
ACTIONS OF CLASSICAL SMALL CATEGORIES

E. E. Floyd and W. J. Floyd



Author addresses:

Dept. of Mathematics, Virginia Polytechnic Institute and State University, Blacks-

burg, VA 24061-0123, U.S.A.

E-mail address: floyd@math.vt.edu

ii



Preface

It is our intent here to write an interpretive account of the study of the actions of
the classical small categories of topology, reasonably complete in its topological
presentation up through about 1975. We are far from expert in this area, but
approach it from the related field of equivariant topology. Our feeling is that
the colimits, homotopy colimits, and realizations of these categories have made
large contributions to the core of topology, and that this language provides a
good framework for thinking about these contributions.

The original plan for this project was an idea of Ed Floyd’s from 1980. Because
of his commitments as Dean of the Faculty and then Provost at the University
of Virginia, he did not get to work seriously on the project for several years after
that. We started working on the project together in 1987, and had a completed
manuscript in 1989.

We started working on a major revision of the manuscript in 1990, at least
partly to take into account work of Baues and Meiwes pertaining to the cubical
category. It has become clear to me in the years since Ed’s death at the end
of 1990 that I would not get the revision finished. This book is essentially the
manuscript that we finished in 1989.

This work was supported in part by NSF research grants.
Bill Floyd
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Introduction

The Equivariant General Topology Setting

We first settle on a preferred category TOP of spaces and maps, the compactly
generated spaces of McCord [1.3]. If G is a small category, then a G-space Y is
a covariant functor Y : G→ TOP and a Go-space X is a contravariant functor
X : G → TOP. Thus Y assigns to each object p of G a compactly generated
space Y (p), and to each morphism g : p→ q of G a map

g∗ : Y (p)→ Y (q), y 7→ gy

such that the functorial conditions hold. Given G-spaces Y and Y ′, then a G-
map φ : Y → Y ′ is a natural transformation of functors, thus is a collection of
maps φp : Y (p) → Y ′(p) commuting with the action maps g∗. We arrive at the

category TOPG of G-spaces, and the category TOPG
o

of Go-spaces. These are
classical examples of category theory.

Given a Go-space X and a G-space Y , there is the space

X ×G Y =
∐

X(p)× Y (p)/ ∼,

where ∼ is the least equivalence relation such that given

x ∈ X(p), p
g←− q, y ∈ Y (q)

then (xg, y) ∼ (x, gy). The space X ×G Y is often not compactly generated, so
that this bifunctor is of the form

×G : TOPG
o

× TOPG → Top,

where Top is the category of k-spaces.
There is a terminal object in the category TOPG, the G-space Ob G which

associates with each object p of G the singleton {p}. Setting Y = Ob G in
X ×G Y yields the colimit of the Go-space X , the space

X/G = colim X =
∐

X(p)/ ∼ .

1



2 INTRODUCTION

A major purpose of this work is to consider the generalized colimits assigning
to a Go-space X the space X×G Y , where Y is some fixed G-space, usually with
each Y (p) contractible. The basic language outlined here is set up in Chapter 1.

The Category TOP∆o

of Simplicial Spaces

There is in a sense a universal setting for this equivariant general topology,
the category TOP∆o

of simplicial spaces. Here ∆ is the category whose objects
are the non-negative integers, and whose morphisms δ : m → n are the order
preserving functions

δ : {0, 1, · · · ,m} → {0, 1, · · · , n}.

The word simplicial comes from the ∆-space ∇ which assigns to n the standard
n-simplex ∇(n), with ordered vertices vn,0, vn,1, · · · , vn,n, and to δ : m→ n the
unique affine map δ∗ : ∇(m)→∇(n) for which δ∗(vm,i) = vn,δ(i). We thus have
Milnor’s realization functor [2.9]

| � | : TOP∆o

→ TOP, X 7→ |X | = X ×∆ ∇,

perhaps the most important single generalized colimit.
A topological category G is a small category G whose sets Ob G of objects

and Mor G of morphisms are compactly generated spaces, with the structure
functions continuous. Denote by TOPCAT the category whose objects are the
topological categories and whose morphisms are the continuous functors. The
universality of TOP∆o

comes from Segal’s nerve functor [2.11]

N : TOPCAT→ TOP∆o

.

Here one interprets ∆ as a category whose objects are categories

n : 0←− 1←− · · · ←− n,

and whose morphisms are the functors m→ n. Then given a topological category
G, one gets the ∆o-space NG = {Gn}, where Gn denotes the space of functors
n→ G, equivalently the space of diagrams

p0
g1←− p1

g2←− · · · gn←− pn
in G.

For any small category G, there are functors

M0 : TOPG
o

→ TOPCAT, M1 : TOPG → TOPCAT,

M : TOPG
o

× TOPG → TOPCAT

due to Segal [2.11] and May [2.6]. Given a G-space Y , M1Y has objects y ∈∐
Y (p) and morphisms gy

(g,y)←−−− y for

p
g←− q, y ∈ Y (q),

while M0X has objects x ∈
∐
X(p) and morphisms x

(x,g)←−−− xg for

x ∈ X(p), p
g←− q,
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and M(X,Y ) has objects (x, y) ∈
∐
X(p)×Y (p) and morphisms (x, gy)

(x,g,y)←−−−−
(xg, y) for

x ∈ X(p), p
g←− q, y ∈ Y (q).

For a G-space Y and for a fixed object p of G, define a Go-space X by letting
X(q) be the discrete space of morphisms g : q → p. Applying the composition

TOPG
o

× TOPG
M−→ TOPCAT

N−→ TOP∆o |�|−→ TOP

to the pair (X,Y ), we get a compactly generated space which we denote by
(EGY )(p). Letting p vary, we get a G-space EGY . The colimit BGY of EGY is
obtained by applying the composition

TOPG
M1−−→ TOPCAT

N−→ TOP∆o |�|−→ TOP

to the G-space Y .
These classical applications of simplicial topology to equivariant topology are

set up in Chapter 2.

The Homotopy Colimits of a G-Space

In the years 1965-1975, Boardman-Vogt [4.1], May [2.8], and Segal [2.11,4.4]
codified in somewhat different ways a homotopy theory of actions of small cat-
egories. The fundamentals of this theory are reviewed in Chapter 4, the needed
general homotopy theory having been reviewed in Chapter 3.

Both TOPG and TOPG
o

have associated homotopy categories. Given a G-
space Y , one can form a G-space I × Y by letting (I × Y )(p) = I × Y (p),
with action g(t, y) = (t, gy). There results a homotopy relation on the G-maps
φ : Y → Y ′. The homotopy category corresponding to TOPG has objects the
G-spaces, and morphisms Y → Y ′ the homotopy classes of G-maps [φ] : Y → Y ′.
A homotopy equivalence φ : Y → Y ′ in TOPG is a G-map such that [φ] is an
isomorphism in the homotopy category. If HE denotes the subcategory of TOPG

whose morphisms are the homotopy equivalences in TOPG, then we denote the
homotopy category by TOPG [HE−1], as the result of inverting the homotopy
equivalences in TOPG.

A weak homotopy equivalence φ : Y → Y ′ in TOPG is a Go-map for which
each φp : Y (p)→ Y ′(p) is a homotopy equivalence in TOP. Denote by WHE the

subcategory of TOPG whose morphisms are the weak homotopy equivalences in
TOPG.

Since the colimit functor TOPG → Top is a delicate invariant, for example is
often not compactly generated, we seekG-spaces whose colimits are well behaved.
For each collection A = {A(p)|p ∈ Ob G} of compactly generated spaces, form
the G-space G×Ob G A which has

(G×Ob G A)(p) = {(g, a)|p g←− q, a ∈ A(q)},

with action g′(g, a) = (g′g, a).
Define a G-space Y to be a principal G-space if there exists a closed filtration

Y =
⋃
Yn in TOPG with

(i) a homeomorphism in TOPG of some G×Ob G A0 onto Y0, and
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(ii) for n > 0 a relative homeomorphism

(G×Ob G An, G×Ob G Bn)→ (Yn, Yn−1)

in TOPG, for some collection (An, Bn) = {(An(p), Bn(p))} of closed
cofibered pairs in TOP.

Denote by PRINC TOPG the full subcategory of TOPG whose objects are the
principal G-spaces. The following propositions largely adapted from Boardman-
Vogt codify the fact that

colim : PRINC TOPG → TOP

makes an interesting substitute for colim : TOPG → Top.

1. If φ : Y → Y ′ is a G-map joining principal G-spaces, then φ is a
homotopy equivalence in TOPG iff φ is a weak homotopy equivalence
in TOPG.

2. Given a diagram Y ′
φ−→ Y

θ←− Y ′′ in TOPG, where Y ′ is a principal G-
space and θ is a weak homotopy equivalence in TOPG, then there exists
a unique homotopy class [µ] : Y ′ → Y ′′ of G-maps with [φ] = [θµ].

3. Call a principalization of a G-space Y a principal G-space EY to-
gether with a weak homotopy equivalence π : EY → Y in TOPG.
Every G-space Y has a principalization; in fact, the natural G-map
EGY → Y is a principalization. Any two principalizations are joined
by a natural homotopy class of homotopy equivalences in TOPG; hence
their colimits are joined by a natural homotopy class of homotopy
equivalences in TOP.

Given a G-space Y , define its standard homotopy colimit to be the colimit
BGY of the principalization EGY . A homotopy colimit of Y is a compactly
generated space C together with a homotopy class of homotopy equivalences
BGY → C in TOP.

If Y is the terminal G-space Ob G, any principalization E of Y is called a
universal G-space and its colimit E/G is called a classifying space B for G. There
is the standard universal G- space EG and the standard classifying space BG.

Homotopy colimits of Go-spaces have an analogous treatment, with the stan-
dard homotopy colimit of a Go-space X denoted by BGoX . There is an identi-
fication

BGoX = X ×G EG,
and if E is any universal G-space then X ×G E is a homotopy colimit of X .

One can consider this theory as a part of the study of the category

TOPG [WHE−1]

in which the weak homotopy equivalences in TOPG have been inverted. A precise
model is the category whose objects are the G-spaces and whose morphisms Y →
Y ′ are the homotopy classes [φ] : EGY → EGY

′ of G-maps φ : EGY → EGY
′.

Equivalently the morphisms can be taken as the homotopy classes of G-maps
EGY → Y ′.
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It is useful to be able to exhibit a wide class of principal G-spaces. In Chapter
5, we adapt from May [2.6] and Quillen [5.5] that for each functor θ : H → G of
small categories one gets a principal G-space θ#EH . For each object p of G, let

(θ#EH)(p) = {(g, r, x)|p g←− θ(r), r ∈ Ob H, x ∈ EH(r)}/ ∼,

where ∼ is the least equivalence relation such that if h : s→ r is a morphism of
H then (g, r, hx) ∼ (gθ(h), s, x). If each (θ#EH)(p) is contractible, then θ#EH
is a universal G-space and homotopy colimits of Go-spaces are produced by

X ×G θ#EH ' θ#X ×H EH = BHoθ
#X,

where θ#X is the H-space given by (θ#X)(r) = X(θ(r)).
There is a dual development of homotopy limits. Homotopy limits are more

difficult and therefore have been developed more recently, and in this review of
older work we tend to concentrate on homotopy colimits.

Homotopy Colimits of Simplicial Spaces

These are considered in Chapter 6. In order to consider homotopy colimits of
all simplicial spaces, we need a certain functor θ : H → ∆ for which θ#EH is a
universal ∆-space. Denote by Mono ∆ the subcategory of ∆ whose morphisms
are the order preserving monos

δ : {0, 1, · · · ,m} → {0, 1, · · · , n}.

Then EMono ∆(n) is the standard simplex ∇(n), with the action maps δ∗ :
∇(m) → ∇(n) given by the face operators. If i : Mono ∆ → ∆ is the in-
clusion functor, we show that i#EMono ∆ is a universal ∆-space. By mild abuse
of language, we then exhibit the homotopy colimit

BX = X ×Mono ∆ ∇

of ∆o-spaces X ; this we have learned from Segal [4.4].
We then consider the natural map

X ×Mono ∆ ∇→ |X | = X ×∆ ∇,

and place conditions on X which ensure that the map is a homotopy equivalence,
i.e. that |X | is a homotopy colimit of X . For each order preserving epi δ :
{0, 1, · · · ,m} → {0, 1, · · · , n}, there is the closed pair (X(m), δ∗X(n)). The ∆o-
space X satisfies the cofibration condition for simplicial spaces if each of these is
a cofibered pair. For such simplicial spaces X , |X | is a homotopy colimit of X .

We now generalize TOPG and TOPG
o

to the case where G is a topological
category, and do so in two slightly different ways. In the first case, say that a
topological categoryG satisfies the cofibration condition for topological categories
if the pair (Mor G, Id G) is a cofibered pair of spaces over Ob G × Ob G. In
this case, one can simply mimic the treatment of TOPG for G an untopologized
small category, using the composition

TOPG
M1−−→ TOPCAT

N−→ TOP∆o |�|−→ TOP

to produce BGY ,etc.
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For all topological categories, one can follow a second option by replacing
| � | : TOP∆o

→ TOP by B : TOP∆o

→ TOP, otherwise following the previous
pattern. We denote the new standard models in this case by EGY , BGY , EG,
and BG.

We consider the case in which G is a topological monoid, i.e. a topological
category with a single object. Then all the structure is subsumed under Mor G,
and we denote Mor G simply by G. The nerve NG of G is then NG = {Gn},
where G0 is the singleton {1}. We prove that if G is a topological monoid with
homotopy inverses, then the natural inclusion

G→ ΩBG
is a homotopy equivalence in TOP.

We then obtain the theorem of James [6.4]. Denote by TOP∗ the category of
compactly generated spaces A with base point a0. There is the functor of James

J : TOP∗ → TOP MON, X 7→ JX

where JX =
∐
Xn/ ∼, with ∼ the least equivalence relation allowing the dele-

tion of any coordinate which is the base point. If X has cofibered base point,
then the reduced suspension SX is a classifying space for JX . If also JX is path
connected and of the homotopy type of a CW-complex, then JX has homotopy
inverses. Hence if all these conditions hold, the natural map JX → ΩSX is a
homotopy equivalence.

Converting Simplicial Spaces into Topological Categories

We now use homotopy colimits to produce a functor

W : TOP∆o

→ TOPCAT.

