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1. Introduction

An epidemic is sometimes said to spread like wildfire. Might it then be controlled
by setting backfires? A fire is fueled by the available timber, an epidemic by the
available susceptible population. Might an epidemic be averted by preemptively
infecting some susceptible individuals?

To make sense of this question, we need to specify a model for disease transmis-
sion. The underlying phenomenon in the spread of disease is transmission from an
infective to a susceptible individual. In the absence of medical omniscience, this is
a probabilistic phenomenon. The nature of the pathogen, the state of health of the
individuals and the duration and nature of their contact all contribute to determin-
ing this probability. In a group of people, these probabilities can be recorded in a
social network; i.e., a directed labelled graph in which the vertices represent people
and the edges are labelled with transmission probabilities. We consider two models
in which these probabilities are time independent.(See below for details.)

We first consider the (discrete) SIR model, which was introduced by Kermack and
McKendrick [8]. They formulated the differential equation governing a continuous
model by first considering an associated discrete model that was fully mixed: one
in which all individuals are in contact with each other, with identical transmission
rates.

In this model: (i) an individual is either susceptible, infective, or recovered; (ii) a
recovered individual stays recovered; (iii) an infective individual becomes recovered
after a globally fixed time step; (iv) a susceptible individual who is not in contact
with an infective individual stays susceptible; and (v) a susceptible individual who
is in contact with one or more infective individuals either becomes infective or stays
susceptible, with probability determined by the (per time step) transmission rate(s)
of the contact(s).

After analyzing this model, we extend our results to what we call the SIR model,
in which conditions (iii) and (v) are relaxed. We relax (iii) by allowing different
individuals to be infective for different lengths of time. We relax (v) by letting
the transmission probabilities depend on the individual and on the number of time
steps since the individual first became infective. In particular, this allows for a
latent period and for the length of the latent period to vary from individual to
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individual. This model is time independent; the transmission probabilities depend
on the number of time steps since the individual was infected, but they do not
depend on when the individual was infected.

Returning to our analogy, we should point out that the use of backfires really cor-
responds to the case of disease transmission probabilities that are time dependent:
firefighters, after setting a backfire, actively prevent its spread across the fire line.
Our main result implies that in these models where the transmission probabilities
are time independent, preemptive infections cannot help.

Of course, the real firebreaks against epidemics are vaccinations. While a backfire
corresponds to deliberately switching individuals from susceptible to infective so
that they will then become recovered, a safe vaccine switches the individual directly
from susceptible to recovered. Is this safe for everyone else?

It is generally accepted that prophylactic vaccination benefits the group, not
just the individual: vaccinating an individual can lower other people’s chances of
becoming infected. One can easily see that for realistic parameter values, this is
always so in the Kermack-McKendrick model. (This can be derived from equation
(20) of [8] or equation (9) of [1].) However, if we assume that the transmission
probabilities can vary over time, a single vaccination can either avert or cause an
epidemic. Consider, for instance, an individual P who is the sole contact between
two communities, A and B. Vaccinating P might block transmission from A to B,
thereby preventing an epidemic in B. But what about vaccinating an individual Q
in A who has close contact with P? Vaccinating Q might trigger an epidemic in
B by causing P to be infected later, when the transmission probabilities are larger
for edges emanating from P into B.

In the real world, vaccination is highly effective as a public health measure. On
average, administering a vaccination is more likely to reduce than increase the total
number of infections. This must be the consequence of some generic properties of
real-world social networks. We wonder what those properties are.

Here we assume that the transmission probabilities are time independent. In
Section 3 we prove that, for our models, an individual’s probability of getting
the disease cannot be decreased by either infecting some individuals or increas-
ing some transmission probabilities. It follows easily from the analysis that one
cannot increase an individual’s probability of getting infected by vaccinating some
individuals.

Given an initial set of infectives in an otherwise susceptible population which is
not fully mixed, we want to model the spread of disease on this social network. Since
this happens probabilistically, there is no single scenario; rather, there are multiple
scenarios with differing probabilities. As one begins to track these probabilities, one
sees that the probabilities involved are no longer independent. The probability of
transmission along an edge e whose origin is infective at time t depends on whether
its target is still susceptible, and the likelihood of this being the case depends on
the conditions at other vertices. In particular, the question is no longer local but
potentially global.

One way to deal with these multiple possible time lines is to organize them into
a tree or a directed acyclic graph. Each vertex of this graph represents a state of
the network; i.e., a partition of the people into susceptible, infective and removed
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states. The root is the initial situation. The edges of the graph give the ways in
which the epidemic might proceed, each edge labelled with its probability1.

