be the structure map for s. It is possible to
choose t and v so that there exists a continuous cellular map h : t → s
such that h(v) = v, the restriction of h to every open cell of t is a
homeomorphism onto an open cell of s, and h preserves orientations of
tiles and edges. We redefine σR on g(s) if necessary so that σR maps
g(s) to f(t) and (f

∣∣
int(t)

)−1 ◦σR ◦g
∣∣
int(s)

maps points in int(s) near v to

points in int(t) near v. Now we let S be the R-complex gotten from t
by identifying the two edges of t which contain v. Rotational invariance
shows that the tile of R(S) which contains the image of v lies in int(S).
Lemma 2.4 of [8] implies that there exists an expansion R-complex X.
It is clear that the structure map of X preserves orientation.

This proves Lemma 3.1.

Example 3.2. Figure 1 shows rotationally invariant subdivisions of
three pentagons. Lemma 3.1 shows that for each of these subdivisions
of a pentagon there exists a one-tile rotationally invariant finite subdi-
vision rule whose tile types subdivide as in Figure 1.

We next define the notion of an infinite cellular isomorphism, which
plays a major role in our investigation of one-tile rotationally invari-
ant finite subdivision rules. Let X and Y be CW complexes. Let
X = X1, X2, X3, . . . be a sequence of successive subdivisions of X,
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Figure 1. Rotationally invariant subdivisions of three pentagons

and let Y = Y1, Y2, Y3, . . . be a sequence of successive subdivisions of
Y . An infinite cellular isomorphism from X to Y (with respect to
these subdivisions) is a homeomorphism f : X → Y which is a cellular
isomorphism from Xn to Yn for every positive integer n.

The following lemma gives a basic property of infinite cellular iso-
morphisms.

Lemma 3.3. Let X be a closed topological disk with the structure of
a CW complex. Let X = X1, X2, X3, . . . be a sequence of successive
subdivisions of X whose mesh approaches 0. Then every orientation-
preserving infinite cellular automorphism of X is topologically conju-
gate to a rotation of the closed unit disk in R2.

Proof. Let f : X → X be an orientation-preserving infinite cellular
automorphism.

We first show that if f fixes a point in ∂X, then f is the identity
map on X. Suppose that x ∈ ∂X is fixed by f . Let e ⊆ ∂X be an
edge of X which contains x. Because f preserves orientation, f maps
every cell of e into itself. Hence if t is the tile of X which contains e,
then f maps every cell of t into itself. Inductively, we see that f maps
every cell of X into itself. The same is true for every subdivision of X.
Since the mesh of the sequence X1, X2, X3, . . . approaches 0, it follows
that f is the identity map on X. So if f fixes a point of ∂X, then f is
the identity map on X.

Because f permutes the vertices of X in ∂X, some power of f fixes
a vertex of X in ∂X, and so the previous paragraph implies that f has
finite order, say, q. Since f has finite order, it follows from Kérékjartó’s
theorem (see, for example, the Constantin-Kolev paper [10]) that f is
conjugate to a rotation.

This proves Lemma 3.3.

Lemma 3.4. Let R be a one-tile rotationally invariant finite subdivi-
sion rule. Let t1 and t2 be tile types of R with edges e1 ⊆ t1 and e2 ⊆ t2.
Then there exists a unique orientation-preserving infinite cellular iso-
morphism f : t1 → t2 such that f(e1) = e2.
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Proof. The definition of one-tile rotationally invariant finite subdivision
rule implies that there exists an orientation-preserving cellular isomor-
phism f1 : R(t1) → R(t2) such that f(e1) = e2. Inductively, there ex-
ists a cellular isomorphism fn : Rn(t1) → Rn(t2) such that fn(e1) = e2

for every positive integer n. Because the mesh of R approaches 0, the
limit of the sequence {fn} exists and it is an orientation-preserving
infinite cellular isomorphism taking e1 to e2. Uniqueness follows from
Lemma 3.3.

This proves Lemma 3.4.

Let R be a one-tile rotationally invariant finite subdivision rule.
When constructing a regular conformal structure for SR, we make the
following assumptions. Let t be a tile type of R. Suppose that t has
q edges. Lemma 3.4 implies that there exists an orientation-preserving
infinite cellular automorphism f : t → t of order q. Lemma 3.3 implies
that f is topologically conjugate to a rotation of order q of the closed
unit disk in R2. When we construct a regular conformal structure for
SR, we construct a homeomorphism µt : t → T , where T is a regular
polygon in R2 with q sides of length 1. We now do this so that µt

conjugates f to a rotation of T . If s is a tile type of R other than t,
then Lemma 3.4 provides an infinite cellular isomorphism γs : s → t.
We set µs = µt ◦ γs. Now let X and Y be R-complexes which are ori-
ented surfaces. These assumptions on the regular conformal structure
on SR imply that if g : X → Y is an orientation-preserving cellular iso-
morphism, then g is conformal in int(X) if and only if g is an infinite
cellular isomorphism.

We now come to the main result of this section.

Theorem 3.5. Every one-tile rotationally invariant finite subdivision
rule has an invariant conformal structure.

Proof. To clarify our argument, in Example 3.6 we present one particu-
lar finite subdivision rule with figures showing some of the subdivision
complexes which occur in this proof.

