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§0. Introduction.

This paper is an expository paper about our joint work, which the first author
presented in a series of lectures at the University of Auckland (New Zealand), the
University of Melbourne (Australia), and the Australian National University in
Canberra (Australia). We express appreciation for the kindness and interest of all
the many wonderful mathematicians and their families whom that author and his
wife enjoyed during their visit. This final version of the paper includes a few of the
questions and comments which arose during the discussions of those lectures. We
thank the referees for numerous insightful comments.

The first section, which is our own nonproof of the Riemann Mapping Theorem,
can be used as a good intuitive introduction to the long and fussy proof of our
own combinatorial Riemann mapping theorem [CRMT]. In particular, it demon-
strates the geometry underlying the classical conformal modulus of a quadrilateral
or annulus.

The second section shows how the classical conformal modulus is applied to
combinatorics, with the intent of preparing for the exposition of sections 3 and 4.

The third section shows that, under subdivision, a topological quadrilateral can
develop wildly oscillating conformal modulus, a behavior which was perhaps not
expected.

The fourth section reviews how combinatorial moduli apply to the study of
negatively curved or Gromov word hyperbolic groups and shows by example how
our work might be used to recognize a Kleinian group combinatorially.

The final section, section 5, concludes the paper with remarks and questions.

§1. Conformal moduli.

What is the geometry underlying the modulus formula,

Mρ = (Hρ)
2/Aρ,

which comes from the theory of conformal mapping and gives the modulus Mρ as a
ratio which compares the square (Hρ)

2 of a certain length Hρ to an area Aρ? Just
as Dr. Strangelove came to love the bomb, so we have come to love this unintuitive
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expression. Our aim is to explain to topologists and geometric group theorists its
beautiful underlying geometry and applications.

To which length and area do the symbols Hρ and Aρ refer? In the sequel we
shall consider the formula in four different settings: the classical modulus of a
quadrilateral or annulus with a fixed Riemannian metric ρ; the conformal modulus
of a quadrilateral or annulus obtained by optimizing the classical moduli over a
family of Riemannian metrics; the combinatorial modulus of a tiled quadrilateral
or annulus with a fixed weight function ρ; and the combinatorial conformal modulus
of a tiled quadrilateral or annulus obtained by optimizing over a family of weight
functions. The first two settings are considered in this section, and the next two
settings are considered in section 2. The remainder of the paper is then devoted to
applications of the combinatorial modulus to geometry and group theory.

Setting I. The classical, continuous setting. Let Q denote either a (com-
pact) topological quadrilateral (disk with four distinguished boundary points) or
a (compact) topological annulus, with Q having a Riemannian metric ρ. Call two
opposite edges of the boundary of Q the top and bottom of Q. (In the quadrilateral
case, the four distinguished points of the boundary of Q divide this boundary into
four edges, two forming top and bottom, the other two forming the sides. In the
annulus case, the two boundary curves of Q are considered opposite edges, the top
and bottom of the annulus.) The top and bottom are also called the ends of Q.
Then Hρ denotes the Riemannian distance between the top and bottom of Q and
Aρ denotes the Riemannian area of Q.

It is easy to understand the geometric meaning of Mρ in the case where Q is, as
a topological quadrilateral, a true Euclidean rectangle or Q, as an annulus, has the
shape of a right circular cylinder. Then top and bottom have obvious geometric
meaning, and the distance Hρ between top and bottom is the geometric height of Q.
The rectangle or right circular cylinder Q has area Aρ which is the product of Hρ

with the width or circumference Wρ of Q. Thus Mρ is the ratio (Hρ)
2/Aρ = Hρ/Wρ

which obviously measures the geometric proportions or shape of the rectangle or
cylinder. See Figure 1.
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Figure 1. The modulus of a geometric rectangle
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Thus we see that the modulus Mρ is a generalized measure of the shape of the
quadrilateral or annulus Q. This measure of shape is obviously invariant under
scaling of the metric ρ since the height Hρ scales by the given scale factor and the
area by the square of that same factor. It is precisely this invariance under scaling
that dictates the powers of Hρ and Aρ used in the formula.

Setting II. The conformal setting. A conformal change of metric multiplies
a given metric on Q not by a global scale factor but by an infinitesimal scale factor.
The Riemannian metric of Q, which we have been calling ρ up to this point, we now
assume fixed and put it into the background without any explicit name. We now
reinterpret the symbol ρ as denoting not a Riemannian metric on Q but rather a
positive function on Q which serves as the local scale factor of a conformal change of
metric. The product of ρ with our fixed but unnamed Riemannian metric onQ gives
a new Riemannian metric on Q, conformally equivalent to the old one, hence a new
height denoted Hρ, a new area denoted Aρ, and a new modulus Mρ = (Hρ)

2/Aρ.

It is an easy matter to create a conformal invariant from the modulus Mρ. We
simply define the conformal modulus of Q to be

M = sup
ρ

Mρ,

where ρ varies over all possible local scaling functions ρ.

What is the geometric meaning of this conformal modulus? We shall see that
within it hides the wonderful Riemann mapping theorem. The discussion which we
shall give will be correct as regards intuitions and conclusions and is even capable
of completion, but as it stands, it relies heavily on what Mike Shapiro would call
snake oil, that standard merchandise of the travelling salesman intended to attract
and perhaps fool or mislead the gullible. Our intent is to demonstrate that the
Riemann mapping theorem is natural and beautifully geometric. We consider only
the case where Q is a topological quadrilateral.

The graph-paper analysis of the conformal modulus.

Step 1. Optimal weight functions and metrics. There is an amazing
fact: the supremum which defines the conformal modulus is finite, and, in fact,
this supremum is actually realized as a maximum. That is, there is a positive
function ρ on Q such that M = Mρ. We shall call such a function ρ an optimal

weight function on Q. There is a most marvelous proof of the fact that there exists
an optimal weight function, but the margin of this page is too narrow to hold it.
Classically its existence was proved by means of the Dirichlet principle, a principle
which was relied upon by Gauss, Dirichlet, and Riemann, the use of which was
eventually justified under appropriate conditions by Hilbert. The principle has nu-
merous modern incarnations, but is essentially a compactness principle applied to a
potentially noncompact, infinite dimensional space of functions. For the remainder
of the analysis of conformal modulus, ρ will be a fixed optimal weight function on
Q. We shall multiply the old Riemannian metric on Q by this local scaling function
ρ and obtain a new Riemannian metric which we call optimal. We shall analyze
the resulting Riemann surface, which we continue to call Q.

Step 2. The flows or vertical lines of our graph paper. Let p denote an
arbitrary point of Q. We claim that p is on a path joining top and bottom of Q
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which has length equal to the distance from top to bottom. If not, then we could
reduce the local scale function ρ near that point without changing the height of
Q. Such a local scale reduction would reduce the area Aρ, leave the height Hρ

unchanged, and increase the modulus Mρ, a contradiction.

We call a path joining the ends of Q which has minimal length a flow line. We
have proved that Q is filled with flow lines. We shall think of the flow lines as the
vertical lines of graph-paper coordinates for Q.

d(x,B)

d(x,T)

•x

flow line

cut lines

↓

→→

Figure 2. Flow lines and cut lines

Step 3. The cuts or horizontal lines of our graph paper. The Riemann
surface Q with its new optimal metric is also filled by natural level lines or cut lines
which we call horizontal and which we individually define as the set of points at
constant distance from the bottom of Q. See Figure 2. We think of the cut lines
as the horizontal lines of graph-paper coordinates for Q.

That the cut lines are actually topological segments joining the sides of Q we
see as follows:

The top of Q is the level line corresponding to the constant distance Hρ from
the bottom of Q by step 1.

All other level sets must therefore correspond to levels between 0 and Hρ. Each
such level set is obviously compact, separates top from bottom, and, by our argu-
ment, is at each point arcwise accessible from the component of the complement
containing the top and also from the component of the complement containing the
bottom. A beautiful theorem from plane topology implies that this level set is
therefore, in the case of the quadrilateral, an arc (and in the case of the annulus, a
simple closed curve) separating top from bottom.

It is important to note that each flow line intersects each cut line orthogonally.
Otherwise the flow line could be shortened and still join the ends of Q, a contra-
diction.