Instead, we take the viewpoint that many of these problems become much more
tractable if we pay less attention to the order of events. Rather than asking whether
a given edge transmits infection at a given time, we ask whether a given edge
transmits if it ever comes into play. Since a given edge can only transmit the
disease once, in the course of an epidemic (or simulation) one can assume that a
single edge either does or does not transmit the disease. Grassberger took this
point of view in [6]; he considered the case that the social network is a cubic lattice
and all of the transmission rates are the same, and noted that the problem of who
gets infected could be interpreted in terms of bond percolation. This point of view
has been considered for square lattices with random transmission rates in [11] by
Sander et al., and for more general graphs by Newman, Meyers, and their coworkers
(see, for example, [10] or [9], which each have extensive references).

The techniques we employ here are very similar to techniques developed indepen-
dently and contemporaneously by Anil Kumar and Madhav Marathe of the Network
Dynamics and Simulation Science Laboratory at Virginia Tech. We are grateful to
the Laboratory’s Director, Stephen Eubank, for first directing our attention to this
fascinating area.

2. Background and definitions

2.1. SIR social networks. We wish to study how disease spreads though a fixed
population. Infection is necessarily transmitted from an infected to a susceptible
person. In this model, we assume that the epidemic proceeds in discrete time steps,
that infection resides in any person for one step, that the probability of transmission
between any two people is time-invariant, and that recovery from infection confers
lifetime immunity. This can be summarized in the following definitions.

An SIR social network is a labelled finite directed graph N = (G,µ). The
vertices, elements of V = V (G), are people. The edges, elements of E = E(G),
are determined by their endpoints; that is, E ⊂ V × V \∆. (Here ∆ denotes the
diagonal.) The function µ : E → [0, 1] assigns a probability to each edge. Given
an edge e = (p, q), we denote the source and target of this edge by ∂0(e) = p and
∂1(e) = q.

A state of this network is a labelling of its vertices with labels {S, I,R}, i.e.
ϕ : V → {S, I,R}. Said another way, the states of N are St(N ) = {S, I,R}V . We
will say that ϕ is an initial state if ϕ(V ) ⊂ {S, I}. Given a state ϕ, we say that an
edge e is in play if ϕ(∂0(e)) = I and ϕ(∂1(e)) = S. We will say that a vertex is in
play if it is the target of an edge that is in play.

Given states ϕ1 and ϕ2, the state ϕ2 is a possible successor of ϕ1 if it satisfies
the following conditions:

1. If ϕ1(p) = R, then ϕ2(p) = R.
2. If ϕ1(p) = I, then ϕ2(p) = R.
3. If ϕ1(p) = S, then ϕ2(p) ∈ {S, I}.
4. If ϕ2(p) = I, then p is in play for ϕ1.

1To make this graph acyclic, we need to delete the self-edges. These occur at states which
have no infectives. We can force this graph to be a tree at the cost of having multiple vertices
representing the same state.
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An epidemic is a sequence of states ϕ0, . . . , ϕk where ϕi+1 is a possible successor
of ϕi for i = 0, . . . , k − 1. Notice that any sufficiently long epidemic becomes a
constant sequence in which each person is either susceptible or recovered. It is not
hard to see that the longest an epidemic can remain non-constant is at most one
more than the length of the longest self-avoiding path in G.

The probabilities on the edges of N induce a map f on the set of probability
measures on {S, I,R}V . This map is determined by its values on those measures
which concentrate all probability in a single state ϕ. Let µϕ be the measure which
concentrates all probability in ϕ. The support of f(µϕ) is in the set of possible
successor states of ϕ. Let us denote the set of edges that are in play for ϕ by Pϕ(E)
and the set of vertices that are in play by Pϕ(V ). We assume these edges infect or
fail to infect independently. Then, if v is in play for ϕ, the probability that ϕ infects
v is given by

µ(ϕ, v) = 1−
∏

{e∈Pϕ(E)|
∂1(e)=v}

(1− µ(e)).

The measure f(µϕ) is non-zero only on the possible successors of ϕ, and there it is
given by

f(µϕ)({ψ}) =
∏

{v∈Pϕ(V )|
ψ(v)=I}

µ(ϕ, v)
∏

{v∈Pϕ(V )|
ψ(v)=S}

(1− µ(ϕ, v)).

Notice that this also induces a measure µϕ1n on the set of all epidemics of length
n begining at ϕ1 given by

µϕ1n(ϕ1, . . . , ϕn) =
n∏

i=2

f(µϕi−1)({µϕi
}).