Let R be a one-tile rotationally invariant finite subdivision rule.
Lemma 3.1 shows that there exists a one-tile rotationally invariant
finite subdivision rule Q whose tile types subdivide the same way that
the tile types of R subdivide and that there exists an expansion Q-
complex whose structure map preserves orientation. We define a new
finite subdivision rule R′ so that SR′ is the disjoint union of SR and
SQ with obvious subdivision map. Then R′ is a one-tile rotationally
invariant finite subdivision rule for which there exists an expansion
R′-complex whose structure map preserves orientation. Furthermore
if R′ has an invariant conformal structure, then so does R. Hence we
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may assume that there exists an expansion R-complex whose structure
map preserves orientation. So let X be an expansion R-complex whose
structure map preserves orientation.

Because X has bounded valence, there exists a positive integer r
such that the valence of every vertex of X divides r. We put one more
condition on r in the next paragraph. Let U be a topological space
homeomorphic to R2 with a map from U to X which is a branched
cover, branching only over vertices of X, such that if v is a vertex of
X with valence k, then the degree of this map over v is r/k. The
R-complex structure on X lifts to an R-complex structure on U . We
orient U so that the structure map from U to SR preserves orientation.
Every vertex of U has valence r.

We next subdivide £(U) to obtain a cell complex isomorphic to a
Coxeter complex. We first insert a barycenter in the interior of every
edge of U . Then for every tile t of U we join the barycenter of t with
an edge to the barycenter of every edge of t. The resulting subdivision
of £(U) is isomorphic to the Coxeter complex of the (2, q, r)-triangle
group, where q is the number of edges in every tile type of R. The
(2, q, r)-triangle group is hyperbolic if 1

2
+ 1

q
+ 1

r
< 1. Hence the (2, q, r)-

triangle group is hyperbolic if 1
q
+ 1

r
< 1

2
. We choose r so that 1

q
+ 1

r
< 1

2
.

We equip U with a regular conformal structure as in Section 2 while
adhering to the assumptions two paragraphs before Theorem 3.5. We
let U denote a uniformization of U . Then U is the open unit disk, the
edges of U are hyperbolic geodesic segments, and the tiles of U are
regular hyperbolic q-gons. The homogeneity of U makes it possible to
define maps from U to other R-complexes, and for this reason we view
U as a kind of universal complex.

Let V = R(U). Let V denote a uniformization of V . Corollary 5.7
of [8] implies that V is the open unit disk. We have a canonical home-
omorphism from R(U) to R(U), we have the identity map from R(U)
to V and we have a canonical homeomorphism from V to V . Let
η : R(U) → V be the composition of these maps. The map η is an
R-isomorphism, but in general it is not conformal.

If W is a planar R-complex, then we let Aut(W ) denote the group of
all orientation-preserving infinite cellular automorphisms of W and we
let AutR(W ) denote the subgroup of Aut(W ) consisting of those maps
which are R-isomorphisms. The map η induces a group isomorphism
ω : Aut(R(U)) → Aut(V ) such that if α ∈ Aut(R(U)) and if β = ω(α),
then η ◦ α = β ◦ η. (Note that the natural conformal structure on
R(U) need not be the regular conformal structure, so the elements of
Aut(R(U)) need not be conformal. However, the elements of Aut(V )
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are conformal.) We see that Aut(U) ⊆ Aut(R(U)) and that ω maps
Aut(U) injectively to Aut(V ).

The fact that Aut(U) embeds in Aut(V ) implies that V is regular
in the following sense. Let t be a tile of U ; t is a regular hyperbolic
q-gon. The set T of vertices of t is stabilized by a cyclic subgroup of
Aut(U) of order q. Hence the set η(T ) ⊆ V is stabilized by a cyclic
subgroup of Aut(V ) of order q. It follows that the elements of η(T )
are the vertices of a regular hyperbolic q-gon t′. Now let v ∈ T . The
stabilizer of v in Aut(U) is a cyclic group of order r. The properties of
the isomorphism ω imply that the stabilizer of η(v) in Aut(V ) contains
a cyclic group of order r and in fact that the angle of t′ at η(v) is 2π/r.
Thus t and t′ are congruent hyperbolic q-gons. It follows that there
exists a conformal automorphism γ of the open unit disk which agrees
with η on the vertices of U . Since U is determined only up to conformal
automorphisms of the open unit disk, we replace U by its image under
γ. We therefore have that η fixes every vertex of U .

Let Y = R(X), let X denote a uniformization of X, and let Y
denote a uniformization of Y . The branched cover from U to X induces
a branched cover π : U → X, which is an analytic R-map. A routine
monodromy argument using the fact that every vertex of U has valence
r shows that if x, y ∈ U with π(x) = π(y), then there exists α ∈
AutR(U) such that α(x) = y and π(z) = π(α(z)) for every z ∈ U . So
there exists a subgroup Aut(π) of AutR(U) such that if x, y ∈ U , then
π(x) = π(y) if and only if there exists α ∈ Aut(π) with α(x) = y.

Let α ∈ Aut(U), and let β = ω(α). It follows from the definition of
the isomorphism ω : Aut(R(U)) → Aut(V ) that η ◦α = β ◦ η. We now
have that η(v) = v for every vertex v ∈ U . Hence α(v) = β(v) for every
vertex v ∈ U . Hence α and β are conformal automorphisms of the open
unit disk which agree on every vertex of U . So α = β. Thus ω fixes
every element of Aut(U), and so Aut(U) is a subgroup of Aut(V ). We
furthermore see that η commutes with α. In particular, η commutes
with every element of Aut(π). This implies that η descends to an R-
isomorphism η∗ from π(R(U)) = R(X) to π(V ). Since Y and R(X)
are R-isomorphic, Y and π(V ) are R-isomorphic. An R-isomorphism
between two R-complexes with regular conformal structures is neces-
sarily conformal, so there is a conformal R-isomorphism from Y to
π(V ). We use this conformal R-isomorphism to identify Y with π(V ).

