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1. Introduction

In two previous papers [7, 8] we described and investigated a technique, called twisted
face-pairing, for constructing 3-manifolds from face-pairings. The starting point for the
construction is a faceted 3-ball P together with an orientation-reversing face-pairing ε on
P . The quotient complex P/ε need not be a 3-manifold, and experience shows that it is
unlikely that P/ε will be a 3-manifold if P and ε are chosen “randomly”. The face-pairing
ε determines an equivalence relation on the set of edges of P . The twisted face-pairing
construction depends on the faceted 3-ball P , the face-pairing ε, and a multiplier function
mul, which assigns a positive integer to each equivalence class of edges. For each multiplier
function mul, twisted face-pairing produces a pair (Q, δ) consisting of a faceted 3-ball Q
which is obtained from P by subdivision and a face-pairing δ on Q which is obtained from
ε by composition with a twist. The fundamental theorem of twisted face-pairing, which is
proved in [7] and in [8], is that the quotient complexM(ε,mul) = Q/δ is always a 3-manifold.
In this paper we specialize the construction by restricting the class of faceted 3-balls. A

faceted 3-ball P is ample if it satisfies the following three conditions.

1. Every two distinct faces of P are either disjoint or meet in a vertex or meet in an edge.
2. Three distinct faces of P which meet each other pairwise have exactly one vertex in

common.
3. No face of P is a triangle.

We refer to these conditions as ampleness conditions 1, 2 and 3. Ampleness condition 3 is
almost superfluous; the only faceted 3-ball which satisfies ampleness conditions 1 and 2 and
is not ample is a tetrahedron. We use the term ample because for our purposes ample faceted
3-balls are sufficiently roomy or spacious—ample. For example, Proposition 3.1 shows that
an ample faceted 3-ball P is not so small or pinched that it contains a nontrivial simple closed
edge path with at most three edges. The other results of Section 3 give more indications of
the ampleness of ample faceted 3-balls.
The main theorem of this paper is Theorem 6.1, which states that if P is an ample faceted

3-ball, ε is an orientation-reversing face-pairing on P , and mul is a multiplier function for ε,
thenM(ε,mul) has Gromov hyperbolic fundamental group. It then follows from Theorem 5.1
of this paper and a result [2, Theorem 4.1] of Bestvina and Mess that M(ε,mul) has space
at infinity a 2-sphere.
Ample faceted 3-balls exist in great profusion. We can construct an ample faceted 3-ball

from any faceted 3-ball P as follows. First triangulate ∂P in any way to get a simplicial
complex which subdivides ∂P . Then construct the dual cap subdivision of this triangulation
of ∂P , which means that every triangle is subdivided as in Figure 1. The result is an ample
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Figure 1. The dual cap subdivision of a triangle.

faceted 3-ball P ′. A face-pairing ε on P naturally determines a face-pairing ε′ on P ′ if P ′ is
gotten from P in an ε-invariant way.
Since there is an abundance of ample faceted 3-balls, one can use twisted face-pairing

to concretely construct many closed 3-manifolds whose fundamental groups are Gromov
hyperbolic and have 2-spheres as spaces at infinity. It was the search for such a construction
that led to the discovery of twisted face-pairings. It is hoped that these examples will be
useful test examples for our attempt to prove Thurston’s Hyperbolization Conjecture. For
a discussion of the Hyperbolization Conjecture, see [10]. For details of our approach to
resolving the conjecture, see [4], [5], [6] and [9].
In Section 2 we give what appears to be a new condition equivalent to Gromov hyperbol-

icity for a finitely presented group. To describe this condition, let G be a finitely presented
group, and let Γ be a locally finite Cayley graph for G. The condition states that there is
a global bound on the length of a geodesic which lies outside a given open metric ball of Γ
and whose endpoints lie on the boundary of that open metric ball. It is this condition that
we verify to prove the main theorem of this paper. This condition is somewhat surprising in
that the analogue for more general spaces is false. In particular, let X = Rn, n ≥ 2, with the
standard metric. Then X is not negatively curved, but it is impossible to find two distinct
points on a sphere S = ∂B which are joined by a geodesic that is disjoint from the interior
of B.
Let P be an ample faceted 3-ball, let ε be a face-pairing on P and let mul be a multiplier

function for ε. We call M = M(ε,mul) an ample twisted face-pairing manifold. We
maintain the notation of this paragraph throughout the next four paragraphs.
In Section 3 we develop some properties of ample faceted 3-balls. In Section 4 we set the

stage for Section 5 by fixing notation, recalling facts and making definitions. In Section 5
we inductively construct a cell complex and prove that it is cellularly isomorphic to the

universal covering complex M̃ of M . The purpose of the construction is to obtain detailed

information about the combinatorial balls of M̃ . Throughout Section 5 we heavily use the
duality between M and its dual twisted face-pairing manifold.
The 3-torus provides an interesting example to keep in mind for Sections 3, 4 and 5. We

view the 3-torus as being gotten from a cube C in R3 by identifying opposite faces in the
usual way using translations. Then C is an ample faceted 3-ball, so the first two propositions
in Section 3 apply to C, although the last two propositions in Section 3 do not apply because
we are not twisting. From C we obtain a cell structure on the 3-torus, giving us a cell complex
T . Just as for twisted face-pairing 3-manifolds, T has exactly one vertex and the dual of the
link of that vertex is cellularly isomorphic to C (in an orientation-reversing way). Let T ∗

be the cell complex dual to T . The definitions in Section 4 are meaningful for the present
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example. The structure of the universal covering complex T̃ is clear: we have the usual

tesselation of R3 by cubes. The same holds for the dual complex T̃ ∗, and it is clear how
T̃ and T̃ ∗ fit together. Although the hypotheses of Theorem 5.1 are not meaningful, the
conclusions of Theorem 5.1 all hold for the present example. So there are strong similarities
between the present example and ample twisted face-pairing manifolds. With regard to
Theorem 5.1, the main difference between T and M is that the intersection of two distinct

3-cells in T̃ is either empty or a vertex or an edge or a face while the intersection of two

distinct 3-cells in M̃ is either empty or a vertex or an edge or a face or an elbow. See the
middle of Section 3 for the definition of elbow. Consideration of T shows that Sections 3, 4
and 5 are not about negative curvature.
As mentioned earlier, in Section 5 we obtain detailed information about the combinatorial

balls in M̃ . We then use this detailed information in Section 6 to prove that G = π1(M)
is Gromov hyperbolic. A fact that plays an important role in the argument is that G
is almost convex in the sense of [3] in the strongest way possible with respect to its star
generating set. (See Section 4 for the definition of star generating set.) In order to state
this almost convexity property more carefully, let d be the metric on G with respect to its
star generating set and denote the identity element of G by 1. Let x and y be elements of
G such that d(x, 1) = d(y, 1) ≥ 1. Suppose that there exists an element z of G such that
d(z, x) = d(z, y) = 1 and d(z, 1) = d(x, 1) + 1. The almost convexity property satisfied
by G is that then there exists an element w of G such that d(w, x) = d(w, y) = 1 and
d(w, 1) = d(x, 1)− 1. This property is at the heart of our argument to verify our criterion
for Gromov hyperbolicity. We prove it early in the proof of Theorem 6.1.
Actually, we do not verify our criterion for Gromov hyperbolicity directly for the Cayley

graph Γs of G with respect to its star generating set, but instead we work with what we
call the bipartite graph Γb. We next discuss Γb. The Cayley graph Γs can be identified with

the 1-skeleton of the universal covering complex M̃∗ of the twisted face-pairing manifold
M∗ dual to M . In the same way the Cayley graph Γ∗s of G with respect to its dual star

generating set can be identified with the 1-skeleton of M̃ . The set of vertices of Γb is the

union of the set of vertices of M̃ and the set of vertices of M̃∗. Edges of Γb join vertices of M̃

with vertices of M̃∗. A vertex u of M̃ is joined by an edge of Γb with a vertex v of M̃∗ if and
only if the 3-cell of M̃∗ dual to u contains v, if and only if the 3-cell of M̃ dual to v contains
u. Traversing one edge of Γs corresponds to traversing two edges of Γb. So combinatorial
balls in Γb grow half as fast as combinatorial balls in Γs. We find that working with the half
steps afforded by Γb greatly simplifies understanding the growth properties of Γs. This is
the approach taken in both Section 5 and Section 6.
Section 7 is devoted to examples. We discuss three ample twisted face-pairing manifolds.

In particular, we present diagrams of some of the combinatorial balls of their universal cov-
ering manifolds. We feel that these diagrams are very illuminating, especially in connection
with Section 5. We have written a computer program, pairsnap.c, which provides input to
J. Weeks’ computer program SnapPea [13] for twisted face-pairings. Our program is freely
available from http://www.math.vt.edu/people/floyd. When we apply these programs to
the three ample twisted face-pairing manifolds discussed in Section 7, SnapPea says that the
manifolds are hyperbolic, in agreement with the Hyperbolization Conjecture.
We maintain our conventions that faces of faceted 3-balls in figures are oriented clockwise

and that vertices at corners of faces are original vertices, whereas vertices which are not at
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corners of faces are not original vertices. By a 3-cell we mean a closed 3-cell unless explicitly
stated otherwise. As in Section 4 of [8], Xσ denotes the dual cap subdivision of a given cell
complex X.
We thank Richard Canary and Peter Scott for some interesting discussions.

2. A criterion for Gromov hyperbolicity

We begin this paper by establishing a condition equivalent to Gromov hyperbolicity for a
finitely presented group. To prepare for this, we first state and prove Lemma 2.1.

Lemma 2.1. Let J be a positive integer, and let j be an integer with j ≥ J . Let a0, . . . , aj
be integers with a0 = aj, ai ≥ a0 for every i ∈ {0, . . . , j} and |ai − ai−1| ≤ 1 for every
i ∈ {1, . . . , j}. Then there exist integers p, q ∈ {0, . . . , j} such that J ≤ q − p ≤ 2J , ap = aq
and ai ≥ ap for every i ∈ {p, . . . , q}.
Proof. We prove Lemma 2.1 by induction on j. If j ≤ 2J , then we simply take p = 0 and
q = j, so suppose that j > 2J .
Suppose that there exists an integer i ∈ {1, . . . , j − 1} such that ai = a0. If i ≥ J , then

a0, . . . , ai satisfy the induction hypotheses, and so the conclusion of the lemma is true by
induction. If i < J , then ai, . . . , aj satisfy the induction hypotheses, and again the conclusion
of the lemma is true by induction.
Hence we may assume that ai > a0 for every i ∈ {1, . . . , j − 1}. But then a1, . . . , aj−1

satisfy the induction hypotheses, and again the conclusion of the lemma is true by induction.
This proves Lemma 2.1.

The next theorem gives a criterion for proving that a finitely presented group is Gromov
hyperbolic.

Theorem 2.2. Let G be a finitely presented group. Let Γ be a locally finite Cayley graph
for G. Let v be a vertex of Γ, and let d be the edge path metric of Γ. Then G is Gromov
hyperbolic if and only if there exists a positive integer J with the following property. If there
exists a geodesic edge path in Γ with vertices v0, . . . , vj in order such that d(v0, v) = d(vj , v)
and d(vi, v) ≥ d(v0, v) for every i ∈ {0, . . . , j}, then j < J .

Proof. First suppose that G is Gromov hyperbolic. Then geodesic triangles in Γ are K-thin
for some nonnegative integer K. We show that the property claimed to be equivalent to
Gromov hyperbolicity holds for J = 4K + 2. Our proof is by contradiction. Let γ be a
geodesic edge path in Γ with vertices v0, . . . , vj in order such that j ≥ J , d(v0, v) = d(vj , v)
and d(vi, v) ≥ d(v0, v) for every i ∈ {0, . . . , j}. Let γ1 be a geodesic edge path in Γ joining
v to v0, and let γ2 be a geodesic edge path in Γ joining v to vj . Then γ1, γ and γ2 are the
edges of a geodesic triangle in Γ. Hence the vertex v2K+1 lies within distance K from either
γ1 or γ2. Suppose that v2K+1 lies within distance K from a vertex u of γ1. Then

d(v0, v) ≤ d(v2K+1, v) ≤ d(v2K+1, u) + d(u, v) ≤ K + d(u, v).

Because u lies on a geodesic joining v and v0, it follows that d(v0, u) ≤ K. But then

d(v0, v2K+1) ≤ d(v0, u) + d(u, v2K+1) ≤ K +K = 2K,

which is a contradiction. We likewise obtain a contradiction if u lies on γ2. This proves the
forward implication of Theorem 2.2.
We now prove the backward implication of Theorem 2.2 by showing that Γ satisfies a linear

isoperimetric inequality. Suppose that there exists a positive integer J with the following
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property. There does not exist a geodesic edge path in Γ with vertices v0, . . . , vj in order
such that j ≥ J , d(v0, v) = d(vj, v) and d(vi, v) ≥ d(v0, v) for every i ∈ {0, . . . , j}. Let γ
be a nontrivial closed edge path in Γ based at v. Let v0, v1, v2, . . . , vj be the vertices of γ
in order with v0 = vj = v. Let ai = d(vi, v) for every i ∈ {0, . . . , j}. Suppose that j ≥ J .
Then Lemma 2.1 implies that there exist integers p, q ∈ {0, . . . , j} such that J ≤ q−p ≤ 2J ,
d(vp, v) = d(vq, v) and d(vi, v) ≥ d(vp, v) for every i ∈ {p, . . . , q}. By assumption the segment
of γ from vp to vq is not a geodesic. We decompose γ into two closed edge paths γ′ and γ1
as follows. We choose a geodesic edge path α in Γ from vp to vq. We let γ′ be the closed
edge path obtained from γ by replacing the segment of γ from vp to vq by α. We let γ1 be
the closed edge path in Γ obtained by concatenating the inverse of α with the segment of γ
from vp to vq. The two main features of this decomposition of γ into γ′ and γ1 are that the
length of γ′ is less than the length of γ and the length of γ1 is less than 4J . By iterating this
construction with γ′ instead of γ, we see that γ can be decomposed into closed edge paths
γ1, . . . , γi such that each of γ1, . . . , γi has length less than 4J and i is at most the length
of γ. This easily implies that Γ satisfies a linear isoperimetric inequality. As is well known
(see [11, page 104] or [1, Theorem 2.5]), a finitely presented group which satisfies a linear
isoperimetric inequality is Gromov hyperbolic. This completes the proof of Theorem 2.2.

3. Properties of ample faceted 3-balls

and their twisted face-pairing subdivisions

The three ampleness conditions have a number of consequences which we explore in this
section. Before doing this, we recall the definition of faceted 3-ball. A faceted 3-ball P is
an oriented cell complex such that |P | is a closed 3-ball, P has a single 3-cell and for each
open cell the prescribed homeomorphism of an open Euclidean ball to that cell extends to a
homeomorphism of the closed Euclidean ball to the closed cell.

Proposition 3.1. Let P be an ample faceted 3-ball. Then every simple closed edge path in
P consisting of three or fewer edges is trivial.

Proof. Since each closed cell of P is homeomorphic to a closed Euclidean ball, there cannot
be a closed edge path in P consisting of a single edge. Now suppose that e1e2 is a closed edge
path in P with exactly two distinct edges. Let f1+ and f1− be the two faces that contain e1,
and let f2+ and f2− be the two faces that contain e2, labeled so that f1+ and f2+ are in the
same component of ∂P \ {e1 ∪ e2}. Since f1+, f1−, f2+, and f2− all contain the two vertices
that comprise ∂e1, by ampleness condition 2 we must have f1+ = f2+ and f1− = f2−. But
this is impossible by ampleness condition 1, so there cannot be a closed edge path in P with
exactly two distinct edges. Now suppose that e1e2e3 is a closed edge path in P with exactly
three distinct edges. For i = 1, 2, 3 let fi+ and fi− be the two faces that contain ei, labeled
so that f1+, f2+, and f3+ are in the same component of ∂P \{e1∪e2∪e3}. Suppose that one
of these faces, say f1+, contains all three vertices of e1e2e3. Then f1+ and f2− both contain
the vertices of e2, so ampleness condition 1 implies that f1+∩f2− is an edge. This edge must
be e2 because there does not exist a closed edge path in P consisting of two distinct edges.
So e2 ⊆ f1+, and similarly e3 ⊆ f1+. But then f1+ is a triangle, which contradicts ampleness
condition 3. So none of the faces which contains an edge of e1e2e3 contains all three vertices
of e1e2e3. In particular, these faces are distinct. But then ampleness condition 2 applied to
f1+, f2− and f3− easily implies that one of these three faces contains every vertex of e1e2e3,
a contradiction. This proves Proposition 3.1.
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Before stating Proposition 3.2, we make it clear that given cell complexes X ⊆ Y , we let
star(X, Y ) denote the subcomplex of Y which is the union of all the closed cells of Y which
meet X.

Proposition 3.2. Let P be an ample faceted 3-ball. Let X be either a vertex, an edge or a
face of P . Then the following statements hold.

1. If f and g are distinct faces of star(X, ∂P ) which both contain a vertex u /∈ X, then
f ∩ g is the unique edge of P which joins u and X.