If we use colimits instead of homotopy colimits, and ignore topology, we obtain
the Gabriel-Zisman functor [2.4]

SET∆o

→ CAT

adjoint to the nerve functor. If we consider the composition

TOPCAT
N−→ TOP∆o W−→ TOPCAT,

we obtain an explosion functor

TOPCAT→ TOPCAT

analogous to a Boardman-Vogt construction [4.1]. If we consider the composition

TOP∆o W−→ TOPCAT
N−→ TOP∆o

,

we obtain a functor

TOP∆o

−→ TOP∆o

,

which is analogous to a construction of Segal and which converts a simplicial
space into the nerve of a topological category. Thus in Chapter 7 we are extend-
ing work of Gabriel-Zisman, Boardman-Vogt, and Segal.
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If homotopy colimits of Go-spaces X are to have more structure than that of
a space, then additional structure must be placed on G, or X , or both.

A small category G is strictly monoidal if we are given a bifunctor

⊕ : G×G→ G

which is associative, and an object 0 of G which is an identity element for Ob G
and is such that 10 is an identity element for Mor G.

Let G be a strictly monoidal small category, and let X be a Go-space. From
⊕ : G×G→ G we get

⊕# : TOPG
o

→ TOPG
o×Go

and the Go ×Go-space ⊕#X with

(⊕#X)(p, q) = X(p⊕ q).

There is also the Go × Go-space X × X . Then X is comultiplicative if we are
given a Go ×Go-map φ : ⊕#X → X ×X , equivalently equivariant maps φp,q :
X(p⊕ q)→ X(p)×X(q), which is associative and has both compositions

X(p) = X(p⊕ 0)
φp,0−−→ X(p)×X(0)

proj−−−→ X(p),

X(p) = X(0⊕ p) φ0,p−−→ X(0)×X(p)
proj−−−→ X(p)

the identity. Using the projections onto X(0) instead of the projections onto
X(p), each X(p) receives the structure of a space over X(0)×X(0). The maps
φp,q then become maps

φp,q : X(p⊕ q)→ X(p)×X(0) X(q)

of spaces over X(0)×X(0). The Go-space X is strictly comultiplicative if each

of these maps is a homeomorphism. Denote by COMULT TOPG
o

the cate-
gory whose objects are the comultiplicative Go-spaces and whose morphisms are
the structure preserving Go-maps. Denote by STR COMULT TOPG

o

the full
subcategory whose objects are the strictly comultiplicative Go-spaces.

If G is a strictly monoidal small category, then we get a functor

STR COMULT TOPG
o

→ CAT

which associates with X a small category whose set of objects is X(0) and whose
set of morphisms is the colimit of X and we get a functor

STR COMULT TOPG
o

→ TOPCAT

which associates with X a topological category whose space of objects is X(0)
and whose space of morphisms is the standard homotopy colimit BGoX .

Consider now the subcategory Λ of ∆ whose morphisms are the order pre-
serving functions

λ : {0, 1, · · · ,m} → {0, 1, · · · , n}
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for which λ(0) = 0 and λ(m) = n. Then Λ is strictly monoidal, by letting
m⊕ n = m+ n and by letting λ⊕ µ for λ : m→ m′ and µ : n→ n′ be given by

(λ⊕ µ)(i) =

{
λ(i), for 0 ≤ i ≤ m
m′ + µ(i−m), for m ≤ i ≤ m+ n.

We then have an equivalence of categories

i# : TOP∆o

→ COMULT TOPΛo

which assigns to the simplicial space X the Λo-space i#X , where i : Λ → ∆ is
inclusion, with comultiplication

(i#X)(m+ n) = X(m+ n)→ X(m)×X(n)

the map sending x ∈ X(m + n) into (x′, x′′) where x′ is the front m-face of x
and x′′ is the back n-face.

Now define oΛ to be the category whose objects A are all the subsets

{0,m} ⊂ A ⊂ {0, 1, · · · ,m}.

Given {0, n} ⊂ B ⊂ {0, 1, · · · , n}, define the morphisms A → B to be all the
morphisms λ : m → n in Λ for which λ(A) ⊃ B. The category oΛ is strictly
monoidal. Given objects A and B as above, one can use ⊕ for Λ to construct
A⊕B with

{0,m+ n} ⊂ A⊕B ⊂ {0, 1, · · · ,m+ n},
and one can go on to define ⊕ on morphisms. There is a natural inclusion Λ→ oΛ
obtained by identifying each m with A = {0,m}. Then one can think of Ob oΛ as
the free monoid generated by the non-zero objects of Λ, thus one can enumerate
the objects of oΛ as 0 together with all (m1, · · · ,mk) where each mi is a positive
integer.

There is an equivalence of categories

o : TOP∆o

→ STR COMULT TOP(oΛ)o

which associates with a simplicial space X a strictly comultiplicative (oΛ)o-space
oX given by

(oX)(m1, · · · ,mk) = X(m1)×X(0) · · · ×X(0) X(mk),

(oX)(0) = X(0).

Applying previous remarks, we get

TOP∆o o−→ STR COMULT TOP(oΛ)o −→ TOPCAT

and the composition

W : TOP∆o

→ TOPCAT

assigning to X a topological category WX . The space of objects of WX is X(0)
and the space of morphisms is B(oΛ)o(oX).
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Simplicial Spaces Determined up to Homotopy by X(0) and X(1)

The simplest simplicial spaces X are those with each X(n) determined up to
homotopy by X(0), i.e. those for which the unique n → 0 induces a homotopy
equivalence X(0)→ X(n) for all n. Then BX is naturally homotopy equivalent
to X(0). As examples, consider the functor

�∇ : TOP→ TOP∆o

, A 7→ A∇ = {A∇(n)},

where clearly each X = A∇ has X(n) determined up to homotopy by X(0) = A,
and thus the natural map BX → A is a homotopy equivalence.

Denote by PAIR TOP the category of closed pairs (A,A0) in TOP. For each
n, let ∇0(n) ⊂ ∇(n) denote the set of vertices of ∇(n). Then there is the functor

�(∇,∇0) : PAIR TOP→ TOP∆o

, (A,A0) 7→ X = {(A,A0)(∇(n),∇0(n))},

assigning to (A,A0) the singular simplices in A all of whose vertices are in A0.
It is readily checked that each X(n) is determined up to homotopy by X(0) and
X(1). That is, consider each X(n) as a space over X(0)×X(0) by assigning to
a singular simplex its first vertex and last vertex. Then each of the maps

X(m+ n)→ X(m)×X(0) X(n)

is a homotopy equivalence of spaces over X(0) × X(0). This is what we mean
by X(n) being determined up to homotopy by X(0) and X(1), since it follows
that for such X we have

X(n) ∼ X(1)×X(0) · · · ×X(0) X(1)

as spaces over X(0)×X(0).
Given a simplicial space X , let X0 denote the 0-skeleton of X , that is, the

simplicial space which has X0(n) = δ∗X(0) where δ is the unique morphism
n→ 0. Then we get

TOP∆o

→ PAIR TOP, X 7→ (BX,BX0).

In Chapter 8, we show that if we apply the composition

PAIR TOP −→ TOP∆o

−→ PAIR TOP

to a pair (A,A0) with A a CW-complex and with A0 a subcomplex intersecting
each path component of A, then the result is homotopy equivalent to (A,A0) in
PAIR TOP. Given such a pair, we get from

PAIR TOP −→ TOP∆o W−→ TOPCAT

a topological category G whose space of objects is A0 and whose space of mor-
phisms is homotopy equivalent to the space of paths in A whose ends are in A0.
Moreover, the classifying space BG is homotopy equivalent to A. In particular,
if A is a path connected CW-complex with base point a vertex, we receive a
topological monoid G which is homotopy equivalent to the loop space ΩA and
whose classifying space BG is homotopy equivalent to A. Such theorems are an
integral part of our topic, and in fact go back to Milnor’s theorem [8.1,8.2] that
one can choose G to be a CW-group.
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Such results can be regarded as a part of the general program of Stasheff
[4.5,7.6] to replace homotopy associativity systems by strictly associativity sys-
tems.

Following Segal, in Chapter 7 we consider more generally the simplicial spaces
X which have X(n) determined up to homotopy by X(0) and X(1). For many
purposes, these are the simplicial spaces which can be replaced by the nerve of
a topological category, specifically by NW (X). In particular, if also X(0) is a
singleton then X can be replaced for many purposes by the nerve of a topological
monoid. If this topological monoid has homotopy inverses we get Segal’s theorem
that the natural inclusion

X(1)→ ΩBX

is a homotopy equivalence.

Colimits and Homotopy Colimits of the Mono Σ-Spaces
Corresponding to TOP∗

Consider the category Mono Σ whose objects are the non-negative integers,
and whose morphisms σ : m→ n are the one-to-one functions

σ : {1, · · · ,m} → {1, · · · , n}.

One sees that disjoint union gives a strictly monoidal structure to Mono Σ,
and in fact this structure comes from a coproduct. The subcategory Iso Σ of
isomorphisms in Mono Σ is just

∐
Σ(n) where Σ(n) is the symmetric group on

n letters. Every morphism of Mono Σ is uniquely expressed as an isomorphism
followed by a mono

δ : {1, · · · ,m} → {1, · · · , n}
which preserves order. We interpret this category as a suitable entry into the
study of relationships between the symmetric groups and topology.

There is a natural functor

TOP∗ → TOPMono Σ, A 7→ A∞ = {An},

where if σ : m→ n is a morphism of Mono Σ then

σ∗(a1, · · · , am) = (b1, · · · , bn)

with bj = aσ−1(j) when σ−1(j) 6= ∅ and bj the base point otherwise. The
identifications Am+n ' Am × An make A∞ strictly comultiplicative. The fact
that A0 = pt makes the colimit of A∞ a monoid. The presence of the coproduct
makes the colimit an abelian monoid. One can prove by filtration methods that
the colimit is compactly generated. We have with this abstract language cited
one of the classics of our subject, the functor

TOP∗ −→ AB TOP MON, A 7→ SP∞(A)

of Dold-Thom [9.2] which assigns to a compactly generated space A with base
point the infinite symmetric product SP∞A, an abelian topological monoid,
specifically the colimit of the Mono Σ-space A∞.

Consider the case in which A has cofibered base point; then {1} ⊂ SP∞(A) is
cofibered. The space BSP∞(A) can be computed, and turns out to be SP∞(SA).
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If A is path connected and of the homotopy type of a CW-complex, the topolog-
ical monoid SP∞(A) has homotopy inverses. Thus if all of these are true, the
natural inclusion

SP∞(A) −→ ΩSP∞(SA)

is a homotopy equivalence. For the spheres Sn, the most immediate SP∞(Sn)
is given by SP∞(S2) ' CP (∞). Since CP (∞) is a classifying space for S1 one
has that SP∞(S2) is a K(Z, 2) and hence, for all n > 0, SP∞(Sn) is a K(Z, n).

These classic facts of Dold-Thom are early in Chapter 9. In Chapter 10, we
return to this example and discuss a little the classic extension by May [2.8] of
this example to the composition

TOP∗ −→ TOPMono Σ hocolim−−−−−→ TOP.

Namely, if A has cofibered base point, is path connected, and is of the homotopy
type of a CW-complex, then Ω∞S∞A is a homotopy colimit of the Mono Σ-space
A∞.

We first analyze in the fashion of May conditions on a (Mono Σ)o- space X
which assure that

X ×Mono Σ A
∞

is a homotopy colimit of A∞ for all A with cofibered base point. It turns out
to be sufficient to require that each X(n) is homotopy equivalent in TOP(Σ(n))o

to a universal (Σ(n))o- space. In order to use this fact, May considers the
(Mono Σ)o- spaces Xk, due to Boardman-Vogt, where Xk(n) consists of the
n-tuples (C1, · · · , Cn) of subcubes of [−1, 1]k which have disjoint interiors. Here
the action is given by

(C1, · · · , Cn)σ = (Cσ(1), · · · , Cσ(m)).

There is a natural map

Xk ×Mono Σ A
∞ → ΩkSkA

and May proves that under the cited conditions this is a homotopy equivalence.
One next defines a (Mono Σ)o-map Xk → Xk+1 given by

(C1, · · · , Cn) 7→ (C1 × [−1, 1], · · · , Cn × [−1, 1]),

and defines X = colim Xk. Then one has the map

X ×Mono Σ A
∞ → Ω∞S∞A,

which is a homotopy equivalence under the cited conditions. Moreover, each
X(n) is homotopy equivalent to a universal (Σ(n))o- space, thus the left hand
side is a homotopy colimit of A∞.
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Generalizations by McCord and Segal of the Infinite Symmetric
Product

The major point of Chapter 9 is to consider Segal’s category Γ which has
objects the non-negative integers, equivalently the finite sets {0, 1, · · · , n} with
base point 0, and morphisms γ : m → n the base point preserving functions.
The identification

{0, 1, · · · ,m} ∨ {0, 1, · · · , n} ' {0, 1, · · · ,m+ n}

gives by means of this coproduct a strictly monoidal structure to Γ.
If A is a space with base point, there is the Γo-space

∐
An, where An is

interpreted as the base point preserving functions {0, 1, · · · , n} → A, which thus
receives a Γo-structure. There is also a functor

AB TOP MON → TOPΓ

assigning to an abelian topological monoid G the Γ-space
∐
Gn where γ : m→ n

gives γ∗ : Gm → Gn by

γ(g1, · · · , gm) = (g′1, · · · , g′n)

with

g′j =

{∏
γ(i)=j gi, for γ−1(j) 6= ∅

1, for γ−1(j) = ∅.
The reduced product

∐
An ×Γ

∐
Gn is compactly generated, and the identifi-

cations Am+n ' Am × An and Gm+n ' Gm × Gn together with the coproduct
in Γ make it an abelian topological monoid. Thus we have McCord’s extension
[1.3] of the infinite symmetric product to a functor

SP∞ : TOP∗ ×AB TOP MON → AB TOP MON,
(A,G) 7→ SP∞(A;G) =

∐
An ×Γ

∐
Gn.

Letting A = S1, we get
BG = SP∞(S1;G).

If G is an abelian toplogical monoid, then BG is also an abelian topological
monoid, thus one can define the abelian topological monoid Bn+1

G as the classi-
fying space of BnG. From McCord’s formula

SP∞(A;SP∞(B;G)) ' SP∞(A ∧B;G)

we getBnG ' SP∞(Sn;G). If G is a discrete abelian group, there is the homotopy
equivalence

SP∞(Sn;G)→ ΩSP∞(Sn+1;G)

and one has the model SP∞(Sn;G) for the Ω-spectrum K(G).
For any Γ-space Y , the unique morphism n → 0 makes Y (n) a space over

Y (0). The natural maps
m←− m+ n −→ n

also provide natural maps Y (m+ n)→ Y (m)×Y (0) Y (n), where the right hand
side now denotes the product as spaces over Y (0). It follows from the work of
Segal that one should consider the Γ-spaces Y for which Y (n) is determined up
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to homotopy by Y (0) and Y (1), interpreted to mean that the maps Y (m+n)→
Y (m)×Y (0) Y (n) are homotopy equivalences of spaces over Y (0).