We may think of a condition as defining a set of states; i.e., the set of states
that satisfy that condition. For example, given a person p, the condition that p
is infected or recovered defines the set {ϕ | ϕ(v) ∈ {I,R}}. Given an initial state
ϕ and a condition C, the probability that C holds after n steps is fn(µϕ)(C). In
particular, given an initial state ϕ the probability that person p is either infected
or recovered after n steps is

µ(ϕ, n, p) = fn(µϕ) ({ψ | ψ(p) ∈ {I,R}}) .

Implicit in this definition is a choice of N . Since we will wish to vary this choice,
we will further decorate this as µN (ϕ, n, p).

If we fix N , then there is a partial order on the set of initial states. We will say
ϕ0 ≺ ϕ1 if {v | ϕ0(v) = I} ( {v | ϕ1(v) = I}. There is also a partial order on
the social networks on a fixed graph. Given two social networks N0 and N1 with
the same underlying graph, G, we say N0 ≺ N1 if µ0 6= µ1 and for each e ∈ E,
µ0(e) ≤ µ1(e). We will also write µ0 ≺ µ1.

2.2. SIR social networks. In the SIR model, each individual can be infective for
exactly one step. This is equivalent to assuming that there is no latency and that
the period of infectivity is equal in all individuals and that this period is equal to
the time step of the model. We now generalize this to a model to allow infection to
persist and vary over time. We do this by assigning to each individual p a positive
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integer r(p) and a sequence of infective states2 Ip = I1, . . . , Ir(p). In each state Ii

with i < r(p), p can either recover or progress to the next infective state Ii+1. We
formalize this as follows. An SIR social network is a 4-tuple

M = (G, ι, ρ, µ)

where

1. G = (V,E) is a directed graph.
2. For each p ∈ V , ι(p) = Ip = I1, . . . , Ir(p).
3. For each p ∈ V and 1 ≤ i < r(p), ρ(p, i) is the probability that p progresses

from state Ii to state Ii+1. For notational convenience, we take ρ(p, r(p)) = 0
and ρ(p, 0) = 1.3

4. For each e = (p, q) ∈ E and 1 ≤ i ≤ r(p), µ(p, i, q) is the probability that if p
is in state i and q is susceptible, then p infects q.

The states of M are

St(M) = {ϕ : V → {S} ∪ I ∪ {R} | for each p ∈ V , ϕ(p) ∈ {S} ∪ Ip ∪ {R} },

where I = I1, I2, . . . . A state ϕ is an initial state if for each p ∈ V , ϕ(p) is either
S or I1 ∈ Ip. If (p, q) ∈ E with ϕ(p) ∈ Ip and ϕ(q) = S, we say that (p, q) is in
play and q is in play. Again, we denote by Pϕ(V ) the set of vertices in play and by
Pϕ(E) the set of edges in play. We say that ϕ2 is a possible successor of ϕ1 if it
satisfies the following:

1. If ϕ1(p) = R, then ϕ2(p) = R.
2. If ϕ1(p) = Ir(p), then ϕ2(p) = R.
3. If ϕ1(p) = Ij , where j < r(p), then ϕ2(p) ∈ {Ij+1, R}.
4. If ϕ1(p) = S, then ϕ2(p) ∈ {S, I1}.
5. If ϕ2(p) = I1, then p is in play for ϕ1.

As before, we can define an epidemic to be a sequence of states each of which is
a successor of the previous state. Once again, assuming independence of all events
(infections and recoveries), we have a map f on the set of measures on St(M). For
any ϕ where q ∈ V is in play, we can compute the probability that ϕ infects q. For
each infective p such that (p, q) is in play, there is i = i(p) so that ϕ(p) = Ii ∈ Ip,
and we will abuse notation by dropping the dependency of i on ϕ and p. We then
have

µ(ϕ, q) = 1−
∏

(p,q)∈Pϕ(E)

(1− µ(p, i, q)).

2If one wishes to assign biological meaning to these states, this is an abuse of notation since
the Ii of Ip may not be the same as the Ii of Iq . Mathematically, the biological information is

encoded in the probabilities and we do not need to distinguish the Ii of different vertices.
3A priori, this appears to be a loss of generality since exposure might confer immunity without

passing through an infective state. However, we can model this by setting µ(p, 1, q) = 0.
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Again f(µϕ) is non-zero only on successors of ϕ, and here it is given by

f(µϕ)({ψ}) =


 ∏

{v∈Pϕ(V )|
ψ(v)=I1}

µ(ϕ, v)





 ∏

{v∈Pϕ(V )|
ψ(v)=S}

(1− µ(ϕ, v))





 ∏

{v|ϕ(v)=Ii,

ψ(v)=Ii+1}

ρ(v, i)





 ∏

{v|ϕ(v)=Ii,

ψ(v)=R}

(1− ρ(v, i))


 .