2. Every edge of P which meets X but is not contained in X contains a vertex not in X.
3. The union of X and all the edges of P which meet X is contractible.
4. The faces of star(X, ∂P ), other than X itself if X is a face, can be enumerated as

f1, . . . , fk such that fi ∩ fj is an edge with exactly one vertex in X if |i− j| ∈ {1, k− 1}
and fi ∩ fj ⊆ X otherwise.

5. The complex star(X, ∂P ) is a topological disk.

Proof. We first prove statement 1. For this, let f and g be distinct faces of star(X, ∂P )
which both contain a vertex u /∈ X. We prove that f ∩ g contains a vertex of X. It is clear
that if either f or g contains X, then f ∩ g contains a vertex of X. So suppose that neither
f nor g contains X. It follows that X contains more than one vertex. Suppose that X is
an edge. Ampleness condition 2 applied to f , g and a face h of P which contains X shows
that f , g and h have a vertex in common. Since two faces of P which have more than a
vertex in common have exactly an edge in common by ampleness condition 1 and since h is
not a triangle by ampleness condition 3, it easily follows that f ∩ g contains a vertex of X.
Suppose that X is a face. Ampleness condition 2 applied to f , g and X implies that f ∩ g
contains a vertex of X. So in every case f ∩g contains a vertex v of X. Ampleness condition
1 implies that f ∩ g is an edge which joins u and v. Proposition 3.1 implies that f ∩ g is the
unique edge of P which joins u and X if X is either a vertex or an edge. We next consider
the uniqueness of this edge when X is a face. Let X be a face. Suppose that e is an edge of
P other than f ∩ g which joins u and a vertex v′ of X. Proposition 3.1 implies that v′ 6= v
and even that no edge of P joins v′ and v. If v′ ∈ f , then v and v′ are contained in f ∩X,
and so ampleness condition 1 implies that f ∩X is an edge joining v and v′, contrary to the
last sentence. So v′ /∈ f and likewise v′ /∈ g. Let h be a face of P which contains e. Then
ampleness condition 2 applied to f , h and X implies that f ∩ h ∩X consists of a vertex w.
If w = v, then h ∩X contains v and v′, which is impossible as before. If w 6= v, then f ∩X
contains v and w, and so ampleness condition 1 implies that f ∩X is an edge joining v and
w. Similarly, f ∩ h is an edge joining u and w, while f ∩ g is an edge joining u and v. We
now have a contradiction to Proposition 3.1. This proves statement 1 of Proposition 3.2.
Now consider statement 2. Let e be an edge of P which meets X but is not contained in X.

Proposition 3.1 easily implies that e contains a vertex not in X if X is either a vertex or an
edge. If X is a face, then ampleness condition 2 applied to X and the two faces which contain
e implies that e contains a vertex not in X. This proves statement 2 of Proposition 3.2.
Statements 1 and 2 of Proposition 3.2 easily imply statement 3.
Statements 4 and 5 of Proposition 3.2 are now easy to see.
This proves Proposition 3.2.

Let P be a faceted 3-ball with an orientation-reversing face-pairing ε. Let mul be a
multiplier function for ε. Let Q be the twisted face-pairing subdivision of P gotten by
subdividing the edges of P as usual. Let δ be the twisted face-pairing for Q determined by
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a) b)

Figure 2. A twisted original edge and an elbow.

P , ε and mul. Let f be a face of Q, and let e be an original edge of f . Then we call t = δf (e)
a twisted original edge of Q. Continuing, let L be a subcomplex of t consisting of some
vertex of t together with all vertices and edges of t preceding (relative to f) that vertex such
that L contains at least two edges. We call L an elbow of Q. Part a) of Figure 2 shows a
twisted original edge of Q drawn with thick arcs. This twisted original edge of Q contains
three elbows, and part b) of Figure 2 shows one of them drawn with thick arcs. Let L be
an elbow contained in a face f of Q as above. Then there exist original edges e1 and e2 of
Q such that L ⊆ e1 ∪ e2. We call the original vertex common to e1 and e2 the joint of L.
Suppose that e1 immediately precedes e2 (relative to f). Then we call L ∩ e1 the bottom
of L, and we call L∩ e2 the top of L. (Using clockwise orientation and viewing an elbow as
the letter “L”, the elbow’s bottom is the horizontal segment of the letter “L” and its top is
the vertical segment of the letter “L”.) The bottom of an elbow always consists of one edge,
and this edge might be an original edge. The top of an elbow may contain any number of
edges, but it cannot be an original edge. Hence every elbow L contains at least one original
vertex (its joint), and at most two; L contains two original vertices if and only if its bottom
is an original edge. For emphasis we note that every elbow is contained in a twisted original
edge, and every twisted original edge is an elbow unless it contains just one edge.

Proposition 3.3. Let P be an ample faceted 3-ball with ε, mul and Q as usual. Suppose
given a subcomplex X = e ∪ L ∪ t of Q, where e is an original edge, L is either a vertex or
an edge or a face or an elbow and t is a twisted original edge. Then every nontrivial simple
closed edge path in X is contained in L.

Proof. First suppose that L is an elbow. We wish to prove that every simple closed edge
path in e∪ L∪ t is trivial. Proposition 3.1 easily implies that every nontrivial simple closed
edge path in e ∪ L ∪ t meets each of e, L and t. Proposition 3.1 furthermore easily implies
that we may assume that both L and t meet e. Statement 3 of Proposition 3.2 with X = e
implies that the union U of e and all the original edges of Q which meet e is contractible.
Statement 4 of Proposition 3.2 with X = e and the fact that every face of P has at least four
sides implies that the union of U with the interior of every original edge of star(e, ∂Q) which
meets U is also contractible. Hence every simple closed edge path in e ∪ L ∪ t is trivial.
Now suppose that L is either a vertex or an edge or a face. Because a twisted original

edge of Q contains at most one original edge, it is easy to see that to prove Proposition 3.3
we may assume that t is an original edge distinct from e. Proposition 3.1 implies that e and
t have at most one vertex in common. It easily follows that we may assume that both e and
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t meet L. Now statement 3 of Proposition 3.2 with X = L implies that the set e ∪ L ∪ t is
contractible.
This proves Proposition 3.3.

Before stating Proposition 3.4, we discuss some notation. Given cell complexes X ⊆ Y ,
we let costar(X, Y ) denote the subcomplex of Y which is the union of all the closed cells of
Y which are disjoint from X. Recall that Xσ denotes the dual cap subdivision of a given
cell complex X.

Proposition 3.4. Let P be an ample faceted 3-ball with ε, mul and Q as usual. Let L be a
subcomplex of Q which is either a vertex or an edge or a face or an elbow. Then the following
assertions hold.

1. The complex star(L, ∂Q) is a topological disk.
2. If f and g are distinct faces of star(L, ∂Q) which both contain a vertex u /∈ L, then

f ∩ g is the unique original edge of Q which joins u and L.
3. In the situation of statement 2, we have that f ∩g∩L is connected, and if t is a twisted

original edge of Q which joins u and L, then t ∩ L is connected and the segment of t
from u to L is contained in f ∩ g.

4. The complex star(Lσ, (∂Q)σ) is a topological disk.
5. The complex star(Lσ, Qσ) is a topological ball.
6. The complex costar(Lσ, Qσ) is a topological ball.
7. Let F be a set, possibly empty, of subcomplexes of costar(Lσ, Qσ) which have the form

fσ ∩ costar(Lσ, Qσ), where f is a face of star(L, ∂Q) other than possibly L. Then

[star(Lσ, Qσ) ∩ costar(Lσ, Qσ)] ∪
⋃
F∈F

F

is a topological disk.

Proof. We first prove statement 1. If L is an original vertex, an original edge or a face, then
this follows from statement 5 of Proposition 3.2. If L is a vertex or an edge that does not
contain an original vertex, then star(L, ∂Q) is the union of two faces along a common original
edge, and hence is a topological disk. If L is an edge which contains an original vertex v
but is not an original edge, then star(L, ∂Q) = star(v, ∂Q) and hence is a topological disk.
Thus far we have proved statement 1 of Proposition 3.4 if L is either a vertex or an edge or
a face. If L is an elbow, then either the bottom of L is an original edge or the joint of L is
its only original vertex. In the first case star(L, ∂Q) is the star in ∂Q of the bottom of L,
and in the second case star(L, ∂Q) is the star in ∂Q of the joint of L. In both cases this star
is a topological disk by the above. This proves statement 1 of Proposition 3.4.
We next consider statement 2. If L does not contain an original vertex, then f ∩ g is the

original edge that contains L and the statement is clear. Otherwise star(L, ∂Q) is the star
in ∂Q of an original vertex, an original edge or a face, and statement 2 follows easily from
Proposition 3.2. This proves statement 2 of Proposition 3.4.
To prove statement 3, first note that if L does not contain an original vertex, then f ∩ g

is an original edge, f ∩ g ∩ L = L and statement 3 of Proposition 3.4 follows easily. Now
suppose that L contains an original vertex. Then star(L, ∂Q) is the star in ∂Q of an original
vertex, an original edge or a face. Statement 4 of Proposition 3.2 easily implies that f ∩ g is
an original edge with exactly one original vertex in L and hence f ∩ g ∩L is connected. The
remaining part of statement 3 now follows from Proposition 3.3.
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Statement 4 follows from a case-by-case analysis much like the proof of statement 1.
Statement 5 is then immediate, since star(Lσ, Qσ) is the cone on star(Lσ, (∂Q)σ) to the
barycenter of Q. Since costar(Lσ, Qσ) is the closure of Qσ \ star(Lσ, Qσ), statement 6 now
follows from statements 4 and 5.
We finally consider statement 7. It follows from statements 4 and 5 that star(Lσ, Qσ) ∩

costar(Lσ, Qσ) is a disk. If L does not contain an original vertex, then there are exactly two
faces f and g of star(L, ∂Q). Each of fσ ∩ costar(Lσ, Qσ) and gσ ∩ costar(Lσ, Qσ) is a disk
which intersects star(Lσ, Qσ) ∩ costar(Lσ, Qσ) in a nondegenerate arc, and their union is an
annulus that has ∂[star(Lσ, Qσ)∩ costar(Lσ, Qσ)] as one if its boundary components. Hence
statement 7 holds in this case. Now suppose that L contains an original vertex and that
f is a face of star(L, ∂Q) with f 6= L. Then fσ ∩ costar(Lσ, Qσ) is a disk which intersects
star(Lσ, Qσ) ∩ costar(Lσ, Qσ) in a nondegenerate arc. If g is another face of star(L, ∂Q)
with g 6= L, then fσ ∩ gσ ∩ costar(Lσ, Qσ) is either empty or is an arc which intersects
star(Lσ, Qσ)∩ costar(Lσ, Qσ) in exactly one of its endpoints. Statement 7 now follows easily
by induction on the cardinality of F .
This completes the proof of Proposition 3.4.

4. Preparations

In this section we fix notation, recall some facts and make some definitions to prepare for
the next section. We again draw the reader’s attention to Section 7, where examples are
discussed.
Let P be a faceted 3-ball, let ε be an orientation-reversing face-pairing on P and let mul

be a multiplier function for ε. From this we obtain a twisted face-pairing subdivision Q of
P , a face-pairing δ on Q, and a twisted face-pairing 3-manifoldM . As in Section 4 of [8], we
also obtain a faceted 3-ball Q∗ dual to Q, meaning that there exists an orientation-reversing
isomorphism ω : Q → Q∗, and we obtain a twisted face-pairing 3-manifold M∗ dual to

M . We let M̃ denote the universal covering cell complex of M , and we let M̃∗ denote the
universal covering cell complex ofM∗. The cell complexes M and M∗ are dual to each other

with |M | = |M∗|, and the cell complexes M̃ and M̃∗ are dual to each other with |M̃ | = |M̃∗|.
We choose a vertex O of M̃ , and we call O the base vertex of M̃ . Likewise we choose a

vertex O∗ of M̃∗, and we call O∗ the base vertex of M̃∗.
Let G denote the fundamental group of M . We view G as simultaneously acting on both

M̃ and M̃∗. We define the star generating set of G to be the set of all elements g in G

such that C ∩ gC 6= ∅, where C is the 3-cell of M̃ dual to O∗. Since the star generating
set contains the geometric generating set (see Theorem 4.8 of [8] together with the material
just before and after), it does indeed generate G. Let Γs denote the Cayley graph of G with
respect to its star generating set.
We next define for every nonnegative integer k a cell complex B(k

2
), which we refer to as

a combinatorial ball. We define B(0) to be simply O∗. We proceed inductively as follows.
If B(k) is defined for a nonnegative integer k, then we let B(k+ 1

2
) be the union of the 3-cells

in M̃ which are dual to the vertices of B(k). If B(k+ 1
2
) is defined for a nonnegative integer

k, then we let B(k + 1) be the union of the 3-cells in M̃∗ which are dual to the vertices of
B(k + 1

2
). The 3-cells of B(k + 1

2
) correspond to the vertices of Γs which lie within distance

k from the identity element for every nonnegative integer k. Equivalently, the vertices of



10 J. W. CANNON, W. J. FLOYD, AND W. R. PARRY

B(k) correspond to the vertices of Γs which lie within distance k from the identity element
for every nonnegative integer k. We find it convenient to set B(−1) = B(−1

2
) = ∅.

We next define the bipartite graph Γb as follows. The vertices of Γb consist of the vertices

of M̃ together with the vertices of M̃∗. Edges of Γb join vertices of M̃ with vertices of M̃∗.
A vertex x of M̃ is connected to a vertex y of M̃∗ by an edge of Γb if and only if the 3-cell of

M̃∗ dual to x contains y, equivalently, the 3-cell of M̃ dual to y contains x. It is clear that
Γb is indeed bipartite. We take O∗ to be the base vertex of Γb. We put an edge path metric
on Γb so that every edge has length 1

2
. Then the vertices of Γb at distance k from O∗ are

the vertices of B(k) \ B(k − 1) for every half integer k ≥ 0. The action of G on M̃ and M̃∗

determines an action of G on Γb.
The main theorem of this paper states that if P is ample, then G is Gromov hyperbolic.

We prove this in Section 6 using our Gromov hyperbolicity criterion given in Theorem 2.2
applied to the Cayley graph Γs of G with respect to its star generating set. Just as in
Theorem 4.10 of [8], there exists a unique G-equivariant isometry from the set of vertices of
Γs to the bipartite graph Γb which maps the base vertex of Γs to the base vertex O∗ of Γb

(and whose image consists of “half” the vertices of Γb). This isometry allows us to transform
the problem of verifying our Gromov hyperbolicity criterion for Γs to verifying our Gromov
hyperbolicity criterion for Γb. We find it easier to work with Γb than Γs.
In this paragraph we define the notion of cone type for Γb. Let x ∈ Γb. The cone of the

pair (Γb,O∗) based at x is the set [x,∞) of all points y ∈ Γb such that there exists a geodesic
from O∗ to y which passes through x. Now let x and y be vertices of Γb. We say that the
cones [x,∞) and [y,∞) are equivalent if there exists an element of G which maps x to y
taking [x,∞) bijectively onto [y,∞). We call an equivalence class of cones a cone type.

5. Growth properties of the universal cover of M

This section is devoted to proving Theorem 5.1, which deals with what might be called
growth properties of the universal covering cell complex of M .

Theorem 5.1. Let P be an ample faceted 3-ball, let ε be an orientation-reversing face-
pairing on P , and let mul be a multiplier function for ε. Let Q be the associated twisted
face-pairing subdivision of P , and let M be the associated twisted face-pairing manifold.
Then the following assertions hold.

1. Every lift of the quotient map from Q to M to a map from Q to the universal cover M̃

of M is injective. Hence every 3-cell of M̃ is canonically isomorphic to Q.
2. The combinatorial ball B(k) is a topological ball contained in the interior of B(k + 1)

for every positive half integer k.
3. The bipartite graph Γb has finitely many cone types.
4. Let x be a vertex of Γb, and suppose that the Γb-distance from x to O∗ is k with k > 0.

Then the dual of link(x,B(k)) is isomorphic to a subcomplex L(x) of either Q if k is
an integer or Q∗ if k is not an integer, and this isomorphism is canonically defined on
vertices. Furthermore, the cone type of x is determined by L(x).

5. Maintain the setting of statement 4. Then L(x) is either a vertex or an edge or a face
or an elbow.

6. Suppose given a half integer k ≥ 1. Then every 3-cell in B(k) not in B(k − 1) meets
∂B(k) in a connected, simply-connected complex whose interior is a topological disk. (It
is a “hairy” disk.)
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7. Suppose given a half integer k ≥ 1, and let D be a 3-cell in B(k) not in B(k − 1). Let
L = D ∩ B(k − 1). Then L is either a vertex or an edge or a face or an elbow of D.
There exists a face f of ∂B(k − 1) and a 3-cell C of B(k − 1) with L ⊆ f ⊆ C such
that L is either a vertex or an edge or a face or an elbow of C. Moreover if L contains
more than two vertices, then there exists just one face f of B(k − 1) with L ⊆ f .