Thus we follow Segal [4.4] through his consideration of Γ-spaces Y for which
Y (n) is determined up to homotopy by Y (0) and Y (1), with the condition that
Y (0) = pt. There is then a spectrum

{SP∞(Sn;Y )}
where any SP∞(A;Y ) is given by

SP∞(A;Y ) =
∐

An ×Γ Y.

Moreover, if each Y (n) is of the homotopy type of a CW-complex then the result-
ing spectrum is an Ω-spectrum, disregarding the first map Y (1)→ SP∞(S1;G).
If in addition the monoid π0(Y (1) is a group then the first map is also a homo-
topy equivalence. The maps of the spectrum are best understood by formulating
an extension

TOP∗ × TOPΓ → TOPΓ

of the McCord functor

TOP∗ ×AB TOP MON → AB TOP MON.

Segal extends this result to the case in which Y (0) is contractible, and the
maps Y (m+ n)→ Y (m)× Y (n) are homotopy equivalences.

We include as an example a version of Segal’s Γ-space Y which yields stable
homotopy theory. Consider the diagram

Γ→ TOP∗ → TOPMono Σ hocolim−−−−−→ TOP,

whose composition yields a Γ-space Y . It is seen that Y (0) is the classifying
space BMono Σ and one can thus check that Y (0) is contractible. Less evident is
the fact that the maps Y (m+n)→ Y (m)×Y (n) are homotopy equivalences, but
it can be checked. It remains to exhibit Y (1), which is the standard homotopy
colimit of the Mono Σ-space (S0)∞. Any standard homotopy colimit can be
computed by converting the G-space by means of M1 into a topological category
C and computing BC . Here the objects of C are all subsets S ⊂ {1, · · · ,m} for
all m, and for each σ : m→ n in Mono Σ there is a morphism σ : S → σ(S) in C.
Then BC ∼ BD, where D is the subcategory whose objects are S = {1, · · · ,m}
and whose morphisms are the permutations. Thus Y (1) ∼

∐
BΣ(n). It is also

the case, for example from the work of May, that if A is path connected, of the
homotopy type of a CW-complex, and has cofibered base point, then

SP∞(A;Y ) ∼ Ω∞S∞A.

We conclude Chapter 10, and the tract, with a review of the models for BΣ(n)

which come from the work of Nakamura [10.2].
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CHAPTER I

The General Topology Background

We assume at least the equivalent of a one-semester course in general topology,
but fill in here some elementary topics which represent special needs. An overall
goal of the work is for a framework in which to present a wide variety of specific
models for topological spaces and continuous functions joining such spaces; the
emphasis here is on diagrams of spaces and maps as a technique for producing
models. Moreover our attention is on topological models rather than algebraic
models. In this chapter there is reviewed some of the general topology especially
relevant to diagrams of spaces and maps.

It is our goal to expose the structure of the material, but to provide only a
working outline of proofs. To some extent, we seek to provide only a workbook.

It is desirable to use the basic language of category theory, thus it is assumed
here. A definitive and frequently used reference is the book of MacLane [1.2].
In this language, we will start with the category top whose objects are the
topological spaces X , and whose morphisms f : X → Y are the continuous
functions.

Products and Coproducts of Spaces

We first recall that top has arbitrary products and coproducts in the sense of
category theory.

Given a family {Xp|p ∈ P} of topological spaces indexed by a set P , there is
the product space

∏
p∈P Xp whose elements are the functions x = {xp|p ∈ P}

which assign to p ∈ P an element xp ∈ Xp. There are also the projection maps

πq :
∏

Xp → Xq

for each q ∈ P , defined by πq(x) = xq . If Y is any space and if for each q ∈ P
we are given a map νq : Y → Xq, then there is a unique map φ : Y →

∏
Xp

with πqφ = νq for each q ∈ P , and φ is given by φ(y) = {νp(y)}. That is, the
category of spaces and maps has products.

15
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It also has coproducts. Given {Xp|p ∈ P}, there is the disjoint union∐
p∈P

Xp = {(p, x)|p ∈ P, x ∈ Xp}.

For each q ∈ P there is the function ρq : Xq →
∐
Xp given by ρq(x) = (q, x) for

x ∈ Xq. Then
∐
Xp is topologized so that the sets ρq(U) form a basis for the

topology as q ranges over all elements of P and U ranges over all open sets of
Xq.

The Topology on Mapping Spaces

Given objectsX and Y in a category, we must be clear on any special structure
enjoyed by the set of morphisms from X to Y . For top, that means putting the
best topology one can on the set of continuous functions from one given space
to another.

Given spaces X and Y , denote by Y X the set of all continuous functions
f : X → Y . For each compact subset C of X and each open subset U of Y , let

W (C,U) = {f ∈ Y X |f(C) ⊂ U}.

Then Y X is topologized by requiring the W (C,U) to constitute a sub-basis. This
is the compact-open topology.

(1.1) Given a map (i.e. a continuous function) φ : X → X ′ and a space Y , the
function φ# : Y X

′ → Y X sending f into the composition fφ in the diagram

Y
f←− X ′ φ←− X

is continuous.

Given f and a sub-basis element W (C,U) of Y X to which fφ belongs, we
have f(φ(C)) ⊂ U hence f belongs to the sub-basis element W (φ(C), U) of
Y X

′
. It is seen that φ# maps W (φ(C), U) into W (C,U) and hence that φ# is

continuous.

(1.2) If Y is a space and X is a compact Hausdorff space, then the evaluation
function

e : Y X ×X → Y, e(f, x) = f(x)

is continuous.

If U is open in Y and if f(x) ∈ U for some map f : X → Y , the fact that X
is regular implies that there exists an open set V containing x with f(V ) ⊂ U .
Since V is automatically compact, it follows that

e−1(U) =
⋃
W (V , U)× V,

where the union is over all open sets V of X .
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(1.3) If X and Y are spaces, then for every map h : C → Y X ×X where C is
compact Hausdorff, the composition

C
h−→ Y X ×X e−→ Y

is continuous.

Suppose the map h : C → Y X × X is given by u 7→ (f(u), g(u)) where
f : C → Y X and g : C → X . Then the composition

C
d−−−−→ C × C f×1−−−−→ Y X × C g#×1−−−−→ Y C × C e−−−−→ Y

is continuous, where d is the diagonal map d(c) = (c, c). But this composition is
eh.

The reader should check that given a map f : X ×Y → Z then for each fixed
x0 ∈ X the function y 7→ f(x0, y) is a map Y → Z.

(1.4) Given spaces X, Y and Z, there is the map

L : ZX×Y → (ZY )X

defined by [Lf(x)](y) = f(x, y).

The sentence preceding (1.4) gives a function Lf : X → ZY for each f : X ×
Y → Z. We first note that eachLf is continuous, i.e. that each (Lf)−1(W (D,U))
is open in X . Now (Lf)−1(W (D,U)) is the set of x ∈ X with f(x × D) ∈ U .
Since D is compact, this set is open. Thus L is a well-defined function.

We have to prove that L−1V is open for each open subset V of (ZY )X . It
suffices to prove that L−1V is open for each V in a sub-basis for the topology
of (ZY )X . Hence it suffices to prove that each L−1(W (C, V ′)) is open. Here
V ′ varies over all open subsets of ZY , but it suffices to check it on a sub-basis.
Hence let V ′ = W (D,U) where D is a compact subset of Y and U is an open
subset of Z. Then it is seen that

L−1(W (C,W (D,U)) = W (C ×D,U),

and the theorem follows.

(1.5) Suppose that Y is a compact Hausdorff space and that X and Z are spaces.
Then the map L : ZX×Y → (ZY )X is one-to-one and onto.

Fix g : X → ZY . By (1.2), there is the composition of maps

X × Y g×1−−→ ZY × Y e−→ Z

which yields an element in L−1g. It is seen that there is at most one element, so
we can denote the composition simply by L−1g.

We summarize up to this point. Two very basic construction devices can be
looked upon as bifunctors. These are given at the object level by

(X,Y ) 7→ X × Y, (X,Y ) 7→ XY ;
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call these the product bifunctor and the map bifunctor respectively. The product
bifunctor is covariant in both variables, the map bifunctor is covariant in the first
variable and contravariant in the second, thus in arrow notation they are written
as (covariant) functors

× : top× top→ top, exp : top× (top)o → top,

where (top)o denotes the opposite category of top. There is a defect in top. In
categorical language, it is not cartesian closed [1.2,p.95]. That is, for all spaces
X , Y and Z we have a natural map ZX×Y → (ZY )X but it is not always an epi.

Quotient Maps and Inclusion Maps

The monomorphisms in top are the one-to-one continuous functions, and the
epimorphisms are the continuous functions f : X → Y for which f(X) = Y .
Restricted classes of monos and epis are more useful here than are the monos
and epis.

Suppose that X is a given space and that we are also given a function f of
X onto a set Y . Then the topology on Y induced by f has as open sets those
subsets U for which f−1(U) is open in X . If X and Y are spaces and if f is
a continuous function of X onto Y , then f is a quotient map if and only if the
topology on Y coincides with that induced by f .

Each equivalence relation ∼ on X leads to a disjoint partitioning of X into the
various equivalence classes [x]. Denote by X/ ∼ the set of equivalence classes,
and by π : X → X/ ∼ the function given by π(x) = [x]. Then we can put
on X/ ∼ the topology induced by π, and π is then a quotient map. Moreover,
given any quotient map f : X → Y there is an equivalence relation ∼ with Y
homeomorphic to X/ ∼. Simply define ∼ by x ∼ x′ if and only if f(x) = f(x′).

A useful fact about quotient maps is that if one has a commutative diagram
of spaces and functions

X
f−−−−→ Y

h

y g

y
Z Z

where f is a quotient map and h is a map, then g is a map. Its proof is trivial.

(1.6) Consider the commutative diagram

Y
f2←−−−− X

f1

y g2

y
Z

g1←−−−− Y ′

of spaces and maps, where f2 and g2 are quotient maps and where f1 and g1 are
one-to-one continuous maps. Then there is a homeomorphism h of Y onto Y ′

such that hf2 = g2 and g1h = f1.



QUOTIENT MAPS AND INCLUSION MAPS 19

Check that the equivalence relations ∼f2 and ∼g2 on X induced by f2 and g2

coincide. It then follows that the functions

g2f
−1
2 : Y → Y ′, f2g

−1
2 : Y ′ → Y

are well-defined functions. They are both continuous since f2 and g2 are quotient
maps.

Every map f : X → Z can be written as f = f1f2 where f2 is a quotient map
and where f1 is one-to-one and continuous. For define ∼ to be the equivalence
relation on X given by f and check that there is the factorization

Z ←− X/ ∼←− X

with the desired properties. Then (1.6) gives the uniqueness of the factorization
up to natural homeomorphism of the middle space.

(1.7) If f : X → X ′ is a quotient map and Y is compact Hausdorff, then
f × 1 : X × Y → X ′ × Y is a quotient map.

Define an equivalence relation ∼ on X × Y by (x, y) ∼ (z, w) if y = w and
f(x) = f(z). Let Z = X × Y/ ∼ and let g : X × Y → Z be the quotient map.
The diagram

Z
g←− X × Y f×1−−→ X ′ × Y

yields the diagram

X
f−−−−→ X ′

Lg

y
ZY ZY

and it is seen that there is a function h : X ′ → ZY making the diagram com-
mutative. It follows from an earlier observation that h is continuous. Then by
(1.5) we get the commutative diagram

X × Y f×1−−−−→ X ′ × Y

g

y L−1h

y
Z Z.

By construction of Z, f × 1 induces a continuous map Z → X ′ × Y which is an
inverse of L−1h. Hence f × 1 is a quotient map.

Dually, for each one-to-one function f : X → Y of a set X into a space Y ,
define a topology on X by defining the open sets to be the sets {f−1(U)} for all U
open in Y . Call this the relative topology on the set X . Then a map f : X → Y
is an inclusion map if it is one-to-one and if the topology on X coincides with the
relative topology. In particular, if X is a space and if A is a subset of X , then
A can be given the relative topology via A ↪→ X , and the space A is then called
a subspace of X . The inclusion maps f : X → Y can then be characterized as
the compositions of homeomorphisms of X onto subspaces A of Y followed by
A ↪→ Y . The equivalent of (1.6) can then be proven for factorizations of a given
map into an onto mapping followed by an inclusion map.
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McCord [1.3] has given the following useful device for recognizing quotient
maps and inclusion maps onto closed subsets. We leave its proof as an exercise.

(1.8) Consider the diagram of spaces and maps

A X

h

y f

y
B

i−−−−→ Y

where f is a quotient map and i is a one-to-one map. Suppose also that [Zj |j ∈ J ]
is a locally finite collection of closed subsets of X with f−1i(B) =

⋃
Zj, and that

for each j we have a map σj : Zj → A with ihσj = f on Zj. Then h is a quotient
map and i is an inclusion map onto a closed subspace of Y .

In summary, we have pointed out in the category top the “strong epis”, i.e.
the quotient maps, and the “strong monos”, i.e. the inclusion maps.

Limits and Colimits of Diagrams

We now put in a first crude form the two basic construction devices considered
in this tract, which amount to two ways of systematically making spaces out of
diagrams of spaces and maps. The notation “limit” and “colimit” for these
primary constructions is taken from category theory, although we will not put
these constructions in a fully categorical setting until later in the chapter.