Step 4. The dissection of Q into planar strips of individually constant
vertical height. We choose a finite subfamily of the cut lines in Q dividing Q into
finitely many strips, each of individually small vertical height, each individual strip
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being so narrow that it is approximately planar. In keeping with our labelling of
the top and bottom of Q as the ends of Q, we call the images of the cut lines (that
we used to divide Q into strips) the ends of the strips.

What does one do with cut lines? We take scissors and cut Q along them,
thereby dissecting Q into finitely many essentially planar strips of individually
constant height. We then approximate each individual strip almost isometrically
by an exactly planar strip of the same constant height. See Figure 3.

→

Figure 3. Sample planar strips of individual constant height

The reader can experiment and see how planar strips which twist in the plane
but have constant individual heights can be pasted together to form essentially
arbitrarily shaped surfaces. Why is this so? How would you dissect an arbitrary
surface, say a curved tree leaf or a large portion of an apple or orange peel, into
planar strips of constant individual height? A cantaloupe is particularly nice to
work with.

Why does a planar strip of constant height twist and turn? It does so because
the geodesics orthogonal to the ends (that is, the minimal paths or flow lines joining
the ends) locally converge or diverge from one another. This twisting and turning
is precisely what creates curvature in the global surface; said another way, the
twisting and turning is a combined expression of the curvature of the global surface
and the geodesic turning of the cut lines within that global surface.

Step 5. Do our planar strips actually twist? The reader will by now have
figured out how to show that essentially arbitrary surfaces can be dissected into
(almost) planar strips of individually constant height and will have noted that, in
general, those strips, when put into the plane (almost) isometrically, twist and turn.
But ours is not an arbitrary surface. Our surface has an optimal metric and we
have dissected it along cut lines or level lines with respect to that optimal metric.
Is it possible that these optimal strips of individually constant height twist and
turn?

Let us suppose first that one of these strips, which we denote by S, turns, but
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Figure 4. Substrips S1 and S2 of the same height in a planar strip S

only in one direction.

The following description is more complicated than it needs to be in order that
we can later modify the description minimally in a more general context.

Since the strip S turns in only one direction, we may assume that geodesics
orthogonal to the cuts in S diverge from one another as one goes from bottom to
top. We construct three curves in S, each separating the top and bottom of S, as
follows. The first is a cut C1 in S. By the geodesic divergence property, the curve
C1 is concave down. Our second curve C2 is formed by pushing the points of C1

downward along flows a small distance but retaining the property of being concave
down. Our third and final curve C3 is formed as a portion of an envelope. Namely,
we cover C2 by circular disks centered on C2 and tangent to C1. The boundary
of the union has two components which separate the ends of S, namely C1 itself
above C2 and another curve C3 below C2. See Figure 4.

In this simple context, here is a simpler description of our three curves: C1 is
a cut in the interior of S, and C2 and C3 are cuts at distances ǫ and 2ǫ below C1,
respectively.

We summarize here the essential facts: (1) The three curves bound two regions,
namely R12 between curves C1 and C2 and R23 between curves C2 and C3. It
follows from the concavity property of C2 that the corresponding areas satisfy the
inequality A12 > A23. (2) The region R23 is at least as thick as the region R12 in
the sense that, if one starts at a point p of C2, then d(p, C1) ≤ d(p, C3).

Theorem. There are positive multipliers λ and µ such that if our metric is
multiplied by λ in R12 and by µ in R23, then the area of S is decreased and the
height of S is not decreased.

Remark. The local scaling indicated by the theorem can be applied to all of Q
if Q has such a strip S, but that would increase the modulus Mρ, a contradiction.
We therefore conclude as a corollary of the theorem that Q has no such strip S
which twists in only one direction. On the other hand, if S twists even locally in
any direction, then the construction of C1, C2, and C3 can be carried out locally
in the following way. Choose C1 in the interior of S as before, namely as a cut.
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Assuming that S twists, there will be a subarc A of C1 which is, say, concave
downward as before. Now form C2 from C1 as before but only pushing points of A
downward along flows and leaving the other points of C1 unmoved. Make sure that
C2 remains concave downward along the image of A. Form the envelope about C2

as before, noting that the envelope will pinch to height 0 except along A. Then one
has precisely the essential facts listed above, from which follows the same theorem.
Therefore, we have the following corollaries to the theorem.

Corollary. The planar strips into which we have dissected Q do not twist and
turn; their tops and bottoms are parallel Euclidean lines. The flows are parallel
to one another and perpendicular to the parallel tops and bottoms. Since the side
points of Q lie on flows which join top to bottom, it follows that the sides are in
fact flows.

Corollary. The Riemann mapping theorem. The quadrilateral Q with its
optimal metric is a Euclidean rectangle. The conformal modulus of the quadrilat-
eral Q with its original metric is the modulus of this rectangle. The flow lines in
this rectangle are precisely the vertical lines in the rectangle and the cut lines are
precisely the horizontal lines. (They form Euclidean graph paper.)

Proof of the Theorem. An easy but reasonably complex geometric argument
will show that the height does not decrease if we choose our positive multipliers λ
and µ subject to the conditions that λ+ µ = 2 and that λ < 1 (µ > 1).

We begin however with the completely elementary argument that if, in addi-
tion, we choose λ and µ sufficiently close to 1, then the area of S will in fact
decrease. These two verifications will complete the proof of the theorem and its
two corollaries.

We work with the metric modified by the multipliers λ and µ in regions R12 and
R23, respectively. We call this the new metric. We have a resulting new height and
area. The heights and areas before the change are called the old height and areas.

Area can be decreased by choosing λ and µ sufficiently close to 1. By
construction, we have A12 = k · A23, with k > 1. Since k > 1, we may choose λ
with 0 < λ < 1 and with λ so near 1 that

(1 + k)(1 + λ)− 4 > 0.

We then define µ = 2−λ as required above. It is now an easy exercise in arithmetic
to prove that the change in area is given by

(λ2A12 + µ2A23)− (A12 +A23) = [(1 + k)(1 + λ)− 4](λ− 1)A23,

which, by our choices, is negative.

Height does not decrease. Let P denote a path of minimal new length
joining the top and bottom of S.

There is a subpath P1 irreducible from the top to the curve C1. Here we mean
irreducible in the sense that no proper subpath of P1 joins the top to the curve C1.
It has new length equal to old length and this length is necessarily the distance t
from C1 to the top.
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Figure 5. Calculation of new height

There is a subpath P2 irreducible from C2 to the bottom.

If P2 does not begin in C2 \C1, then it begins on C1 and everywhere has length
evaluated with respect to new metric at least as large as the old metric (perhaps
at points lengths are multiplied by µ > 1). In this case the length is at least the
distance b from C1 to the bottom. That is, if P2 begins in C1, the length of P is at
least t+ b, which is the old height of S and we are done.

If P2 begins at a point p of C2 \ C1, we argue as follows. The subarc P3 of P
which begins at P1∩C1 and ends at p ∈ C2 \C1 has old length at least equal to the
old distance from p to C1 and its new length is calculated with local multiplier at
least as large as λ. Hence we do not increase the length of P3 if we replace it by a
minimal path P ′

3 through R12 from the point p back to q ∈ C1 (such a path exists
in the circular disk about p used in forming the envelope about C2). We can then
replace P1 by a minimal path P ′

1 from q back to the top of S.

We call the resulting minimal path P ′. Note that it is the union of the three
paths P ′

1, P
′

3, and P2. We can now calculate the relative shortenings and lengthen-
ings of these paths as we change from old metric to new metric. The path P2 which
is irreducible from C2 to the bottom of S contains a subpath Q2 irreducible from p
to C3 which necessarily passes through R23 and has old length at least equal to the
old length of P ′

3. The only shortening occurs in the path P ′

3 where the shortening
has magnitude (1−λ) times the old length of P ′

3. We have at least the lengthening
which occurs in the path Q2 where the lengthening has magnitude (µ − 1) times
the old length of Q2. Since the old length of Q2 is at least as large as the old length
of P ′

3, and since λ + µ = 2, easy arithmetic shows that the lengthening is at least
as large as the shortening. �

Remarks. The conformal modulus, as we have seen, precisely captures the
variational geometry required to change an arbitrary quadrilateral conformally into
a rectangle. The hardest step which we have omitted is the proof that there is in fact
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an optimal weight function; it is this step that Riemann himself failed to complete.
The optimal weight function has, of course, an interpretation as the absolute value
of the derivative of the Riemann mapping. That is, the modulus formula captures
the notion of complex derivative without any mention of derivative or coordinates.