Remark 5.2. Statement 2 asserts that B(k) is contained in the interior of B(k+1). By this
we mean that every point of |B(k)| has a neighborhood in |B(k+1)| which is homeomorphic
to an open 3-ball. Recall that we defined elbows of Q, and hence Q∗, in the middle of

Section 3. According to statement 1, every 3-cell of M̃ is canonically isomorphic to Q.

Likewise every 3-cell of M̃∗ is canonically isomorphic to Q∗. This justifies the use of the
word elbow in statement 7.

Proof of Theorem 5.1. Most of the proof of Theorem 5.1 consists of inductively constructing
cell complexes B(0),B(1

2
),B(1), . . . , developing their properties and eventually identifying

them with B(0), B(1
2
), B(1), . . . .

We assume that P has n face-pairs so that the faces and edges of Q and Q∗ are labeled
with the elements of {1, . . . , n}.
We begin by defining B(0) to be simply a vertex. We define B(1

2
) to be a copy of Q with

its edge and face labels and directions. Let k be half a nonnegative integer. We assume that
the cell complex B(k) has been defined and satisfies the following four induction hypotheses
if k > 0.

Induction hypothesis 1. The cell complex B(k) is oriented and equal to the union of its
3-cells. If k ≥ 1, then B(k) contains B(k − 1) in its interior. Every edge and face of B(k) is
labeled with an element of {1, . . . , n} and directed so that every 3-cell of B(k) is isomorphic
to Q in a way which preserves orientation, labels and directions if k is not an integer and
every 3-cell of B(k) is isomorphic to Q∗ in a way which preserves orientation, labels and
directions if k is an integer.

Induction hypothesis 2. The dual of the B(k)-link of every vertex of B(k)\∂B(k) is isomorphic
to Q if k is an integer, and it is isomorphic to Q∗ if k is not an integer. The dual of the
B(k)-link of every vertex of ∂B(k) is isomorphic to either a vertex or an edge or a face or an
elbow of Q if k is an integer, and it is isomorphic to either a vertex or an edge or a face or an
elbow of Q∗ if k is not an integer. These isomorphisms are canonically defined on vertices.
They are gotten as follows. Let v be a vertex of B(k). Suppose that k is not an integer. Let
C be a 3-cell of B(k) which contains v. Then C is isomorphic to Q by induction hypothesis
1, and it is easy to see that this isomorphism is uniquely defined on vertices. The C-link
of v thus determines a face of the link of the vertex of M . This map from the faces of the
B(k)-link of v to the faces of the link of the vertex ofM determines an isomorphism from the
B(k)-link of v to a subcomplex of the link of the vertex of M . Once the map ω : Q→ Q∗ is
fixed, the dual of the link of the vertex ofM is isomorphic to Q∗ in a way which is canonically
determined on vertices by Theorem 3.1 of [8], and so it follows that the dual of the B(k)-link
of v is isomorphic to a subcomplex of Q∗ in a way which is canonical on vertices. If k is an
integer, then the same holds with Q, Q∗ and M replaced by Q∗, Q and M∗.

Induction hypothesis 3. There is a duality between the closed cells of B(k− 1
2
) and the closed

cells of B(k) which are not contained in ∂B(k). This duality preserves labels and directions
of edges and faces.
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Induction hypothesis 4. The complex B(k) is a topological ball.

It is clear that B(1
2
) satisfies all four induction hypotheses.

We construct B(k+ 1
2
) for the case in which k is a positive integer. The case in which k is

not an integer is gotten from the case in which k is an integer essentially by interchanging Q
and Q∗. So let k be a positive integer. We fix this value of k until the end of the verification
of induction hypothesis 4 near the end of this section.
We construct B(k + 1

2
) in this paragraph. Let Vk be the set of vertices of ∂B(k). For

every v ∈ Vk, let Qv be a copy of Q with its edge and face labels and directions together
with orientation. Let B′(k + 1

2
) be the disjoint union of B(k − 1

2
) and Qv for every v ∈ Vk.

We next define what might be called a face-pairing β for B′(k + 1
2
), although not all the

faces of B′(k + 1
2
) are paired with other faces of B′(k + 1

2
) by maps of β. Suppose that u

and v are vertices of ∂B(k) which are joined by an edge e of ∂B(k). Then the label and
direction of e given by induction hypothesis 1 determine a face fu of Qu and a face fv of
Qv. The isomorphisms between Qu, Qv and Q together with the twisted face-pairing δ on
Q determine inverse cellular homeomorphisms βfu : fu → fv and βfv : fv → fu. We include
βfu and βfv in the face-pairing β. Suppose that v is a vertex of ∂B(k) and that e is an edge
of B(k) which contains v but e 6⊆ ∂B(k). Let u be the vertex of e other than v. Induction
hypothesis 3 implies that e determines a face fu of B(k − 1

2
). Because the vertex v lies in

∂B(k), the face fu lies in ∂B(k − 1
2
) and induction hypothesis 3 implies that the 3-cell of

B(k − 1
2
) which contains fu is dual to u and u ∈ B(k − 1). As before, e determines a face

fv of Qv and we have inverse cellular homeomorphisms βfu : fu → fv and βfv : fv → fu. We
include βfu and βfv in the face-pairing β. This completes the definition of β. It is easy to
see that β satisfies a face-pairing compatibility condition as in Section 2 of [8]. We define
B(k + 1

2
) to be the cell complex consisting of orbits of points of B′(k + 1

2
) under β.

We make the following definition in order to investigate B(k + 1
2
). Let v ∈ Vk. By

induction hypothesis 2, the dual of link(v,B(k)) is isomorphic to and uniquely determines
either a vertex or an edge or a face or an elbow of Q. By this means we identify the dual
of link(v,B(k)) with a subcomplex Lv of Qv. We next present two lemmas which deal with
the complexes Lv.

Lemma 5.3. Let v ∈ Vk. Then the faces of Qv which are paired with other faces of B′(k+ 1
2
)

by β are precisely the faces of star(Lv, ∂Qv).

Proof. This follows from the definitions and induction hypotheses.

Lemma 5.4. Let e be an edge of B(k) with vertices v1 and v2 such that v1 ∈ ∂B(k). Let C
be a 3-cell of B(k) which contains e. Let u1 be the vertex of Lv1 ⊆ Qv1 determined by C. If
v2 ∈ ∂B(k), then let u2 be the vertex of Lv2 ⊆ Qv2 determined by C. If v2 /∈ ∂B(k), then let
Qv2 be the 3-cell of B(k − 1

2
) dual to v2, and let u2 be the vertex of Qv2 dual to C. Then β

identifies the face of Qv1 corresponding to e with the face of Qv2 corresponding to e, and the
vertices u1 and u2 are identified by means of this face identification. In particular, if w1 is a
vertex of Qv1 , if v2 ∈ ∂B(k) and if w2 is a vertex of Qv2 such that w1 and w2 are identified
by means of this face identification, then w1 ∈ Lv1 if and only if w2 ∈ Lv2 .

Proof. The vertex v1 of C corresponds to a vertex of Q∗, which by means of the map ω :
Q → Q∗ corresponds to a vertex w1 of Q, which corresponds to the vertex u1 of Qv1 . The
vertex v2 of C corresponds to a vertex w2 of Q and the vertex u2 of Qv2 in the same way.
The vertex w1 determines a face f(w1) of the link of the vertex of M , and the vertex w2
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determines a face f(w2) of the link of the vertex of M . Theorem 3.1 of [8] implies that
the edge e determines an edge common to f(w1) and f(w2). In other words, e determines
a face-pair of Q; one face of this face-pair contains w1 and the other face of this face-pair
contains w2 so that w1 and w2 are identified by the corresponding face-pairing maps. It
follows that u1 and u2 are identified. This proves Lemma 5.4.

We are now able to verify the first induction hypothesis for B(k + 1
2
).

Verification of induction hypothesis 1. It is clear that B(k + 1
2
) is oriented and equal to

the union of its 3-cells. The statements concerning labels and directions are also clear. It
remains to show that B(k− 1

2
) can be identified with a subcomplex in the interior of B(k+ 1

2
).

For this let w be a vertex of ∂B(k − 1
2
). Let f be a face of ∂B(k − 1

2
) which contains w. By

induction hypothesis 3 the face f is dual to an edge e of B(k) not contained in ∂B(k). Since
f ⊆ ∂B(k − 1

2
), one vertex v of e is contained in ∂B(k). It follows easily that link(v,B(k))

contains a face isomorphic to f , and induction hypothesis 2 then implies that link(v,B(k))
is in fact a face isomorphic to f . Hence the two face-pairing maps of β corresponding to
e identify f with Lv. Let C be the 3-cell of B(k) dual to w. Lemma 5.4 implies that the
vertex of Lv identified with w is the one which is determined by C. Lemma 5.4 furthermore
implies that if u is any vertex in ∂B(k) such that w is identified with some vertex x of Qu

by a sequence of face-pairing maps of β, then u ∈ C and x is the vertex of Lu determined by
C. Since w is the unique vertex of ∂B(k − 1

2
) dual to C, it follows that the set of vertices of

∂B(k − 1
2
) injects into B(k + 1

2
). Hence the set of vertices of B(k − 1

2
) injects into B(k + 1

2
).

Because the edges and faces of Q are determined by their vertices, it easily follows that
B(k − 1

2
) injects into B(k + 1

2
). We identify B(k − 1

2
) with its image in B(k + 1

2
). Given

a vertex w of ∂B(k − 1
2
), it is clear that B(k + 1

2
) is defined to complete link(w,B(k − 1

2
))

to a 2-sphere. Hence B(k − 1
2
) is contained in the interior of B(k + 1

2
). This completes the

verification of induction hypothesis 1 for B(k + 1
2
).

Let v ∈ Vk. The previous paragraph shows that if a vertex x of Qv is identified with
a vertex of B(k − 1

2
), then x ∈ Lv. In this paragraph we show that every vertex of Lv is

identified with a vertex of B(k − 1
2
). Let x be a vertex of Lv. Let C be the 3-cell of B(k)

which contains v corresponding to x. Then C is dual to a vertex w of B(k− 1
2
) by induction

hypothesis 3. Induction hypothesis 1 implies that some 3-cell of B(k − 1
2
) contains w, and

induction hypothesis 3 implies that such a 3-cell containing w is dual to a vertex of B(k− 1)
contained in C. Hence C meets B(k − 1). Let γ be a minimal edge path in C from v to
B(k−1). The definition of β and induction hypothesis 1 show that the last edge of γ contains
a vertex of ∂B(k) and a vertex of B(k− 1). Now Lemma 5.4 applied to the edges of γ shows
that the identifications determined by β identify x with a vertex of ∂B(k − 1

2
). Thus the

vertices of Lv are exactly the vertices of Qv which are identified with vertices of B(k − 1
2
).

We now turn our attention to the vertices of B(k + 1
2
) \ B(k − 1

2
), beginning with some

definitions. We say that the B(k + 1
2
)-link of a vertex v of B(k + 1

2
) \ B(k − 1

2
) is small if it

contains either one or two faces. In this case we call v a small link vertex. We say that
the B(k+ 1

2
)-link of a vertex v of B(k+ 1

2
) \B(k− 1

2
) is big if it contains at least three faces.

In this case we call v a big link vertex. Let u be a vertex of B′(k + 1
2
) whose image in

B(k+ 1
2
) does not lie in B(k− 1

2
). Let v be the element of Vk such that u lies in Qv. Suppose

that there exists a face f of Qv which contains u such that f is paired with another face
of B′(k + 1

2
) by β. We say that u is one-sided if there exists exactly one such face f . If

there exists more than one such face of Qv, then we say that u is two-sided. (We will see in
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Lemma 5.5 that there exist exactly two such faces if u is two-sided.) Given a subcomplex X
of B′(k+ 1

2
), we let X denote the image of X in B(k+ 1

2
). In particular, we use this notation

when X is a vertex. It is clear that if x is a big link vertex of B(k+ 1
2
) \B(k− 1

2
), then there

exists a two-sided vertex u of B′(k + 1
2
) such that u = x.

We next investigate the big link vertices of B(k+ 1
2
) \ B(k− 1

2
). Let x be a big link vertex

of B(k+ 1
2
)\B(k− 1

2
). Let u be a two-sided vertex of B′(k+ 1

2
) such that u = x. Let v be the

element of Vk such that u lies in Qv, and let f and g be distinct faces of Qv both of which
contain u such that both f and g are paired with faces of B′(k+ 1

2
) by β. Lemma 5.3 states

that both f and g are faces of star(Lv, ∂Qv). Since u is not in B(k − 1
2
), it follows that u is

not in Lv. Now statement 2 of Proposition 3.4 implies that f ∩ g is the unique original edge
of Qv which joins u to Lv. The following lemma is one implication of this, which we record
for future reference.

Lemma 5.5. Every two-sided vertex of B′(k+ 1
2
) is contained in exactly two faces of B′(k+ 1

2
)

which are paired with other faces of B′(k + 1
2
) by the face-pairing β.

Lemma 5.5 implies that there exist either zero or two one-sided vertices of B′(k+ 1
2
) which

map to x. If there are two such one-sided vertices, then the vertices of B′(k+ 1
2
) which map

to x are linearly ordered, and if there are zero such one-sided vertices, then the vertices of
B′(k + 1

2
) which map to x are cyclically ordered. Returning to the situation immediately

before Lemma 5.5, we see that statement 3 of Proposition 3.4 implies that the nonempty
complex f ∩ g∩Lv is connected, and so there exists a vertex w of f ∩ g∩Lv which is nearest
u relative to f ∩ g. We call w the root vertex of u, and we call the edge r of f ∩ g which
contains w and whose interior separates u from w the root edge of u.
In this paragraph we show that w and r are independent of the choice of u. For this at

first maintain the setting of the previous paragraph and suppose given v′ ∈ Vk for which Qv′

contains distinct faces f ′ and g′ such that 1) f ′ is paired with g by β, 2) g′ is paired with
some face of B′(k + 1

2
) by β and 3) g′ contains u′ = βg(u). As in the previous paragraph,

f ′∩g′ is the unique original edge of Qv′ which joins u′ to Lv′ . The last sentence of Lemma 5.4
implies that βg(w) lies in Lv′ . It follows that βg(f ∩g) is a twisted original edge of Qv′ which
joins u′ to Lv′ . Now statement 3 of Proposition 3.4 easily implies that βg(w) is the root
vertex of u′ and that βg(r) is the root edge of u′. Finally, if u and u′ are any two-sided
vertices of B′(k+ 1

2
) with u = u′ = x, then there exist two-sided vertices u0 = u, . . . , uj = u′

of B′(k + 1
2
) such that ui−1 maps to ui by an element of β for every i ∈ {1, . . . , j}. The

above argument in this paragraph shows that the root vertex and root edge of ui−1 map to
the root vertex and root edge of ui by an element of β for every i ∈ {1, . . . , j}. Thus w and
r are independent of the choice of u and are uniquely determined by x.
We call w the root vertex of x, and we call r the root edge of x. It is clear that w is

a vertex of ∂B(k − 1
2
) and that the vertex of r other than w is not a vertex of B(k − 1

2
). It

is furthermore now easy to see that if a 3-cell of B(k + 1
2
) contains a big link vertex x of

B(k + 1
2
) \ B(k − 1

2
), then that 3-cell contains the root edge and the root vertex of x.

We next investigate the edges of B(k + 1
2
) which are root edges of big link vertices of

B(k + 1
2
) \ B(k − 1

2
). Let r be such a root edge. Let w be the root vertex contained in r.