Now let ϕ be the expansion map of X. The map η−1
∗ : Y → R(X)

is an R-isomorphism and ϕ : R(X) → X is an R-isomorphism. Hence
the map ψ : Y → X defined by ψ = ϕ ◦ η−1

∗ is an R-isomorphism.
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Since ψ is an R-isomorphism between two R-complexes with regular
conformal structures, ψ is conformal.

We want to apply Theorem 6.5 of [8] with the present R, ϕ and ψ as
in Theorem 6.5 of [8] and the present X replacing the X of Theorem 6.5
of [8]. There are two more hypotheses of Theorem 6.5 of [8] to verify.

In this paragraph we verify the hypothesis that there exists a posi-
tive integer K such that d(ϕ(x), ψ(x)) ≤ K for every x ∈ X. To prove
this it suffices to prove that there exists a positive integer K ′ such
that d−1(ϕ(x), ψ(x)) ≤ K ′ for every x ∈ X. The definition of ψ im-
plies that d−1(ϕ(x), ψ(x)) = d−1(ϕ(x), ϕ(η−1

∗ (x))), and the end of the
first paragraph of Section 6 of [8] implies that d−1(ϕ(x), ϕ(η−1

∗ (x))) =
d(x, η−1

∗ (x)). Moreover d(x, η−1
∗ (x)) = d(η∗(y), y), where y = η−1

∗ (x).
So it suffices to show that there exists a global bound on the distance
in terms of the pseudometric d from any point in a tile t of X to any
point in η∗(t). Pulling back to U , it suffices to show that there exists a
global bound on the distance in terms of the skinny path pseudometric
for U from any point in a tile t̃ of U to any point in η(t̃). But this is
true because Aut(U) is a subgroup of Aut(V ) and it acts transitively
on the tiles of U : a bound for one tile of U gives a bound for all tiles of
U . Thus there exists a positive integer K such that d(ϕ(x), ψ(x)) ≤ K
for every x ∈ X.

Now Theorem 6.6 of [8] implies that X is parabolic and the mesh
of the sequence of tilings {ψ−n(S(X))} locally approaches 0. We as-
sume that the underlying space of X is C. Thus ψ is a conformal
automorphism of C.

Thus we have verified the hypotheses of Theorem 6.5 of [8] with the
present X instead of X. Theorem 6.5 of [8] implies that there exists
an expansion R-complex X ′ such that 1) the underlying space of X ′ is
C, 2) ψ is the expansion map of X ′ and 3) the sequence of functions
{ψ−n◦ϕn} converges to anR-isomorphism ρ : X → X ′ which commutes
with the expansion maps.

We at last show that R has an invariant conformal structure. At the
heart of the matter is that every orientation-preserving infinite cellular
isomorphism between two R-subcomplexes of X ′ is conformal. We
prove this as follows.

Suppose that we have two R-subcomplexes of X ′. Because ρ : X →
X ′ is an R-isomorphism, our R-subcomplexes of X ′ have the form
ρ(W ) and ρ(Z), where W and Z are R-subcomplexes of X. Let
τ : ρ(W ) → ρ(Z) be an orientation-preserving infinite cellular iso-
morphism. Then θ = ρ−1 ◦ τ ◦ ρ is an orientation-preserving infi-
nite cellular isomorphism from W to Z. We use the fact that ρ =
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limn→∞ ψ−n ◦ ϕn. Let n be a nonnegative integer. Then the func-
tion ϕn ◦ θ ◦ϕ−n : ϕn(W ) → ϕn(Z) is an orientation-preserving infinite
cellular isomorphism between two R-complexes with regular conformal
structures, so ϕn◦θ◦ϕ−n is conformal. Hence τn = ψ−n◦ϕn◦θ◦ϕ−n◦ψn

is conformal. Now let z ∈ int(ρ(W )). Then there exists an open metric
ball B and a nonnegative integer N such that z ∈ B ⊆ ψ−n ◦ ϕn(W )
for every integer n ≥ N . So the functions in a tail of the sequence
{τn} are defined on B, they are conformal and they are uniformly
bounded. As on page 143 of [12], it follows that they form a nor-
mal family there. Hence some subsequence converges to a conformal
function. But limn→∞ τn = ρ ◦ θ ◦ ρ−1 = τ . We have just proved
that every orientation-preserving infinite cellular isomorphism between
two R-subcomplexes of X ′ is conformal. Since Rn(X ′) = ψ−n(X ′), it
follows that every orientation-preserving infinite cellular isomorphism
between two R-subcomplexes of Rn(X ′) is conformal for every nonneg-
ative integer n.

In this paragraph we define charts for SR. Let s be either an open
tile of SR or a butterfly of SR such that if s is a butterfly, then the
orientations of its open tiles agree. If s is an open tile, then let t be an
open tile of X ′, and if s is a butterfly, then let t be a butterfly of X ′. For
every positive integer n let sn be the maximalR-subcomplex ofRn(SR)
contained in s, and define tn similarly. Then for every positive integer
n there exists an orientation-preserving infinite cellular isomorphism
µn : sn → tn such that µn+1

∣∣
sn

= µn. Hence µs = limn→∞ µn is a

homeomorphism from s to t. We take µs to be the chart for s. If s is a
butterfly of SR such that the orientations of the open tiles of s disagree,
then we define µs just as we defined charts for folding butterflies in
Section 3 of [8]. We now have an atlas A of charts for SR. The previous
paragraph shows that A is a partial conformal structure on SR.