§2. Combinatorial modulus.

Setting III. The tiled quadrilateral or ring. We assume given as before a
topological quadrilateral or ring Q, but we suppress any Riemannian metric on Q
and retain only combinatorial data. We assume that Q is tiled by disks. That is,
we assume given a structure on Q as a polyhedral 2-cell complex whose 2-cells form
a tiling T = {ti} of Q. We assume given a function ρ : T → [0,∞), not identically
0, which we call a weight function on T . We denote the image or weight of the tile
ti by ρi.

We shall use the weight function ρ to define approximate distances and areas in
Q as follows. Let X denote a collection of tiles. Then the length of X is defined
to be the sum of the ρi where ti ∈ X. The area of X is defined to the the sum
of the squares ρ2i where ti ∈ X. It is as though we were considering the elements
of X as squares of edge ρi. There are two types of subsets of T which we wish
to call paths. The first type is called a fat path. A fat path is associated with a
topological path p in Q and is equal to the set of all tiles hitting p. The second
type is called a skinny path. A skinny path is likewise associated with a topological
path p in Q, but it involves an additional choice as well. A skinny path is any set
of tiles covering p; it may or may not contain all of the tiles hitting p. A path (fat
or skinny) is said to join the ends of Q if its associated topological path joins the
ends of Q. The path is said to separate the ends of Q if its associated path either
joins the sides of Q (the quadrilateral case) or its associated path is a closed curve
which circles the annulus Q (annular case). We will often identify a collection p of
tiles with its characteristic function χp : T → R. By doing this, we can take linear
combinations of paths.

It is now easy to define height, width or circumference, area, and combinatorial
modulus for Q and ρ. The combinatorial height Hρ of Q is the minimum length of
a combinatorial fat path joining the ends of Q. The combinatorial width (quadri-
lateral case) or combinatorial circumference (annular case) of Q, both of which we
denote by Wρ, is the minimum length of a combinatorial skinny path separating
the ends of Q. The combinatorial area Aρ of Q is defined to be the area of T . Now
the combinatorial modulus Mρ of Q is defined by the same formula as before:

Mρ = (Hρ)
2/Aρ.

Setting IV. The combinatorial conformal modulus. We think of the
weight function ρ as a local scaling function, a conformal change of metric, on the
tiling T . In order to get a conformal invariant, we simply take the supremum over
all weight functions ρ:

M = sup
ρ

Mρ.

As before, this supremum is realized as a maximum by a weight function which we
call optimal. But now this fact is not amazing but easy and we give the proof.
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Theorem. Existence and uniqueness of combinatorial optimal weight
functions.

(i) There is an optimal weight function ρ.

(ii) The optimal weight function is unique up to scaling.

(iii) The optimal weight function respects all combinatorial symmetries of the
tiling T .

Proof. (i) Since the modulus is scale invariant, we may consider only those
weight functions of area equal to 1. If we consider the weights of the tiles as
forming the components of a vector, one coordinate for each of the finitely many
tiles, then the weight functions of area 1 are precisely the vectors of length 1. The
legal weight functions form therefore the (compact) set of nonnegative unit vectors
in a high dimensional Euclidean sphere. The height associated with a vector is
a continuous function of the vector itself. Hence the maximum possible height is
attained on our compact set of weight functions. The vector on which it is attained
is an optimal weight function.

(ii) Suppose there were two optimal weight functions of unit area, vectors v1
and v2. Then the average of v1 and v2 is a vector whose height is at least as large
as that of v1 and v2, but its area is smaller since the average lies inside the unit
sphere, a contradiction. Thus the optimal weight function is unique up to scaling.

(iii) If one were to transform an optimal weight function by a combinatorial
symmetry of the tiling T which preserved the top and bottom of T , the height
and area would remain unchanged so that the tranformed function would also be
optimal. But uniqueness implies that the function has not been changed. �

Remark. In the continuous case, proving the existence of an optimal weight
function was difficult, essentially an infinite dimensional problem. In the com-
binatorial case, the existence is a finite dimensional compactness argument. Rie-
mann’s attempt to prove the existence of an optimal function in the continuous case
depended on the Dirichlet principle which attempted to apply finite dimensional
compactness arguments to infinite dimensional function spaces.

A tiled quadrilateral or annulusQ with its optimal combinatorial weight function
can also be analyzed in terms of minimal (fat) flows and minimal (skinny) cuts
whose corresponding and underlying topological arcs intersect one another like the
coordinate lines of graph paper. Here is the theorem, independently discovered by
us (see [2]), Oded Schramm, and John Robertson.

Characterization Theorem. The graph paper theorem: the geometric
structure of the combinatorial optimal weight functions. Let ρ denote a
weight function for Q with tiling T . Let f1, . . . , fm denote the minimal fat flows
and c1, . . . , cn denote the minimal skinny cuts with respect to the tiling T . Then
the following three conditions are equivalent and imply the fourth.

(i) The weight function ρ is optimal.

(ii) There are nonnegative real numbers α1, . . . , αm such that the vector ρ can
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be written as the linear combination

ρ =
∑

i

αi · fi.

(iii) There are nonnegative real numbers β1, . . . , βn such that the vector ρ can
be written as the linear combination

ρ =
∑

j

βj · cj .

(iv) There is a positive number k such that the vector kρ is an integral vector.
The numbers αi and βj may also be chosen to be integral. (Of course, the flows
and cuts are already vectors, each entry of which is 0 or 1.)

Geometric Corollary. The finite Riemann mapping theorem. Scale
an optimal weight function ρ so that it is integral. Choose the αi and βj so that
they are integral. By using parallel copies of the paths underlying flows and by
using essentially parallel copies of the paths underlying cuts (they may have to
coincide where they pass through a vertex in passing from one tile to another), we
may think of each of the weights αi and βj as actually being equal to 1 so that
ρ is actually a sum of fat flows and a sum of skinny cuts. Then the topological
paths underlying the minimal flows may be realized in Q as nonintersecting paths
joining top to bottom. The paths associated with minimal cuts may be realized in
Q as noncrossing paths joining left to right which intersect one another only when
they pass through a vertex from one tile to another. Each cut intersects each flow
exactly once where they cross each other. Now pull the cuts and flows taut so that
they form the grid of graph paper. As a consequence Q is pulled into exactly a
Euclidean rectangle (or the graph paper on a right circular cylinder in the case of
an annulus). In each individual tile there are exactly as many crossing flows as
there are crossing cuts. Hence each tile is pulled into exactly a Euclidean square.
That is, the optimal weight function shows how to square a rectangle. That is,
there is a uniquely shaped rectangle determined by the tiling filled with square
tiles corresponding to the tiles of the original tiling such that the tiling preserves,
almost, the original combinatorics of the tiling. We say, almost, because two types
of things can happen. It may happen that no minimal cut or flow goes through
a given tile or tile-edge, in which case that tile or edge will collapse to size 0 in
the squared rectangle. It may also happen that a skinny cut must go through a
vertex of a tile, in which case that vertex will expand into a nondegenerate vertical
interval.

We apply this corollary to an example. We could apply it to the tiling of
Australia by its states. However that supplies us with a puzzle that has too few
pieces. It is more interesting to consider the continental United States of America
as a topological quadrilateral with one vertex in Maine, one in Florida, one in
California, and one in the state of Washington. In Figure 6 we give both the
standard map and the associated tiled rectangle. The relative size of the state
images is perhaps a bit surprising. Texas, usually thought of as the largest and
therefore the most important state finds its claims conformally a bit exaggerated.
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Figure 6. A tiling and its squared rectangle

And New England, with all its historical claims to fame disappears entirely because
it is cut off by New York. The state which is conformally most important? We
would hope, of course, that it would be Utah. But in fact it is Utah’s neighbor
Idaho.

Algorithms for finding the combinatorial optimal weight functions.

There are nice algorithms for calculating optimal weight functions either ap-
proximately or exactly. For more details, see [2] and [7].