A diagram scheme consists of a set P together with a set Dp,q for each ordered
pair (p, q) of elements of P . A diagram of spaces corresponding to a given
diagram scheme is a pair consisting of a function associating with each element
p ∈ P a space X(p) and a function associating with each g ∈ D(p, q) a map
X(q)→ X(p) with functional values denoted by x 7→ gx. Then the limit lim X
is given by the subspace

lim X ⊂
∏
p∈P

X(p)

consisting of all {xp} such that for any g ∈ Dp,q we have gxq = xp. The colimit
colim X is defined to be the quotient space

colim X =
∐
p∈P

X(p)/ ∼

where ∼ is the least equivalence relation on
∐
X(p) such that for any (q, x) ∈∐

X(p) and g ∈ Dp,q we have (q, x) ∼ (p, gx). There are then the natural maps

lim X →
∏

X(p),
∐

X(p)→ colim X

and these are respectively inclusion maps, quotient maps.
The terms graph and precategory are also used for what we have called a

diagram scheme; see [1.2,p.48].
Below are some frequently occurring limits and colimits, with their special

names:
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(i) pushouts, the colimits Y of diagrams X
f←− A g−→ B in top; the space

Y is then the quotient space (X t A t B)/ ∼, where ∼ is the least
equivalence relation on the disjoint union with a ∼ f(a) for a ∈ A and
a ∼ g(a) for a ∈ A; an important subcase are the pushouts of diagrams

X
i←− A g−→ B,

where A is closed in X and i is the inclusion map; the pushout is in this
case denoted by X ∪g B and called an attaching space; the topology
on the attaching space is better described by using (1.8) on

X tB X tA tB

k

y yh
X ∪g B X ∪g B

together with the closed covering [X,A,B] of X tAtB together with

the maps X
1X−−→ X , A

g−→ B, and B
1B−−→ B which shows that k is a

quotient map and that one may use k to define the topology of the
attaching space. A relative homeomorphism is a map h : (X,A) →
(Y,B), where (X,A) and (Y,B) are closed pairs, h t i : X t B → Y
is a quotient map, and h maps X − A one-to-one onto Y − B; in this
case, Y is naturally homeomorphic to X ∪h|A B;

(ii) pullbacks, the limits of diagrams of the form X
f−→ A

g←− B in top;
the pullback is the subspace

{(x, a, b) ∈ X ×A×B|f(x) = a = g(b)},

of X ×A×B but this space is naturally homeomorphic to

{(x, b) ∈ X ×B|f(x) = g(b)};

one prefers the more economical presentation;
(iii) coequalizers, the colimits of diagrams X−→→Y ; also equalizers, the

limits of such diagrams; the reader should present these explicitly;
(iv) filtered spaces X =

⋃
Xn in top, where X is the colimit of a diagram

X0 → . . .→ Xn → . . .

with each Xn−1 a closed inclusion in Xn; here A is closed in X if and
only if A ∩Xn is closed in X for all n.

The General Topology of k-spaces

The category top of all spaces and maps has lead to an incomplete frame-
work. For example, (1.3), (1.5) and (1.7) have compactness hypotheses which
are inconvenient for a general framework. One seeks a large full subcategory of
top which is big enough to be useable for a general framework and in which the
product bifunctor and the map bifunctor are better behaved. The clue is the
presence of compactness hypotheses in the above.
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Let X be a topological space, and let T be its topology; i.e. its collection of
open sets. Define T ′ to be the topology containing T whose open sets U are the
subsets of X such that if σ : C → X is any map of a compact Hausdorff space
C into X then σ−1(U) is open in C. Denote by kX the set X taken with the
topology T ′. A space X is a k-space if and only if kX = X .

Consideration of such spaces is due to Kelley [1.1], and other references are in
Steenrod’s paper [1.4]. The presentation of Kelley used the compact subspaces
of the space X even if X is non-Hausdorff. The variant presented above uses
compactness only when accompanied by the Hausdorff property, so that one has
to look outside the space, at maps σ : C → X where C is compact Hausdorff.
See for example McCord [1.3] or Boardman-Vogt [4.1] for the variant we have
used.

Since the topology T ′ above contains the topology T , it follows immediately
that the function kX → X given by x 7→ x is continuous. In particular, if C is
a compact Hausdorff space and σ : C → kX is continuous, then σ : C → X is
also continuous. The converse of this can be checked, thus there are precisely
the same maps of compact Hausdorff spaces into the spaces X and kX .

(1.9) A space X is a k-space if and only if there is a quotient map f : D → X
with D a locally compact Hausdorff space.

Let X be a k-space. Enumerate all the nonopen subsets of X as {Mj |j ∈ J}.
For each j ∈ J select a compact Hausdorff space Cj and a map σj : Cj → X for
which σ−1

j Mj fails to be open in Cj . Augment the collection of maps σj : Cj →
X , with Cj compact Hausdorff, so that every x ∈ X is in the image of some σj .
One can do the augmentation by including enough maps of singleton spaces into
X . There is then the coproduct

∐
j∈J Cj and the map f :

∐
Cj → X defined by

f(j, x) = σj(x) for x ∈ Cj . Then
∐
Cj is locally compact Hausdorff and f is a

quotient map.

Suppose now that there exists a quotient map f : D → X where D is locally
compact Hausdorff. If M is a subset of X which is not open in X , then f−1(M)
is not open in D, since f is a quotient map. There is then a compact subspace C
of D such that f−1(M)∩C is not open in C. There is then the map f |C : C → X
such that (f |C)−1(M) is not open in C. Then the topology T ′ of kX is equal to
the topology T of X , and X is a k-space.

This latter part of the above proposition can be generalized slightly. If X is a
k-space and f : X → Y is a quotient map, then Y is a k-space. It is also easy to
see that every kX is a k-space. One way to do so is to use the first paragraph of
the above proof to construct a quotient map

∐
Cj → kX for any space X , from

which it follows from (1.9) that kX is a k-space.

(1.10) Let X be a k-space and let C be a compact Hausdorff space. Then C×X
is a k-space.

There exists from (1.9) a locally compact Hausdorff space D and a quotient
map f : D → X . By (1.7), 1×f : C×D → C×X is a quotient map. Since C×D
is locally compact Hausdorff, it follows from (1.9) that C ×X is a k-space.
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(1.11) Let X and Y be spaces and let f : X → Y be a function. Then f : kX →
kY is continuous if and only if for every map σ : C → X, where C is compact
Hausdorff, the composition of

C
σ−→ X

f−→ Y

is continuous.

We prove only the half that we use. Suppose every composition fσ as above
is continuous. As in the proof of (1.9), there is a quotient map σ :

∐
Cj → kX

with every Cj compact Hausdorff. In the commutative diagram of functions∐
Cj

σ−−−−→ kX

h

y f

y
kY kY

one can see that h is continuous by the hypothesis and the fact that there are the
same continuous maps from a compact Hausdorff space to Y as to kY . Continuity
of f then follows from an earlier observation about quotient maps.

(1.12) Let X and Y be spaces. Then if e is the evaluation function Y X×X → Y ,
it follows that

e : k(Y X ×X)→ kY

is continuous.

This is a combination of (1.3) and the above.

(1.13) Given k-spaces X,Y,Z and a map f : k(X × Y ) → Z, there is a unique
map Lf : X → k(ZY ) with [(Lf)x]y = f(x, y).

Let C → X be a map of a compact Hausdorff space into X . Then we have
the composed map, denoted by g, of

C × Y = k(C × Y )→ k(X × Y )→ Z.

By (1.4), there is the map Lg : C → ZY . Use of (1.11) shows that X → k(ZY )
is continuous.

The Category Top of k-spaces

We have now gathered together enough to proceed to a full subcategory of top
in which the basic framework is improved. Denote by Top the full subcategory
of top whose objects are the k-spaces.

First of all, one retopologizes function spaces. For a brief moment denote by
(Y X)top the space of maps from any space X to any space Y , where the topology
is the compact-open topology. If X and Y are k-spaces, then again for a brief
moment denote by (Y X)Top the space k[(Y X)top]. Similarly let [Xp : p ∈ P ]
be a collection of k-spaces. There is the product (

∏
Xp)top in top. Define the

product in Top by

(
∏

Xp)Top = k((
∏

Xp)top).
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Suppose now that we denote (
∏
Xp)Top simply by

∏
Xp, and the two-fold prod-

uct in Top by X×Y . These are products in Top in the sense of category theory.
Similarly for X and Y in Top let Y X denote (Y X)Top. Then one has in Top the
following remarkable improvements over top.

Theorem (1.14) For k-spaces X and Y , suppose Y X and X×Y are topologized
as k-spaces as above. Then the following hold.

1. The evaluation function Y X ×X → Y is always continuous in Top.
2. Composition ZY × Y X → ZX is always continuous in Top.
3. If f : X → Y and g : X ′ → Y ′ are quotient maps in Top, then the

product
f × g : X ×X ′ → Y × Y ′

is also a quotient map in Top.
4. These are all related to an adjointness between products and mor-

phism spaces in Top. If we have a map f : X × Y → Z in Top, then
we get a map X → ZY given by x 7→ fx where fx(y) = f(x, y). From
each map f : X × Y → Z we thus get Lf : X → ZY and the resulting
function

L : ZX×Y → (ZY )X

is a natural homeomorphism.

The proofs are an exercise. Number 1 follows easily from previous facts. One
also has from previous facts that given f : X ×Y → Z in Top, one gets the map
Lf : X → ZY . With these starting facts, and with the fact that a composition
of two quotient maps is a quotient map, one proves them all.

Coproducts and colimits work optimally in Top; the coproducts and colimits
in top serve without change in Top. The disjoint union

∐
Xp of a collection of

k-spaces is again a k-space. If f : X → Y is a quotient map and if X is a k-space,
then Y is a k-space.

Inclusion maps exist in Top, but one may have to change topology. Given a
space X , and a subset A of X , denote for the moment by Atop the set A together
with the relative topology of top. Then the corresponding subspace topology for
Top is given by ATop = k(Atop). If one accepts this as the k-space topology of a
subset A of X , then one has inclusion maps and limits in Top. For closed subsets
of X , one gets the same topology in Top as in top.

(1.15) Let f : X → Y be a quotient map in Top, and let Z be a k-space. Then
the map f# : ZY → ZX given by φ 7→ φf is an inclusion map in Top.

It is clear that f# is one-to-one and continuous. We must prove that given a
map g : A→ ZX with the image of g contained in the image of f#, then we can
express g as a composition

A→ ZY
f#

−−→ ZX .

Consider the associated map L−1g : A×X → Z. One checks that in the diagram

A× Y 1×f←−− A×X L−1g−−−→ Z
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each (L−1g)((1 × f)−1(a, y) is a singleton, thus since 1 × f is a quotient map
that L−1g can be factored as a composition

A×X 1×f−−→ A× Y h−→ Z,

from which it follows that g is the composition

A
Lh−−→ ZY

f#

−−→ ZX .

Compactly Generated Spaces

As we go on, we will move to the general topology of homotopy theory, where
it is convenient to have an appropriate separation property on the spaces con-
sidered. We make a choice, which amounts to choosing an appropriate full sub-
category of Top, whose spaces we will call the compactly generated spaces. Be
warned that Steenrod’s paper [1.4] or G.W. Whitehead’s book [1.6] use a slightly
different choice but the same name. The version we use is due to Moore; see
for example McCord’s paper [1.3]. The original version defined the Hausdorff
k-spaces to be the compactly generated spaces. Moore’s variant used here will
be a slightly weaker condition.

Theorem (1.16) For a space Y in Top, the following conditions are all equiv-
alent.

(a) The diagonal D = {(y, y)} ⊂ Y ×Y is a closed subset of the product
Y × Y in Top.

(b) for each diagram X−→→Y in Top, the equalizer is a closed subspace
of X; that is, if f, g : X → Y , then {x ∈ X |f(x) = g(x)} is a closed
subset of X.

(c) whenever σ : C → Y is a map of a compact Hausdorff space C into
Y then σ(C) is closed in Y .

Proof. Suppose D is closed in Y × Y , and that we have f, g : X → Y in Top.
Then (f × g)−1(D) is closed in X ×X . If d : X → X ×X is the diagonal map,
then d−1((f × g)−1(D)) is closed in X . But this is the equalizer.

Suppose the equalizer condition is satisfied, and that σ : C → Y is a fixed
map with C compact Hausdorff. In order to show that σ(C) is closed in Y , we
have to show that if τ : D → Y where D is compact Hausdorff, then τ−1(σ(C))
is closed in D. There are the maps f, g : C × D → Y given by f(c, d) = σ(c)
and g(c, d) = τ(d). The equalizer is closed, hence {(c, d) ∈ C ×D|σ(c) = τ(d)}
is closed in the product C ×D in top. Since the spaces are compact Hausdorff,
the projection C ×D → D carries closed sets into closed sets and τ−1(σ(C)) is
closed in D.

Suppose now that whenever we have a map σ : C → Y with C compact Haus-
dorff, then σ(C) is closed in Y . It is then immediate that every such σ is a closed
map. It follows readily from this that σ(C) is Hausdorff in the relative topology
of top, and we leave this to the reader. In order to show that D is closed in
Y × Y , it suffices to show that if we are given f, g : C → Y , then the equalizer
is closed in C. Since f(C) ∪ g(C) is a closed compact Hausdorff subspace of Y ,
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this is reduced to the case in which Y is a Hausdorff space, where the conclusion
is easy.

Definition. We call a space Y a compactly generated space if it is a k-space
which satisfies any one of the above equivalent conditions.

(1.17) A space Y in top is compactly generated if and only if every compact
Hausdorff subspace C in top is closed in Y , and every set M in Y which inter-
sects every compact Hausdorff subspace C in a closed set is itself closed in Y .

Suppose that Y satisfies the above condition on compact Hausdorff subspaces.
Then a compact subspace D of Y in top intersects every compact Hausdorff
subspace C in a compact subspace. For given an open covering {Uj} of C ∩D,
one can augment it by the open set Y −C of Y , get a finite open subcovering of
D and then pass to a finite subcovering of {Uj} for C ∩D. Hence every compact
subspace of Y in top is closed. Then use (1.16).

If Y is compactly generated, then the proof of (1.16) shows that every contin-
uous image in Y of a compact Hausdorff space is also Hausdorff as well as closed
in Y . The condition on compact Hausdorff subspaces follows readily.

(1.18) Let X =
⋃
Xn be a filtered space in Top with each Xn compactly gener-

ated. Then every subspace C of X which is compact in the relative topology of
top is contained in some Xn, and X is also compactly generated.

Suppose C is a compact subspace of X and for each n ≥ 0 that there exists
cn ∈ C with cn /∈ Xn. Then {cn} intersects each Xn in a finite set, thus in
a closed subset of Xn. Hence {cn} is a closed subset of X , has the discrete
topology, and is compact. It is therefore finite, which is a contradiction. Hence
each compact subspace ofX is in someXn, and the result follows from (1.16).

(1.19) Let X be a k-space, and let f : X → Y be a quotient map. Then Y is
compactly generated if and only if the subset {(x, y) ∈ X ×X |f(x) = f(y)} is a
closed subset of the product X ×X in Top.

It follows from (1.14) that f × f : X ×X → Y ×Y is a quotient map. Also Y
is compactly generated if and only if D is closed in Y × Y . The remark follows
readily.