The fact that the expansion map ψ is conformal implies that A
satisfies the condition of R-invariance in every open tile of SR and
in every butterfly whose open tiles have compatible orientations. For
a butterfly b of SR whose open tiles have opposite orientations, we
proceed as in the proof of Theorem 4.1 of [8] using the fact that the open
edge of b is an analytic arc. Thus A is an invariant partial conformal
structure on SR. Finally, Theorem 4.2 of [8] implies that A is an
invariant conformal structure.

This proves Theorem 3.5.

We conclude this section with an example with figures showing some
of the subdivision complexes which occur in the proof of Theorem 3.5.
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Figure 2. The second subdivision

Example 3.6. We use Lemma 3.1 to construct a one-tile rotationally
invariant finite subdivision rule R whose tile types are pentagons which
subdivide as in the last subdivision of Figure 1. Figure 2 shows the
second subdivision of a tile type of R. We construct an expansion R-
complex X as in the proof of Lemma 3.1 except that there we take
a seed S of X to consist of just one tile and here we use four tiles.
Figure 3 shows S and R(S); note that the shaded portion of R(S) is
R-isomorphic to S. Figure 4 shows part of X. Note that each vertex of
X has valence 2 or 4. In the proof of Theorem 3.5 we choose an integer
r which is a multiple of all of the valences of the vertices of X, and we
construct a complex U whose vertices all have valence r. We take r = 4.
So the uniformization U of U gives the familiar decomposition of the
hyperbolic plane by right angled pentagons. A portion of U is shown
in Figure 5. A portion of V is shown in Figure 6. Figure 7 shows
portions of U and V simultaneously. Figure 8 shows portions of X and
Y simultaneously. In Figures 7 and 8, note how the vertices of the
coarser complex coincide with vertices of the finer complex. Figures 4
through 8 were drawn using Ken Stephenson’s program CirclePack [13].
In large part, such circle packing figures led to Theorem 3.5.

4. One-tile single valence finite subdivision rules

We define a one-tile single valence finite subdivision rule R as
follows. We assume that R has bounded valence, that R is orientation
preserving, and that the mesh ofR approaches 0. We fix an orientation
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R (S)S

Figure 3. S and R(S)

Figure 4. Part of X
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Figure 5. Part of U

on the open tiles of SR such that the restriction of σR to each open
tile of R(SR) preserves orientation. We make the following two further
assumptions.

1. If s and t are tile types of R, then there exists an orientation-
preserving infinite cellular isomorphism from s to t.

2. There exists a positive integer r such that if t is a tile type of R,
then every interior vertex of Rn(t) has valence r for every positive
integer n.

Just as for one-tile rotationally invariant finite subdivision rules, we
use the expression “one-tile” to indicate that the subdivisions of the
tile types of R look the same.
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Figure 6. Part of V

We will see that one-tile single valence finite subdivision rules provide
interesting examples to which Theorem 6.7 of [8] can be applied. First
we turn to the following lemma, which shows that our assumptions for
one-tile single valence finite subdivision rules are very restrictive.

Lemma 4.1. Let R be a one-tile single valence finite subdivision rule.
Let t be a tile type of R. Suppose that t has q edges and that r is the
valence of every interior vertex of Rn(t) for every positive integer n.
Then the ordered pair (q, r) is either (3, 6), (4, 4) or (6, 3).

Proof. If n is a positive integer, then Rn satisfies the assumptions of
Lemma 4.1, and it suffices to prove Lemma 4.1 for Rn. Thus since the
mesh of R approaches 0, we may assume that some tile of R(t) lies in
the interior of t.

In this paragraph we fix some notation and deduce some facts about
the subdivisions of t. Let k be the number of tiles of R(t). For each
nonnegative integer n, let bn denote the number of tiles of Rn(t) which
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Figure 7. Parts of U and V

meet ∂Rn(t) and let en denote the number of edges of ∂Rn(t). The
complex Rn(t) has kn tiles for every nonnegative integer n. Since some
tile of R(t) lies in the interior of t, we see that bn+1 ≤ (k − 1)bn for
every n and hence bn ≤ (k − 1)n for every n. Since en ≤ qbn for every
n, we see that limn→∞ en

kn = 0.
Let n be a nonnegative integer. Choose an orientation for ∂Rn(t),

and for each edge e in ∂Rn(t), let ve be the valence of the initial vertex
of e. We compute the Euler characteristic of t using Rn(t). By first
counting vertices and edges as if they are in the interior of Rn(t) and
then making corrections for boundary vertices and edges we obtain the
following.

1 =


knq

r
+

∑
e∈∂Rn(t)

(
1− ve − 1

r

)
−

(
knq

2
+

en

2

)
+ kn
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Figure 8. Parts of X and Y

Hence

1− kn
(
1− q

2
+

q

r

)
=

∑
e∈∂Rn(t)

(
1

2
− ve − 1

r

)
.

We have that 0 ≤ ve − 1 ≤ r and so |1
2
− ve−1

r
| ≤ 1 for every boundary

edge e. Hence

|1− kn(1− q

2
+

q

r
)| ≤ en.