Again this induces a corresponding measure µϕ1n on the set of epidemics of length
n starting at ϕ1.

Once again, we have a partial order on the set of initial states given by ϕ0 ≺
ϕ1 if ϕ−1

0 (I) ( ϕ−1
1 (I). We also have a partial order on the set of SIR social

networks with a fixed graph and fixed labeling ι. If M0 = (G, ι, ρ0, µ0) and M1 =
(G, ι, ρ1, µ1) then M0 ≺ M1 if M0 6= M1, ρ0(p, i) ≤ ρ1(p, i) for each (p, i), and
µ0(p, i, q) ≤ µ1(p, i, q) for each (p, i, q).

3. Results

3.1. Monotonicity of the SIR model. Given a social network as described
above, how can you decrease the probability that a particular person gets infected?
One possibility is by inoculating certain individuals. In the model, this corresponds
to assigning them state R. Is it possible to decrease any individual’s probability
of getting infected by deliberately infecting certain individuals? Since an infected
person becomes recovered after one time step and can then never be infected again,
it is conceivable that infecting an individual could lessen someone else’s chance of
becoming infected later. Alternatively, could you lessen an individual’s chance of
being infected by increasing some of the edge transmission rates?

The following theorem shows that both of these are impossible in this model.

Theorem 3.1. The following monotonicity properties hold:
1. Given ϕ0 and ϕ1 in {S, I}V with ϕ0 ≺ ϕ1, then for any person p and n ≥ 0,

µ(ϕ0, n, p) ≤ µ(ϕ1, n, p).

2. Given N0 and N1 with N0 ≺ N1, then for any initial state ϕ0 ∈ {S, I}V ,
person p and n ≥ 0,

µN0(ϕ0, n, p) ≤ µN1(ϕ0, n, p).

Now, vaccination of an individual p can be modelled as
• removing p from any potential set of initial infectives, and
• setting to 0 the transmission probabilities on edges to or from p.

Corollary 3.2. In the SIR social network model, vaccination has no collateral
damage.

We start by proving some lemmas.

Lemma 3.3. Given any edge e and any epidemic ϕ0, . . . , ϕk, there is at most one
state ϕj such that e is in play.

Proof. For e to be in play at state ϕj , we must have ϕj(∂0(e)) = I. This implies
that ϕt(∂0(e)) = S for t < j and ϕt(∂0(e)) = R for t > j.
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This suggests the following map:

ε : {0, 1}E × {S, I,R}V → {S, I,R}V
.

Given ζ ∈ {0, 1}E and ϕ ∈ {S, I,R}V we take ε(ζ, ϕ) = ψ where

ψ(v) =




R if ϕ(v) = R

R if ϕ(v) = I

I if there is e such that v = ∂1(e), where e is in play and ζ(e) = 1
S otherwise

We will also use εζ(ϕ) to denote ε(ζ, ϕ).
We define a probability measure on {0, 1}E by

µ(ζ) =
∏

{e|ζ(e)=1}
µ(e)

∏
{e|ζ(e)=0}

(1− µ(e)).

It is not hard to check that ∑
ζ∈{0,1}E

µ(ζ) = 1.

Lemma 3.4. These have the following properties:
1. For any ϕ and ζ, ε(ζ, ϕ) is a possible successor of ϕ.
2. Every possible successor of ϕ arises in this manner.
3. Given ζ and ϕ, the sequence εi

ζ(ϕ) is an epidemic.
4. Every epidemic arises in this manner.
5. Given ζ, ϕ and ψ,

f(µϕ) ({ψ}) = µ ({ζ|ε(ζ, ϕ) = ψ}) .

6. Given ζ, ϕ, n and ψ,

fn(µϕ) ({ψ}) = µ
({ζ | εn

ζ (ϕ) = ψ}) .

Likewise, given a condition C,

fn(µϕ) (C) = µ
({ζ | εn

ζ (ϕ) ∈ C}) .

Proof. To see that ε produces only successor states, observe that for each vertex,
ε preserves the property of being recovered, turns infected vertices into recovered
vertices, infects only vertices that are in play, and preserves the property of being
susceptible for those vertices which are in play that it does not infect and for those
vertices which are not in play.

We wish to see that every successor state arises in this manner. To see this,
notice that choosing a successor state corresponds to choosing which subset of the
vertices that are in play to infect. We choose ζ in the following manner. If v is
in play and we do not wish to infect v, then for each edge e which is in play with
∂1(e) = v, we set ζ(e) = 0. If v is in play and we wish to infect v, we choose at
least one edge e which is in play with ∂1(e) = v and set ζ(e) = 1.