Since w is a vertex of ∂B(k− 1
2
), induction hypothesis 3 implies that w is dual to a 3-cell C of

B(k). It is not difficult to see that B(k+ 1
2
) is defined so that the dual of link(w,B(k+ 1

2
)) is

isomorphic to C. Induction hypothesis 3 implies that the faces of C which are not contained
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in ∂B(k) are dual to the edges of B(k − 1
2
) which contain w. It follows that r is dual to a

face f of C and that f ⊆ ∂B(k). Hence the 3-cells of B(k + 1
2
) which contain r are exactly

those which are dual to the vertices of f .
In this paragraph we prepare to describe how these 3-cells of B(k+ 1

2
) dual to the vertices

of f fit together by constructing a topological space F+ with some further structure which is
closely related to part of B(k+ 1

2
). To help understand this construction, we refer the reader

to the examples in Section 7. We call F+ together with its further structure the rooted
cosubdivision of f . Figure 3 gives a diagram of F+. Keep in mind our conventions that
in figures faces of Q and Q∗ are oriented clockwise and that corners of f indicate original
vertices. Figure 3 shows the face f with its edge labels and directions. The face f is part of
the dual of B(k+ 1

2
), and so it is drawn with dashes. Not appearing explicitly in Figure 3 is

the fact that the face label of f is 1 and that f is directed upward. We let F be a topological
space which is a closed topological disk with a fixed homeomorphism to the underlying space
of f . By means of this homeomorphism we speak of points of F as corresponding to points
of f . In Figure 3 the space F is drawn above f . We next let rF be a 1-cell, and we identify
one of its vertices with a point in the interior of F . Let F+ = F ∪ rF . We refer to rF as the
root edge of F+. In Figure 3, we view rF as passing through f . Since rF is below F , it is
drawn with dashes. We label and direct rF in agreement with f . Let wF be the vertex of rF
not in F . We next construct a finite tree t+ ⊆ F+ which we refer to as a rooted face tree.
In Figure 3 the edges of t+ are drawn as thick arcs or as a thick dashed arc. We construct
t+ as follows. The edge rF is contained in t+. The vertex of rF other than wF is called
the central vertex of t+. We fix an original edge e of f for the rest of this paragraph and
the next paragraph. Let j be the number of edges in e. If j > 1, then we choose an arc in
the interior of F with one endpoint the central vertex of t+, and we subdivide this arc into
j − 1 subarcs. We view this subdivided arc as a 1-complex b and refer to it as the branch
of t+ associated to e. See Figure 4, where the original edge e has vertices u0, . . . , u4 and its
associated branch b has vertices v1, . . . , v4. If j = 1, then we simply define b to be the central
vertex of t+. We choose these branches so that they meet one another only at the central
vertex of t+, hence their union is a contractible subset of F , and we let t+ be the union of
these branches together with rF . We let t = t+ ∩F , and we refer to t as simply a face tree.
We next choose more arcs in F and label and direct the edges of the branches of t as follows.
See Figure 4. Let e1, . . . , ej be the edges of e so that ei−1 follows ei for every i ∈ {2, . . . , j}.
Let v1, . . . , vj be the vertices of b so that v1 is the central vertex of t and vi−1 is joined to vi
by an edge of b for every i ∈ {2, . . . , j}. We refer to vj as the terminal vertex of b. We
choose a point of F corresponding to a point of f in the interior of e1, and we choose an
arc in F which joins this point to the terminal vertex of the branch of t associated to the
original edge of f following e. If j > 1, then for every i ∈ {2, . . . , j} we choose a point of
F corresponding to a point of f in the interior of ei, and we choose an arc in F which joins
this point to vi. We label and direct the edge of b from vi−1 to vi just as ei is labeled and
directed. These arcs from the boundary of F to t are chosen so that their union together
with t is a contractible subset of F . We denote this contractible subset of F by T , and we
refer to T as a big face tree. This completes the definition of the rooted cosubdivision F+

of f . We refer to F together with T and the cell structure of t as the cosubdivision of f .
We note that the cosubdivision which appears in Figure 3 also appears in the front face in
Figure 34 (with more vertices and edges).
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Figure 3. The rooted cosubdivision F+ of f .
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Figure 4. The branch b of F+ corresponding to the original edge e.

In this paragraph we describe how the 3-cells of B(k + 1
2
) dual to the vertices of f fit

together. Verification of the assertions in this paragraph is left largely to the reader, although
there is a brief discussion of the verification at the end of the paragraph. There exists a tree
isomorphism from the rooted face tree t+ to a subcomplex of B(k + 1

2
) which takes rF to

r and respects edge labels and directions. The vertices of t map bijectively to the big link
vertices of B(k + 1

2
) \ B(k − 1

2
) with root edge r. The above tree isomorphism extends to

a homeomorphism ϕ from F+ to a subset of ∂B(k + 1
2
) ∪ r such that the big face tree T is

mapped by ϕ into the 1-skeleton of ∂B(k + 1
2
). The closure of every connected component

of F \ T is mapped by ϕ to a subset of ∂B(k + 1
2
) contained in the boundary of a 3-cell of

B(k + 1
2
) containing r. Returning to the original edge e of f , we let u0, . . . , uj denote the

vertices of e ordered so that ui−1 follows ui for every i ∈ {1, . . . , j}. Let Ci be the 3-cell of
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B(k + 1
2
) which is dual to ui for every i ∈ {1, . . . , j}. Then the vertex vi of b is mapped by

ϕ to an original vertex of Ci for every i ∈ {1, . . . , j}. Furthermore, the original vertex uj of
f ⊆ C corresponds to an original vertex of Q∗ via the isomorphism between C and Q∗, which
corresponds to an original vertex of Q via the orientation-reversing cellular homeomorphism
ω : Q→ Q∗, which corresponds to the original vertex w = ϕ(wF ) of Cj via the isomorphism
between Cj and Q. Similarly, the original vertex u0 of f ⊆ C corresponds to the original
vertex ϕ(vj) of Cj . Induction hypothesis 4 implies that ∂B(k) is a 2-sphere. It follows that
∂B(k + 1

2
) is a 2-sphere and as f varies over the faces of ∂B(k), the maps ϕ can be defined

so that the images ϕ(F ) cover ∂B(k+ 1
2
) and intersect only on their boundaries. The points

in the union of the images of the big face trees are precisely those points of the 1-skeleton of
∂B(k + 1

2
) which lie in at least two 3-cells of B(k + 1

2
). It is now clear that every vertex of

B(k+ 1
2
)\B(k− 1

2
) lies in ∂B(k+ 1

2
). We finally identify the face tree t with ϕ(t) ⊆ ∂B(k+ 1

2
),

and we refer to ϕ(t) as the face tree of f . The convention that corners indicate original
vertices is not in force at vertices of the face tree in Figure 3. To verify the above assertions,
we recommend to begin with Cj. Because the 3-cells dual to the vertices of C are glued
together in accordance with the twisted face-pairing δ, it follows from Theorem 3.1 of [8]
that the vertex uj of C corresponds to the vertex w of Cj . Theorem 4.2 of [8] shows that
just as the face f containing e is labeled with the label of e1 and directed accordingly, the
other face of C which contains e is labeled with the label of ej and directed accordingly. The
two corresponding faces of Cj are the faces of Cj dual to the edges of f which contain uj.
Given the labels and directions of the edges of e, Theorem 4.2 of [8] shows that the edges
in the intersection of these two faces of Cj are labeled and directed in accordance with the
labels and directions of the edges of b∪ rF . Now consider the attachment of Cj−1, Cj−2, . . .
in succession.
With the results of the previous paragraph we can now complete the verification of the

induction hypotheses for B(k + 1
2
). We use the results of the previous paragraph freely.

Verification of induction hypothesis 2. The first sentence of induction hypothesis 2 is now
clear. Let v be a vertex of ∂B(k+ 1

2
). If v is a small link vertex, then it is easy to see that the

dual of link(v,B(k + 1
2
)) is isomorphic to either a vertex or an edge of Q∗ in a way which is

canonical on vertices. Suppose that v is a big link vertex. Then v is a vertex of the face tree
of some face f of ∂B(k). We return to the setting of the next-to-last paragraph. We may
assume that v ∈ {ϕ(v1), . . . , ϕ(vj)}. If v = ϕ(v1), then the face f is isomorphic to a face of
Q∗ in a way which is canonical on vertices and the dual of link(v,B(k+ 1

2
)) is isomorphic to

the face of Q∗ paired with the image of f in a way which is canonical on vertices. In other
words, the root edge of v with its label and direction relative to v determines a face of Q∗,
and the dual of link(v,B(k + 1

2
)) is isomorphic to this face in a way which is canonical on

vertices. In general, if j > 1 and v = ϕ(vi) for some integer i ∈ {2, . . . , j}, then the dual
of link(v,B(k + 1

2
)) is isomorphic to a subcomplex of the face of Q∗ which is determined by

the edge of t which joins vi with vi−1 in a way which is canonical on vertices. Furthermore
Figures 3 and 4 show that the dual of link(v,B(k + 1

2
)) is isomorphic to the elbow of C

which is the union of ei, . . . , ej together with the edge of f which immediately precedes ej .
The edge of f which immediately precedes ej is the bottom of the elbow and uj is its joint.
Because v is an original vertex of Ci, it follows that ui is an original vertex of the dual of
link(v,B(k+ 1

2
)). It easily follows in this case that the dual of link(v,B(k+ 1

2
)) is isomorphic

to an elbow of Q∗ in a way which is canonical on vertices. The edge ei corresponds to the
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bottom of the elbow, and ui corresponds to its joint. This completes the verification of
induction hypothesis 2 for B(k + 1

2
).

Verification of induction hypothesis 3. By induction hypothesis 3 for B(k) there exists a
bijection between the vertices of B(k) \ ∂B(k) and the 3-cells of B(k − 1

2
). This and the

definition of B(k + 1
2
) shows that there exists a bijection between the vertices of B(k) and

the 3-cells of B(k + 1
2
). Similarly there exists a bijection between the edges of B(k) and

the faces of B(k + 1
2
) which are not in ∂B(k + 1

2
). Induction hypothesis 3 for B(k) and the

fact that the faces of ∂B(k) are dual to the root edges of B(k + 1
2
) show that there exists a

bijection between the faces of B(k) and the edges of B(k + 1
2
) which are not in ∂B(k + 1

2
).

By induction hypothesis 3 for B(k) there exists a bijection between the vertices of B(k − 1
2
)

and the 3-cells of B(k). Since every vertex of B(k+ 1
2
) \B(k− 1

2
) lies in ∂B(k+ 1

2
), it follows

that there exists a bijection between the vertices of B(k + 1
2
) \ ∂B(k + 1

2
) and the 3-cells of

B(k). It is easy to see that these bijections determine a duality between the closed cells of
B(k) and the closed cells of B(k + 1

2
) which are not contained in ∂B(k + 1

2
) and that this

duality preserves labels and directions of edges and faces. This completes the verification of
induction hypothesis 3 for B(k + 1

2
).

Verification of induction hypothesis 4. Because there exists a duality between the closed
cells of B(k) and the closed cells of B(k + 1

2
) which are not contained in ∂B(k + 1

2
), it easily

follows that star(B(k − 1
2
)σ,B(k + 1

2
)σ) is isomorphic as a cell complex to B(k)σ. Induction

hypothesis 4 states that B(k) is a topological ball, and so star(B(k − 1
2
)σ,B(k + 1

2
)σ) is a

topological ball. It is clear that B(k + 1
2
)σ is the union of star(B(k − 1

2
)σ,B(k + 1

2
)σ) and

the complexes of the form costar((Lv)σ, (Qv)σ) for v ∈ Vk. Statement 6 of Proposition 3.4

implies that costar((Lv)σ, (Qv)σ) is a topological ball for every v ∈ Vk. If we construct a
finite sequence of complexes by beginning with star(B(k − 1

2
)σ,B(k + 1

2
)σ) and adjoining

the complexes costar((Lv)σ, (Qv)σ) one at a time in any order by identifying appropriate
faces, then statement 7 of Proposition 3.4 implies that at each step we are identifying two
topological balls along a topological disk. It follows that B(k+ 1

2
) is a topological ball. This

completes the verification of induction hypothesis 4 for B(k + 1
2
).

Now that the induction hypotheses have been verified for B(k + 1
2
), it is clear that⋃∞

k=0 B(k + 1
2
) is a connected and simply-connected covering space of M . It follows that

we may identify
⋃∞

k=0 B(k + 1
2
) with M̃ , and so we may identify B(k + 1

2
) with B(k + 1

2
) for

every nonnegative integer k. We may likewise identify B(k) with B(k) for every nonnegative
integer k.
Having identified B(k) with B(k) for every nonnegative half integer k, statements 2, 5 and

6 of Theorem 5.1 are now clear.
We prove statement 1 of Theorem 5.1 in this paragraph. Induction hypothesis 1 easily

implies that the lift from Q to M̃ with image B(1
2
) is injective. Statement 1 of Theorem 5.1

now follows easily using the action of the fundamental group of M on M̃ .
We prove statements 2 and 3 of Theorem 5.1 in this paragraph. Let x be a vertex of Γb,

and suppose that the Γb-distance from x to O∗ is k > 0. Then x is a vertex of ∂B(k). Let
C be the 3-cell of B(k + 1

2
) which is dual to x. The dual in C of link(x,B(k)) determines

a subcomplex L(x) of either Q or Q∗ as in statement 3 of Theorem 5.1. Furthermore L(x)
determines the isomorphism types of the faces of ∂B(k) which contain x, the position of x
on these faces and how these faces fit together. Our discussion of cosubdivisions of faces now
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shows that L(x) determines which vertices of C lie in ∂B(k+ 1
2
) and the duals of their links.

It is now not difficult to see that L(x) determines the cone type of x. This proves statement
3 of Theorem 5.1. Since there are only finitely many such complexes L(x), it follows that Γb

has only finitely many cone types. This proves statement 2 of Theorem 5.1.
We prove statement 7 of Theorem 5.1 in this paragraph. The first assertion is clear. The

second assertion follows easily from the verification of induction hypothesis 2. It remains
to prove that f is unique if L contains more than two vertices. This is clear if L = f . So
suppose that there exists a face f of ∂B(k − 1) and a 3-cell C of B(k − 1) with L ⊆ f ⊆ C
such that L is an elbow of C. It follows that L contains an original vertex v of C and the
two edges of f which contain v. If v is a big link vertex of ∂B(k − 1), then using Figure 3
it is easy to see that f is the unique face of B(k − 1) which contains L. If v is a small link
vertex of ∂B(k− 1), then the uniqueness of f follows easily from the fact that distinct faces
of an ample faceted 3-ball have at most one edge in common. This proves statement 7 of
Theorem 5.1.

6. Gromov hyperbolicity

Here is the main theorem of this paper.

Theorem 6.1. Let P be an ample faceted 3-ball, let ε be an orientation-reversing face-
pairing on P , and let mul be a multiplier function for ε. Let M be the associated twisted
face-pairing manifold. Then G = π1(M) is Gromov hyperbolic, and its space at infinity is
homeomorphic to the 2-sphere.

Proof. We begin the proof of Theorem 6.1 by proving in this paragraph that if G is Gromov
hyperbolic, then its space at infinity is homeomorphic to the 2-sphere. Suppose that G is
Gromov hyperbolic. Statement 2 of Theorem 5.1 easily implies that G is infinite and that

the universal cover M̃ of M is irreducible. As is well known, if M̃ is irreducible, then M is
irreducible. Now Theorem 4.1 of [2] implies that the space at infinity of G is homeomorphic
to the 2-sphere. Thus what we must do to prove Theorem 6.1 is prove that G is Gromov
hyperbolic.
We wish to prove that G is Gromov hyperbolic by applying Theorem 2.2 to G and the

Cayley graph Γs of G with respect to its star generating set. As we saw in Section 4, there
exists a unique G-equivariant isometry from the set of vertices of Γs to the bipartite graph Γb
which maps the base vertex of Γs to the base vertex O∗ of Γb. It easily follows that to verify
our Gromov hyperbolicity criterion for Γs, it suffices to verify our Gromov hyperbolicity
criterion for Γb. In other words, it suffices to prove that there exists a positive integer J with
the following property. If there exists a geodesic edge path in Γb with vertices v0, . . . , vj in
order such that d(v0,O∗) = d(vj ,O∗) and d(vi,O∗) ≥ d(v0,O∗) for every i ∈ {0, . . . , j}, then
j < J , where d is an edge path metric on Γb for which every edge has length 1

2
.

In this paragraph we show that Γb is almost convex in the sense of [3] in the strongest
way possible. For this let k be a positive half integer, and let v0, v1, v2 be distinct vertices
of Γb such that d(v0,O∗) = d(v2,O∗) = k, d(v1,O∗) = k + 1

2
and there exist edges joining

v0 with v1 and v1 with v2. See Figure 5. The vertex v0 is dual to a 3-cell Cv0 of B(k +
1
2
),

and the vertex v2 is dual to a 3-cell Cv2 of B(k +
1
2
). If v1 is a big link vertex, then we let

v′1 be the root vertex of v1. Since v1 ∈ Cv0 and v1 ∈ Cv2 , we have that v
′
1 ∈ Cv0 ∩ Cv2 if v1

is a big link vertex. Suppose that v1 is a small link vertex. Then Cv0 and Cv2 are the only
3-cells of B(k+ 1

2
) which contain v1. It follows that both Cv0 and Cv2 contain a face f which
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Figure 5. Proving that Γb is almost convex.

contains v1. The face f contains two root edges of big link vertices of ∂B(k + 1
2
). We let v′1

be the root vertex of one of these root edges. It follows that v′1 ∈ Cv0 ∩ Cv2 if v1 is a small
link vertex. In either case we have that v′1 is a vertex of Γb with d(v′1,O∗) = k− 1

2
such that

there exist edges joining v0 with v′1 and v′1 with v2. This is the almost convex property
mentioned at the beginning of this paragraph. Although we will not use the following fact,
we note that it easily follows that this same almost convex property holds for Γs.
In this paragraph we define the notion of a pull-in. For this, let k be a positive half integer.