Algorithm 1. The convergent algorithm. A given weight function will
by the characterization theorem fail to be optimal precisely because it is not a
positive combination of minimal flows. This suggests the procedure of calculating
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the minimal flows of a weight function, and adding these minimal paths to the
given weight function so that the function is more nearly a sum of minimal paths.
An iteration actually converges projectively to the optimal weight function. The
intuition is that the addition of the minimal paths to the original weight function
makes the quadrilateral more and more nearly of constant height as should be the
case with the optimum, and more and more nearly the sum of minimal paths, again
as it should be with the optimum.

Algorithm 2. The cyclic algorithm. In the convergent algorithm, one has to
scale to determine an actual function to which the algorithm converges projectively.
But there is an exact algorithm which does not scale. It proceeds exactly as in the
convergent algorithm, but it checks to see whether the sequence of minimal vectors
added stage by stage becomes cyclic. A theorem ensures the existence of a stage
after which the process does become cyclic. If the process has become cyclic, then
the exact optimal weight function is given by the sum of added vectors over the
cycle. If one guesses that the process has become cyclic, then one must check to
see that the cycle sum attained is optimal, a check which is actually not difficult
once one has the candidate weight function.

Algorithm 3. The hybrid algorithm. The convergent algorithm is really
quite quick and can be processed on moderately sized examples thousands of times
in a few seconds. The cyclic algorithm gives exact integral weight functions, but
its running time increases exponentially in the complexity of the tiling. There is a
hybrid algorithm which uses the convergent algorithm thousands of times to guess

what the appropriate minimal paths should be for the optimal weight function.
Once these paths have been guessed, one can set up a candidate system of linear
equations whose solution will be the optimal weight function provided one has

guessed the correct paths. The hybrid algorithm can often work very quickly and
supply the exact optimal weight function.

Approximating the combinatorial conformal modulus. An exact optimal
weight function for a tiling can be algorithmically calculated as indicated above
in the cyclic and hybrid algorithms. However, the weight function can be very
complicated even for simple tilings. It is often better, and almost always sufficient,
to get a good approximation to the conformal modulus of the tiling. The convergent
algorithm seems to work wonderfully with a wide range of examples. However, for
theoretical work it is important to find more conceptual ways of approximating the
modulus of a tiled quadrilateral or annulus. We give here four simple results in
that direction.

The layer theorem ([3, Theorem 4.1.1]). Suppose a tiled quadrilateral Q is
divided into a family Qj of quadrilaterals by a finite collection of disjoint edge paths
in the tiling T which join the two sides of Q. Then the combinatorial conformal
modulus of Q is at least as large as the sum of the moduli Qj .

Proof. Find an optimal weight function ρj for each of the quadrilaterals Qj

and scale them so that each of them has the same combinatorial width equal to 1.
Note that for fixed index j, after the normalization which makes the width equal
to 1, the combinatorial area and the combinatorial height and the combinatorial
modulus of Qj are all equal to one another. A minimal path joining the top and
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bottom of Q must cross each quadrilateral Qj and hence will have length at least
equal to the sum of the heights of the Qj . The area will be exactly equal to the
sum of the areas of the Qj , which is equal to the sum of the heights of the Qj .
Hence the modulus will be at least the sum of the heights of the Qj which is the
sum of the moduli of the Qj . �

Remark. The cut theorem. The moral of the layer theorem is this: to find
a lower bound on modulus, try to constuct many cuts (to force height to be high)
in such a way that the associated area is small.

The rotation theorem. Suppose a tiled quadrilateral admits a symmetry
which maps the top and bottom into opposite sides. Then the combinatorial mod-
ulus of the quadrilateral is at least 1.

Proof. Let ρ be an optimal weight function for Q. Apply the symmetry which
takes the top and bottom of Q into opposite sides. Let τ be the image of ρ under
the symmetry. Then τ is not necessarily an optimal weight function because the
symmetry has not preserved the top and bottom of the quadrilateral. However,
each fat flow has image under the symmetry a cut, and the τ -length of the flow is
the ρ-length of the corresponding cut. Since Aρ = Aτ ,

M = Mρ = (Hρ)
2/Aρ ≥ H2

τ /Aτ = H2
τ /Aρ ≥ W 2

ρ /Aρ.

Hence Hρ ≥ Wρ and M ≥ 1. �

The bounded overlap theorem. Suppose that Q has two tilings T and T ′,
that no element of T intersects more than K elements of T ′, and that no element
of T ′ intersects more than K elements of T . Then M(Q, T ) ≤ K3 ·M(Q, T ′).

Proof. Let ρ be an optimal weight function on the tiling T , and let ρ′ be a
weight function on T ′ which we shall construct by means of ρ. Then we attain
heights Hρ and Hρ′ , areas Aρ and Aρ′ , and moduli Mρ and Mρ′ . It will suffice to
prove that Mρ ≤ K3Mρ′ .

Define the weight function ρ′ on T ′ as follows. If t′ ∈ T ′, then choose f(t′) ∈ T
such that t′ ∩ f(t′) 6= ∅ and

ρ(f(t′)) = max{ρ(t) | t ∈ T, t ∩ t′ 6= ∅}.

Define ρ′(t′) = ρ(f(t′)).

We can bound ρ-area below as follows.

Aρ = (1/K) ·K
∑

t∈T ρ(t)2

≥ (1/K) ·
∑

t′∈T ′ ρf(t′)2

= (1/K)Aρ′ .

For the inequality in this calculation we have used the fact that, for each tile t of
T , there are at most K tiles t′ of T ′ with f(t′) = t.

We can bound ρ-height above as follows. Let α denote a path which joins the
ends of Q and which realizes the ρ′-height of Q. Then, with L′

ρ(α) denoting the



15

ρ′-length of α, we have

Hρ ≤ Lρ(α)
=

∑
{ρ(t) | t ∈ T and t ∩ α 6= ∅}

≤ K
∑

{ρ(f(t′)) | t′ ∈ T ′ and t′ ∩ α 6= ∅}
= K

∑
{ρ′(t′) | t′ ∈ T ′ and t′ ∩ α 6= ∅}

= K · Lρ′(α)
= K ·Hρ′ .

The first inequality in this calculation follows from the deinition of Hρ. For the
second inequality, suppose that t ∈ T with t ∩ α 6= ∅. Then there is a tile t′ in T ′

with t′ ∩ t ∩ α 6= ∅. By the definition of f , ρ(t) ≤ ρ(f(t′)). The second inequality
now follows from the fact that each tile t′ of T ′ intersects at most K tiles t of T .

From the inequalities of the last two paragraphs it is easy to see that

Mρ = (Hρ)
2/Aρ ≤ K3(Hρ′)2/Aρ′ = K3Mρ′ . �

Corollary. Let Qopp denote the quadrilateral Q with tiling T but with the
two sides playing the role of top and bottom. Suppose that no tile of T intersects
more than K tiles of T . Then

(1/K3) ≤ M(Q) ·M(Qopp) ≤ K3.

Proof. Take an optimal weight function ρ for Q with integer weights and realize
ρ as a sum of noncrossing skinny cuts. These skinny cuts may pass through vertices
of the tiling, thereby “splitting” those vertices. Replace each such vertex by an arc
and distribute the edges originally ending at such a vertex along the arc so that
the skinny cuts can now be realized as fat cuts. This splitting process forms a new
tiling T ′ for Q. We can do this locally in small neighborhoods of the vertices so
that two tiles of T ′ do not intersect unless the corresponding tiles of T intersect. If
t1 and t2 are tiles of T with t1 ∩ t2 6= ∅, then the corresponding tiles t′1 and t′2 of T ′

will have nontrivial intersection if t1 ∩ t2 contains an edge but they may be disjoint
if t1∩t2 is a vertex (or a union of vertices). That is, the two tilings T and T ′ satisfy
the bounded overlap theorem with overlap constant K. We conclude that

(1/K3)M(Qopp, T ) ≤ M(Qopp, T
′) ≤ K3M(Qopp, T ).

Now we note that Q has precisely the same optimal weight function with respect
to both T and T ′ since ρ squares them both. Here we are using the facts that the
weight function ρ on T can be written as a sum of disjoint fat flows which are
disjoint from the vertices, and these fat flows can be realized on T ′. Since they are
minimal for the weight function (which we still call ρ) that is their sum, ρ is an
optimal weight function for T ′. Hence M(Q, T ) = M(Q, T ′).

On the other hand, Qopp with tiling T ′ is also squared by ρ, and therefore
M(Q, T ′) ·M(Qopp, T

′) = 1.