It now follows immediately that the sequence εi
ζ(ϕ) is an epidemic. Now Lemma

3.3 implies that given ϕ we can choose ζ to produce any epidemic which starts at
ϕ.

To see (5), we need to look at the relationship between {0, 1}E and {0, 1}E′
,

where E′ ⊂ E. There is a map τ : {0, 1}E → {0, 1}E′
, where τ(ζ) is restriction of ζ
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to E′. We have a measure µ′ on {0, 1}E′
given by taking the above products only

over edges in E′. It follows that for any set X ⊂ {0, 1}E′
, µ′(X) = µ(τ−1(X)).

Now consider a vertex v which is in play, and take E′ to be the set of edges
which are in play and whose target is v. It is not hard to see that the µ′ measure
of those ζ ∈ {0, 1}E′

which infect v is the same as the probability that ϕ infects v.
This is the same as the µ measure of those ζ ∈ {0, 1}E which infect v. Applying
this to every v which is in play gives the result.

Finally, the first part of (6) follows from (5) by induction. The second part of
(6) follows from the first by summing over individual states.

Lemma 3.5. Suppose we are given ζ, ϕ0, n and v, and that ϕ0(V ) ⊂ {S, I}. Then

1. εn
ζ (ϕ0)(v) = I if and and only if ζ−1(1) contains a directed path from an

infected vertex of ϕ0 to v and the shortest such path has length n.
2. εn

ζ (ϕ0)(v) ∈ {I,R} if and only if ζ−1(1) contains a directed path from an
infected vertex of ϕ0 to v of length at most n.

3. The epidemic induced by ζ starting at state ϕ0 infects v if and and only if
ζ−1(1) contains a directed path from an infected vertex of ϕ0 to v.

Proof. The first statement can be proved by induction on n. Our induction hypoth-
esis is as follows. Suppose the shortest path in ζ−1(1) from the infected vertices of
ϕ0 to v has length n. (If there is no such path, we will say its length is ∞.) Then
εi
ζ(v) = S for i < n and εn

ζ (v) = I when n < ∞.
For n = 0, this reduces to the assumptions on ϕ0. If it holds for n − 1, then it

follows immediately for n by applying εζ to εn−1
ζ (ϕ0).

The second and third statements now follow immediately.

We are now prepared to prove Theorem 3.1.

Proof. (Theorem 3.1) We are given a fixed social network, N . We must show that
given ϕ0 and ϕ1 with ϕ0 ≺ ϕ1, a person p and n ≥ 0, µ(ϕ0, n, p) ≤ µ(ϕ1, n, p).
Now,

µ(ϕ0, n, p) = µ
({ζ | there is a path in ζ−1(1) of length at most n from ϕ−1

0 (I) to p})
and

µ(ϕ1, n, p) = µ
({ζ | there is a path in ζ−1(1) of length at most n from ϕ−1

1 (I) to p}) .

Since ϕ−1
0 (I) ( ϕ−1

1 (I), the result follows.
Next, we are given two social networksN andN ′ differing only in their respective

edge probabilities, with µ ≺ µ′. We have an initial state ϕ0, a person p and n ≥ 0.
We must prove that µ(ϕ0, n, p) ≤ µ′(ϕ0, n, p). We consider the set

Z = {ζ | there is a path in ζ−1(1) of length at most n from ϕ−1
0 (I) to p}.

It suffices to show that µ ≺ µ′ implies µ(Z) ≤ µ′(Z), which we do in the following
lemma.

Lemma 3.6. If µ ≺ µ′ then µ(Z) ≤ µ′(Z).
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Proof. For convenience, we order E = (e1, . . . , em). Consider a machine which
carries out a lottery to choose an element of {0, 1}E according to probability µ.
Such a machine would consist of the m-dimensional unit cube [0, 1]E and a way of
choosing (z1, . . . , zm) with a flat probability distribution. The machine then emits
ζ according to the formula

ζ(ei) =

{
1 if zi ≤ µ(ei)
0 otherwise

Let {σ1, . . . , σs} be the set of paths from ϕ−1(I) to v of length less than or equal
to n. For each σi there is a subset Si ⊂ [0, 1]E so that ζ−1(1) includes σi if and
only if the machine chooses a value in Si. This set is

Si = {(z1, . . . , zm) | zj ≤ µ(ej) if ej is an edge of σi }.
The machine chooses ζ which infects v in n or fewer steps if and only if it chooses
an element of S = ∪Si. The probability of doing so is vol(S).

If we now perform the same procedure using the edge probabilities given by
µ′ to produce S′ = ∪S′i, then in each case Si ⊂ S′i so that S ⊂ S′, and hence
vol(S) ≤ vol(S′).