Let γ be a geodesic edge path in Γb with vertices v0, . . . , vj in order for some even positive
integer j such that d(vi,O∗) = k for every even integer i ∈ {0, . . . , j} and d(vi,O∗) = k + 1

2

for every odd integer i ∈ {0, . . . , j}. For every odd integer i ∈ {0, . . . , j} we choose as in the
previous paragraph a vertex v′i of Γb with d(v′i,O∗) = k − 1

2
such that v′i is joined by edges

of Γb to both vi−1 and vi+1. Now we use these vertices to construct an edge path γ′ in Γb

with vertices v′1, v2, v
′
3, v4, . . . , v

′
j−1 in order such that d(v′i,O∗) = k− 1

2
for every odd integer

i ∈ {1, . . . , j − 1} and d(vi,O∗) = k for every even integer i ∈ {1, . . . , j − 1}. We call γ′ a
pull-in of γ, and we say that γ pulls in to γ′. It is clear that γ′ is a geodesic edge path.
Now let γ be a geodesic edge path in Γb with vertices v0, . . . , vj in order such that

d(v0,O∗) = d(vj,O∗) = k for some positive half integer k and d(vi,O∗) ≥ k for every
i ∈ {0, . . . , j}. Since we seek a bound on j, we may repeatedly apply the almost con-
vex property of Γb to assume that d(vi,O∗) = k for every even integer i ∈ {0, . . . , j} and
d(vi,O∗) = k+ 1

2
for every odd integer i ∈ {0, . . . , j}. Our strategy to prove that there exists

a bound on j is to construct a pull-in of γ and then a pull-in of that and continue to pull
in until it becomes clear that because γ is geodesic, there is a bound on the number of such
pull-ins. Clearly, a bound on the number of such pull-ins gives a bound on j. To prepare to
carry out this strategy, we next define and discuss tame and wild edges and after that we
discuss big link vertices.
Let Q denote the twisted face-pairing subdivision of P as usual. We say that an edge of Q

or Q∗ is wild if it is an original edge. In other words, an edge of P , respectively P ∗, which
does not properly subdivide in Q, respectively Q∗, becomes a wild edge of Q, respectively

Q∗. An edge of Q or Q∗ which is not wild is tame. Now let C be a 3-cell of either M̃ or M̃∗.
Statement 1 of Theorem 5.1 implies that C is canonically isomorphic to either Q or Q∗ in
an orientation-preserving way. We call an edge e of C wild or tame relative to C according
to whether its image in Q or Q∗ is wild or tame. Note that the property of e being wild or
tame really is a property relative to C; e might be tame relative to C and wild relative to
another 3-cell which contains it. Note that if an edge e of C is wild relative to C, then the
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two faces of C which contain e are paired by the face-pairing of C induced by the canonical
isomorphism between C and either Q or Q∗. Lemma 6.2 follows from this because distinct
faces of C meet in at most one original edge.

Lemma 6.2. If C is a 3-cell of either M̃ or M̃∗ and f is a face of C, then f contains at
most one edge which is wild relative to C.

We next prove Lemma 6.3, the “dual” of Lemma 6.2.

Lemma 6.3. If e is an edge of either M̃ or M̃∗, then there exists at most one 3-cell C
containing e such that e is wild relative to C.

Proof. Without loss of generality we assume that e is an edge of M̃ . Using statement 1 of

Theorem 5.1, we see that the 3-cells of M̃ which contain e bijectively correspond to the edges

in an edge cycle of the twisted face-pairing on Q. Suppose that C is a 3-cell of M̃ containing
e such that e is wild relative to C. By means of the canonical isomorphism between C and
Q, the edge e corresponds to an edge e′ of Q. The edge e′ is an edge of the abovementioned
edge cycle. Because e is wild relative to C, Theorem 4.2 of [8] shows that the two faces of
Q which contain e′ have the same label as e′, which has the same label as e. Since distinct
faces of Q meet in at most an original edge, it follows that e determines e′. This implies that

if e is wild relative to some 3-cell C of M̃ , then C is unique. This proves Lemma 6.3.

This completes our discussion of tame and wild edges. We next discuss big link vertices.

Again let C be a 3-cell of either M̃ or M̃∗. Suppose that C is dual to a vertex of ∂B(k)
for some positive half integer k. Let L = C ∩∂B(k− 1

2
). Statement 7 of Theorem 5.1 implies

that L is either a vertex or an edge or a face or an elbow of C. The discussion of root vertices
in Section 5 near Lemma 5.5 easily proves Lemma 6.4.

Lemma 6.4. Let C be a 3-cell of B(k + 1
2
) which is dual to a vertex of ∂B(k) for some

positive half integer k, and let L = C ∩ ∂B(k − 1
2
). Then the vertices of L which are root

vertices of big link vertices of C∩∂B(k+ 1
2
) are precisely the original vertices of C contained

in L together with the vertices of L which are contained in at most one edge of L. These are
the vertices of L which are contained in an edge of C not in L.

We maintain the setting of Lemma 6.4. Let w be a vertex of L which is the root vertex of
some big link vertex of C ∩ ∂B(k + 1

2
). We next diagrammatically describe all the big link

vertices of C∩∂B(k+ 1
2
) which have w as root vertex. Every big link vertex of C∩∂B(k+ 1

2
)

which has w as root vertex is gotten as follows. Let r be an edge of C not in L which contains
w. Let g and h be the faces of C which contain r as in Figure 6. The following assertions
hold concerning Figure 6: 1) the vertices a and b are the vertices of an edge of g, 2) the vertex
a may or may not be an original vertex of C, 3) the vertices b and c are the original vertices
of an original edge of h and 4) w and b are contained in g ∩ h, which is an original edge of
C. The circular arcs drawn in some of the corners in Figure 6 indicate corners of faces of C,
whereas corners in Figure 6 without circular arcs might be unions of several corners of faces
of C. In particular, the vertices a,b,c need not be contained in some face of C. The vertices
in Figure 6 drawn as circles are all the big link vertices of C∩∂B(k+ 1

2
) which have r as root

edge. There are four types of diagrams, the four types being determined by whether or not
the vertices of r are original vertices of C. In part a) of Figure 6 w is an original vertex of C
and the other vertex of r is not an original vertex of C; in part b) of Figure 6 w is an original
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Figure 6. The big link vertices of C ∩ ∂B(k + 1
2
) having root edge r.

vertex of C and the other vertex of r is also an original vertex of C (r is wild relative to C);
in part c) of Figure 6 w is not an original vertex of C and the other vertex of r is also not
an original vertex of C; in part d) of Figure 6 w is not an original vertex of C and the other
vertex of r is an original vertex of C. We emphasize that this set of diagrams is complete
in the sense that their “reflections” do not occur. For example, when r is wild relative to C
the big link vertices of C ∩ ∂B(k + 1

2
) having r as root edge all lie in the direction of c from

b, not in the direction of a. The fact that this set of diagrams is complete follows easily from
Figure 3 and the discussion of it in Section 5. This completes our identification of the big
link vertices of ∂B(k + 1

2
) which have a given vertex of ∂B(k − 1

2
) as root vertex.

We conclude our discussion of big link vertices with Lemma 6.5.

Lemma 6.5. Let v be a big link vertex of ∂B(k+ 1
2
) for some positive half integer k. Let C

be a 3-cell of B(k + 1
2
) which contains v, and let L = C ∩ ∂B(k − 1

2
). Let r be the root edge

of v, and let g and h be the faces of star(L, ∂C) which contain r as in Figure 6. Let f be a
face of star(L, ∂C) which contains v. Then either f = g or f = h.

Proof. It is clear that f = g or f = h if v lies in the interior of g ∩ h. Statement 1
of Proposition 3.2 implies that g and h are the only faces of star(L, ∂C) which contain b.
Statement 1 of Proposition 3.2 also shows that h is the only face of star(L, ∂C) which contains
the vertices in the interior of the original edge with endpoints b and c. Finally, suppose that
a is a big link vertex and that f is a face of star(L, ∂C) other than g which contains a.
We are in the situation of either part c) or part d) of Figure 6. Hence the segment of ∂g
which joins a and w in Figure 6 is contained in a twisted original edge t of C. Statement 1
of Proposition 3.2 implies that f ∩ g is an original edge e of C which joins a and L. Now
Proposition 3.3 applied to e, L and t gives a contradiction. This proves Lemma 6.5.

We return to the situation in which γ is a geodesic edge path in Γb for which there exists a
positive half integer k such that the first and last vertices of γ have distance k from O∗ and
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Figure 7. Part of γ.

every vertex of γ has distance either k or k+ 1
2
from O∗. We fix γ for the rest of the proof of

Theorem 6.1. To prove Theorem 6.1, we let γ1 be a pull-in of γ, we let γ2 be a pull-in of γ1,
we let γ3 be a pull-in of γ2 and so on as far as possible. Lemmas 6.6 through 6.19 show that
these successive pull-ins of γ satisfy stronger and stronger properties, and finally it becomes
clear that there exists a bound on the length of γ which depends only on the given ample
faceted 3-ball P . This suffices to prove Theorem 6.1. In what follows we make assertions
about the pull-ins γ1, . . . , γ7. Because we seek a bound on the length of γ, we may and do
assume that γ1, . . . , γ7 exist.
We refer to the vertices v of γ with d(v,O∗) = k+ 1

2
as outer vertices of γ, and we refer to

the vertices v of γ with d(v,O∗) = k as inner vertices of γ. If u,v,w are consecutive vertices
of γ such that u and w are outer vertices of γ, then we say that u and w are adjacent outer
vertices of γ. Clearly, the notions of outer vertex, inner vertex and adjacent outer vertices
are meaningful for successive pull-ins of γ.
Having finished the preliminaries, the proof of Theorem 6.1 now begins in earnest with

the statement and proof of Lemma 6.6. Much of the proof of Theorem 6.1 involves analyzing
the link types of the outer vertices of γ and its successive pull-ins. Lemma 6.6 handles the
simplest link type.

Lemma 6.6. If v is an outer vertex of γ, then the dual of the B(k + 1
2
)-link of v is not a

vertex.

Proof. Let v be an outer vertex of γ. Let x and y be the inner vertices of γ adjacent to
v. Then both x and y are dual to 3-cells of B(k + 1

2
) which contain v. Thus the dual of

link(v, B(k + 1
2
)) contains at least two vertices. This proves Lemma 6.6.

Several following proofs by contradiction proceed by showing, given adjacent outer vertices
u and v of γ, that every 3-cell of B(k + 1

2
) which contains u meets every 3-cell of B(k + 1

2
)

which contains v. Lemma 6.7 shows that this is impossible.

Lemma 6.7. Let u and v be adjacent outer vertices of γ. Then there exist disjoint 3-cells
C and D of B(k + 1

2
) such that u ∈ C and v ∈ D.

Proof. Let x be the inner vertex of γ which is adjacent to u but not to v, and let y be the
inner vertex of γ which is adjacent to v but not to u as in Figure 7. Let C be the 3-cell of
B(k + 1

2
) dual to x, and let D be the 3-cell of B(k + 1

2
) dual to y. Then u ∈ C and v ∈ D,

but C ∩D = ∅ because d(x, y) > 1. This proves Lemma 6.7.

We next consider Lemma 6.8, which refines statement 7 of Theorem 5.1.

Lemma 6.8. Let u and v be adjacent outer vertices of γ2. See Figure 8. Let C be the
3-cell of B(k − 1

2
) which is dual to the inner vertex of γ2 adjacent to both u and v. Let

D be the 3-cell of B(k + 1
2
) dual to the outer vertex of γ1 adjacent to both u and v. Let
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K = D ∩ B(k − 1
2
). Then there exists a face f of C ∩ ∂B(k − 1

2
) which contains K and

hence both u and v. Moreover K is either an edge or a face or an elbow of C such that the
following holds. Each of the vertices u and v is a vertex of K which either 1) is contained in
at most one edge of K, 2) immediately precedes (relative to f and C) a vertex of K which
is contained in at most one edge of K or 3) immediately precedes (relative to f and C) an
original vertex of C in K. Furthermore, f is the only face of B(k − 1

2
) which contains K

unless K is an edge.

Proof. Let z be the inner vertex of γ2 adjacent to u and v, and let w be the outer vertex of
γ1 adjacent to both u and v. First suppose that w is a small link vertex. The complex K is
the dual in B(k − 1

2
) of link(w,B(k)). Hence K contains at most two vertices. Since u and

v are contained in K, it follows from statement 5 of Theorem 5.1 that K is an edge with
vertices u and v. Let Cu be the 3-cell of B(k) dual to u, and let Cv be the 3-cell of B(k)
dual to v. Then Cu ∩ Cv is the face g of B(k) dual to K. The vertex z is defined to be the
root vertex of one of the two root edges in g. These two root edges are dual to the two faces
of ∂B(k − 1

2
) which contain K, and C is the 3-cell which contains one of these faces f . This

proves Lemma 6.8 if w is a small link vertex.
Now suppose that w is a big link vertex. In this case z is defined to be the root vertex of

w. It follows that w is a vertex of the face tree of a face f of C ∩ ∂B(k − 1
2
). See Figure 3.

It follows that K ⊆ f . Since w is a big link vertex, K contains at least three vertices, and
so statement 7 of Theorem 5.1 implies that K is either a face or an elbow of C and that K
is either a face or an elbow of D. By the definition of pull-in, u and v are root vertices of
big link vertices of D∩∂B(k+ 1

2
). Hence Lemma 6.4 implies that u and v are either original

vertices of D or vertices of K which are contained in at most one edge of K. It easily follows
that each of u and v either 1) is contained in at most one edge of K, 2) immediately precedes
(relative to f and C) a vertex of K which is contained in at most one edge of K (if K is an
elbow of C) or 3) immediately precedes (relative to f and C) an original vertex of C in K
(if K = f). The uniqueness of f follows from statement 7 of Theorem 5.1.
This proves Lemma 6.8.

If v is an outer vertex of γ2 and u is an inner vertex of γ2 adjacent to v, then v is contained
in the 3-cell dual to u. Lemma 6.9 gives a more precise statement.

Lemma 6.9. Let v be an outer vertex of γ2. Let C be the 3-cell of B(k− 1
2
) dual to an inner

vertex of γ2 adjacent to v, and let L = C ∩B(k − 3
2
). Then v ∈ ∂star(L, ∂C).

Proof. By definition v ∈ C. Lemma 6.6 applied to γ2 instead of γ easily implies that C is
not the only 3-cell of B(k − 1

2
) which contains v. With this Lemma 5.3 easily implies that
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v ∈ star(L, ∂C). Lemma 6.8 implies that there exists a face of C ∩∂B(k− 1
2
) which contains

v. It follows that v ∈ ∂star(L, ∂C). This proves Lemma 6.9.

Lemma 6.9 deals with one outer vertex of γ2. Lemma 6.10 sharpens the conclusion of
Lemma 6.9 for two adjacent outer vertices of γ2.

Lemma 6.10. Let u and v be adjacent outer vertices of γ2. Let C be the 3-cell of B(k − 1
2
)

which is dual to the inner vertex of γ2 adjacent to both u and v, and let L = C ∩ B(k − 3
2
).

Let f be as in Lemma 6.8. The following statements hold.

1. If u and v are contained in a face g of star(L, ∂C), then f ∩ g is an original edge of
∂star(L, ∂C) which contains both u and v and which meets a face of star(L, ∂C) other
than g.

2. If there exist distinct faces g and h of star(L, ∂C) which have a vertex in common such
that u ∈ g \ h and v ∈ h \ g, then f ∩ g and f ∩ h are original edges of ∂star(L, ∂C)
such that u ∈ f ∩ g, v ∈ f ∩ h and f ∩ g meets f ∩ h.

Proof. We prove statement 1 of Lemma 6.10 in this paragraph. Suppose that u and v are
contained in a face g of star(L, ∂C). Since f and g contain both u and v, ampleness condition
1 easily implies that f ∩ g is an original edge of C. We prove that the original edge f ∩ g of
∂star(L, ∂C) meets a face of star(L, ∂C) other than g by contradiction. Suppose that f ∩ g
does not meet a face of star(L, ∂C) other than g. We consider Lemma 6.5 and Figure 6.
It follows that f ∩ g contains no big link vertices of the types which appear in parts a) or
b) of Figure 6. In fact f ∩ g contains at most one big link vertex, that vertex being of the
type labeled a in parts c) and d) of Figure 6. But if at most one of u and v is a big link
vertex and the vertices u and v are contained in a face g of star(L, ∂C), then every 3-cell of
B(k− 1

2
) which contains u meets every 3-cell of B(k− 1

2
) which contains v. This contradicts

Lemma 6.7, proving statement 1 of Lemma 6.10.
To prove statement 2 of Lemma 6.10, suppose that g and h are distinct faces of star(L, ∂C)

which have a vertex in common such that u ∈ g \ h and v ∈ h \ g. The second ampleness
condition implies that f , g and h have exactly one vertex in common. Since this common
vertex is neither u nor v, it follows that f ∩ g and f ∩ h both contain at least two vertices.
This easily implies that f ∩ g and f ∩ h are adjacent original edges of ∂star(L, ∂C). This
proves statement 2 of Lemma 6.10.
The proof of Lemma 6.10 is complete.

Lemma 6.11 improves Lemma 6.10 under further hypotheses.

Lemma 6.11. Let u and v be adjacent outer vertices of γ2. Let C be the 3-cell of B(k − 1
2
)

which is dual to the inner vertex of γ2 adjacent to both u and v, and let L = C ∩ B(k − 3
2
).

Let g and h be distinct faces of star(L, ∂C) as in Figure 9 such that g∩h contains an original
vertex x of C not in L, g ∩ h contains an original vertex y of L and x immediately precedes
g ∩ h (relative to g and C). Let eg be the original edge of g ∩ ∂star(L, ∂C) which contains x,
and let eh be the original edge of h ∩ ∂star(L, ∂C) which contains x. Suppose that L is not
a face. Then the following statements hold.