(1.20) Consider the diagram X
i←− A

f−→ B in Top, where A is a closed subset
of X and i is the inclusion map. If X and B are compactly generated, so also is
the pushout Y .

There is the quotient map h : X tB → Y , and one applies (1.19).

The Category TOP of Compactly Generated Spaces

Denote by TOP the full subcategory of Top whose objects are the compactly
generated spaces. This is the general topology setting in which we eventually
work.
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Morphism sets, products and coproducts transfer without change of topology
from Top to TOP. If X and Y are in Top, the mapping space (Y X)Top is denoted
simply by Y X , it being implicit that the topology is that of Top. If X and Y
are in Top with Y also compactly generated, then for each x0 ∈ X {(f, g) ∈
Y X ×Y X |f(x0) = g(x0)} is the equalizer of two maps Y X ×Y X → Y and hence
is closed in Y X × Y X . Hence the diagonal in Y X × Y X is the intersection of
closed sets and Y X is compactly generated. If {Xp} is a collection of compactly
generated spaces, then the product

∏
Xp in Top is compactly generated, thus

serves as product in TOP. Similarly for coproducts. Consider now the limit in
Top of a diagram D in TOP. Fix one of the maps g : Xq → Xp. Then the set of
points {xr} in

∏
Xr for which g(xq) = xp is the equalizer of maps∏

Xr
−→→Xp

and is thus closed in the product. Hence the intersection over all g is closed
in the product, and is therefore compactly generated. But this intersection is
precisely the limit in Top. Hence it serves as the limit in TOP.

Colimits generally work badly in TOP; it is the nature of colimits to destroy
separation properties, as also do quotient maps which do not satisfy (1.19). While
the colimits in Top will not generally serve for TOP, there are useful exceptions
of (1.18) and (1.20):

(i) ifA is closed inX andX ← A is inclusion, the attaching spaceX∪fB
of the diagram X ← A

f−→ B in TOP is also in TOP; equivalently, if
F : (X,A) → (Y,B) is a relative homeomorphism of closed pairs in
Top, then X,B compactly generated implies Y compactly generated;

(ii) if X =
⋃
Xn is a filtered space in Top and each Xn is compactly

generated, then X is compactly generated.

Actions of Groups and Monoids

We have now to put diagrams of spaces and maps into a more understandable
setting. In order to do so, we need a little background in the equivariant general
topology associated with Top.

Fix a group G whose operation is multiplication and whose identity element
is 1. One could equally well fix a topological group, but at this time if we need
G topologized we will take the discrete topology. A left action of G on a k-space
X is a map

G×X → X, (g, x) 7→ gx

such that g(g′x) = (gg′)x whenever (g, g′, x) ∈ G × G × X , and 1x = x for all
x ∈ X . A right action of G on a k-space X is a map

X ×G→ X, (x, g)→ xg

such that (xg)g′ = x(gg′) and x1 = x. Technically one can regard a right
action of G as a left action of the “opposite” group Go whose multiplication is
(g, g′) 7→ g′g.

A G-space is a pair consisting of a k-space X and a left action of G on X . If
X and X ′ are G-spaces, an equivariant map or a G-map φ : X → X ′ is a map
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with φ(gx) = gφ(x) for all (g, x) ∈ G × X . We denote by TopG the category
whose objects are the G-spaces and whose morphisms are the G-maps.

There are in this category two basic invariants of a a G-space X :

(i) the space of stationary points, the subspace of X in Top consisting
of x ∈ X such that gx = x for all g ∈ G;

(ii) the orbit space, the k-spaceX/G = X/ ∼ where ∼ is the equivalence
relation on X given by x ∼ x′ if and only if x′ = gx for some g ∈ G.

One thus has at the start the two functors

TopG → Top,

assigning to X the stationary subspace of X and the orbit space of X .
Note the point of contact with diagram schemes and diagrams. Namely, every

G-space can be interpreted as a diagram of spaces and maps. The diagram
scheme has P a singleton {p}, thus there is just one Dp,p which is defined to
be G. The diagram assigns X to p, and to each g ∈ G = Dp,p assigns the map
x 7→ gx of X . The limit of the diagram will be precisely the stationary point
set, and the colimit will be precisely the orbit space. In fact, we use the terms
“limit” and “colimit” hereafter for “stationary subspace” and “orbit space”.

A Go-space similarly is a pair consisting of a k-space X and a right action
of G on X , the Go-maps are the maps φ : X → X ′ with φ(xg) = (φ(x))g, and

there is the category TopG
o

.
One can provide in this new setting a mapping bifunctor and a product bi-

functor. The mapping bifunctor is obtained by assigning to each pair X and Y
of G-spaces the subspace

(XY )TopG ⊂ XY

in Top consisting of all equivariant maps φ : Y → X .
If one then fixes Y to be a singleton G-space, then (XY )TopG is precisely the

stationary point set, i.e. the limit. As one proceeds through this work, one will
see that “generalized limits” are obtained by replacing the singleton G-space Y
by some G-space Y for which Y is a contractible as a space.

The new product bifunctor requires that one be given at the start a right
G-space X and a left G-space Y . One can then form a “reduced”-product

X ×G Y = (X × Y )/ ∼,

where∼ is the least equivalence relation onX×Y such that if (x, g, y) ∈ X×G×Y
then (xg, y) ∼ (x, gy). If we now take again for Y a singleton G-space, the result
is checked to be the orbit space of X . Our subject displays many instances in
which one forms a “generalized colimit” by fixing a G-space Y for which Y is a
contractible space, and then assigning the generalized colimit X ×G Y to X .

We will require operator domains which are not groups. Having fixed the letter
G for the operator domain and the letter g for the individual operators, we do
not change the symbols. As a transitional state, consider as operator domain a
monoid G, i.e. require of the multiplication on G only that it be associative and
have an identity element, and do not require inverse elements. The definition
of orbit space has to be changed slightly in the above discussion. Let ∼ be the
least equivalence relation on X such that x ∼ gx whenever (g, x) ∈ G×X , since
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the relation used in the group case is not necessarily symmetric in the monoid
case. All else in the discussion of groups can be unchanged.

Our subject takes a bigger jump than this; it allows for X being a family of k-
spaces, and it allows the total action to be made up of individual actions taking
one member of the family into another. The diagram schemes used earlier in
this chapter do not suffice, for they do not allow for multiplications and identity
elements. That is, we take in this tract as the appropriate basic model for
equivariant general topology that in which G is a small category, where “small”
is the technical term indicating that everything involved in the structure of
G is a set. The small categories G with precisely one object are exactly the
monoids, thus the monoid case and hence the group case will be a special case
of considerable interest.

Actions of a Small Category

Fix a small category G. Denote its set of objects by Ob G, and denote
individual objects by such letters as p,q, etc. Denote its set of morphisms by
Mor G, and denote individual morphisms by letters such as g,h, etc. A morphism

is also written in arrow notation as p
g←− q. Let

Mor G×Ob GMor G ⊂Mor G×Mor G

denote all ordered pairs (g, g′) for which the composition exists, i.e. all (g, g′) of
the form

p
g←− q g′←− r.

The structure functions of the category G are then the functions

Ob G→Mor G, p 7→ 1p,

Mor G→ Ob G×Ob G, p
g←− q 7→ (p, q),

Mor G×Ob GMor G→Mor G, (g, g′) 7→ gg′

subject to the standard requirements.
If G and H are small categories, there is the usual product category G ×H

with

Ob (G×H) = Ob G×Ob H, Mor (G×H) = Mor G×Mor H.

There is also the opposite category Ho of H, in which target and source are
interchanged, and the order of composition is inverted.

A G-space Y is defined to be a covariant functor Y : G → Top. Thus a
Go-space is a contravariant functor X : G → Top. One gets then a family of
k-spaces {X(p)|p ∈ Ob G}, or {Y (p)|p ∈ Ob G} by restricting the functor to
objects. The action of G on the family is the result of restricting the functor

to morphisms. For q
g←− p in Mor G, there results for X a map X(q) → X(p)

which we denote by g∗ and whose values we denote by x 7→ xg. For q
g←− p in

Mor G, there results for Y a map Y (q)
g∗←− Y (p) whose values are denoted by

y 7→ gy. The usual rules on compositions and identity elements are satisfied.
Given Go-spaces X and X ′, an equivariant map φ : X → X ′ is defined to be

a natural transformation of functors. That is, φ is a collection {φp|p ∈ Ob G}
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of maps φp : X(p)→ X ′(p) such that given any morphism q
g←− p, the following

diagram is commutative:

X(q)
g∗−−−−→ X(p)

φq

y φp

y
X ′(q)

g∗−−−−→ X ′(p).

These maps are also calledGo-maps. There is the similar definition of equivariant
maps, or G-maps, joining G-spaces.

The category whose objects are G-spaces and whose morphisms are G-maps
is denoted by TopG. The category whose objects are Go-spaces and whose mor-
phisms are Go-maps is denoted by TopG

o

.
Given a G-space Y , one gets a diagram of spaces and maps and thus the limit

and colimit of the diagram. These are called the limit and colimit of the G-space
Y . Hereafter, we will interpret limit and colimit to be the resulting two functors

TopG → Top.

The Reduced Product Bifunctor ×G : TopG
o

×TopG → Top

Fix a small category G, and let X be a Go-space in Top and Y a G-space in
Top. Form the disjoint union

X ×Ob G Y =
∐

p∈Ob G
X(p)× Y (p)

and to ease notation suppose either that all the X(p) are disjoint or all the Y (p)
are disjoint so that the disjoint union coincides as a set with the ordinary union.
Let

X ×Ob G G×Ob G Y =
∐

p,q∈Ob G
X(p)×G(p, q)× Y (q),

where G(p, q) denotes the set of all morphisms p
g←− q in G. Thus X ×Ob G

G×Ob G Y is all triples (x, g, y) where

x ∈ X(p), p
g←− q, x ∈ Y (q).

There are then the maps

X ×Ob G G×Ob G Y−→→X ×Ob G Y

given by (x, g, y) 7→ (xg, y) and (x, g, y) 7→ (x, gy) respectively. Then the reduced
product X ×G Y is defined to be the coequalizer of

X ×Ob G G×Ob G Y−→→X ×Ob G Y.

Specifically, we have

X ×G Y = [
∐

X(p)× Y (p)]/ ∼,
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where ∼ is the least equivalence relation on
∐
X(p)× Y (p) such that (xg, y) ∼

(x, gy) whenever

x ∈ X(p), p
g←− q, y ∈ Y (q).

There is the natural quotient map

π :
∐

X(p)× Y (p)→ X ×G Y

where π(x, y) = x×G y is the equivalence class containing (x, y). We thus have
the functor

×G : TopG
o

× TopG → Top.

We have stated the definition of X ×G Y in this simplest form for clarity, but
also need it in a generalized form.

We need first an interpretation ofG×Ho-spacesX , whose verification we leave
to the reader. As a collection of spaces, X is a family {X(p, q)|p ∈ Ob G, q ∈
Ob H}. For each fixed q, we have the G-space X(�, q) = {X(p, q)|p ∈ Ob G},
where given p′

g←− p we have the action map

X(p, q)→ X(p′, q), (g, x) 7→ gx.

The diamond here is used as a blank in which any object of G can be inserted.
For each fixed p ∈ Ob G, we have the Ho-space X(p, �) = {X(p, q)|q ∈ Ob H},
where given q

h←− q′ we have the action map

X(p, q)→ X(p, q′), (x, h) 7→ xh.

Moreover, for x, g and h as above, we have (gx)h = g(xh). These characterize
G×Ho-spaces.

The above is an informal description of isomorphisms

TopG×K ' (TopK)G ' (TopG)K .

We leave the details to the reader, or see [1.2,p.37].
As an example, we can interpret G as providing a G×Go-space which we also

denote simply by G. Interpreted in this way, G is the G × Go-space {G(p, q)}
with left composition giving the left action of G on its morphisms, and right
composition giving the right action. Here G(p, q) continues to denote the set of

all morphisms p
g←− q.

We can now generalize the reduced product to a functor

×H : TopG×H
o

× TopH×K
o

→ TopG×K
o

.

Given a G × Ho-space X and an H × Ko-space Y , define X ×H Y to be the
family of spaces

(X ×H Y )(p, r) = X(p, �)×H Y (�, r)
with actions

g(x×H y) = (gx)×H y, (x×H y)h = x×H (yh).

In the above, the diamond is used as a blank where the same variable object of
H is to be filled in.
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One can specialize this bifunctor to bifunctors

TopG×H
o

× TopH → TopG, TopG
o

× TopG×H
o

→ TopH
o

.

Theorem (1.21) Let X be a Go-space, let Y be a G×Ho-space, and let Z be an
H-space. Then X×GY is an Ho-space, thus we obtain the space (X×GY )×HZ.
Moreover, Y ×H Z is a G-space, thus we obtain the space X ×G (Y ×H Z). We
have a homeomorphism

(X ×G Y )×H Z ' X ×G (Y ×H Z), (x×G y)×H z 7→ x×G (y ×H z).

Proof. Let W = X ×Ob G Y ×Ob H Z denote the disjoint union

W =
∐

p∈Ob G,q∈Ob H
X(p)× Y (p, q)× Z(q).

There are the diagrams of quotient maps

W →
∐

q∈Ob H
(X ×G Y (�, q))× Z(q)→ (X ×G Y )×H Z,

W →
∐

p∈Ob G
X(p)× (Y (p, �)×H Z)→ X ×G (Y ×H Z).

One can then work across the diagram

W −−−−→
∐

(X ×G Y (�, q))× Z(q) −−−−→ (X ×G Y )×H Z∥∥∥
W −−−−→

∐
X(p)× (Y (p, �)×H Z) −−−−→ X ×G (Y ×H Z)

to obtain vertical maps on the right, and can show that they are inverse to each
other.

As an exercise, the reader should check that if we fix the G×Go-space in

×G : TopG×G
o

× TopG → TopG

to be G then we get a natural G-homeomorphism

G×G Y → Y

given by g ×G y 7→ gy.
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The Extension Functor and the Restriction Functor

Let G be a small category, and let H be a subcategory of G. Denote by
i : H → G the inclusion functor. There is then a natural functor

i# : TopG → TopH

called restriction. Namely, given a G-space X = {X(p)|p ∈ Ob G}, simply let
i#X = {X(p)|p ∈ Ob H} and restrict the action to the morphisms of H. We
can also consider restriction as applicable to right actions.