Now we divide this inequality by kn, let n go to ∞, and use the last
result of the previous paragraph to conclude that 1− q

2
+ q

r
= 0. Hence

2r− qr +2q = 0. Letting Q = q− 2 and R = r− 2, we obtain QR = 4.
Hence (Q,R) is either (1, 4), (2, 2) or (4, 1), and so (q, r) is either (3, 6),
(4, 4) or (6, 3).

This proves Lemma 4.1.
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Figure 9. The subdivision of the tile types for Example 4.2

Lemma 4.1 was inspired by Eric Swenson. It shows that if we apply
Lemma 2.5 of [8] to a tile type of R, then we obtain an expansion
complex which is isomorphic as a cell complex to the standard cellular
decomposition of R2 by either equilateral triangles, squares, or regular
hexagons.

We continue with four examples.

Example 4.2. In this example there are two tile types and three edge
types. The tile types are equilateral triangles. The subdivisions of the
tile types are shown in Figure 9, where we label the edges of each tile
by a, b, c, d, e, and f to indicate combinatorially the subdivision rule.
In this example, edges labeled a and d have the same edge type, edges
labeled b and e have the same edge type and edges labeled c and f have
the same edge type. The model subdivision complex is a torus.

Example 4.3. In this example there is one tile type and it is a reg-
ular hexagon. The subdivision of the tile type is shown in Figure 10,
where we label the edges of each tile by a, b, c, d, e, and f to indicate
combinatorially the subdivision rule. There are three edge types; edges
labeled by a and f have one edge type, edges labeled by b and c have a
second edge type, and edges labeled by d and e have the third edge type.
The model subdivision complex is a sphere.

Example 4.4. In this example there is one tile type and it is a square.
The subdivision of the tile type is shown in Figure 11, where we label
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Figure 11. The subdivision of the tile type for Example 4.4

the edges of each tile by a, b, c, and d to indicate combinatorially the
subdivision rule. Edges labeled a and c have the same edge type, and
edges labeled b and d have the same edge type. The model subdivision
complex is a torus.

Example 4.5. In this example there is one tile type and it is a square.
The subdivision of the tile type is shown in Figure 12, where we label
the edges of each tile by a, b, c, and d to indicate combinatorially the
subdivision rule. Edges labeled a and c have the same edge type, and
edges labeled b and d have the same edge type. The model subdivision
complex is a torus.

One can check that all of these examples are one-tile single valence
finite subdivision rules.

Let R be a one-tile single valence finite subdivision rule. Let X be
an orientation-preserving expansion R-complex with expansion map ϕ
such that X = R2. With Lemma 4.1 in mind, we assume that X gives
a regular tiling of the plane by either equilateral triangles, squares or
regular hexagons. In addition to this, we assume that 0 is a vertex of
X and that ϕ(0) = 0. We want to determine whether or not (X,R)
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Figure 12. The subdivision of the tile type for Example 4.5

is conformal. In the main theorem of [9] we prove that there exists a
subset Λ of the set of vertices of X which is a lattice in R2 such that
the restriction of ϕ to Λ is a group homomorphism.

Assuming the main theorem of [9], we now show how to determine
whether or not (X,R) is conformal. Because the restriction of ϕ to
Λ is a group homomorphism and ϕ is injective, ϕ(Λ) is a subgroup
of R2 isomorphic to Z2. Since ϕ(Λ) is discrete, it is a lattice in R2.
Hence there exists an R-linear isomorphism ψ : R2 → R2 such that the
restriction of ψ to Λ equals the restriction of ϕ to Λ. We next show
for every x ∈ R2 that ϕ(x) and ψ(x) are near one another as in the
assumptions of Theorem 6.5 of [8]. As noted just before Example 2.1
in [8], there is an R-complex W such that X = R(W ) and ϕ : X → W
is an R-isomorphism. Let d0 denote the skinny path pseudometric for
X, and let d−1 denote the skinny path pseudometric for W . Let F
be a parallelogram which is a closed fundamental domain for Λ. There
exists a positive real number L with the following property. Let x ∈ R2.
Then there exists y ∈ Λ such that x ∈ y + F and d0(x, y) ≤ L. We
maintain the meaning of x and y. Hence d−1(ϕ(x), ϕ(y)) ≤ L. Hence
there exists a positive real number M independent of x and y such that
d0(ϕ(x), ϕ(y)) ≤ M . We also have

ψ(x) ∈ ψ(y + F ) = ψ(y) + ψ(F ) = ϕ(y) + ψ(F ).

Just as for L, there exists a positive real number N independent of
x and y such that d0(ψ(x), ϕ(y)) ≤ N . The triangle inequality now
implies that d0(ϕ(x), ψ(x)) ≤ M + N . This means that ϕ(x) and
ψ(x) are near one another as in the assumptions of Theorem 6.5 of [8].
Because ψ agrees with ϕ on Λ, it is easy to see that the eigenvalues of ψ
have absolute values greater than 1. Hence the eigenvalues of ψ−1 have
absolute values less than 1, and so the mesh of the sequence of tilings
{ψ−n(S(X))} approaches 0. So all of the assumptions of Theorem 6.5
of [8] are satisfied in the present situation.
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→
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Figure 13. The subdivision of a tile of W for Example 4.2

Hence the assumptions of Theorem 6.7 of [8] are satisfied with the X ′

of Theorem 6.5 of [8] replacing the X of Theorem 6.7 of [8], the present
ψ replacing the ϕ of Theorem 6.7 of [8], and the present S(X) replacing
the T of Theorem 6.7 of [8]. Theorem 6.7 of [8] now gives us a simple
criterion to determine whether or not (X,R) is conformal: (X,R) is
conformal if and only if either ψ is a dilation or the eigenvalues of ψ
are not real.