Our desired result follows immediately from the concluding equalities or inequal-
ities at the end of the preceding three paragraphs. �
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§3. The combinatorial shape of an algorithm: the oscillating quadrilat-
eral.

In our applications of combinatorial modulus to group theory, which we shall
discuss in the next section, we are concerned with the behavior of the modulus of a
quadrilateral when the quadrilateral is subdivided successively by some subdivision
rule. The goal of this section is to show that almost anything can happen provided
the subdivision rule is context sensitive. We shall construct a quadrilateral and a
context-sensitive subdivision rule in such a way that the modulus oscillates wildly,
first approaching infinity, then zero, then back again much closer to infinity, then
back again, much closer to zero, and so on. The rule will be of sufficiently restricted
type that, from one subdivision to the next the modulus will be able to change
multiplicatively only by a uniformly bounded amount. Hence, in order to create our
example, we shall have to be able to have the shapes or moduli change gradually for
arbitrarily long times before they turn around and gradually change in the opposite
direction for an even longer time.

In a sense, what we are discussing is the asymptotic combinatorial shape of an

algorithm. There are many ways of associating geometric objects with algorithms.
They may be said to reflect the “shape” of the algorithm.

We mention only two examples. First there is the state graph. The states of
a machine might be vertices of a graph. Input to the machine carries a machine,
via an algorithm, to another state. Join the two states by a directed edge labelled
by the input. The resulting graph has many natural geometries which reflect the
“shape” of the algorithm.

A second example appropriate to our setting is the subdivision geometry. Let T
be a tiling of some surface. Let S be a subdivsion rule which applies to T . Think
of S as a finite algorithm. Then S carries T = T 1 to T 2 to T 3, etc. Join tiles of Tn

to their neighbors in Tn and to their offspring in Tn+1. The resulting graph has
natural geometries which reflect the “shape” of the algorithm S. There are therefore
negatively curved or Gromov hyperbolic subdivision rules to which geometry may
be applied. They have a space at infinity usually equal to the original surface.

In reviewing Mandelbrot’s book on the fractal geometry of nature, we suggested
that one might appropriately broaden the definition of fractal geometry to include
all methods of studying the asymptotic geometric shape of an algorithm, with
Hausdorff dimension describing only a single invariant or aspect of that asymptotic
shape. Mandelbrot was quite put off by our suggestion. We see in this section that
one might also discuss not only the Hausdorff dimension but also the combinatorial
and asymptotic conformal shape of certain algorithms. Other invariants might be
studied as well.

Types of subdivision rules. We shall be intuitive rather than precise in our
definitions.

Finite subdivision rules.

In a finite subdivision rule, we are given a finite number of types of cells-with-
labels. Each type of cell subdivides according to a rule which depends only on

its label into a finite number of subcells-with-labels from the same collection of



17

types. The subdivision rule is required to be compatible from a cell to each of
its faces. This compatibility ensures that subdivision is well-defined on a labelled
cell complex. The action of subdivision is not only completely local but strictly
individual in the sense that a cell does not sense the state of its neighbors.

Remark. In a true finite subdivision rule, it is impossible to send signals about.
Each cell is a law unto itself. It takes no account of the behavior of its neighborhood.
If we wish to send signals in a subdivision rule we need a more sensitive tool. One
such is given by the next type of subdivision rule.

Context sensitive subdivision rules.

As with a finite subdivision rule, we are given a finite number of types of cells-
with-labels. Each type of cell subdivides into a finite number of subcells-with-
labels from the same collection of types. However, the subdivision rule is now
allowed to depend not only on the label of the cell but also upon the combinatorics
and labelling of a neighborhood of fixed finite size. One requires that this rule
be compatible from a cell to each of its faces. This compatibility ensures that
subdivision is well-defined on a labelled cell complex.

Remark. In a context sensitive subdivision rule, it is possible to send signals.
Gossip can spread like wildfire. One can coordinate actions over long distances.
Fashions can become dominant: “everyone is doing it.”

The oscillating quadrilateral. We are prepared to discuss a context-sensitive
subdivision rule which, when applied to an appropriately tiled quadrilateralQ, leads
to a wildly oscillating combinatorial conformal modulus.

The problems that we must face in the construction are these:

(1) How do we ensure that the modulus is getting big or small?

(2) How do we coordinate actions globally?

(3) How do we delay direction-changes in modulus growth for ever longer peri-
ods?

We begin by looking at the initial stages of the construction. The quadrilateral
Q is shown in the top left of Figure 7, and the first eight subdivisions of Q are
also shown in Figure 7. For the moment, ignore the “signals” S and C. Note that
only the cells that border the circular boundary arc of Q subdivide properly. In the
second subdivision, the cell that borders the top of Q subdivides into three cells
and the cell that borders the right side of Q subdivides into two cells. In the next
six subdivisions (and for 46 more after that) the cells that border the right side of
Q subdivide into three cells and the cells that border the top of Q subdivide into
two cells. Figure 8 shows an enlargement of the eighth subdivision of Q, together
with seven disjoint cuts on it. The lengths of these cuts are 3, 4, . . . , 9. These cuts
give seven disjoint layers with moduli 1/3, 1/4, . . . , 1/9. By the layer theorem, the

modulus of the eighth subdivision of Q is
∑9

n=3
1/n ≈ 1.329. After we have done

53 subdivisions of Q, there are 52 disjoint cuts with lengths 3, 4, . . . , 54, and hence
52 disjoint layers with moduli 1/3, 1/4, . . . , 1/54. Again by the layer theorem, the

modulus of this subdivision of Q is at least
∑54

n=3
1/n ≈ 3.075.

The idea behind this subdivision scheme is to switch, with successively longer
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periods between switching, between subdividing so as to produce a lot of disjoint
cuts (in order to make the modulus large) and subdividing so as to produce a lot
of disjoint flows (in order to make the modulus small).

The plan for estimating the modulus. We shall construct our rule in such
a way that there are positive integers n0 = 2 < m1 < n1 < m2 < n2 < . . . having
the following properties: After the subdivision has been performed mi times, then
there will be di = mi − ni−1 (“d” for “difference”) disjoint layers joining the sides
of Q that are a single tile high at each point and whose successive widths are ji+1,
ji + 2, . . . , ji + di. The modulus of such a layer is clearly the reciprocal of the
number tiles in the layer. By the layer theorem, the modulus of the quadrilateral
will be at stage mi at least the sum of the reciprocals of the widths listed, which
sum is approximately the logarithm of 1 + di/ji. Hence these moduli will go to
infinity provided the ratio di/ji goes to infinity.

Similarly, after the subdivision has been performed ni times, with i > 0, then
there will be ei = ni −mi−1 disjoint layers joining the top and bottom of Q that
are a single tile high at each point and whose successive widths are ki + 1, ki + 2,
. . . , ki + ei. The modulus of Qopp will, by the same argument, be at least as large
as approximately the logarithm of the ratio 1+ei/ki. Hence these moduli will go to
infinity provided the ratio ei/ki goes to infinity. Since each cell in our quadrilateral
will at each stage intersect at most 10 cells, we can apply the bounded overlap
theorem and its corollary to conclude that, if M(Qopp) is very large at subdivision
ni, then M(Q) will be very near to 0.

•

Figure 8. Layers in oscillating quadrilateral
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Figure 7. The oscillating quadrilateral

The geometry of the subdivisions. We have already seen the initial stages of
the subdivision in Figure 7. Without giving details of how we arrive at subdivision
ni−1, we describe its geometry. The quadrilateral will be pictured as a radial sector
in a cirle. The two radial sides of the sector will be considered, respectively, the left
side and the bottom of the quadrilateral. The circular segment of the boundary
will be divided in half at the middle to form, respectively, the top and right side of
the quadrilateral. Each subdivision divides all of the cells adjacent to the circular
segment which forms the union of the top and right side. At all stages between
subdivision ni−1 to subdivision mi, the cells adjacent to the right side are divided
first by a circular segment into two cells that are radially adjacent and then the
outer of the two cells is divided into two cells by a radial cut. That is, each of the
cells adjacent to the right side is divided into three cells. On the other hand, the
cells adjacent to the top are only divided by the circular segment into two radially
adjacent cells. Thus the outer layer of the circular sector is dividing exponentially
on the right side and is maintaining its size at a constant along the top.