There is also a natural functor i# : TopH → TopG called extension. Out of G
and H, one can make a G×Ho-space which we denote by GH . Namely,

GH = {G(p, q)|p ∈ Ob G, q ∈ Ob H}

and let G act by left composition and H act by right composition. Then given
an H-space X , define the extension i#X by

i#X = GH ×H X.

We can also use GH on the right to interpret the restriction i# : TopG
o

→
TopH

o

. In fact, if X is a Go-space then it can be checked that

i#X = X ×G GH .

(1.22) Let G be a small category, and let H be a subcategory. If X is a Go-space
and if Y is an H-space, then there is a natural homeomorphism

i#X ×H Y ' X ×G i#Y.

This is an easy consequence of (1.21) used on

(X ×G GH)×H Y ' X ×G (GH ×H Y ).

The Mapping Bifunctor TopG × (TopG)o → Top

Fix a small category G, and let X and Y be G-spaces in Top. There is then
the set (XY )TopG of all G-maps φ : Y → X , and it is not hard to give this set

a natural k-space topology. First, there is the space
∏
p∈Ob GX(p)Y (p) in Top,

and we have the natural inclusion as sets

(XY )TopG ⊂
∏

X(p)Y (p).

Simply give (XY )TopG the subspace topology in Top. This gives us the mapping
bifunctor

TopG × (TopG)o → Top.

As with the reduced product bifunctor, we can extend the mapping bifunctor
in various ways, for example to a bifunctor

TopG × (TopG×H
o

)o → TopH , (X,Y ) 7→ (XY )TopG .
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Here the H-space is {(XY (�,q))TopG} for all q ∈ Ob H, where � denotes the vari-
able. The reader should study the action of H, under which given an equivariant

map X ←− Y (�, q) and a morphism q′
h←− q of H there is assigned the composition

X ←− Y (�, q) h∗←− Y (�, q′).

One should also verify that if X is any G-space in Top, then

(XG)TopG ' X

in the case TopG × (TopG×G
o

)o → TopG.
The mapping bifunctor is well adapted to TOP. Let X be a G-space in TOP

and let Y be a G-space in Top. Then the spaces X(p)Y (p) and
∏
X(p)Y (p) are

compactly generated. Moreover (XY )TopG is a closed subset of
∏
X(p)Y (p). For

each fixed r
g←− q in Mor G, there are the maps∏

X(p)Y (p)−→→X(r)Y (q)

sending φ = {φp} into φrg∗ and g∗φq respectively. The equalizer is closed. The
intersection of these closed sets is then closed, and is precisely

(XY )TopG ⊂
∏

X(p)Y (p).

Hence if X is in TOPG then the space (XY )TopG is in TOP, and we have the
mapping bifunctor

TOPG × (TopG)o → TOP

as well as the more general form

TOPG × (TopG×H
o

)o → TOPH .

Thus we have introduced the primary object of this work, the study of TOPG

for G a small category. The primary invariants limit and colimit are very delicate
for arbitrary G-spaces X . In the next chapter we plunge into semisimplicial
topology in order to replace systematically a G-space X by an exploded G-
space EGX whose colimit BGX is generally better behaved than that of X .
Similarly, we will replace X by another exploded version EGX whose limit is
better behaved than that of X . The next chapter is devoted to setting these
up in a standard way, which requires study of simplicial spaces. It will take
another couple of chapters before we have pinned down precisely how the limits
and colimits of the exploded versions are better behaved.
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CHAPTER II

The General Topology of Simplicial Spaces

We now start our review of actions of small categories with a central and classic
example, the study of the simplicial spaces. Here we study them in a preliminary
way, including few homotopy properties.

Many have contributed to the development. We give special mention to several
of these contributions. The seminal work, which set up the discrete version
which has come to be called simplicial sets, is due to Eilenberg-Zilber [2.3,1950].
Milnor [2.9,1957] introduced his realizations which made an explicit bridge to
topology for either simplicial sets or spaces. Segal [2.11,1968] put the work into
equivariant topological terms such as we use in this tract, so that one could
use the more general simplicial spaces in place of simplicial sets. There is an
excellent summary of simplicial spaces in May’s 1972 book [2.8,pp. 100-112].

There are noteworthy books treating simplicial sets: those of Lamotke [2.5,
1968], May [2.7,1967], Gabriel-Zisman [2.4,1967] and Bousfield-Kan [2.1,1972].
There is also Quillen’s book [2.10,1967] on abstract homotopy theory which is
closely interwoven with the subject. One of our purposes in adding to this excel-
lent literature is to give a full presentation which from the first treats simplicial
spaces rather than simplicial sets.

Our goal is to expose in the first five chapters, as quickly as makes sense to
us, the various tools that we need so that in a more leisurely way we can go
through, in chapters 6-10, important examples that relate to algebraic topology.
Perhaps any sense of historical order lacking in the first part will be clearer in
the second part. At this time we simply plunge into the middle of the subject.

The Simplicial Category ∆

The simplicial category ∆ is the category whose objects are the nonnegative
integers and whose morphisms δ : m→ n are the order-preserving functions

δ : {0, 1, · · · ,m} → {0, 1, · · · , n},

where order preserving means that i ≥ j implies δ(i) ≥ δ(j). The monomor-
phisms of ∆ are those functions which are also one-to-one, and the epimorphisms
are those which are also onto. Every morphism in ∆ has a unique factorization

37



38 II. THE GENERAL TOPOLOGY OF SIMPLICIAL SPACES

into an epi followed by a mono. We sometimes denote the partially ordered set
{0, 1, · · · , n} simply by n.

(2.1) The subcategory Epi ∆ of all epis has pushouts. The subcategory Mono ∆

of all monos has a restricted pullback condition: if the diagram n1
α1−→ m

α2←− n2

of monos is such that there exists at least one commutative diagram

r −−−−→ n1y α1

y
n2

α2−−−−→ m

in Mono ∆, then there is a pullback in Mono ∆.

We start with the second statement. For a fixed m, the monos n→ m are in
natural one-to-one correspondence with the nonempty subsets of {0, 1, · · · ,m}.
If two subsets have a nonempty intersection, then the intersection serves as the
pullback in the category of nonempty subsets. This translates into the second
assertion.

In order to show the first statement, consider first any epi γ : m → n. Let
∼ denote the equivalence relation on {0, · · · ,m} given by i ∼ j if and only if
γ(i) = γ(j). The equivalence classes are a disjoint partitioning of {0, · · · ,m}
into subintervals, and these occur in the same order on {0, · · · ,m} as do their
images in {0, · · · , n}. Thus the equivalence relations whose equivalence classes
are subintervals are entirely equivalent to the epis γ : m→ n. Thus convert the
pushout assertion on epis into a pushout assertion on such equivalence relations,
and prove it.

(2.2) Given an epi γ : m → n in ∆, there exists a mono α : n → m with
γα = 1n. Call such an α a section of γ. If two epis γ1, γ2 : m → n have pre-
cisely the same sections, then γ1 = γ2.

The proof is an exercise.

Cosimplicial Spaces

Define the standard m-simplex ∇(m), for each m ≥ 0, to be the subspace of
Euclidean (m+1)-space consisting of all points (t0, t1, · · · , tm) for which each ti ≥
0 and for which

∑
0≤i≤m ti = 1. The standard simplices are then indexed by the

objects of ∆; in addition, for each morphism δ : m→ n we get a corresponding
map ∇(m)→∇(n) taking (t0, · · · , tm) ∈ ∇(m) into

δ(t0, · · · , tm) = (u0, · · · , un) ∈ ∇(n),

where

uj =

{ ∑
δ(i)=j ti, when δ−1(j) 6= 0

0, when δ−1(j) = ∅.
The map is also denoted by δ∗ : ∇(m)→ ∇(n).

Denote the vertices of ∇(m) by

v0,m = (1, 0, · · · , 0), v1,m = (0, 1, · · · , 0), vm,m = (0, · · · , 0, 1).
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Alternatively, the map δ∗ : ∇(m) → ∇(n) is the unique affine map which takes

vi,m into vδ(i),n for all 0 ≤ i ≤ m. A composition of r
δ′←− n

δ←− m in ∆ has
δ′(δy) = (δ′δ)y for each y ∈ ∇(m). Moreover, 1my = y for y ∈ ∇(m), where 1m
is the identity morphism.

In short, ∇ is a covariant functor ∆ → TOP; that is, ∇ is a ∆-space. The
∆-spaces are also called cosimplicial spaces. For the moment, the only ∆-space
which interests us is ∇.

If Y is a cosimplicial space and if y ∈ Y (m), then y is degenerate if there
exist n < m, a mono α : n → m and v ∈ Y (n) with y = αv. Otherwise y is
nondegenerate. For ∇, y ∈ ∇(m) is degenerate if y ∈ ∂∇(m).

(2.3) The cosimplicial space ∇ has the following properties.

(i) If α : n→ m is a mono, then α∗ maps ∇(n) homeomorphically onto
a closed subset of ∇(m).

(ii) Given v ∈ ∇(m), there exists a unique triple consisting of n ≤ m,
a mono α : n→ m, and a nondegenerate u ∈ ∇(n) with v = αu.

(iii) If the diagram n1
α1−→ m

α2←− n2 of monos has no pullback, then

α1∗∇(n1) ∩ α2∗∇(n2) = ∅.

(iv) If the above diagram of monos has a pullback diagram of monos

r
ρ1−−−−→ n1

ρ2

y α1

y
n2

α2−−−−→ m

and if α1ρ1 = α2ρ2 = β, then

α1∗∇(n1) ∩ α2∗∇(n2) = β∗∇(r).

(v) If γ : m → n is an epi and if v ∈ ∇(m) is nondegenerate, then
γv ∈ ∇(n) is nondegenerate.

The proofs are left as an exercise.
The following is one way of stating a remarkable computation that goes back

to Milnor’s paper [2.9].

Theorem (2.4) Consider ∆ embedded diagonally as a subcategory of ∆×∆ by
identifying an object k of ∆ with (k, k) and a morphism δ of ∆ with (δ, δ), thus
obtaining an inclusion functor i : ∆→ ∆×∆. We have then the extension

i# : TOP∆ → TOP∆×∆,

and we have in particular a homeomorphism of ∆×∆-spaces

i#∇ ' ∇×∇.
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Proof. We compute each side. We have on the left for each pair m,n of
nonnegative integers,

(i#∇)(m,n) = (∆(m, �)×∆(n, �))×∆ ∇,

where � denotes a variable nonnegative integer. Here ∆(m, �)×∆(n, �) can be
interpreted also as all order preserving functions m×n← �, where m× n is the
partially ordered set which is the product of the partially ordered sets m and n,
and where now � denotes a variable among the various posets k. Every order
preserving function m× n← k can be factored uniquely as an order preserving
composition

m× n α←− p γ←− k,
where α is a monomorphism and γ is an epimorphism. Let {m× n← �} denote
all the order preserving functions and let {m × n ←↩ �} denote all the order
preserving monos. Then it is seen that

{m× n← �} ' {m× n←↩ �} ×Mono ∆ ∆.

It is seen to follow from associativity of the reduced product that

i#∇(m,n) ' {m× n←↩ �} ×Mono ∆ ∇.

Thus we have computed the left hand side. Points of i#∇(m,n) are uniquely
expressed as α ×Mono ∆ v where for some k, α is an order preserving mono
m× n←↩ k and where v ∈ ∇(k)− ∂∇(k).

We now interpret the right hand side ∇(m) × ∇(n) in a standard form as
a finite simplicial complex; for full details of this simplicial decomposition, see
Eilenberg and Steenrod [2.2]. There are the vertices (vi,m, vj,n), i.e. its set of
vertices is in natural one-to-one correspondence with m × n. Any simplex of
dimension k is spanned by the set of vertices which correspond to an order pre-
serving mono k ↪→ m×n, and the correspondence between simplices of dimension
k and such monos is one-to-one.

Thus the two sides i#∇(m,n) and ∇(m)×∇(n) are naturally homeomorphic.
We leave it to the reader to ponder further this unusual theorem.

The Category TOP∆o

of Simplicial Spaces

A ∆o-space X in TOP is a contravariant functor X : ∆ → TOP. The ∆o-
spaces are also called simplicial spaces. These are the objects of TOP∆o

.
There is also the category SET∆o

whose objects are the contravariant functors
X : ∆ → SET, where SET is the category of sets and functions, and whose
morphisms are the natural transformations of functors. We regard this category
as the full subcategory of TOP∆o

whose objects are the ∆o-spaces X with each
X(m) a discrete space. Such X are also called simplicial sets.

We get a ∆o-space A∇ for each space A in TOP; to be specific, A∇ =
{A∇(n)|n ≥ 0}. Thus we have a functor

�∇ : TOP→ TOP∆o

,
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where given A
f←− ∇(n) and n

δ←− m in ∆, then fδ is the composition

A
f←− ∇(n)

δ∗←− ∇(m).

The elements of A∇(m) are the singular m-simplices of A. The monomorphisms
α : m → n of ∆ assign to f ∈ A∇(n) the various faces α∗f of f . The epimor-
phisms γ : m → n with m > n assign to f ∈ A∇(n) the various degenerate
m-simplices based on f .

One can equally well consider each A∇(n) as having the discrete topology. In
this case, one may as well take A any topological space, thus if one ignores the
topology on the mapping spaces one gets a functor

top→ SET∆o

sending A into A∇ with the discrete topology. These are the ∆o-spaces used to
approximate a space by a CW-complex.

Terminology natural to the above example is also applied to an arbitrary
simplicial space X . For example, a point of X(0) is called a vertex of X .

Topological Categories and the Functor TOPCAT→ TOP∆o

There is another large class of simplicial spaces. Define a topological category
G to be a small category G, together with compactly generated topologies on
Ob G and Mor G in which the structure functions are all continuous. If G and
H are topological categories, a continuous functor H → G is a functor for which
both Ob H → Ob G and Mor H →Mor G are continuous.

TOPCAT denotes the category whose objects are the topological categories
and whose morphisms are the continuous functors. This category is due to Segal
[2.11,1968], who gave the functor

TOPCAT→ TOP∆o

that we consider now.
In order to present this functor, one needs to look at the category ∆ in terms

of categories and functors. For each n ≥ 0, consider the category n whose
objects are the elements of {0, 1, · · · , n}, and which has precisely one morphism
γj,i : i → j whenever i ≥ j and no morphism i → j if i < j. That is, n is now
the category associated with the poset {0, · · · , n} in its natural linear order. We
write

n = {0, 1, · · · , n}.
The functors m → n are in natural one-to-one correspondence with the order
preserving functions

δ : {0, 1, · · · ,m} → {0, 1, · · · , n}.