We next apply this criterion to the above four examples.
For Example 4.2, Figure 13 shows the subdivision of a tile of W and

Figure 14 shows part of an expansion R-complex X (with W drawn
with thick edges). The vertex in Figure 14 marked by a large dot is
the origin 0. Let t denote the tile of W in Figure 13. It is the tile
in Figure 14 containing 0 which is translation equivalent to the tile in
Figure 13. Let s be the tile of X in t containing 0. There is an expansion
map ϕ : X → W with ϕ(0) = 0 and ϕ(s) = t. One checks that the
restriction of ϕ to the vertices of X is a group homomorphism; Figure 15
shows two copies of a portion of Figure 14 with a fundamental domain
for the lattice Λ consisting of the vertices of X and a fundamental
domain for ϕ(Λ). Let u be the vertex of s other than 0 in the edge
labeled a, and let v be the vertex of s other than 0 in the edge labeled
c. With respect to the ordered basis (u, v) of R2, the linear operator

on R2 which maps u to ϕ(u) and v to ϕ(v) has matrix

(
4 1
−2 2

)
.

Its characteristic polynomial is x2 − 6x + 10, and its eigenvalues are
(6±

√
36− 40)/2 = 3±

√
−1. Thus (X,R) is conformal by Theorem 6.7

of [8].
Similarly, for Example 4.3, Figure 16 shows the subdivision of a tile

t of W and Figure 17 shows part of an expansion R-complex X and
the complex W . The vertex in Figure 17 marked by a large dot is
the origin 0. The tile t is the tile in Figure 17 containing 0 which is
translation equivalent to the tile in Figure 16. Let s be the tile of X in
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Figure 14. Parts of the R-complexes X and W for Example 4.2

Figure 15. Fundamental domains for Λ and ϕ(Λ)
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Figure 16. The subdivision of a tile of W for Example 4.3

Figure 17. Parts of the R-complexes X and W for Example 4.3

t containing 0. There is an expansion map ϕ : X → W with ϕ(0) = 0
and ϕ(s) = t. Figure 18 shows two copies of a portion of Figure 17
with the fundamental domains of two lattices. One checks that the
restriction of ϕ to the lattice Λ with the smaller fundamental domain
is a group homomorphism onto the lattice with the larger fundamental
domain. The corresponding linear map evidently dilates by a factor of
3 and rotates through an angle of π/3. Thus (X,R) is conformal by
Theorem 6.7 of [8].

For Example 4.4, Figure 19 shows a tile t of X with ϕ(t) and ϕ2(t).
We assume that the origin is the vertex contained in the edges of t

labeled a and d. In this case we obtain the matrix

(
3 1
1 3

)
. Its

characteristic polynomial is x2 − 6x + 8, and its eigenvalues are 2 and
4. Thus (X,R) is not conformal by Theorem 6.7 of [8].
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Figure 18. Fundamental domains for Λ and ϕ(Λ)

a
d b

c

Figure 19. A tile t of X with ϕ(t) and ϕ2(t)

For Example 4.5, Figure 20 shows a tile t of X with ϕ(t), ϕ2(t) and
ϕ3(t). We assume that the origin is the vertex contained in the edges
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bd

c

Figure 20. A tile t of X with ϕ(t), ϕ2(t) and ϕ3(t)

of t labeled a and d. In this case the matrix is

(
2 1
0 2

)
. Thus (X,R)

is not conformal by Theorem 6.7 of [8].
We return to our expansion complex X obtained from the finite

subdivision rule R of Example 4.2. We saw that (X,R) is conformal.
By the proof of Theorem 6.7 of [8], there is an expansion R-complex
X ′ which is R-isomorphic to X such that the expansion map for X ′

is given in complex coordinates by z 7→ (3 − i)z. Figure 21 shows
part of X ′; the thick curves show the boundary of the image under the
expansion map of a tile of X. The expansion complex X ′ has exactly
two tiles up to the equivalence relation of translation. Furthermore,
for any tile t of X ′, (3− i)t is a union of tiles of X ′. That is, the tiling
given by X ′ is a self-similar tiling. We refer the reader to [11] for a
discussion of self-similar tilings.

We now show that this is true in general. Let R be a one-tile single
valence finite subdivision rule. Let X be an orientation-preserving
expansion R-complex such that X gives a regular tiling of the plane.
Suppose that the expansion map ϕ of X fixes a vertex of X. We saw in
the discussion after Example 4.5 that there is an R-linear isomorphism
ψ such that R, X, ϕ, and ψ satisfy the hypotheses of Theorem 6.5 of
[8]. The conclusion of Theorem 6.5 of [8] establishes the hypotheses of
Theorem 6.7 of [8]. From this we conclude that (X,R) is conformal if
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Figure 21. A self-similar tiling for Example 4.2.

and only if ψ is either a dilation or has eigenvalues which are not real
numbers.

Now suppose that (X,R) is conformal. Then there is an expansion
R-complex X ′ and an R-isomorphism ρ : X → X ′ such that ρ is the
limit of the sequence of functions {ψ−n ◦ ϕn}. If the tiles of X are
equilateral triangles, then there are two tiles up to translation. If the
tiles of X are either squares or regular hexagons, then all tiles of X are
equivalent under translation. So the number of translation equivalence
classes of tiles of X is either 2, 1, or 1. Let t be a tile of X. Because the
tiles of the form ϕ(t) need not be rotationally symmetric, the number
of these translation equivalence classes is either 6, 4, or 6. If n is
a positive integer, then the same is true for tiles of the form ϕn(t)
and (ψ−n ◦ ϕn)(t). It follows easily from this that X ′ has at most six
translation equivalence classes of tiles.