3.2. Symmetry in the SIR model. We say that N = (G,µ) is symmetric if
µ(p, q) = µ(q, p) for each (p, q) ∈ E(G). In a symmetric social network, individuals
are “equally mutually infective.” A similar property holds on the level of groups of
individuals. These two assertions are made precise in the following theorem.

Theorem 3.7. Suppose N is symmetric. Then the following symmetry properties
hold:

1. Let p0, p1 ∈ V (G), and let ϕi, i = 0, 1, be the states defined by

ϕi(p) =

{
I if p = pi

S otherwise

Then for any n ≥ 0,

µ(ϕ0, n, p1) = µ(ϕ1, n, p0).

2. Let P0, P1 ⊂ V (G), and let ϕi, i = 0, 1, be the states defined by

ϕi(p) =

{
I if p ∈ Pi

S otherwise

For i = 0, 1, let

Ci = {ϕ | there exists p ∈ Pi such that ϕ(p) ∈ {I,R} }.
Then for any n ≥ 0,

fn(µϕ0)(C1) = fn(µϕ1)(C0).

Proof. Given ζ ∈ {0, 1}E and n ≥ 0, εn
ζ (ϕ0)(p1) ∈ {I,R} if and only if ζ−1(1)

contains a directed path from p0 to p1 of length less than or equal to n. Likewise,
εn
ζ (ϕ1)(p0) ∈ {I,R} if and only if ζ−1(1) contains a directed path from p1 to p0 of

length less than or equal to n. The symmetry of N makes these two events equally
likely. This proves the first property.
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Transmission from P0 to P1 takes place exactly for those ζ for which ζ−1(1)
contains a path from some person in P0 to some person in P1. The second property
now follows by the same argument.

3.3. The SIR model. We will now generalize these results to SIR social net-
works. The key here is that given an SIR social network M, we can build an SIR
social network N whose epidemiology encodes that of M. The underlying graph
of N covers that of M.

Theorem 3.8.

1. Let M be an SIR social network, let p ∈ V be a person in this network, let
ϕ0, ϕ1 ∈ St(M) be initial states satisfying ϕ0 ≺ ϕ1, and let n ≥ 0. Then
µ(ϕ0, n, p) ≤ µ(ϕ1, n, p).

2. Let M0 ≺M1 be SIR social networks, and suppose that ϕ is an initial state,
p ∈ V and n ≥ 0. Then µM0(ϕ, n, p) ≤ µM1(ϕ, n, p).

We start by constructing the covering SIR social network N = (G̃, µ) for an SIR
social network M = (G, ι, ρ, µ). For each p ∈ V , we take Vp = {p1, . . . , pr}, where
Ip = I1, . . . , Ir(p) and r = r(p). We take G̃ = (Ṽ , Ẽ), where

Ṽ = qp∈V Vp,

and

Ẽ = {(pi, q1) | (p, q) ∈ E, 1 ≤ i ≤ r(p)} ∪ (qp∈V {(pi, pi+1) | 1 ≤ i < r(p)})
We say that Vp is the stack over p, that these vertices project to p, and that each
edge of the form (pi, q1) projects to (p, q). For each edge of the form (pi, q1) and
each edge of the form (pi, pi+1) we take

µ(pi, q1) = µ(p, i, q)

µ(pi, pi+1) = ρ(p, i)

To understand the terminology and the underlying idea behind the construction,
think of the graph G as being horizontal and the graph G̃ as lying above G. Over
a vertex p ∈ V there are vertices p1, . . . , pr (where r = r(p)) and “vertical” edges
(pi, pi+1) for 1 ≤ i < r(p). Over an edge (p, q) there are diagonal edges (pi, q1) for
1 ≤ i ≤ r(p).

Definition 3.9. Recall that ϕ ∈ St(M) is an initial state if for each p ∈ V , ϕ(v)
is either S or I1 ∈ Ip. We will say that ϕ1 ∈ St(N ) is a valid initial state if

1. ϕ1(Ṽ ) ⊂ {S, I}.
2. Each vertex p with ϕ1(p) = I is the initial vertex in its stack; i.e., p is of the

form p1.

Lemma 3.10. Suppose that ϕ1 is a valid initial state of N and that ϕ1, . . . , ϕn is
an epidemic. Then for each stack Vp = {p1, . . . , pr} and each i, 1 ≤ i ≤ n, the
string of labels in that stack, ϕi(p1)ϕi(p2) . . . ϕi(pr), takes the form RaIbSc where

1. a + b + c = r(p)
2. 0 ≤ a ≤ r(p)
3. 0 ≤ b ≤ 1
4. 0 ≤ c ≤ r(p)
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Proof. By assumption for i = 1 this string has either the form Sr or ISr−1. Notice
that by construction, infection can only arrive at the stack via p1, and it can only
be passed up the stack. Induction now shows that at each point in time, the R’s
occupy an initial segment of the stack, there is at most one infected vertex which
must follow the R’s, and any remaining vertices are susceptible.