Given δ, there is the functor m → n which takes an object i into the object
δ(i) and the morphism γj,i for j ≤ i into the morphism γδ(j),δ(i). Thus we could
equally well have presented ∆ as the category with objects n for all n ≥ 0, and
with morphisms the functors m→ n.
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Given a topological category G and given a nonnegative integer n, consider
all functors n→ G. These are in natural correspondence with the diagrams

p0
g1←− p1

g2←− · · · gn←− pn

in G, for given such a diagram there is the functor F which sends an object i
into F (i) = pi and the morphism γj,i for j ≤ i into

F (γj,i) =

{
gj+1 · · · gi, if j < i
1pi , if j = i.

For n > 0, the functors n → G are in natural correspondence with the n-tuples
(g1, g2, · · · , gn) of morphisms of G for which the composition g1g2 · · · gn exists. It
can be seen that the set of all such n-tuples is closed in (Mor G)n, and therefore
is a compactly generated space. If n = 0, then the functors 0 → G can be
identified with the space Ob G or with the subspace of Mor G consisting of all
the identity morphisms; these are homeomorphic spaces, so it doesn’t matter
which is used.

Given a functor F : n→ G represented by (g1, · · · , gn), and given a functor δ :
m→ n, then the composed functor Fδ is seen to be represented by (g′1, · · · , g′m),
where

g′i =

{
gδ(i−1)+1 · · · gδ(i), if δ(i− 1) < δ(i)
1Fδ(i), if δ(i− 1) = δ(i).

We will denote the space of functors n→ G by Gn.

We have now Segal’s nerve functor

N : TOPCAT→ TOP∆o

.

Namely, for each topological category G let

NG = {Gn|n ≥ 0}.

Every functor δ : m → n then gives by composition a map Gn → Gm, which
gives the action map.

Among the topological categories are the topological monoids, where Ob G
is a singleton; here NG = {Gn}. And among these are the topological groups,
where there is in addition a continuous inverse function.

In summary up to this point, we have introduced the simplicial spaces, the
objects of a category TOP∆o

. We have furnished a number of simplicial spaces
to look at more fully, by means of two natural functors

TOP→ TOP∆o

, TOPCAT→ TOP∆o

.

We need ways of studying simplicial spaces, and in particular need Milnor’s
realization of a simplicial space.
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The Realization |X | of a Simplicial Space X

We are ready now to describe Milnor’s process [2.9] for obtaining a k-space
|X | from any given simplicial space X . Namely, consider

×∆ : TOP∆o

× TOP∆ → Top,

fix the ∆-space ∇ and thus define

|X | = X ×∆ ∇.

Then |X | is a k-space called the realization of X , and we have the functor

| ∗ | : TOP∆o

→ Top. Let π :
∐
X(m) × ∇(m) → |X | denote the quotient

map sending each (x, v) ∈
∐
X(m) × ∇(m) into its equivalence class which is

denoted by x×∆ v.
Given a small category G, then we call a generalized colimit for Go-spaces a

functor TOPG
o

→ Top of the form X → X ×G V , where V is a fixed left G-
space with each V (p) a contractible space. Thus |X | is a generalized colimit of
the ∆o-space X . This example is the most important of the generalized colimits.

The Eilenberg-Zilber Analysis

For any ∆o-space X , the inclusion i : Epi ∆→ ∆ induces the restriction i#X
which is the (Epi ∆)o-space obtained by restricting the structural category from
∆o to (Epi ∆)o. We give here the Eilenberg-Zilber analysis [2.3] of i#X for all
X .

Fix a ∆o- space X in TOP. If γ : m → n is an epimorphism in ∆, then
the action map γ∗ : X(n) → X(m) is a homeomorphism of X(n) onto a closed
subset of X(m). For choose a section α of γ, and note that the composition

X(n)
α∗←− X(m)

γ∗←− X(n)

is the identity, hence γ∗α∗ is a retracting map of X(m) onto the image of γ∗,
and the assertion follows.

Call an epimorphism γ : m → n proper if γ is not the identity morphism of
m. If X is in TOP∆o

, define Xdeg(m) ⊂ X(m) to be Xdeg(m) =
⋃
γ∗X(n)

where the union is over all proper epimorphisms γ with source m, and call an
element x ∈ X =

∐
X(n) nondegenerate if it belongs to some X(m)−Xdeg(m).

Note that Xdeg(m) is a finite union of closed subsets of X(m), hence is closed
in X(m).

(2.5) If X is in TOP∆o

and x ∈ X(m), then there exists a unique nondegenerate
element y of X such that for some epimorphism γ : m → n we have y ∈ X(n)
and x = yγ. The epimorphism γ is also uniquely determined by x.

Proof. It is easy to see that there is at least one triple n, γ, y satisfying all
conditions except possibly uniqueness. Suppose there are two such triples: a
nondegenerate y1 ∈ X(n1) and an epimorphism γ1 : m→ n1 with y1γ1 = x, and
a nondegenerate y2 ∈ X(n2) and an epimorphism γ2 : m → n2 with y2γ2 = x.
We will consider the monomorphisms α1 : n1 → m with γ1α1 = 1n1 , and the
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monomorphisms α2 : n2 → m with γ2α2 = 1n2 . There exists at least one of
each. Since γ1α1 = 1n1 , then

y1 = y1γ1α1 = xα1

and similarly y2 = xα2. Then

y2γ2α1 = xα1 = y1

and similarly y1γ1α2 = y2 . We next see that both γ2α1 and γ1α2 are monomor-
phisms. Consider γ2α1 as typical. Write γ2α1 = α′γ′ where α′ is a monomor-
phism and γ′ is an epimorphism. Then

y2α
′γ′ = y1.

If γ′ were a proper epimorphism, we would have a contradiction to the fact that
y1 is nondegenerate. Thus γ2α1 is a monomorphism. Similarly, so is γ1α2 a
monomorphism. Since γ2α1 : n1 → n2 and γ1α2 : n2 → n1 are both monomor-
phisms then n1 = n2; call their common value n, and note that γ2α1 = 1n and
γ1α2 = 1n. Hence the epimorphisms γ1 and γ2 have precisely the same sections.
Hence γ1 = γ2 by (2.2). Since γ∗1 is one-to-one, then y1 = y2.

(2.6) Consider the pushout diagram of epimorphisms in ∆

m
γ1−−−−→ n1

γ2

y ϕ1

y
n2

ϕ2−−−−→ p

and let τ = ϕ1γ1 = ϕ2γ2. If X is a simplicial space, then

X(m)
γ∗1←−−−− X(n1)

γ∗2

x x
X(n2) ←−−−− X(p)

is a pullback diagram: i.e.

γ∗1X(n1) ∩ γ∗2X(n2) = τ∗X(p).

Proof. Let x ∈ γ∗1X(n1) ∩ γ∗2X(n2). Then there exist y1 ∈ X(n1) and y2 ∈
X(n2) with

x = y1γ1 = y2γ2.

Choose by (2.5) the unique nondegenerate y ∈ X(r) and the unique epi γ : m→ r
such that x = yγ. Similarly there are nondegenerate elements corresponding to
both y1 and y2, but the uniqueness of the nondegenerate y corresponding to x
implies that y serves also for y1 and y2. That is, there are epis ρ1 : n1 → r and
ρ2 : n2 → r such that

y1 = yρ1 , y2 = yρ2.
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Then x = yρ1γ1 = yρ2γ2 and from (2.5) we also get ρ1γ1 = ρ2γ2. Since τ is the
pushout of γ1 and γ2, there is an epi µ : p → r with µτ = ρ1γ1 = ρ2γ2. Then
x = yµτ and x ∈ τ∗µ∗X(r) and the theorem follows.

The Filtration of |X |

We can give now Milnor’s analysis of the equivalence relation ∼ on
∐
X(m)×

∇(m). Here ∼ is the least equivalence relation such that given

x ∈ X(n), n
δ←− m, v ∈ ∇(m),

then (xδ, v) ∼ (x, δv). Roughly speaking, ∼ turns out to be very nice because,
by (2.5), X behaves well with respect to Epi ∆ and, by (2.3), ∇ behaves well
with respect to Mono ∆.

(2.7) For any X ∈ TOP∆o

and any (x, v) ∈
∐
X(m) × ∇(m), there exists a

unique representative of the equivalence class [(x, v)] of the form (y, w) where y
and w are both nondegenerate. If (y, w) ∈ X(p)×∇(p) and (x, v) ∈ X(m)×∇(m)
are distinct, then p < m.

Proof. We define a retracting function Φ from
∐
X(m)× ∇(m) onto its sub-

set consisting of all (y, w) with y and w both nondegenerate. Given (x, v) ∈
X(m) × ∇(m), choose the unique monomorphism α : r → m and the unique
nondegenerate element u ∈ ∇(r) − ∂∇(r) with v = αu. Then

(x, v) = (x, αu) ∼ (xα, u).

Using (2.5), there is a unique nondegenerate y in some X(s) and epimorphism
γ : r → s with xα = yγ. Then

(xα, u) = (yγ, u) ∼ (y, γu).

Define Φ(x, v) = (y, γu) and note that y and γu are both nondegenerate. Note
that Φ(x, v) ∼ (x, v) and that if x and v are nondegenerate, then Φ(x, v) = (x, v).

We show that if δ is a morphism of ∆ and if

x ∈ X(n), n
δ←− m, v ∈ ∇(m)

then

Φ(xδ, v) = Φ(x, δv).

We can assume that

Φ(xδ, v) = (y1, γ1u1) , Φ(x, δv) = (y2, γ2u2),

where

v = α1u1 , xδα1 = y1γ1 , δv = α2u2 , xα2 = y2γ2

as in the definition of Φ. Then

δα1u1 = α2u2.
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Let δα1 = α3γ3 be the factorization of δα1 into an epi γ3 followed by a mono
α3. Then

α3γ3u1 = α2u2 , α3 = α2 , γ3u1 = u2.

Substituting α3 for α2 in xα2 = y2γ2, we get

xα3γ3 = y2γ2γ3 , xδα1 = y2γ2γ3 , y1γ1 = y2γ2γ3

and y1 = y2 , γ1 = γ2γ3. Hence

γ1u1 = γ2γ3u1 = γ2u2

and Φ(xδ, v) = Φ(x, δv) for all (x, δ, v). Hence Φ is constant on each equivalence
class and the result follows.

We are now ready to use this analysis. In our present setting with no homotopy
as yet built into our methods, we use the following criterion for potential interest
of a generalized colimit TOPG → Top. Namely, to be of potential interest it must
take the G-spaces in TOPG, or at least those that we care about, into TOP. The
realization satisfies this in the strongest way, by taking every ∆o-space in TOP
into TOP.

Theorem 2.8 For X ∈ TOP∆o

and π :
∐
X(m) × ∇(m) → |X | the natural

quotient map, the realization |X | = X ×∆ ∇ is a filtered k-space given by

|X | =
⋃
|X |n where |X |n = π(X(n)×∇(n)).

For each n, π gives a relative homeomorphism

(X(n), Xdeg(n))× (∇(n), ∂∇(n))→ (|X |n, |X |n−1)

mapping (x, v) into x ×∆ v. In particular, each point of |X |n − |X |n−1 has a
unique representation as x×∆v where x ∈ X(n)−Xdeg(n) and v ∈ ∇(n)−∂∇(n).
Each |X |n is compactly generated and |X | is compactly generated. Thus we have
the functor

| � | : TOP∆o

→ TOP.

Proof. We begin by letting

|X |n = π(
∐
s≤n

X(s)×∇(s)).

We then use (1.8) on∐
s≤nX(s)×∇(s)

∐
X(m)×∇(m)

π′
y π

y
|X |n i−−−−→ |X |,

guided by the function Φ above. Namely, consider all diagrams

β : s
γ←− p α−→ m
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where γ is an epimorphism, α is a monomorphism and s ≤ n. There are only a
finite number of such diagrams β for each m. For each β, there are the diagrams

X(s)
γ∗−→ X(p)

α∗←− X(m) , ∇(p)
α∗−→ ∇(m),

where γ∗ and α∗ are homeomorphisms onto closed sets, and where α∗ maps onto
X(p). Let Z(β) ⊂ X(m)×∇(m) be given by

Z(β) = (α∗)−1γ∗X(s)× α∗∇(p),

which is closed in X(m) × ∇(m), and note that there are only a finite number
for each m. The reader should check that π−1i(|X |n) =

⋃
β Z(β). For each β,

define

rβ : Z(β)→ X(s)× V (s)

by rβ(x, v) = (y, γu) where v = αu and xα = yγ. The conditions of (1.8) are
met, thus

π′ :
∐
s≤n

X(s)× V (s)→ |X |n

is a quotient map and |X |n is closed in |X |. If A ⊂ |X | and all A ∩ |X |n are
closed, then π−1A meets each X(s)×∇(s) in a closed set, thus π−1(A) is closed
and A is closed. That is, |X | =

⋃
|X |n is a filtration of |X | in Top.

In order to show that π′′ : X(n)×∇(n)→ |X |n is also a quotient map, (1.8)
can be applied to

X(n)×∇(n)
∐
s≤nX(s)×∇(s)

π′′
y π′

y
|X |n |X |n.

Namely, let σn : X(n)×∇(n)→ X(n)×∇(n) be the identity. For s < n, choose
a monomorphism α : s → n and an epimorphism γ : n → s with γα = 1s and
define

σs : X(s)×∇(s)→ X(n)×∇(n)

by σs(x, v) = (xγ, αv). Then (1.8) shows that π′′ is a quotient map and (2.7)
shows that

π : (X(n), Xdeg(n))× (∇(n), ∂∇(n))→ (|X |n, |X |n−1)

is a relative homeomorphism. It follows inductively that each |X |n is compactly
generated and hence |X | is compactly generated.

Note as a corollary that if X is a simplicial set, then |X | is a CW-complex with
an n-cell for each nondegenerate x ∈ X(n); in fact, the open n-cell corresponding
to x is all x×∆ v where v ∈ ∇(n)−∂∇(n). For basic facts about CW-complexes,
see Spanier’s text [2.12] or that of Whitehead [1.6].
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Milnor’s Product Theorem

Theorem (2.9) If X and Y are simplicial spaces in TOP, then there is in

TOP∆o

the categorical two-fold product

X ×Ob ∆ Y = {X(n)× Y (n)|n ≥ 0},

where ∆ acts diagonally on the right. The projection ∆o-maps

X
π1←− X ×Ob ∆ Y

π2−→ Y

give maps

|X | π1∗←−− |X ×Ob ∆ Y | π2∗−−→ |Y |,
and the induced map

π1∗ × π2∗ : |X ×Ob ∆ Y | → |X | × |Y |

is a homeomorphism.