When one finally reaches subdivision mi, the exponential subdivision switches
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from right side to top. Cells adjacent to the top subdivide via a circular cut, then
the outer of the two resulting cells divides via a radial cut. Cells adjacent to the
right side subdivide only via the circular cut.

The last layer at stage ni−1 will have a large number of cells adjacent to the
top, namely, a large power of 2, where the power is the sum of the integers eh for
h ≤ i − 1. Similarly this last layer will have a large number cells adjacent to the
right side, namely, a large power of 2, where the power is the sum of the integers
dh for h ≤ i− 1.

Where do we find the disjoint layers joining the two sides after we have reached
subdivision mi? One simply traverses the layer of cells adjacent to the top and
adds the first cell on the right side. One removes these cells from consideration,
traverses the new top layer until the right half of the sector is reached, then follows
an obvious path outward. And so on. See Figure 8.

The rules for obtaining the subdivision. We return to the initial subdivi-
sions shown in Figure 7. This time we expand our discussion to include the signals.
In order to be able to make use of the symmetry in the construction, in the next few
paragraphs we will refer to the top as the left outer arc and to the right side as the
right outer arc. The first subdivision divides the sector first by a circular arc into
two radially adjacent cells, then divides the outer cell by a radial segment which
ends at the point which divides the top from the right side. The single cell which
resides at the center of the circle now becomes the controlling cell. It signals the
outer two cells to start subdividing, with the cells along the left outer arc dividing
as described earlier into three cells, and the cells along the right outer arc dividing
into two cells. This kind of subdivision will continue at the outmost circular edge
until a different signal arrives to indicate a switch, from subdivider into three to
subdivider into two, or vice versa.

The counting signal. Whenever the switch signal arrives at the outer circular
edge which tells the left outer arc to begin subdividing into twos and the right
outer arc into threes, we are at some stage ni−1 of the subdivision. At that point,
the outer left cell, which can recognize itself as outer left cell from its environment
alone, begins a counting signal which moves across its circular layer from left to
right at a rate of one cell per subdivision. We think of this signal as counting
the size of its half of the circular outer layer (before further subdivision). The left
“half” of the layer being counted will have size exactly ji−1. When the signal gets to
the rightmost edge of the circular sector, the direction of signal motion will change
to radially outward, and its speed will double so that it is moving fast enough to
catch the leading edge of the subdivision. When it reaches the leading edge, it
changes speed and direction again. It now moves circularly to the left along the
circular layer that was outmost when it reached the edge but at only one cell per
subdivision. It is now counting to a very large power of 2, with the power being
larger than the previously counted size ji−1. When it finishes counting its layer, the
signal again reaches the leftmost radial edge of the subdivision, changes direction
and speed once more, moving now radially inward toward the control cell at the
center of the circle. It eventually gets there.

The switching signal. When the control cell at the center receives the count-
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ing signal, it sends switching signals outward along all radial paths at a rate of two
layers per subdivision so that the signal can move fast enough to catch the leading
edge of the subdivision. All of the leading edge cells will receive the switching signal
at the same time. Those on the left outer arc will switch to subdividers into three,
those on the right outer arc become switchers into two. We have now reached stage
mi of the subdivision. The cell that is outermost and rightmost which has just
been changed to a subdivider into two recognizes all of these properties from its
environment and begins a counting signal circularly left along its level. See Figure
7. The counting and subdividing cycle begins anew with processes switched about
the center radial segment, left and right essentially interchanged.

Verification that subdivision continues without switching for suffi-
ciently long time intervals. Suppose that the right outer arc is subdividing
into threes, the left into two. Then before switching, the number of subdivisions,
denoted di, will be more than 2 raised to the power ji−1. Thus the ratio di/ji−1

goes to infinity very rapidly.

Simplifying the counting signals? We clearly have subdivided many more
times before switching than we needed to do. The most obvious simplification would
be to count only across the first half of the circular sector, then send the signal
back to the central controlling cell. But the geometry suggests that the moduli
stay bounded if that is done. Is that so? How can the counting be modified? How
randomly can the moduli be switched?

Remark. We observe three interesting things in this example. First, signals
can only be sent at a linear rate; hence one must retain enough linearly growing
pathways connecting the example to allow coordinating signals. Second, the ex-
istence of exponential pathways orthogonal to the linear pathways allowed us to
create long signal delays. Third, edges and boundaries can play important roles in
the behavior of otherwise indistinguishable cells.

Question. How would one change the model so that signals travel only at speed
1? How would one change the model so that there is only one kind of cell?

Gromov has suggested that this wildly oscillating growing crystal might serve
as a naive early model for biological differentiation and growth. He suggests in
particular the problem of building a finite local replacement rule that will grow into
a homunculus. He suggests that the finite rules might be discovered evolutionarily

by doing computer experiments.

Asymptotic shape questions about groups.

Remark. Gromov also suggests that one might try constructing finitely pre-
sented groups, perhaps groups of curvature ≤ 0, with rather arbitrary growth func-
tions in the sense that the successive shapes of the metric balls in the group should
be quite arbitrary. In particular, the flats supply polynomial growth spots in which
signals might in some sense be sent, the negative curvature spots might allow one
to act for a long time before causing some strange collapse, etc. (We have no idea
how such an idea might be carried to completion.)

§4. Recognizing groups of constant curvature combinatorially: an exam-
ple.
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Our theory of combinatorial moduli was developed to the end of recognizing
Kleinian groups combinatorially. We have not yet brought the project to comple-
tion, but this section gives an outline of the progress to date and shows by example
how the results obtained can be used to recognize combinatorially that certain
groups are Kleinian.

We first state the principal conjecture, then review the definitions in terms of
which that conjecture is stated.

Main Conjecture. A group G is Kleinian if and only if it is negatively curved
(in the large) (Gromov word hyperbolic) and has as its space ∂G at infinity the
2-sphere S2.

Definition of Kleinian groups. We define a Kleinian group to be a group
that acts isometrically, cocompactly, and properly discontinuously on 3-dimensional
hyperbolic space.

All Kleinian groups are of course negatively curved in the large because their
Cayley graphs are quasi-isometric with hyperbolic space:

Groups that are negatively curved (in the large) (that is, Gromov
hyperbolic). A finitely generated group G is negatively curved (in the large) or
Gromov word hyperbolic if its Cayley graph with respect to some finite generating
set (hence with respect to all finite generating sets (theorem)) has uniformly thin
triangles in the following sense: there is a nonnegative number δ such that if abc
denotes a geodesic triangle in the Cayley graph Γ of G, and if x is any point of any
side, say ab of abc, then there is a point y of the union ac∪ bc of the two other sides
of the triangle which lies within δ of x.

Our main theorem is that the conjecture is true if one imposes one extra modulus
condition on the group. Again, we state the result before explaining all of the terms
involved.

Main Theorem ([4, Theorem 8.2] and [5, Theorem 2.3.1]). A group G
is Kleinian if and only if it is negatively curved, has the 2-sphere S2 as its space at
infinity, and satisfies the following additional condition:

Modulus Condition: If Q is any annulus in S2 = ∂G, then the sequence D(n)
of finite coverings of S2 = ∂G by combinatorial disks, defined below, assigns
a sequence of combinatorial moduli to Q which is bounded away from 0.

Remark. The quasiconformal shape (modulus) of a closed annulus can be
measured combinatorially and analytically. The analytic result is never 0. The
theorem states that the group is Kleinian if and only if the combinatorial result is
also asymptotically nonzero.

The modulus condition does not depend on the finite generating set used in
defining Γ. It does not depend on the base point chosen below which is used in
defining the covers by combinatorial disks. The covers by combinatorial disks can
be replaced by commensurable coverings without changing the condition. (In this
setting two sequences {Sn} and {Tn} of tilings are commensurable if there is a
constant K such that Sn has bounded overlap (K) with Tn and Tn has bounded
overlap (K) with Sn for each n.) The modulus condition can also be stated in terms
of Gromov’s coarse quasiconformal structure on ∂G. Whatever the statement,
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enough facts are known to show that the condition is a group invariant.