1. The vertices u and v are not both original vertices of eg ∪ eh.
2. If g ∩ h does not contain an edge of L and neither g nor h contains an edge of L which

is wild relative to C, then u and v are not both contained in eg ∪ eh.
3. If g ∩ h contains an edge of L and h ∩ L ⊆ g ∩ h, then u and v are not both contained

in eg ∪ eh.
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Figure 9. The faces g and h.

Proof. Let a be the original vertex of eg other than x, and let b be the original vertex of
eh other than x. Let c be the original vertex of g \ h such that c and y are the endpoints
of an original edge of g, and let d be the original vertex of h \ g such that d and y are the
endpoints of an original edge of h. Let K and f be as in Lemma 6.8.
We prove statement 1 of Lemma 6.11 by contradiction: suppose that u and v are both

original vertices of eg ∪ eh. We have that either {u, v} = {a, b} or {u, v} = {a, x} or
{u, v} = {b, x}.
Suppose that {u, v} = {b, x}. It follows that f∩h = eh and that eh ⊆ K. Using Lemma 6.8

we see that since K contains the original edge eh, either eh is wild relative to C or K = f .
Lemma 6.8 furthermore shows that if K = f , then b immediately precedes (relative to f and
C) an original vertex of C in K, and so eh is wild relative to C. So we always have that eh
is wild relative to C. Now Lemma 6.2 implies that no other edge of h is wild relative to C.
Because L is not a face and the original edge with endpoints d and y is not a wild edge of
h, it follows that d /∈ L. Using Lemma 6.5 and Figure 6 together with the fact that b and
d are not the endpoints of a wild edge of h, we see that b is a small link vertex. It is clear
that x is a big link vertex with root vertex in g ∩h. Hence the two 3-cells of B(k− 1

2
) which

contain b both contain the root vertex of x. Since every 3-cell of B(k − 1
2
) which contains a

big link vertex of ∂B(k − 1
2
) contains the root vertex of that big link vertex, it follows that

every 3-cell of B(k − 1
2
) which contains u meets every 3-cell of B(k − 1

2
) which contains v,

in contradiction to Lemma 6.7. This proves that {u, v} 6= {b, x}.
A similar argument proves that {u, v} 6= {a, x}. Finally suppose that {u, v} = {a, b}.

Then a ∈ K ⊆ f and b ∈ K ⊆ f . Ampleness condition 2 applied to f , g and h easily shows
that x ∈ f . Hence eg ⊆ f and eh ⊆ f . It easily follows that K = f . Now Lemma 6.8
implies that a immediately precedes (relative to f and C) an original vertex of C. Since a is
an original vertex of C, it follows that a immediately precedes (relative to f and C) a wild
edge of C. Likewise b immediately precedes (relative to f and C) a wild edge of C. This
contradicts Lemma 6.2.
This proves statement 1 of Lemma 6.11.
We next prove statement 2 of Lemma 6.11 by contradiction: suppose that g ∩ h does not

contain an edge of L, that neither g nor h contains an edge of L which is wild relative to C
and that u and v are both contained in eg ∪ eh.
Because L is not a face and g does not contain an edge of L which is wild relative to C,

it easily follows that c /∈ L. Now Lemma 6.5 and Figure 6 easily imply that every big link
vertex of eg (x is the only one) has root vertex y. If every big link vertex of eh also has root
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vertex y, then every 3-cell of B(k− 1
2
) which contains u meets every 3-cell of B(k− 1

2
) which

contains v, in contradiction to Lemma 6.7. Hence b is a big link vertex. Just as c /∈ L, we
also have d /∈ L. Lemma 6.5 and Figure 6 imply that b is the only big link vertex of eg ∪ eh
whose root vertex is not y and that b and d are the endpoints of an edge which is wild relative
to C. Hence b ∈ {u, v}, and without loss of generality we assume that b = v. Lemma 6.2
implies that g ∩ h is not an edge which is wild relative to C. Hence x is the only big link
vertex of eh with root vertex y. It follows that u ∈ eg for otherwise u is a small link vertex,
and every 3-cell of B(k− 1

2
) which contains u contains the root vertex of v and hence meets

every 3-cell of B(k − 1
2
) which contains v. Since u ∈ eg, v = b, u ∈ K ⊆ f and v ∈ K ⊆ f ,

ampleness condition 2 applied to f , g and h easily implies that x ∈ f . This easily implies
that eh ⊆ f and then that eh ⊆ K. Since eh is not an edge which is wild relative to C, it
follows that K = f . Finally, Lemma 6.8 implies that b immediately precedes (relative to f
and C) an original vertex of C. This means that eh is an edge which is wild relative to C, a
contradiction as before.
This proves statement 2 of Lemma 6.11.
We finally prove statement 3 of Lemma 6.11 by contradiction: suppose that g∩h contains

an edge of L, that h ∩ L ⊆ g ∩ h and that u and v are both contained in eg ∪ eh.
Figure 6 easily shows that x is a big link vertex. Because h ∩ L ⊆ g ∩ h, Lemma 6.5 and

Figure 6 easily imply that every big link vertex of eh has the same root vertex as x. Because
L contains an edge in g ∩ h and L 6= g, it is easy to see that c /∈ L. Now Lemma 6.5 and
Figure 6 easily imply that every big link vertex of eg has the same root vertex as x. So
every big link vertex of eg ∪ eh has the same root vertex as x, and so every 3-cell of B(k− 1

2
)

which contains u meets every 3-cell of B(k − 1
2
) which contains v, which is a contradiction

as before.
This proves statement 3 of Lemma 6.11.

Lemma 6.6 might be viewed as saying that the link types of the outer vertices of γ are not
as small as possible. Lemma 6.12 states that the link types of almost all the outer vertices
of γ3 are not as big as possible.

Lemma 6.12. If v is an outer vertex of γ3 whose B(k − 1)-link is dual to a face, then the
distance from v to one of the endpoints of γ3 is less than 2.

Proof. We begin the proof of Lemma 6.12 by assuming that v is an outer vertex of γ2, not γ3,
whose B(k− 1

2
)-link is dual to a face. We suppose that the distance from v to the endpoints

of γ2 is at least 2. Let u and w be the inner vertices of γ2 adjacent to v as in Figure 10. Let
Cu be the 3-cell of B(k− 1

2
) dual to u, and let Cw be the 3-cell of B(k− 1

2
) dual to w. Then

v ∈ Cu and v ∈ Cw. Because v is a big link vertex, it has a root edge r. It follows that both
Cu and Cw contain r. Lemma 6.3 implies that r is not wild relative to both Cu and Cw.
So we assume without loss of generality that r is tame relative to Cu. Let L be the dual of
link(u,B(k − 1)) in Cu. Let u

′ be the outer vertex of γ2 such that u′ 6= v and u′ is adjacent
to u, and let Cu′ be the 3-cell of B(k) dual to u

′. Let v′ be the outer vertex of γ1 which is
adjacent to both u′ and v. See Figure 10. In the following paragraphs we prove that 1) the
dual L of link(u,B(k − 1)) in Cu contains an edge which is wild relative to Cu, 2) the dual
of link(v′, B(k)) in ∂B(k − 1

2
) is a face and 3) the dual of link(u′, B(k − 1

2
)) in Cu′ does not

contain an edge which is wild relative to Cu′ .
In this paragraph we introduce some more notation. We have that v ∈ ∂star(L, ∂Cu)

by Lemma 6.9. Using Figure 3 it is easy to see that v ∈ r. Since r is not contained in
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Figure 11. Part of the 3-cell Cu.

∂star(L, ∂Cu), it follows that v is an original vertex of Cu. Let g and h be the faces of Cu

which contain r as in Figure 11 so that v immediately precedes r (relative to g and Cu).
Because r is tame relative to Cu, statement 7 of Theorem 5.1 easily implies that either L ⊆ g
or L ⊆ h. Because v /∈ L, it follows that L is not a face. It is furthermore true that h meets
every face of star(L, ∂Cu).
In this paragraph we prove that u′ /∈ g ∪ h by contradiction: suppose that u′ ∈ g ∪ h.

Statement 1 of Lemma 6.10 implies that u′ is in either the original edge eg of g∩∂star(L, ∂Cu)
which contains v or the original edge eh of h ∩ ∂star(L,Cu) which contains v. Statement 1
of Lemma 6.11 implies that u′ is not an original vertex of eg ∪ eh. With this it is easy to see
using Lemma 6.5 and Figure 6 that either u′ is a small link vertex or u′ is a big link vertex
whose root vertex equals the root vertex of v. It follows that every 3-cell of B(k − 1

2
) which

contains u′ meets every 3-cell of B(k − 1
2
) which contains v, in contradiction to Lemma 6.7.

Thus u′ /∈ g ∪ h.
In this paragraph we prove all three statements at the end of the first paragraph of the

proof of Lemma 6.12. Lemma 6.8 applied to u′ and v implies that there exists a face f of
Cu ∩ ∂B(k − 1

2
) which contains u′ and v. According to the previous paragraph, u′ /∈ g ∪ h.

Lemma 6.9 implies that u′ ∈ star(L,Cu). Hence there exists a face g′ of star(L,Cu) which
contains u′. Since g′ 6= g and g′ 6= h, Lemma 6.5 implies that v /∈ g′. Since every face of
star(L,Cu) meets h, we have that g′ meets h, h meets f and f meets g′. Ampleness condition
2 implies that f ∩ g′ ∩ h is a vertex. Since v /∈ g′, it follows that f and h have at least two
vertices in common, and so they have exactly an original edge in common. This original edge
must be eh. It follows that if x is the original vertex of eh other than v, then f ∩g′∩h = {x}.
Since x /∈ L, statement 2 of Proposition 3.4 implies that h∩ g′ is an original edge of Cu with
one endpoint in L. Since h is not a triangle, it follows that h contains two original vertices
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of Cu which lie in L. Since L is not a face, it follows that L ⊆ h and that L contains an edge
which is wild relative to Cu. This proves statement 1 of the first paragraph of the proof of
Lemma 6.12. Let eg′ be the original edge of g

′ other than h ∩ g′ which contains x. Since x
and u′ are distinct vertices of f ∩ g′, it follows that f ∩ g′ = eg′ . Let K be as in Lemma 6.8.
It easily follows that eh and at least the last edge (relative to f and Cu) of eg′ are contained
in K. It easily follows that K = f . This proves statement 2 of the first paragraph of the
proof of Lemma 6.12. Since L ⊆ h and L contains an edge which is wild relative to Cu,
Lemma 6.2 implies that h ∩ g′ is not an edge which is wild relative to Cu. It is clear that
g′ ∩ L is a vertex. Hence Lemma 6.5 and Figure 6 easily show that u′ is a small link vertex.
Hence the dual of link(u′, B(k − 1

2
)) in Cu′ is an edge. Statement 1 of Lemma 6.11 implies

that u′ is not an original vertex of Cu. This and the fact that u′ ∈ f ∩ g′ imply that f and
g′ are the only faces of Cu which contain u′. Hence the vertex u has valence 2 in Cu′; one
edge containing u in Cu′ is dual to f and one edge containing u in Cu′ is dual to g′. This
means that u is not an original vertex of Cu′, and so the dual of link(u′, B(k − 1

2
)) in Cu′ is

an edge which is not wild relative to Cu′. This proves statement 3 of the first paragraph of
the proof of Lemma 6.12. Thus all three statements at the end of the first paragraph of the
proof of Lemma 6.12 are true.
In this paragraph we conclude the proof of Lemma 6.12. The proof is by contradiction.

We assume that v is an outer vertex of γ3 whose B(k− 1)-link is dual to a face and that the
distance from v to the endpoints of γ3 is at least 2. Since γ3 is the second pull-in of γ1, we
may proceed as in the first paragraph of the proof of Lemma 6.12. The three statements at
the end of the first paragraph of the proof of Lemma 6.12 give the following in the present
situation 1) the dual of link(u,B(k− 3

2
)) in Cu contains an edge which is wild relative to Cu,

2) the dual of link(v′, B(k− 1
2
)) in ∂B(k−1) is a face and 3) the dual of link(u′, B(k−1)) in

Cu′ does not contain an edge which is wild relative to Cu′. Let Cv be the 3-cell of B(k − 1
2
)

dual to v. Then v′ ∈ Cv. Since link(v
′, B(k − 1

2
)) is a face, it follows that v′ is contained in

its root edge. This, Lemma 6.9 applied to v′ and γ2 and the fact that link(v, B(k − 1)) is a
face easily imply that the root edge of v′ is wild relative to Cv. Hence Lemma 6.3 implies
that the root edge of v′ is tame relative to Cu′. Since the distance from v to the endpoints
of γ3 is at least 2, the distance from v′ to the endpoints of γ2 is at least 2. Thus the three
statements at the end of the first paragraph of the proof of Lemma 6.12 apply to u′ and
v′ as well as u and v. In particular, statement 1 applied to u′ and v′ asserts that the dual
of link(u′, B(k − 1)) in Cu′ contains an edge which is wild relative to Cu′. This contradicts
statement 3 applied to u and v.
This proves Lemma 6.12.

Now that we have Lemma 6.12, we can extend Lemma 6.11. Lemma 6.13 might be viewed
as statement 4 of Lemma 6.11.

Lemma 6.13. Let u and v be adjacent outer vertices of γ2. Let C be the 3-cell of B(k − 1
2
)

which is dual to the inner vertex of γ2 adjacent to both u and v, and let L = C ∩ B(k − 3
2
).

Let g and h be distinct faces of star(L, ∂C) as in Figure 9 such that g∩h contains an original
vertex x of C not in L, g ∩ h contains an original vertex y of L and x immediately precedes
g ∩ h (relative to g and C). Let eg be the original edge of g ∩ ∂star(L, ∂C) which contains
x, and let eh be the original edge of h ∩ ∂star(L, ∂C) which contains x. Suppose that g ∩ h
contains an edge of L and that u and v are both contained in eg ∪eh. Then the distance from
either u or v to one of the endpoints of γ2 is less than 2.



30 J. W. CANNON, W. J. FLOYD, AND W. R. PARRY

Proof. Let a be the original vertex of eg other than x, and let b be the original vertex of
eh other than x. Let c be the original vertex of g \ h such that c and y are the endpoints
of an original edge of g, and let d be the original vertex of h \ g such that d and y are the
endpoints of an original edge of h.
Because g ∩ h contains an edge of L and a vertex not in L, it follows that L is not a face.

Statement 3 of Lemma 6.11 easily implies that h contains an edge of L not in g and in fact
that L ⊆ h. As before we see that if u and v are either small link vertices or big link vertices
with root vertices in g ∩ h, then every 3-cell of B(k− 1

2
) which contains u meets every 3-cell

of B(k − 1
2
) which contains v, contrary to Lemma 6.7. Since c /∈ L, it is easy to see using

Lemma 6.5 and Figure 6 that the root vertex of every big link vertex of eg is contained in
g ∩ h. The previous two sentences imply that either u or v is a big link vertex of eh with
root vertex not in g ∩ h. From this, Lemma 6.5 and Figure 6 we see that b is the only big
link vertex of eh with root vertex not in eh, b ∈ {u, v} and that h contains an edge unequal
to eh which is wild relative to C. The last assertion and Lemma 6.2 imply that eh contains
more than one edge. Let K and f be as in Lemma 6.8. It is easy to see that eh ⊆ f and
that K contains an edge of eh. From Lemma 6.8 we conclude that b either 1) is contained in
at most one edge of K, 2) immediately precedes (relative to f and C) a vertex of K which
is contained in at most one edge of K or 3) immediately precedes (relative to f and C) an
original vertex of C in K. The third case implies that b immediately precedes (relative to
f and C) an edge which is wild relative to C. But this is impossible because eh contains
more than one edge. Hence the third case is impossible. Suppose that the first case holds,
namely, that b is contained in at most one edge of K. Then K 6= f . Since we have that b is
an original vertex of C in K which is contained in at most one edge of K, that K contains
an edge of eh and that eh contains more than one edge, it is easy to see that K is not an
elbow of C. Now Lemma 6.8 implies that K is an edge. Hence u and v are the endpoints
of the edge of eh which contains b. In the second case it is easy to see that u and v are
again the endpoints of the edge of eh which contains b. Thus we have reduced the proof of
Lemma 6.13 to the case in which u and v are the endpoints of the edge of eh which contains
b.
Suppose that u and v are the endpoints of the edge of eh which contains b. Without loss

of generality we assume that v = b. As we have seen before, because u and v both lie in
eh, they are both big link vertices. Since v is the only big link vertex of eh with root vertex
not in g ∩ h, it follows that u is a big link vertex with root vertex in g ∩ h. Using Figure 6
it is easy to see that L contains every vertex of g ∩ h except x. Now let C ′ be the 3-cell of
B(k− 1

2
) other than C which contains h. It follows that L ⊆ C ′, and it is easy to see that L

is an original edge of C ′. So C ′ ∩B(k − 3
2
) contains an original edge of C ′ which consists of

more than one edge. Hence statement 7 of Theorem 5.1 implies that C ′ ∩B(k− 3
2
) is a face

of C ′. It is easy to see that relative to C ′, the vertex of L adjacent to x corresponds to w, u
corresponds to b and v corresponds to a in part a) of Figure 6. It follows that u and v are
contained in a face of C ′ ∩∂B(k− 1

2
). This leads us to replace γ2 and γ3 by slightly different

edge paths γ′2 and γ′3. Let z be the inner vertex of γ2 adjacent to both u and v. Recall how
z was chosen. We chose a face of ∂B(k− 1

2
) which contains u and v, then we chose the 3-cell

C of B(k − 1
2
) containing this face and then we chose the vertex z of ∂B(k − 1

2
) dual to C.