Definition 3.11. We will say that a state ϕ ∈ St(N ) is valid if it satisfies the
conclusions of Lemma 3.10. We use Val(N ) to denote the set of valid states.

In particular, the valid initial states of N are valid.
Using the values a, b, c of the previous Lemma we can define a map

Φ : Val(N ) → St(M)

by

(Φ(ϕ))(p) =




S if c = r(p)
Ia+1 if b = 1
R if a > 0, b = 0

Proposition 3.12.
1. Suppose ϕ ∈ Val(N ) and p ∈ V . Then ϕ is determined on Vp by (Φ(ϕ))(p)

unless (Φ(ϕ))(p) = R and r(p) > 1.
2. Φ is a bijection between the initial states of M and the valid initial states of
N . We call ϕ and Φ(ϕ) corresponding initial states.

3. If ϕ ∈ Val(N ) then the possible successors of ϕ are in Val(N ).
4. If ϕ1 is a possible successor state of ϕ0 in Val(N ), then Φ(ϕ1) is a possible

successor state of Φ(ϕ0).
5. Φ induces a bijection on epidemics which start in (valid) initial states. That is

to say, given an epidemic ψ1, . . . , ψn ∈ St(M), there is a unique ϕ1 ∈ Val(N )
such that Φ(ϕ1) = ψ1 and there is a unique epidemic ϕ1, . . . , ϕn ∈ St(N ) such
that Φ(ϕi) = ψi for 1 ≤ i ≤ n. This epidemic necessarily lies in Val(N ).

6. Φ carries the function f on probability measures on Val(N ) to the function
f on probability measures on St(M).

7. Given a valid initial state ϕ1 of N and an epidemic ϕ1, . . . , ϕn,

µϕ1n(ϕ1, . . . , ϕn) = µΦ(ϕ1)n(Φ(ϕ1), . . . ,Φ(ϕn))

Proof.
1. If (Φ(ϕ))(p) = S, then a = b = 0, c = r(p). In the case where (Φ(ϕ))(p) =

Ii ∈ Ip, a = i− 1, b = 1 and c = r(p)− i. However, when (Φ(ϕ))(p) = R and
r(p) > 1, we cannot determine a and c.

2. When ϕ is an initial state, R /∈ (Φ(ϕ))(V ), so the value of ϕ is determined in
each stack Vp by the value of (Φ(ϕ))(p).

3. Given a stack Vp = {p1, . . . , pr} and a valid state ϕ, we consider the string of
labels ϕ(p1) . . . ϕ(pr).
(a) If this string is Sr(p), then in any successor state, this string is either

Sr(p) or ISr(p)−1.
(b) If this string is RaISc then in any successor state, the string is either

Ra+1Sc or Ra+1ISc−1.
(c) If this string is RaSc with a > 0, then in any successor state the string

is unchanged.
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4. This follows by observing that each possible change of state in the stack over
p that we have just enumerated corresponds to a unique possible change of
state at p ∈ V .

5. We have already seen the existence and uniqueness of ϕ1. Using the previous
observation, an induction shows the existence of each successive ϕi. A priori,
uniqueness might fail in the stack over some p if ψi(p) = R. However, in this
case ϕi−1 determines the values that ϕi must take over p.

6. Once started in corresponding initial states, each edge that is in play in N
corresponds to an edge that is in play inM and these bear the same probabil-
ity of transmitting infection. Likewise each stack in which a vertex is infected
lies over an infected vertex of M which is in the corresponding state, and
these bear the same probability of recovery.

7. This follows from the previous step by induction.

We are now prepared to prove Theorem 3.8.

Proof. (Theorem 3.8) We start by building a covering graph for each of these SIR
social networks. In each case, we have a corresponding initial state in the covering
SIR network. The key observation is that p becomes infected during an epidemic
in the SIR model if and only if p1 ∈ Vp becomes infected in the corresponding
epidemic in the covering graph. Since the probabilities of corresponding epidemics
are equal, we appeal to the theorem in the SIR case and are done.

It is not hard to give a similar generalization of Theorem 3.7. Here the definition
of symmetry requires that the following properties hold for each (p, q) ∈ E.