Combinatorial Disks. Given any negatively curved group G and any finite
generating set for G, the space ∂G at infinity has a natural sequence of open covers
given by its combinatorial disks. The coverings D(n) by combinatorial disks are
not tilings of Q. (They are shinglings: that is, finite covers by compact connected
sets. They may overlap.) They are, however, enough like tilings that the theory
developed in Section 2 applies almost without change. They are called combinato-
rial disks not because they are known to be topological disks but for two reasons:
(1) The analogous construction in hyperbolic space itself yields round topological
disks; and (2) the construction in some Cayley graphs yields topological disks. We
shall now describe this sequence of coverings. See [5] for more details.

A point at infinity is represented by a geodesic ray in the Cayley graph. Two
geodesic rays represent the same point at infinity provided that asymptotically
they remain a bounded distance apart (thinness of triangles implies that they then
actually remain distance ≤ 2δ apart asymptotically).

Given a ray R : [0,∞) → Γ representing a point at infinity and a positive number
n, we may define the combinatorial half space H(R, n) to be the set of points x ∈ Γ
such that the distance d(x,R[n,∞)) is at least as small as the distance d(x,R[0, n]).
If one used the same metric definition in classical hyperbolic space, one would obtain
a true hyperbolic half space.

Finally we can define the combinatorial disk D(R, n) to be the set of points at
infinity (set of equivalence classes of geodesic rays) such that a representative ray
S : [0,∞) → Γ asymptotically lies arbitrarily far (infinitely far) within H(R, n).

The collection of combinatorial disks forms a basis for a topology on ∂G which
is finite-dimensional, metrizable, and compact.

Fix a base point, say the identity vertex of Γ, and consider only those rays which
begin at the base point. Then the set D(n) = {D(R, n)} of combinatorial disks,
where R varies over the rays R which begin at the base point and where n is a fixed
positive integer, forms a finite open cover of ∂G.

Combinatorial Moduli. If ∂G = S2, and if Q is a topological quadrilateral
or ring in ∂G, then we may define the combinatorial modulus Mn(Q) in terms of
the cover D(n) of Q. We consider only the set Tn(Q) of combinatorial disks which
intersect Q. We then formally define the modulus by precisely the formulas used
in section 2.

With these definitions completed, we can state the modulus condition more
precisely:

Modulus Condition Restated: If Q is a topological quadrilateral or annulus
in ∂G = S2, then the sequence Mn(Q) is bounded away from 0.

It is actually enough to prove a weaker condition.

Weaker Modulus Condition ([4, Axiom 0]): For each point p ∈ ∂G = S2

and each neighborhood N of p, there is an annulus Q which surrounds p in N
(separates p from the complement of N) which satisfies the modulus condition.

Remark. That the weaker condition is sufficient implies that one need only
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check the modulus condition for a finite number of appropriately chosen annuli,
or even for only a finite number of quadrilaterals (conjecturally, one appropriately
chosen quadrilateral). This reduction to checking only finitely many annuli or
quadrilaterals depends on the great homogeneity at infinity entailed by the action
of the group.

Example. We shall now describe the original example which motivated much
of our work. This example was the simplest group we knew that was cocompact,
discrete, and hyperbolic in dimension 3. Our precise definitions were all designed
to mirror (albeit imperfectly) features of this example. There is no exact corre-
spondence between the features of our example and our definitions, though one can
with effort distort either the definitions or the example into the orbit of the other.
We hope rather that the reader will accept the example as Plato’s reality and the
definitions as the imperfect shadows in the cave.

From this example we will naturally see a real 2-sphere at infinity corresponding
to Gromov’s constructed boundary, we will see round circles at infinity correspond-
ing approximately to our combinatorial disks at infinity, and, after much fussing
we could realize that the circles appear in recursive patterns. The discovery of the
recursion demanded several days of tedious picture drawing, but the discovery led
to automatic group theory. The attempts to pass from combinatorial “circle” data
to round real circle data led to the combinatorial Riemann mapping theorem. In
our conjectural view, the example has only two features that differ from those of
the generic Kleinian group: the example has too much symmetry, and the tiles, ge-
ometrically realized, are too smooth. We expect, in general, much more twisting in
the generic global pattern which realizes itself locally, under subdivision, in fractal
tiles — quasidisks.

Our goals are modest. We first give the geometric description of the group and
observe both the real sphere at infinity and the real circular disk at infinity. We
simply assert the nature of the recursions of circles without proof. We then prove
that the resulting sequence of tilings of S2 formed by intersecting the given circular
disks satisfies the Weak Modulus Condition. If all of these real objects were the
constructed objects of the main Theorem, it would follow that the group is Kleinian,
a fact already known at the start. But the point is that this Kleinian nature of the
group would have been deduced from the combinatorial properties of the group.

As example, we take a group G known to be Kleinian for geometric reasons
and indicate how one might verify the conditions of the Main Theorem without
knowing the original geometric realization. The argument has some similarities
with the proof that was given in Section 7 of [3]. The group has twelve generators
of order 2 associated with the twelve faces of a dodecahedron. For each edge of the
dodecahedron there are two adjacent faces with their two generators. The product
of these two generators has order two. In other words, our group is a particularly
nice Coxeter group (and is called the right-angled dodecahedron group since it can
be realized as the group generated by reflections in the twelve faces of a regular
right-angled dodecahedron in hyperbolic 3-space). This Coxeter group can also
be realized as the fundamental group of an orbifold whose quotient space is the
dodecahedron. One can recursively build either the Cayley graph or the universal
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covering orbifold, even though it is infinite, by hand. This is possible because nega-
tively curved groups have a recursive structure at infinity (an automatic structure,
say) which in practice can often be discovered manually. What is that structure at
infinity?

Figure 9. The initial circle pattern

Figure 10. The circle pattern at level 1



26 J. W. CANNON, W. J. FLOYD, AND W. R. PARRY

The right-angle feature of the group allows one to associate with the group an
infinite family of planes tiled by right-angled pentagons, four meeting at a vertex.
These planes exist in the universal covering orbifold. These planes persist to infin-
ity and define a family of simple closed curves at infinity. At least intuitively, and
certainly commensurably, these circles correspond to the boundaries of combinato-
rial disks at infinity. Just as combinatorial disks can be partitioned into families by
the parameter n, so also can these circles be partitioned by the parameter n which
measures the combinatorial distance from a base point to the plane which defines
the circle. According to this partition, the circle patterns become recursive. This
recursion is indicated in Figures 9 and 10, which were produced by SnapPea from
a modification written by Jeff Weeks.

Note that the circle patterns divide the plane into combinatorial triangles,
quadrilaterals, and pentagons, each with its own subdivision rule. Thus we ob-
tain from the intersection pattern an actual sequence of tilings of the 2-sphere
at infinity. By commensurability considerations (the bounded overlap theorem of
section 2) it is enough to check the weak modulus condition for this sequence of
tilings.

It is an easy matter to check that the pentagonal tiles arise in three ways, namely
as isolated singletons, as pairs sharing an edge, and as four pentagons situated about
a vertex. See Figure 10.

It is possible to expand each pentagonal tile canonically to a pentagon (in the
sense of a topological disk with five distinguised vertices) that is not covered exactly
by tiles but in such a way that, with respect to our sequence of tilings, the expanded
pentagons are combinatorially identical with one another at all levels of subdivision.
See Figure 11, where the boundary of the expanded pentagon is drawn in bold.
Figure 11 only indicates the boundary of the expanded pentagon. One has to
subdivide once more for it to become apparent how the boundary is defined. This
is shown in Figure 12.

• •

•

•
•

Figure 11. A shaded pentagon and its expanded pentagon

Each of these expanded pentagons is rotationally symmetric about a center point
(see Figure 12) and reflectionally symmetric about an axis through a vertex and
the midpoint of the opposite side.

Verification of the Weak Modulus Condition. As noted above, the tile
coverings of the expanded pentagons respect, at all levels of subdivision, a dihedral
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Figure 12. An expanded pentagon in the subdivision

symmetry of order 10. If you consider an expanded pentagon as a quadrilateral
by thinking of a pair of adjacent edges of the pentagon as one edge of the quadri-
lateral and thinking of each of the other edges of the pentagon as one edge of the
quadrilateral, then the quadrilateral will have reflectional symmetry. By the sym-
metry property of optimal weight functions, the same is true of those functions.
In addition, the rotation theorem of section 2 implies that if we consider any two
nonadjacent edges of such an expanded pentagon as the left and right sides of the
quadrilateral and consider any fixed level of subdivision, it is possible to canonically
construct a family of skinny cuts creating relatively large height but relatively small
area. For this application of the rotation theorem, we need to view the expanded
pentagon as a quadrilateral in two different ways.