We define a new edge path γ′2 which has the same vertices as γ2 except that we replace z
by the vertex z′ dual to C ′. We also define a new edge path γ′3 which is a pull-in of γ′2 and
whose vertices, except for z′ and its two inner vertices adjacent to z′, equal the vertices of
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γ3. Then γ′2 is a pull-in of γ1. Since the B(k − 1)-link of z′ is a face, Lemma 6.12 implies
that the distance from z′ to one of the endpoints of γ′3 is less than 2. It easily follows that
the distance from either u or v to one of the endpoints of γ2 is less than 2.
This proves Lemma 6.13.

Just as Lemma 6.6 handles vertices with smallest possible link types and Lemma 6.12
handles vertices with biggest possible link types, Lemma 6.14 handles outer vertices of γ3
whose link duals have no wild edges.

Lemma 6.14. Let z be an outer vertex of γ3 as in Figure 8. Let C be the 3-cell of B(k− 1
2
)

dual to z, and let L = C ∩B(k − 3
2
). Suppose that the edges of L are all tame relative to C.

Then the distance from z to one of the endpoints of γ3 is less than 2.

Proof. Since z is an outer vertex of γ3, it is also an inner vertex of γ2. Let u and v be the
outer vertices of γ2 adjacent to z. Lemma 6.9 implies that u, v ∈ star(L, ∂C). Statement 7
of Theorem 5.1 and Lemma 6.12 imply that we may assume that L is contained in a twisted
original edge of C. So we assume that L is contained in a twisted original edge of C. From
this and the fact that every edge of L is tame relative to C, it follows that every two faces
of star(L, ∂C) have a nonempty intersection. Now Lemma 6.10 easily implies that u and
v are contained in the union of two adjacent original edges of ∂star(L, ∂C) which are not
contained in one face of star(L, ∂C).
We next consider Figure 12. In Figure 12 the complex L is drawn with dashes and corners

of polygons are original vertices of C. In part a) of Figure 12 is a diagram of the complex
star(L, ∂C) if L consists of just one edge which does not contain an original vertex of C. In
part b) of Figure 12 is a diagram of the complex star(L, ∂C) if L consists of just one edge
which contains an original vertex of C. In part c) of Figure 12 is a diagram of the complex
star(L, ∂C) if L is an elbow of C. Statement 7 of Theorem 5.1 and Lemma 6.12 show that
these are all the cases which we must consider.
Considering part a) of Figure 12, we see that the fact that u and v are contained in the

union of two original edges of ∂star(L, ∂C) which are not contained in one face of star(L, ∂C)
and statement 3 of Lemma 6.11 imply that L contains an original vertex of C. Similarly,
considering part b) of Figure 12 and statements 2 and 3 of Lemma 6.11, we see that L
contains at least two edges. Finally, considering part c) of Figure 12 and using statement
2 of Lemma 6.11 and Lemma 6.13, we see that the distance from either u or v to one of
the endpoints of γ2 is less than 2. It easily follows that the distance from z to one of the
endpoints of γ3 is less than 2.
This proves Lemma 6.14.

Suppose that Q has no wild edges. Then Lemma 6.14 implies that the length of γ3 is at
most 3. It follows that the length of γ is at most 5. This proves Theorem 6.1 if Q has no
wild edges. Thus the rest of the proof of Theorem 6.1 is devoted to handling wild edges. As
the argument progresses, our bound on the length of γ gradually increases, and at the very
end the bound on the length of γ is not an absolute constant, but rather it depends on P
and ε. Both this and the amount of work remaining indicate the wildness of wild edges. We
continue by improving Lemma 6.14 under further assumptions in Lemma 6.15.

Lemma 6.15. Let z be an outer vertex of γ4 as in Figure 14. Let C be the 3-cell of B(k−1)
dual to z, and let L = C ∩ B(k − 2). Let u and v be the outer vertices of γ3 adjacent to
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Figure 12. The complex star(L, ∂C).

z. Suppose that u and v are both contained in the union of two adjacent original edges of
∂star(L, ∂C). Then the distance from z to one of the endpoints of γ4 is less than 2.

Proof. We begin by analyzing the case in which either u or v is a small link vertex. Suppose
that u is a small link vertex. Lemma 6.9 implies that u ∈ star(L, ∂C). Because u is a small
link vertex, it follows that u is contained in exactly one face g of star(L, ∂C). Applying
Lemma 6.14 with the vertex z in Lemma 6.14 equal to u, it is easy to see that we may
assume that the dual of the B(k − 1)-link of u is an edge which is wild relative to the 3-cell
of B(k− 1

2
) dual to u. It easily follows that u is an original vertex of C. It is also true that u

is an original vertex of the other 3-cell of B(k− 1) which contains u. This and the definition
of twisted face-pairing imply that the edge of g immediately following u (relative to g and
C) is wild relative to C. So we may assume that if u is a small link vertex, then u is an
original vertex of C which is contained in exactly one face of star(L, ∂C) and the edge of
this face immediately following u is wild (relative to this face and C). The same holds for v.
By Lemmas 6.12 and 6.14, we may assume that L is contained in a twisted original edge

of C and that L contains an edge which is wild relative to C. We consider Figure 13, which
has the same meaning as Figure 12.
Statement 1 of Lemma 6.10 easily implies that u and v are both contained in the union of

two adjacent original edges of ∂star(L, ∂C) which are not contained in one face of star(L, ∂C).
Hence we may assume that following. There exist distinct faces g and h of star(L, ∂C) as in
Figure 9 such that g∩h contains an original vertex x of C not in L, g∩h contains an original
vertex y of L, and x immediately precedes g∩h (relative to g and C). Let eg be the original
edge of g∩∂star(L, ∂C) which contains x, and let eh be the original edge of h∩∂star(L, ∂C)
which contains x. We may assume that {u, v} ⊆ eg ∪ eh. Lemma 6.13 implies that we may
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Figure 13. The complex star(L, ∂C).

assume that g ∩ h does not contain an edge of L. Statement 2 of Lemma 6.11 implies that
either g or h contains the edge of L which is wild relative to C.
Suppose that g contains at most one edge of L. In this case it is easy to see using Figure 13,

Lemma 6.2, Lemma 6.5 and Figure 6 that every big link vertex of eg∪eh is an original vertex
of C. By the first paragraph of this proof we may assume that if either u or v is a small
link vertex, then it is an original vertex of C. Hence we may assume that both u and v are
original vertices of eg ∪ eh. Statement 1 of Lemma 6.11 shows that this is impossible.
We have reduced the proof of Lemma 6.15 to the situation in which g contains more than

one edge of L and g ∩ h does not contain an edge of L. Using Figure 13, we see that L ⊆ g.
The case in which {u, v} ⊆ eg reduces to the case in which g ∩ h contains an edge of L, so
we may assume that v /∈ eg. As usual, it is easy to see that every vertex of eh \ eg is a small
link vertex. So by the first paragraph of this proof we may assume that v is the original
vertex of eh other than x and that the edge of h immediately following v (relative to h and
C) is wild relative to C. This and Lemma 6.2 imply that eh is not an edge which is wild
relative to C. Just as we may assume that v is the original vertex of eh other than x, we
may assume that if u ∈ eh, then u = x. In other words, we may assume that u ∈ eg. Let K
and f be as in Lemma 6.8. Lemma 6.10 easily implies that eh ⊆ f , and then because u ∈ eg
we see that eh ⊆ K. As in previous arguments, it follows that eh ⊆ K. Hence K contains
an original edge of f which is not wild relative to C, and so Lemma 6.8 easily implies that
K = f . Now Lemma 6.8 furthermore implies that u immediately precedes (relative to f and
C) an original vertex of C in K. This means that eh is an edge which is wild relative to C,
a contradiction.
This proves Lemma 6.15.

We next consider Lemma 6.16, which we apply in the proof of Lemma 6.17.

Lemma 6.16. Let w be an outer vertex of γ2. Let u and v be the inner vertices of γ2
adjacent to w as in Figure 14. Let D be the 3-cell of B(k) dual to w. Suppose that u and
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Figure 14. Parts of γ2, γ3, and γ4.

v are the vertices of an edge of D which is wild relative to D. Then the distance from w to
the endpoints of γ2 is less than 3.

Proof. We prove Lemma 6.16 by contradiction: suppose that the distance from w to the
endpoints of γ2 is at least 3. Let e be the edge of D which contains u and v. Let z be the
inner vertex of γ3 adjacent to both u and v. Let C be the 3-cell of B(k − 1) dual to z, and
let L = C ∩ B(k − 2). Lemma 6.15 easily implies that e is not contained in ∂star(L, ∂C),
and so e is like the edge e2 in Figure 19. Lemma 6.9 implies that both u and v are contained
in ∂star(L, ∂C). It easily follows that e is wild relative to C. But e cannot be wild relative
to both C and D by Lemma 6.3. This contradiction proves Lemma 6.16.

Continuing the related sequence Lemma 6.6, Lemma 6.12 and Lemma 6.14, we next show
in Lemma 6.17 that the outer vertices of γ3 are almost all big link vertices.

Lemma 6.17. Let z be an outer vertex of γ3, and suppose that z is a small link vertex.
Then the distance from z to the endpoints of γ3 is less than 3.

Proof. To begin the proof of Lemma 6.17, we note that Lemma 6.6 implies that the dual of
link(z, B(k−1)) is an edge e. Let C be the 3-cell of B(k− 1

2
) dual to z. Lemma 6.14 implies

that we may assume that e is wild relative to C. Now Lemma 6.16 applied to z, γ3 and C
completes the proof of Lemma 6.17.

The main point of Lemma 6.18 is that if x and y are adjacent outer vertices of γ5, then x
and y are almost always the endpoints of the dual of the B(k − 3

2
)-link of the outer vertex

of γ4 adjacent to both x and y.

Lemma 6.18. Let z be an outer vertex of γ4 such that the distance from z to the endpoints
of γ4 is at least 3. Let x and y be the inner vertices of γ4 adjacent to z as in Figure 15. Let
C be the 3-cell of B(k−1) dual to z, and let L = C∩B(k− 5

2
). Then L is an elbow of C such

that x and y are the vertices of L which are contained in just one edge of L. Furthermore,
the bottom of L is wild relative to C.

Proof. To begin the proof of Lemma 6.18, we note that Lemma 6.17 easily implies that z is
a big link vertex, and hence L contains at least two edges. Lemma 6.12 easily implies that
L is not a face. It easily follows using statement 7 of Theorem 5.1 that L is an elbow of C.
Lemma 6.14 easily implies that the bottom of L is wild relative to C.
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To prove Lemma 6.18, it remains to prove that x and y are the vertices of L which are
contained in just one edge of L, which we do in this paragraph. Lemma 6.4 easily implies
that x and y are either original vertices of L or vertices of L which are contained in at most
one edge of L. Figure 13 is a diagram of star(L, ∂C). The edges of L are drawn with dashes.
We have that {x, y} ⊆ {x1, x2, x3}. The case {x, y} = {x1, x3} is ruled out by Lemma 6.16.
Hence it remains to rule out the case {x, y} = {x2, x3}. Suppose that {x, y} = {x2, x3}. Let
u and v be the outer vertices of γ3 which are adjacent to z as in Figure 15. Let g and h be
faces of star(L, ∂C) such that u ∈ g and v ∈ h. Since u ∈ g, the definition of pull-in easily
shows that x ∈ g. Likewise the fact that v ∈ h implies that y ∈ h. Figure 13 now easily
shows that g meets h. Lemma 6.10 now implies that u and v are contained in the union of
two adjacent original edges of ∂star(L, ∂C). This is impossible by Lemma 6.15. This proves
Lemma 6.18.

Our last lemma, Lemma 6.19, provides the setting for the conclusion of the proof of
Theorem 6.1.

Lemma 6.19. Let z be an outer vertex of γ6 such that the distance from z to the endpoints
of γ6 is at least 3. See Figure 16. Let C be the 3-cell of B(k − 2) dual to z. Let u and v
be the outer vertices of γ5 adjacent to z. Then u and v are both big link vertices. Let K be
the dual in B(k − 2) of the B(k − 3

2
)-link of the outer vertex of γ4 adjacent to both u and

v. Then there exist adjacent original edges e1 and e2 of C such that K ⊆ e1 ∪ e2, e2 ⊆ K
and e2 is wild relative to C. Either u ∈ e1 and v ∈ e2 or u ∈ e2 and v ∈ e1. We assume
without loss of generality that u ∈ e1 and v ∈ e2. Then v is the original vertex of e2 not in
e1. Furthermore if x is the original vertex of e1 not in K, then link(x,B(k − 2)) is dual to
a face and the root vertex of x equals the root vertex of u.

Proof. Lemma 6.17 easily implies that u and v are big link vertices. Let w be the outer
vertex of γ4 adjacent to both u and v as in Figure 16. Lemma 6.18 applied to w and γ4 and
Lemma 6.8 easily imply that K is an elbow of C and that u and v are the vertices of K
which are contained in just one edge of K. It easily follows that there exist adjacent original
edges e1 and e2 of C such that K ⊆ e1 ∪ e2. Let L = C ∩ B(k − 3). Lemma 6.9 implies
that both u and v are contained in ∂star(L, ∂C). Lemma 6.15 applied to z and γ6 easily
implies that u and v are not both contained in the union of two adjacent original edges of
∂star(L, ∂C). It easily follows that K contains two original vertices of C. But if K contains
two original vertices of C, then K contains an edge which is wild relative to C. Without
loss of generality we assume that e2 ⊆ K and that e2 is wild relative to C. Let f be the
face of C which contains K. See Figure 17. It is clear that e1 contains one original vertex
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Figure 16. Parts of γ4, γ5, and γ6.

in K and one original vertex not in K. Let x denote the original vertex of e1 not in K, and
let y denote the original vertex of e1 in K. Since u and v are the vertices of K which are
contained in just one edge of K, either u or v lies in the interior of e1. We assume without
loss of generality that u lies in the interior of e1. It follows that v is the original vertex of e2
not in e1.
To prove Lemma 6.19, it remains to prove that the B(k−2)-link of x is dual to a face and

that the root vertex of x equals the root vertex of u. Figure 6 shows that either x is a big
link vertex whose root vertex equals the root vertex of u or y is a big link vertex whose root
vertex equals the root vertex of u. To prove that x is a big link vertex whose root vertex
equals the root vertex of u, we next prove that it is impossible for y to be a big link vertex
whose root vertex equals the root vertex of u. Suppose that y is a big link vertex whose root
vertex equals the root vertex of u. Considering Figure 6, we see that we are in the situation
of either part c) or part d) of Figure 6, that u corresponds to the vertex in Figure 6 labeled
a and that y corresponds to the vertex in Figure 6 labeled b. Let g and h be the faces of C
as in Figure 6. Lemma 6.18 easily implies that L is an elbow of C and that the bottom of
L is wild relative to C. It easily follows that h is the face of C which contains L. We have
that u ∈ g. With this, Lemma 6.10 and Lemma 6.15 easily imply that v /∈ g∪h. Lemma 6.9
implies that there exists a face g′ of star(L, ∂C) which contains v. Ampleness condition 2
applies to the faces f , g′ and h, and so the faces f , g′ and h have exactly one vertex t in
common. Because g and h are the only two faces of star(L, ∂C) which contain y and g′

equals neither g nor h, it follows that t 6= y. But then f and h contain both t and y, and so
f ∩ h is an original edge of C. Since f ∩ h immediately precedes y (relative to f and C), it
follows that f ∩h = e2. This is impossible because v /∈ h. This contradiction shows that y is
not a big link vertex whose root vertex equals the root vertex of u. So x is a big link vertex
whose root vertex equals the root vertex of u. Finally, Figure 6 shows that x is contained in
its root edge, and so the dual of link(x,B(k − 2)) is a face. This proves Lemma 6.19.

In this paragraph we begin the conclusion of the proof of Theorem 6.1. We maintain the
setting of Lemma 6.19. As above, we let f denote the face of C which contains e1 and e2,
and we let y be the vertex common to e1 and e2. The last assertion of Lemma 6.19 implies
that x is the central vertex of the face tree of some face g of some 3-cell D of B(k − 5

2
).