Since ψ is either a dilation or has eigenvalues which are not real
numbers, there is an R-linear isomorphism T : R2 → R2 such that
T−1◦ψ◦T is given in complex coordinates by z 7→ λz for some complex

number λ. Let X̃ be the tiling of R2 which is the image of X ′ under T−1.

Then X̃ has only finitely many tiles up to translation. Furthermore, for
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each tile t of X̃, λt is a union of tiles of X̃. That is, X̃ is a self-similar
tiling.

5. An interesting example

In this section we describe a finite subdivision rule R with bounded
valence and mesh approaching 0 that has a hyperbolic expansion com-
plex X and a parabolic expansion complex Y . Furthermore, R is ir-
reducible, any compact R-subcomplex of X is R-isomorphic to a sub-
complex of Y , and any compact R-subcomplex of Y is R-isomorphic
to a subcomplex of X.

The model subdivision complex SR has one vertex, two edges, and six
tiles. The subdivisions of the six tile types are shown in Figure 22; the
tiles in the subdivisions are labeled by their tile types. A thin edge is
subdivided into two thin edges, each directed away from the barycenter.
A thick edge is subdivided into three thick edges, each with the same
direction as the original edge. This determines the orientation of every
edge in the subdivision of every tile type of R except for the two thick
edges in R(t3) which are contained in tiles of type t4. We orient these
two edges from left to right. Note thatR does not preserve orientation;
for example, the structure map of the tile of type 2 reverses orientation
on every subtile of type 3. The complex SR is obtained from the union
of the tile types by identifying all of the thin edges and identifying all
of the thick edges. The subdivision map of SR can be defined so that R
has bounded valence and mesh approaching 0. Given tile types ti and
tj, there exists a positive integer n such that Rn(ti) contains a copy of
tj. In other words, R is irreducible.

The expansion complex X is constructed as in Lemma 2.4 of [8].
Figure 23 shows the complexes X0, X1, X2, and X3. The tiles in X0

all have type t1. The orientations of the boundary edges of X0 indicate
that two tiles of X0 are identified with t1 in an orientation-preserving
way and two tiles of X0 are identified with t1 in an orientation-reversing
way. The complex Xn−1 naturally embeds in Xn for every positive
integer n and we construct X as the direct limit of this directed system.
For each nonnegative integer n, let im(Xn) denote the image of Xn in
X, and for each positive integer n, let Rn = im(Xn)\ int(im(X0)). The
Rn’s are rings whose union is X \ int(im(X0)). We show that for each
n, the fat cut modulus m(Rn,S(X)) is bounded above by 3/4. Since
there is a constant K such that M(Rn,S(X)) ≤ K ·m(Rn,S(X)) by
the bounded valence theorem, [4, Theorem 6.2.4] or [5, Theorem 1.6],
it follows by Theorem 5.5 of [8] that X is not parabolic. Hence X is
hyperbolic.
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Figure 22. The subdivisions of the six tile types

Lemma 5.1. Let n be a positive integer. Then m(Rn,S(X)) ≤ 3/4.

Proof. For each edge e of ∂(im(Xn)), let pe be the fat path in Rn with
underlying curve a topological path which joins the ends of Rn, has
one boundary point in the interior of e, and intersects only thick edges
of Rn (that is, edges whose images in SR are the images of thick edges
from the tile types). Define a weight function w on Rn in the manner of
[4] by w =

∑
e∈∂(im(Xn)) pe. Since there are 4·3n edges in ∂(im(Xn)) and

each closed curve in Rn separating the ends of Rn must intersect each
fat path pe, the circumference C(Rn, w) ≥ 4 · 3n. But each boundary
component of Rn is an underlying curve for a fat path with weight
4 · 3n, so C(Rn, w) = 4 · 3n.

For each k ∈ {1, . . . , n}, im(Xk)\ int(im(Xk−1)) contains 4 ·6k−1 tiles
with weight 3n−k+1; all of the other tiles have weight 0. The area of Rn

with respect to w is

A(Rn, w) =
n∑

k=1

4 · 6k−1 · (3n−k+1)2 = 4 · 32n ·
n∑

k=1

(2/3)k−1

= 4 · 32n+1 · (1− (2/3)n).
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X0 X1

X3X2

Figure 23. Xi, i ∈ {0, 1, 2, 3}

Since m(Rn,S(X)) = infω
A(Rn,ω)
C(Rn,ω)2

,

m(Rn,S(X)) ≤ A(Rn, w)

C(Rn, w)2
=

3

4

(
1−

(
2

3

)n)
≤ 3

4
.

While the expansion complex X is constructed as a direct limit start-
ing from the complex X0, which is a union of four tiles of type t1, the
expansion complex Y is constructed as a direct limit starting from the
complex Y0, which is a union of four tiles of type t3. Figure 24 shows
Y0 and Y1. The orientations of the edges of Y0 indicate that the top
two tiles of Y0 are identified with t3 in an orientation-preserving way,
and the bottom two tiles of Y0 are identified with t3 in an orientation-
reversing way. The complex Y0 naturally embeds in Y1; its image is
shown in gray.