These cuts (or naturally truncated portions of the same) will naturally match up
with the corresponding skinny cuts (likewise truncated if necessary) of any adjacent
pentagon, again by symmetry. Figure 13 shows the expanded pentagons of three
shaded pentagons, and Figure 14 shows the corresponding cuts.

•

• •

•
•

• •

•

•
•

•

••

•
•

Figure 13. Expanded pentagons for three shaded pentagons

Thus, any cyclic sequence of pentagons is circled by a cycle of skinny cuts, of
nontrivial height and moderately small area. A simple example is shown in Figure
15. In general, one needs crossing cuts in some pentagons in order to “turn the
corner”.

Furthermore, the height and area depend only on the length of the cycle and
not on the depth of the subdivision. Thus the weak modulus condition is satisfied
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Figure 14. Cuts matching up by symmetry
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Figure 15. A cycle of cuts

and the group is Kleinian by the Main Theorem.

§5. Remarks and Questions.

How generic are the conditions we have used? With a negatively curved group
there is always a natural sequence of coverings, but not necessarily by tiles. The tiles
overlap and therefore should be thought of as shingles. There is always a natural
subdivision rule obtained simply by moving outward along rays away from the base
point in the Cayley graph. This recursion is always defined by finite rules. But the
resulting subdivision rules do not seem to be exactly like the kind of subdivision
rules we described in the previous section. In particular, there is some fuzziness (in
our minds) about what happens at the edges of shingles.
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Furthermore, in a negatively curved group, the shingles given by the combina-
torial disks subdivide exponentially in every direction so that it is impossible to
send coordinating signals about in the subdivision: the signals can only move at
a linear rate while the shingles are dividing geometrically so that a signal always
stays in the light cone of the place it started. That is, a signal can have infinite
influence through time, but only local influence through space. Therefore we have
the following question:

Question. Suppose that one has a subdivision rule which, when applied to a
tiled quadrilateral, subdivides exponentially in every direction. Must the successive
moduli of the quadrilateral necessarily either converge to 0 or infinity or remain in
a bounded interval?

Question. In a negatively curved group, must there always be shingles that are
almost rotationally symmetric? Under what conditions must there be reflectional
symmetry? dihedral symmetry?

Rubinstein and Mosher have both suggested that cubulated 3-manifolds and
their behavior at infinity might be a particularly rich source of examples of subdi-
vision rules associated with negatively curved groups.

Question. Can our program be carried out for cubulated 3-manifolds?

Local replacement rules. In a finite subdivision rule or even in a context sensitive
subdivision rule a vertex can only subdivide into a vertex though its label may
change. An edge can only subdivide into a finite collection of edges and vertices.
And so forth. Boundaries between cells are preserved over time. Some of the rules
that are discovered by the algorithmic building of universal covers do not preserve
such boundaries. These other natural rules might be described as local replacement
rules: a vertex may be replaced by an entire cell of higher dimension or by an entire
complex; likewise, cells of higher dimension might be replaced by complexes of even
different dimensions, even by the empty set.

With a local replacement rule, we are given a finite number of types of cells-
with-labels. Each type of cell is supplied with a labelled replacement complex by a
rule which may or may not be context sensitive. Compatibility now becomes a real
issue. We must know not only how to replace a labelled cell but also how to sew
the entire union of replacement complexes together to form the total replacement

complex. We choose to call this identification rule the folding rule in imitation of
John Stallings’s terminology used in constructing Cayley graphs or trees (essentially
by Todd-Coxeter coset enumeration techniques). The situation may require that
the image of a replacement complex actually undergo collapse during the folding
process, again as suggested by the Todd-Coxeter procedure.

Note. We may think of every finite subdivision rule or context-sensitive subdi-
vision rule as a local replacement rule. In this setting, we should probably accept
the convention that every vertex arises not just from itself but also from the subdi-
vision of every cell which contained it at the previous stage, and similarly for cells
of higher dimension. In this manner, compatibility is subsumed under the folding
rules. This convention allows us to distinguish finite valence subdivision rules as
those which have bounded folding as described below.
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Remark. With a local replacement rule, the topological type of the total
complex can change with time. The total complex can grow forever or collapse
catastrophically after innumerable generations of growth. Or the shape of the
total complex can grow in an algorithmically unpredictable fashion. All of these
possibilities are demonstrated by the construction of the Cayley graph of a group
with unsolvable word problem by the method of Todd-Coxeter coset enumeration.

Negatively curved subdivision and replacement rules.

With all of the rules that we have described so far, given a beginning complex or
seed, it is possible to associate a history complex. This complex consists of count-
ably many levels together with connecting edges. Level 0 is the seed complex. Level
n is the total replacement complex (after folding, if required) under subdivision or
replacement for level n− 1. The barycenter of each cell from the total replacement
complex is joined by an edge to the barycenter of the cell (cells) in the previous
level which spawned it.

A rule is said to have bounded folding if the history complex is locally finite of
bounded degree. Such a complex can be assigned a metric which is essentially a
word metric: that is, the distance between points is essentially the number of cells
one must cross in going from point to point.

The subdivision rule most known to topologists is that of barycentric subdivi-

sion. Note that a vertex as it is subdivided is in the replacement complex of more
and more 1-cells, 2-cells, etc. Hence this rule does not have bounded folding. A
subdivision rule with bounded folding must have what has previously been called
finite valence.

A rule is said to be negatively curved (in the large) or Gromov hyperbolic if it
has bounded folding and its history complex with word metric has uniformly thin
triangles in the sense of Gromov.

Remark. Just as negatively curved groups have many characterizations, so
also do negatively curved subdivision rules. The most natural characterization
requires first bounded folding and then that there be exponential subdivision in
every direction. This characterization corresponds roughly to what has been called
exponential divergence of geodesics in negatively curved spaces. Although in a neg-
atively curved replacement rule it is theoretically possible to send signals, those
signals can only travel at a linear rate while the subdivision is proceeding at expo-
nential rate in every direction. As a consequence, a signal can affect ever increasing
numbers of cells in future generations, but those cells affected will always be in the
light cone of the individual sending the signal.

Conjecture. If a planar subdivision rule is negatively curved, then the modulus
of a quadrilateral under subdivision either goes to 0 in the limit or goes to ∞ in
the limit or oscillates in a finite interval.

Generalized cellular automata. A cellular automaton has an underlying cellular
space in which the cells have labels. Then the labels change in a context sensitive
way from generation to generation. Usually one of the labels is considered to
indicate inactivity of the cell and only finitely many cells are to have the active
label at any generation. One begins with a seed of active cells and traces the
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labelling pattern through time.

Cellular automata, as a model of organisms responding to their environment,
were introduced by John von Neumann. He showed that their structure was rich
enough to model a universal Turing machine. The most widely known cellular
automaton is, of course, John Conway’s game of life.

One can interpret a cellular automaton as a context sensitive subdivision rule
in which the only effect of subdivision is to change labels.

All of our subdivision and replacement rules may be considered either special
cases of or generalizations of the notion of cellular automaton. We particularly like
to think of the local replacement rules as being generalized cellular automata which
create their own underlying cell structure on the fly.

Almost convex groups. A finitely generated group is said to be almost convex

if there is an integer k such that any two elements of the Cayley graph which lie in
the metric ball of (arbitrary) radius n in the graph and which lie within distance
2 of each other in the graph also lie within distance k of one another in the ball of
radius n.

Exercise. Show that the Cayley graph of an almost convex group can be built
efficiently by a local replacement rule with bounded folding in the following sense:
the total complex at generation n should be the ball of radius n in the Cayley
graph together with an additional labelling; all nontrivial replacements performed
in moving from the n ball to the n+1 ball should take place only at the surface of
the n ball; all folding that takes place should be local and take place only at the
surface of the n ball.

Exercise. (Essentially a tautology) A group is almost convex if and only if it
can be constructed efficiently in the sense described in the previous paragraph by
a local replacement rule with bounded folding.

Question. Is there a good family of constructions leading to almost convex
groups? How does one construct an almost convex group? How does one recognize
an almost convex group?

Remark. Although the property of almost convexity is not a group invariant,
it can be made group invariant by the usual cheat: there exists a finite generating
set with respect to which the group is almost convex.
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