Figure 18 shows D, f , the face tree of g and the big face tree of g. The edges of the face
tree of g are drawn with thick arcs. As usual, the corner vertices of D in Figure 18 are
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original vertices of D. Since u is a big link vertex whose root vertex equals the root vertex
of x, the vertex s dual to D is an outer vertex of γ7 adjacent to z as in Figure 16. One
of C or D is canonically isomorphic to Q in an orientation-preserving way and the other is
canonically isomorphic to Q∗ in an orientation-preserving way. As in two paragraphs before
the verification of induction hypothesis 2, we see by means of these isomorphisms and the
orientation-reversing isomorphism ω : Q→ Q∗ that there exists a canonical correspondence
between the vertices of C and the vertices of D. Let s′ be the vertex of D corresponding to
the vertex s of C. As in two paragraphs before the verification of induction hypothesis 2, we
see that C is dual to s′, that is, s′ = z. Suppose that the distance from s to the endpoints
of γ7 is at least 3. Then Lemma 6.19 easily implies that the edge of g immediately following
s′ (relative to g and D) is in fact an edge of g which is wild relative to D. If x′ is the vertex
of D corresponding to the vertex x of C, then as in two paragraphs before the verification
of induction hypothesis 2, we see that x′ is the vertex of g immediately following s′ (relative
to g and D). Because of the reversal of orientation between C and D, it follows that the
vertex y′ in Figure 18 corresponds to y and that the vertex v′ in Figure 18 corresponds to v.
So the assumption that the distance from z to the endpoints of γ6 is at least 3 implies the
existence of the wild edge joining v and y and the original edge joining x and y in C. The
correspondence between the vertices of C and D then gives the wild edge joining v′ and y′

and the original edge joining x′ and y′ in D. Then the assumption that the distance from s
to the endpoints of γ7 is at least 3 implies the existence of the wild edge joining s′ and x′

and the original edge joining x′ and t′ in D. It is clear that the original edge of D joining x′

with y′ and the original edge of D joining x′ with t′ correspond to edges of P which are in
the same edge cycle of the model face-pairing ε. Denote this edge cycle by E. It follows that
if z is sufficiently far from the endpoints of γ6, then the edges of E form a closed edge path α
in P . We call α an edge cycle edge path. Example 7.4 shows how edge cycle edge paths
might arise. It is easy to see that although α might intersect itself, these self intersections
are tangential, not transverse. Hence P \α is a canonical union of two subsets, one of which
we say is inside α and one of which we say is outside α. The wild edges which we obtain in
the construction of α correspond to edges of P which we call ancillary edges of α. We call
the ancillary edges of α which lie inside α inner ancillary edges, and we call the ancillary
edges of α which lie outside α outer ancillary edges. The ancillary edges of α alternate
between being inner and outer. Just as α cannot intersect itself transversely, if α′ is any
edge cycle edge path, then α and α′ cannot meet transversely. Hence we may choose α so
that there does not exist an edge cycle edge path inside α.
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We return to the setting of Lemma 6.19. We still let L denote the dual of link(z, B(k− 5
2
)).

Figure 19 shows star(L, ∂C), where L is drawn with dashes. The original edges e4 and e5
are related to L just as the original edges e1 and e2 are related to K. Lemma 6.18 applied
to z and γ6 implies that s is a vertex of L which is contained in just one edge of L. The
previous paragraph shows that s′ and hence s is an original vertex of C. It follows that s is
the vertex of e5 not in e4. Lemma 6.19 easily implies that v is a big link vertex. Lemma 6.18
applied to z and γ6 easily implies that the root vertex of v is the vertex of L ∩ e4 which is
contained in just one edge of L. Lemmas 6.10 and 6.15 easily imply that v is not contained
in the face of C which contains L. Using this, Figure 6 and the fact that v is both a big
link vertex and an original vertex, we see that v is joined to the original vertex of e4 not in
e5 by an edge e3 which is wild relative to C as in Figure 19. If z is sufficiently far from the
endpoints of γ6, then L gives rise to an edge cycle edge path α′ just as K gives rise to the
edge cycle edge path α. It follows that the original edge e4 of C corresponds to an edge of P
in the edge cycle of α′. Furthermore the edges e3 and e5 of Figure 19, which are wild relative
to C, correspond to ancillary edges of α′. Let e6 be the edge joining x and s. Since either
e2 or e6 corresponds to an inner ancillary edge of α, we obtain the following conclusion. If
γ is sufficiently long, then there exists an edge cycle edge path α with no edge cycle edge
path inside it such that every inner ancillary edge of α either has both endpoints in α or it
meets another inner ancillary edge of α. The lower bound on the length of γ in the previous
sentence depends only on the maximum length of the edge cycle edge paths of P , and so it
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Figure 20. The edge subpath β of the edge cycle edge path α.

depends only on P . In the next paragraph we show that there does not exist an edge cycle
edge path α with no edge cycle edge path inside it such that every inner ancillary edge of
α either has both endpoints in α or it meets another inner ancillary edge of α. Hence it is
impossible for γ to be longer than the above bound which depends only on P . This suffices
to prove Theorem 6.1.
We conclude the proof of Theorem 6.1 in this paragraph. Let α be an edge cycle edge

path of P with no edge cycle edge path inside it such that every inner ancillary edge of α
either has both endpoints in α or it meets another inner ancillary edge of α. Let β be an
edge subpath of α whose length is minimal with respect to the property that its endpoints
are joined by either one or two inner ancillary edges of α. Let u and v be the endpoints
of β. See Figure 20. We claim that β contains at least three edges. To see this, we note
that if u and v are joined by one inner ancillary edge of α as in part a) of Figure 20, then
this follows from Proposition 3.1, which states that there does not exist a nontrivial simple
closed edge path in P consisting of three or fewer edges. If u and v are joined by two inner
ancillary edges of α as in part b) of Figure 20, then the length of β is even, and so β has
at least two edges. Suppose that β has exactly two edges. Denote these edges by e and e′,
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and denote the associated inner ancillary edges of α by a and a′ as in part b) of Figure 20.
Then some face f of P contains both a and e, and some face f ′ of P contains both a′ and
e′. Since a and a′ are wild edges of Q, Lemma 6.2 shows that f 6= f ′. We have that f and
f ′ both contain the vertex common to a and a′ as well as the vertex common to e and e′.
Hence f ∩ f ′ is an edge joining these two vertices. But then f and f ′ are triangles, which is
impossible. Thus β contains at least three edges. But then some inner ancillary edge of α
meets β in a vertex other than u or v. Whether the endpoints of this inner ancillary edge
are both in α or this inner ancillary edge meets another inner ancillary edge of α, we have
a contradiction to the minimality of β.
This completes the proof Theorem 6.1.

7. Examples

The simplest example of an ample faceted 3-ball is a cube, and for ease of discussion we
consider a cube P in Euclidean 3-space with center at the origin. The most obvious choice
of a face-pairing on P is the face-pairing which identifies opposite faces by translation. This
is highly symmetric, and each of the three edge cycles has length four. But even if we choose
each multiplier to be 1, then each face of Q is a 16-gon. In order to decrease the number of

edges in Q (and hence to slow down the growth rate of our combinatorial balls in M̃), we
first look at the face-pairing ε where each face-pairing map is the antipodal map. This is
still highly symmetric and seems to be the “simplest” face-pairing on P .

Example 7.1. Let P be a cube in Euclidean 3-space with center the origin, labeled as in
Figure 21. Let ε be the face-pairing on P with each face-pairing map the antipodal map. In
the notation of [7, 8], ε = {ε±11 , ε±12 , ε±13 }, where

ε1 :

(
A B C D
G H E F

)
, ε2 :

(
E F B A
C D H G

)
, and ε3 :

(
E A D H
C G F B

)
.

The edge cycles for ε have diagrams

AB
ε1→ GH

ε−1
2→ AB, BC

ε1→ HE
ε3→ BC, CD

ε1→ EF
ε2→ CD,

AD
ε1→ GF

ε−1
3→ AD, AE

ε2→ GC
ε−1
3→ AE, and BF

ε2→ HD
ε3→ BF.
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Figure 22. The complex Q.
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1

1
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1
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f(v4)
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←←
←

←

←
←

2
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2

2

←

←

←

←

←

←

←

←

←

←

←

←

←

←

Figure 23. The link of the vertex of M .
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Figure 24. The complex Q∗.

To keep the example as simple as possible, we choose each multiplier to be 1. Then each of
the twelve edges of P is subdivided into two subedges. Figure 22 shows the faceted 3-ball Q,
where the new vertices have been labeled arbitrarily. The link of the vertex of M is shown
in Figure 23. Conventions for both figures are as in [8].

Figure 24 shows the faceted 3-ball Q∗, and Figure 25 shows the link of the vertex of M∗.
Note that Q∗ is dual to the link of the vertex of M , and Q is dual to the link of the vertex
of M∗. Following [8], we can read off a presentation for π1(M) from the labels of the edges
of the faces of Q∗. Thus,

π1(M) ∼= 〈x1, x2, x3 : x1x
−1
2 x1x3x1x2x1x

−1
3 , x2x

−1
3 x2x1x2x3x2x

−1
1 ,

x3x
−1
1 x3x2x3x1x3x

−1
2 〉.

Turning our attention to combinatorial balls, B(0) is a vertex, and B(1
2
) is isomorphic to

a copy of Q. Figure 26 shows B(1). In the figure B(1) is pictured as a cube, and we see
only three sides of the cube. Face trees are drawn with thick arcs, root edges are drawn as
thick dashed arcs, and edges of ∂B(1) that are in a single 3-cell are drawn as dotted arcs.
Some thin dashed arcs are drawn. These thin dashed arcs are not part of B(1). They are
drawn simply to complete edges of the cube. There are 20 vertices in Q, and each of these
corresponds to one of the 3-cells of B(1). For example, the 3-cell Q∗

v2
of B(1) dual to the

vertex v2 of Q intersects ∂B(1) in a disk which is the union of four faces. It contains six
big link vertices of ∂B(1), six small link vertices of ∂B(1) whose links are dual to edges,
and seven small link vertices of ∂B(1) (on dotted edges) whose links are dual to vertices. Of
course, Q∗

v2 also contains the vertex B(0), giving Q
∗
v2 a total of 6+6+7+1 = 20 vertices. The

3-cell Q∗
C of B(1) dual to the vertex C of Q intersects ∂B(1) in the union of a disk (which

contains three faces) and three edges which are edges of face trees (so that we have a “hairy”
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Figure 25. The link of the vertex of M∗.

disk as in statement 6 of Theorem 5.1). This last fact is a salient feature of combinatorial
balls of universal covers of ample twisted face-pairing manifolds: not only does Q∗

C contain
three edges of face trees, but Q∗

C also contains all three root edges drawn in Figure 26 as
thick dashed arcs. As a result, Q∗

v2
and Q∗

v7
do not have a face in common as one might

expect. Furthermore, Q∗
C contains six big link vertices of ∂B(1), nine small link vertices of

∂B(1) whose links are edges, and four small link vertices of ∂B(1) whose links are vertices.

Since π1(M) acts transitively on the 3-cells of M̃ , statement 7 of Theorem 5.1 with k = 3
2

easily implies that the intersection of two distinct 3-cells of M̃ is either empty or a vertex or
an edge or a face or an elbow of both of the given 3-cells. For example, Q∗

C meets Q∗
v2
in a

face and Q∗
C meets Q∗

v7 in a face. On the other hand, the intersection of Q∗
v2 and Q∗

v7 is an
elbow of both Q∗

v2
and Q∗

v7
. We next explain the meaning of the vertex labels in Figure 26

by example. Consider the central vertex v in the top of the cube in Figure 26. Next to v
are the letters A, E, H and D. This means that in Q∗

v10
, the vertex v corresponds to the

vertex A in Figure 24. In Q∗
v7 the vertex v corresponds to the vertex E in Figure 24. In

Q∗
v2 the vertex v corresponds to the vertex H in Figure 24. In Q∗

v6 the vertex v corresponds
to the vertex D in Figure 24. As is the case for every combinatorial ball for every ample
twisted face-pairing manifold, the central vertex of every face tree of B(1) (in general B(k))
is contained in exactly one root edge and these root edges are exactly the edges of B(1) (in
general B(k) \ B(k − 1)) which are not contained in ∂B(1) (in general ∂B(k)).
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Figure 26. B(1).

There are 218 vertices in ∂B(1), and they parametrize the 3-cells of B(3
2
) which meet

∂B(3
2
). Hence there are 218 elements in the star generating set for π1(M). It follows easily

from statement 3 of Theorem 5.1 that the growth function of π1(M) with respect to the star
generating set is rational. With effort, one can calculate the recursion and show that the
growth function is

f(z) =
z3 + 119z2 + 119z + 1

(1− z)(z2 − 98z + 1)
.

The growth exponent is 49 + 20
√
6 ≈ 98. There are 21,602 elements of π1(M) of length 2,

and 2,117,018 elements of π1(M) of length 3. So even in this example, which we believe is
the simplest ample example, the group is growing rapidly.
The growth exponent for π1(M) is the square of the growth exponent 5 + 2

√
6 for the

number of vertices of ∂B(k
2
). Figure 27 shows ∂B(3

2
). The figure was drawn using Kenneth

Stephenson’s circle packing program, CirclePack [12]. To improve clarity in this and several
following figures, vertices have not been drawn. In particular, vertices of valence 2 have not
been drawn, and so ∂B(3

2
) contains many more vertices than is apparent. Similarly, Figure 28

shows ∂B(2) and Figure 29 shows ∂B(5
2
). According to SnapPea,M is a hyperbolic manifold

with volume approximately 5.333. Even thoughM has relatively small volume, the length of
its shortest closed geodesic is relatively large. The shortest closed geodesic in M has length
approximately 1.266.

Example 7.2. In this example we again choose P to be a cube in Euclidean 3-space, labeled
as in Figure 21. Let ε be the face-pairing on P with each face-pairing map a translation. In
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Figure 27. ∂B(3
2
).

Figure 28. ∂B(2).

Figure 29. ∂B(5
2
).

the notation of [7, 8], ε = {ε±11 , ε±12 , ε±13 }, where

ε1 :

(
A B C D
E F G H

)
, ε2 :

(
E F B A
H G C D

)
, and ε3 :

(
E A D H
F B C G

)
.

The edge cycles for ε have diagrams

AB
ε1→ EF

ε2→ HG
ε−1
1→ DC

ε−1
2→ AB,

AD
ε3→ BC

ε1→ FG
ε−1
3→ EH

ε−1
1→ AD,

and

AE
ε3→ BF

ε2→ CG
ε−1
3→ DH

ε−1
2→ AE.

We again choose each multiplier to be 1. Then each of the twelve edges of P is subdivided
into four subedges. Figure 30 shows ∂B(1), where again we have drawn the face trees with
thick arcs and drawn edges in a single 3-cell with dotted arcs. There are 1,178 vertices in
∂B(1), and they parametrize the 3-cells in B(3

2
) that meet ∂B(3

2
). Hence they correspond

to the generators of the star generating set for π1(M). Once again, it easily follows from
statement 3 of Theorem 5.1 that π1(M) has a rational growth function with respect to the
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Figure 30. ∂B(1).

Figure 31. ∂B(3
2
).

star generating set. With considerable effort, one can show that the growth function is

f(z) =
z3 + 503z2 + 503z + 1

(1− z)(z2 − 674z + 1)
.

The growth exponent is 337 + 52
√
42 ≈ 674. According to SnapPea, M is a hyperbolic

manifold with volume approximately 12.84.

Figure 31, which was drawn using CirclePack, shows the boundary of B(3
2
).

Example 7.3. We have seen that the behavior of wild edges is rather pathological. In
particular, when we defined cosubdivisions of faces in Section 5, we saw that the branch of a
face tree corresponding to a wild edge degenerates to a vertex. We now present an example
with wild edges. Again let P be a cube in Euclidean 3-space, labeled as in Figure 21. This
time let the face-pairing be ε = {ε±11 , ε±12 , ε±13 }, where

ε1 :

(
A B C D
H G C D

)
, ε2 :

(
F E H G
F E A B

)
, and ε3 :

(
E A D H
F B C G

)
.

The edge cycles for ε have diagrams

CD
ε1→ CD, EF

ε2→ EF, AB
ε1→ HG

ε2→ AB,

BC
ε1→ GC

ε−1
3→ HD

ε−1
1→ AD

ε3→ BC,

and

GF
ε2→ BF

ε−1
3→ AE

ε−1
2→ HE

ε3→ GF.
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Figure 32. The complex Q.

Again, we choose each multiplier to be 1. The complexes Q and Q∗ are shown in Figure 32
and Figure 33. The edges CD and EF of Q (and of Q∗) are wild edges. Two of the six faces
of Q are 16-gons and the other four faces of Q are 11-gons.

The boundary of B(1) is shown in Figure 34. The rooted cosubdivision of the front face
of Q was shown earlier in Figure 3. According to SnapPea, M is a hyperbolic manifold with
volume approximately 8.793.

Example 7.4. At the end of the proof of Theorem 6.1, after Lemma 6.19, there is a dis-
cussion of edge cycle edge paths. This last example shows one way in which they occur for
ample faceted 3-balls. The model faceted 3-ball P is shown in Figure 35. The face-pairing is
defined so that each thick edge is in an edge cycle of length one (face-pairing maps “reflect”
across thick edges) and the top is identified with the bottom by translation. For convenience
choose each multiplier to be 1. Then each thick edge becomes a wild edge in Q, and every
other edge is properly subdivided in Q. The three horizontal loops other than the top and
the bottom are edge cycle edge paths.
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