Figure 25 shows part of the expansion complex Y with the fixed point
p of the expansion map at the center. (The rings that are drawn in
gray will be described later.) Note that Y has vertical strips composed
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Figure 24. Y0 and Y1

•p

Figure 25. Part of the expansion complex Y and the
rings C1, C3, and C5

of tiles of type t3. If t is a tile of type t3 containing an interior point
q such that ϕ−k(q) is in a tile of type t3 for each positive integer k,
then t is part of a bi-infinite “vertical” strip of tiles of type t3 in which
adjacent tiles intersect in a thick edge. If t is in one of these vertical
strips, then t is also in a bi-infinite “horizontal” strip in which adjacent
tiles intersect in a thin edge. The horizontal strips may contain tiles of
types t3, t4, t5, and t6.

We define an “island” to be the closure of a connected component of
the complement of the union of the closed vertical strips of Y . If U is
an island of Y and q ∈ U , then the depth of U is the maximum positive
integer k such that ϕ1−k(q) is in a tile of type t4. We define a “chain
of islands” to be a connected component of the union of the islands.
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Figure 26. Chains of islands in Y

Any island is in a chain of islands, and all of the islands in a chain of
islands have the same depth. For example, Figure 26 shows parts of
three chains of islands of depth 1, one chain of islands of depth 2, and
one chain of islands of depth 4. Note that for any positive integer n,
there are at least 3n vertical strips between any two chains of islands of
depth n and there are 3n−1 vertical strips separating p and the nearest
chain of islands of depth n.

There is a cellular map π : Y → R2 from Y to the square tiling
of the plane which maps p to (0, 0), maps each of the vertical strips
injectively to a vertical strip in R2, maps each of the horizontal strips
to a horizontal strip in R2, and maps each tile which is not in a vertical
strip either to a vertex or to an edge.

We will use Theorem 5.6 of [8] and the layer theorem [6, Theorem
3.1] to show that Y is parabolic. Let A0 be the star of (0, 0) in the
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square tiling of R2, and define An recursively for n a positive integer by
An = star(An−1)\ int(An−1). Then ∪n>0An = R2 \ int(A0) and if n > 0
then An is a ring made up out of 8n+4 squares. For each positive integer
n, let Cn be the closure of π−1(int(An)). Each Cn is a ring; Figure 25
shows C1, C3, and C5 drawn in gray. We show in Lemma 5.2 that for
each n the fat flow modulus M(Cn,S(Y )) ≥ 1

24(n+1) ln(n+1)
. It follows

from the layer theorem that for each positive integer n the modulus of
the ring which contains C1 and Cn, and whose boundary is contained
in C1 ∪ Cn, is at least (1/24)

∑n
k=1

1
(k+1) ln(k+1)

. Since
∑∞

k=1
1

(k+1) ln(k+1)

is divergent, the moduli of these rings are not bounded and so by
Theorem 5.6 of [8] Y is not hyperbolic. Hence Y is parabolic.

Lemma 5.2. Let n be a positive integer. Then

M(Cn,S(Y )) ≥ 1

27(n + 1) ln(n + 1)
.

Proof. Let w be the weight function which assigns weight 1 to each
tile in Cn and assigns weight 0 to every other tile. Then the height

H(Cn, w) = 1 and so M(Cn, w) = H(Cn,w)2

A(Cn,w)
= 1

A(Cn,w)
. Since every tile

in Cn has weight 1, A(Cn, w) is just the number of tiles in Cn. We view
Cn as being decomposed into a top (which is contained in a horizontal
strip), a bottom (which is also in a horizontal strip) and two sides (each
of which is in a vertical strip). We see that Cn contains 8n + 4 tiles
of type t3. In addition it can contain tiles of type t4, t5, and t6 from

the top and from the bottom. Let i = b ln(n+1)
ln(3)

c. Since for each k there

are 3k−1 vertical strips separating p from the nearest chain of islands
of depth k, the top and bottom can contain tiles in islands of depth k
only if n + 1 > 3k−1, which occurs only if k ≤ i + 1. Since the top and
bottom each intersect only 2n+2 vertical strips and chains of islands of
depth k are separated by at least 3k vertical strips, the top and bottom
can each intersect at most 1 + 2n+2

3k islands of depth k. Furthermore,
the number of tiles that the top or bottom can have in a given island
of depth k is 2 if k = 1 and 2 · 3k−2 if k > 1. Hence

A(Cn, w) ≤ (8n + 4) + 2 · 2 ·
(

1 +
2n + 2

3

)
+ 2

i+1∑
k=2

2 · 3k−2

(
1 +

2n + 2

3k

)

=
32

3
(n + 1) +

8

9
(n + 1)(i) + 2 · (3i − 1)

≤ 11(n + 1) + (n + 1) ln(n + 1) + 2(n + 1)

≤ 13(n + 1) + (n + 1) ln(n + 1).



EXPANSION COMPLEXES FOR FINITE SUBDIVISION RULES II 35

Since 1 ≤ ln(4) = 2 ln(2), we have 13 ≤ 26 ln(2) ≤ 26 ln(n + 1). So
A(Cn, w) ≤ 27(n + 1) ln(n + 1). Hence

M(Cn,S(Y )) ≥ 1

27(n + 1) ln(n + 1)
.

Finally, note that X0 is R-isomorphic to a subcomplex of R(t6), and
so every compact R-subcomplex of X is R-isomorphic to a subcomplex
of Y . Similarly, Y0 is R-isomorphic to a subcomplex of R2(t3), and so
every compact R-subcomplex of Y is R-isomorphic to a subcomplex
of X.
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