1. The edge (q, p) is in E.
2. The vertices p and q have the same number of infective states.
3. For each i with 1 ≤ i < r(p), ρ(p, i) = ρ(q, i).
4. For each i with 1 ≤ i ≤ r(p), µ(p, i, q) = µ(q, i, p).
We wish to mention in passing one more method of modeling SIR social networks

with SIR social networks. Let us fix an SIR social networkM. Given an edge (p, q)
that is in play, we can compute the cumulative probability that p infects q during
the course of p’s infectivity, assuming that q is not infected first from some other
source. Given that p enters state I1, the probability that it enters state Ii without
previously infecting q is

i−1∏
j=1

ρ(p, i)(1− µ(p, i, q)).

Since infection of q from each of the infective states Ii ∈ Ip constitute disjoint
events, the cumulative probability is

µ(p, q) =
r(p)∑
i=1

µ(p, i, q)
i−1∏
j=1

ρ(p, i)(1− µ(p, i, q)).

(The product is empty for j = 1.) We will call N = (G,µ) the cumulative infectivity
SIR model for M. We leave to the reader the proof that starting in corresponding
initial states p is ultimately infected in M with the same probability of ultimately
being infected in N . This model has the advantage of being simpler than the
covering model. Its drawback is that the number of steps it takes in any given
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epidemic for p to be infected in N tells us neither the number of steps nor the
number of transmissions required in M.

4. Discussion

In this paper, we have considered two social network models of epidemiology,
the SIR and SIR models. The discrete SIR model was introduced by Kermack
and McKendrick in [8] as theoretical justification for their differential equations
SIR model for epidemics. The discrete model, which is based upon a graph with
a vertex for each individual and an edge for each pair of individuals who are in
contact with each other, enables one to model populations in which the patterns
and extents of contacts between individuals can vary greatly. With the advent of
powerful computers, it has been increasingly used for simulations; this has sparked
renewed theoretical interest in these models.

A number of studies in the last few years use discrete social networks to consider
vaccination strategies for combating epidemics. In [5], Ferrari et al. contrast the
effects of prior epidemics (which thin out nodes with large contacts) with random
vaccinations for the SIR model on small world, Poisson, and scale-free graphs. In
[3], Dezsö and Barabási use numerical and analytical results for the SIS model on a
scale-free network to show that immunizing the highly-connected nodes can reduce
the epidemic threshold. (In the SIS model, individuals are either susceptible or
infectious, and an infectious individual becomes susceptible again.) In [2], Colizza
et al. consider the effects of different vaccination strategies on large-scale simulations
with the SLIR model. (Here L represents a latent state.) They are mainly interested
in influenza, and take into account air traffic and the worldwide diversity of stockpile
sizes of anitviral drugs. Hartvigsen et al. are also interested in the SIR model for
influenza in [7]. They use numerical simulations with various underlying graphs to
test five different vaccination strategies. Since they found little difference due to
population size in their simulations, for the paper they chose a population size of
10,000. In [4], Eubank et al. describe their work using EpiSims to model epidemics
in large networks corresponding to urban populations. They use their model of
Portland to test several different vaccination strategies.

Here we have used bond percolation methods to establish some elementary prop-
erties of SIR networks. By ignoring the time at which a given edge might transmit
infection, these methods avoid a thicket of conditional probabilites that grows up
around any attempt to trace the propagation of the probabilities through the net-
work. These methods require transmission probabilities that do not vary over time.
The methods break down, and the results are false, if transmission probabilities are
allowed to vary over time — as they surely do in reality.

Our results in the SIR and SIR models imply that I cannot get sick because
you got vaccinated. Yet we have seen that this conclusion need not be true if
transmission probabilities vary over time. We suspect that an individual vaccina-
tion occasionally does have the peverse effect of raising another’s odds of infection.
However, real-world experience is that vaccination creates herd immunity. This
suggests that on average, the collateral benefit of vaccination outweights any col-
lateral damage. The example we gave in the introduction seems fragile. One has
the reaction, “Sure, that could happen, but I bet most of the time, it doesn’t.”
What properties of social networks would supply a rigorous justification for this
feeling?
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We have used a sort of covering graph to extend our results from the SIR model
to the SIR model. Since in the SIS model an edge may transmit infection more
than once, the SIS model is not obviously interpretable in terms of bond percolation.
However, we are currently working on using a covering SIR social network to model
the repeated infection that is possible in SIS social networks. We hope to extend
our results to this case.

References

[1] Anderson, R. M., 1991. Discussion: The Kermack-McKendrick Epidemic Threshold Theo-

rem. Bull. Math. Bio. 53, 3–32
[2] Colizza, V., Barrat, A., Barthelemy, M. , Valleron, A.-J., Vespignani, A., 2007. Modeling the

Worldwide Spread of Pandemic Influenza: Baseline Case and Containment Interventions.
PLoS Medecine 4
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