Proof. There is the product ∆ × ∆-space X × Y , and the ∆- space ∇. If
i : ∆→ ∆×∆ is the diagonal embedding, we get from (1.22) and (2.4) that

i#(X × Y )×∆ ∇ ' (X × Y )×∆×∆ (∇×∇).

It is readily checked that

(X × Y )×∆×∆ (∇×∇) ' (X ×∆ ∇)× (Y ×∆ ∇).

Moreover

i#(X × Y ) = X ×Ob ∆ Y

and the theorem follows.

The above homeomorphism takes (x, y)×∆ v into (x×∆ v, y×∆ v). Its inverse
represents a point (x×∆ v, y ×∆ w) in the form (x×∆ δ1u, y ×∆ δ2u) and maps
it into (xδ1, yδ2)×∆ u.

The following generalized form of (2.9) is also useful. In it, we call a ∆o×∆o-
space a bisimplicial space. If Z is a bisimplicial space, then its realization is
defined by

||Z|| = Z ×∆×∆ (∇×∇).

If i is the diagonal inclusion of ∆ into ∆×∆, the realization ||Z|| is homeomorphic
to i#Z ×∆ ∇ = |i#Z|.

(2.10) Let W be a Go×∆o-space and let Z be a G×∆o-space. We can consider

W as a functor Go → TOP∆o

and thus obtain a Go-space from the composition

Go → TOP∆o |�|−→ TOP,

which we denote by |W | = {|W (p, �)|}. Similarly we obtain a G-space from Z
which we denote by |Z| = {|Z(p, �)|}. Alternatively for each m,n ≥ 0 we obtain a
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k-space W (�,m)×G Z(�, n), thus obtaining a bisimplicial space which we denote
by W ×G Z. Then we have

||W ×G Z|| ' |i#(W ×G Z)| ' |W | ×G |Z|.

Proof. From (2.9) we have the homeomorphism

|i#(W × Z)| = |W ×Ob ∆ Z| → |W | × |Z|

together with its inverse |W | × |Z| → |W ×Ob ∆ Z|. Both of these are seen to
preserve equivalences, so that one gets maps

|i#(W ×G Z)| → |W | ×G |Z|, |W | ×G |Z| → |i#(W ×G Z)|

which are seen to be inverse to each other.

When we use (2.10), one of the above (say Z) will only be a G-space. Then Z is
regarded as a G×∆o-space trivially by letting Z(p, n) = Z(p) and letting each δ
act as the identity. In this case, the conclusion can be written as |i#(W×GZ)| '
|W | ×G Z. If instead W is a Go-space and Z is in G × ∆o-space, then the
conclusion becomes |i#(W ×G Z)| 'W ×G |Z|.

Segal’s Homotopy Theorem

If α, β : G → H are continuous functors joining topological categories, recall
that a natural transformation T : α → β assigns to each p ∈ Ob G a morphism
Tp : αp→ βp in H such that for any g : p→ q in G there is commutativity in

αp
αg−−−−→ αq

Tp

y Tq

y
βp

βg−−−−→ βq.

Then T is continuous if the function T : Ob G → Mor H is continuous. There
is the following theorem of Segal [2.11].

2.11 Let α, β : G → H be continuous functors joining topological categories
which are related by a continuous natural transformation T : α → β. Then the
maps α∗, β∗ : |N(G)| → |N(H)| are homotopic.

Proof. Let I denote the category with two objects {0, 1} and with precisely
one nonidentity morphism, that being of the form 0 → 1. Then N(I) has two
nondegenerate elements in dimension 0 corresponding to the two objects, and
one nondegenerate element in dimension one corresponding to the nonidentity
morphism. That is, |N(I)| is the unit interval. Consider now the given data,
which is precisely what is required to give a continuous functor

I ×G→ H.
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There is the induced map

|N(I ×G)| ' I × |N(G)| → |N(H)|,

which is precisely the desired homotopy.

Having developed classic properties of the realization, at least those not in-
cluding a deeper use of homotopy, we set up now its use in the study of TOPG

for G a small category.

The Functor M1 : TOPG → TOPCAT

In order to exploit more fully the composition

TOPCAT
N−→ TOP∆o |�|−→ TOP,

we note that for any small category G and any G-space Y in TOP we get a
topological category M1Y . This construction is due to Segal [2.11].

Define the topological category M1Y to have

Ob M1Y = Y =
∐

p∈Ob G
Y (p);

we assume the various Y (p) already disjoint so that the objects are the various
y ∈ Y (p) for all p ∈ Ob G. Define the space of morphisms by

Mor M1Y = G×Ob G Y,

so that morphisms are pairs (g, y) where p
g←− q and y ∈ Y (q). The structure

functions of M1Y are as follows:

(i) the source of the morphism (g, y) ∈ G(p, q) × Y (q) is y, and the
target is gy; thus in arrow form we write

gy
(g,y)←−−− y, (g, y) ∈ G×Ob G Y ;

two of the four variables in the arrow are easily derived from the other

two, so that we also write the arrow as � (g,�)←−−− y where each diamond
denotes here a variable to be filled in from the given variables;

(ii) the identity morphism 1y is y
(1q,y)←−−− y for y ∈ Y (q);

(iii) the composition

g′gy
(g′,gy)←−−−− gy (g,y)←−−− y

is defined by

(g′, gy)(g, y) = (g′g, y),

or in diamond notation as (g′, �)(g, y) = (g′g, y).
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It can then be checked that we have a functor

M1 : TOPG → TOPCAT.

In passing, note that one easily computes the simplicial space which is the
image of Y under

TOPG
M1−−→ TOPCAT

N−→ TOP∆o

.

In order to do so, one has to compute all functors n →M1Y . These are all the
diagrams

� (g1,�)←−−− � (g2,�)←−−− · · · � (gn,�)←−−−− y, (g1, · · · , gn, y) ∈ Gn ×Ob G Y.

Thus NM1Y = {Gn ×Ob G Y }. The vertices of NM1Y are the points of Y =∐
Y (p), for n > 0 the n-simplices are all (g1, · · · , gn, y) as above, and the non-

degenerate simplices are those for which no gi is an identity morphism.

The image of Y under the composition

TOPG
M1−−→ TOPCAT

N−→ TOP∆o |∗|−→ TOP

is denoted by BGY . It is called the standard homotopy colimit of the G-space
Y . Points of BGY are of the form

(g1, · · · , gn, y)×∆ (t0, · · · , tn),

and have a unique representation where no gi is an identity morphism and
(t0, · · · , tn) ∈ ∇(n)− ∂∇(n).

The Functor M0 : TOPGo → TOPCAT

Fix a small category G and a right G-space X in TOP. It is easy to modify
the above to construct a topological category M0X . Set

Ob M0X = X =
∐

X(p), Mor M0X = X ×Ob G G

so that morphisms are written as

x
(x,g)←−−− xg, (x, g) ∈ X ×Ob G G.

One obtains

M0 : TOPG
o

→ TOPCAT.

The simplicial space NM0X is given by

NM0X = {X ×Ob G Gn|n ≥ 0}.

Given a right G-space X , the Milnor realization |NM0X | is the standard homo-
topy colimit BGoX of the Go-space X .
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May’s Bifunctor M : TOPGo ×TOPG → TOPCAT

There is a general setting due to May [2.6] which includes the above as special
cases, and which we use in a basic way.

Fix the small category G, a Go-space X in TOP, and a G-space Y in TOP.
Following May, we define a two-sided topological category M(X,Y ) by

Ob M(X,Y ) =
∐

X(p)×Y (p) = X×Ob GY, Mor M(X,Y ) = X×Ob GG×Ob GY.

The morphism (x, g, y) ∈ X(p)×G(p, q)× Y (q) is written in arrow form as

(x, gy)
(x,g,y)←−−−− (xg, y).

In arrow form, four of the seven entries are derived from the other three so that
in simplified form the arrow can be written

(x, �) (�,g,�)←−−−− (�, y),

where the diamonds can be filled in from the other data.

Compositions exist only in the case

(x, g′gy)
(x,g′,gy)←−−−−− (xg′, gy)

(xg′,g,y)←−−−−− (xg′g, y),

where (x, g′, gy)(xg′, g, y) = (x, g′g, y). If only independent variables are dis-
played, the composition of

(x, �) (�,g′,�)←−−−− (�, �) (�,g,�)←−−−− (�, y)

is (x, g′g, y).

The simplicial space NM(X,Y ) is given by

NM(X,Y ) = {X ×Ob G Gn ×Ob G Y },

thus its elements can be abbreviated in the form

(x, g1, · · · , gn, y) ∈ X ×Ob G Gn ×Ob G Y.

The action of ∆o can be readily computed; if n
δ←− m, then

(x, g1, · · · , gn, y)δ = (xg1 · · · gδ(0), · · · , gδ(i−1)+1 · · · gδ(i), · · · , gδ(m)+1 · · · gny),

where if δ(0) = 0 the 0th-term is x, if δ(i− 1) = δ(i) the ith-term is the appro-
priate identity element, and if δ(m) = n the last term is y.

From the above, one can compute the degenerate elements of the simplicial
space NM(X,Y ). Namely, (x, g1, · · · , gn, y) is degenerate if and only if some gi
is an identity morphism.
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The Bifunctor
⊗

G : TOPGo ×TOPG → TOP

Denote by
⊗

G the bifunctor which is the composition

TOPG
o

× TOPG
M−→ TOPCAT

N−→ TOP∆o |∗|−→ TOP.

Think of this composition as assigning to each Go-space X and each G-space Y
an exploded version X

⊗
G Y of the space X ×G Y . The properties evident up

to now constitute the following proposition.

(2.12) For G a small category, for X in TOPG
o

and for Y in TOPG, there is
the compactly generated space X

⊗
G Y whose points are of the form

(x, g1, · · · , gn, y)×∆ (t0, · · · , tn)

where
(x, g1, · · · , gn, y) ∈ X ×Ob G Gn ×Ob G Y.

There is a natural transformation of bifunctors, given as the maps X
⊗

G Y →
X ×G Y which send the above point into the point

xg1 · · · gn ×G y = x×G g1 · · · gny ∈ X ×G Y.

There is a filtration X
⊗

G Y =
⋃

(X
⊗

G Y )n and (X
⊗

G Y )n − (X
⊗

G Y )n−1

consists of all
(x, g1, · · · , gn, y)×∆ (t0, · · · , tn)

with no gi an identity morphism and with (t0, · · · , tn) in ∇(n)− ∂∇(n).

The Functor EG(�) : TOPG → TOPG

We now have yet another opportunity to obtain a functor from a bifunctor,
by replacing X by the Go-space G(p, �) = {G(p, q)}.

Fix a small category G and a G-space Y . For each p ∈ Ob G, we can take
the Go-space X to be G(p, �) = {G(p, q)|q ∈ Ob G}. The resulting compactly
generated space G(p, �)

⊗
G Y has points

(g0, g1, · · · , gn, y)×∆ (t0, · · · , tn).

Denote by EGY the resulting G-space

EGY = {(EGY )(p) = G(p, �)
⊗
G

Y },

where g acts on the above point by

g((g0, g1, · · · , gn, y)×∆ (to, · · · , tn)) = (gg0, g1, · · · , gn, y)×∆ (t0, · · · , tn).

(2.13) We have the functor EG(�) : TOPG → TOPG, where EGY (p) =
G(p, �)

⊗
G Y has as points all

(g0, g1, · · · , gn, y)×∆ (t0, · · · , tn)

for which

p
g0←− p0

g1←− · · · gn←− pn, y ∈ Y (pn).
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There is a natural transformation T : EG(�) → 1 of functors, where given the
G-space Y , the G-map TY : EGY → Y is given by

TY ((g0, g1, · · · , gn, y)×∆ (t0, · · · , tn)) = g0g1 · · · gny.

For each p ∈ Ob G, the resulting map

(EGY )(p) = G(p, �)
⊗
G

Y → Y (p)

is a homotopy equivalence of spaces.

Proof. On one hand, there is the topological categoryH given byM(G(p, �), Y )
whose objects are the pairs (g0, y) ∈ G(p, �)×Ob G Y and whose morphisms are
the triples (g0, g, y) in G(p, �)×Ob GG×Ob G Y . On the other hand, there is the
topological category K whose space of objects is Y (p) and whose morphisms 1y
are all identity morphisms. Moreover |N(H)| = (EGY )(p) and |N(K)| = Y (p).
There is a continuous functor F : H → K taking the object (g0, y) into the
object g0y and taking the morphism (g0, g, y) into 1g0gy . There is the functor
F ′ : K → H which takes an object y ∈ Y (p) into the object (1p, y). The
composition FF ′ is the identity. The composition F ′F sends an object (g0, y)
into (1p, g0y) and sends morphisms into identity morphisms. There is then a
continuous natural transformation S : 1→ F ′F given on any object (g0, y) by

(1p, g0y)
(1p,g0,y)←−−−−− (g0, y).

Hence by (2.11) the composition

|N(H)| F∗−→ |N(K)| F
′
∗−→ |N(H)|

is homotopic to the identity. The composition F∗F ′∗ is the identity, hence F∗ is
a homotopy equivalence. One has to check that it is the map in question.

(2.14) The colimit of the G-space EGY is naturally identified with the standard
homotopy colimit BGY of the G-space Y .

Proof. A direct proof can be given, or one can use (2.10). In the latter, let the
W of (2.10) be the G-space Ob G and let the Z of (2.10) be the G ×∆o-space
arising from NM(G, Y ). Then from (2.10) we get

colim EGY = (Ob G)×G |Z| ' |i#((Ob G)×G Z)| ' BGY.
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The Exploded Version EG of the G×Go-space G

If we apply May’s construction to the example X = G(p, �) and Y = G(�, q),
we receive for each p, q ∈ Ob G the compactly generated spaceG(p, �)

⊗
GG(�, q).

Let

EG = G
⊗
G

G = {G(p, �)
⊗
G

G(�, q) | p, q ∈ Ob G}

denote the resulting G×Go-space, whose elements are all

(g0, g1, · · · , gn, gn+1)×∆ (t0, · · · , tn), (g0, g1, · · · , gn, gn+1) ∈ Gn+2.

There is the natural G×Go-map EG→ G taking the above point into g0 · · · gn+1

∈ G.

(2.15) For any G-space Y , we have

EGY ' EG×G Y.

Proof. The natural map EG×G Y → EGY is given by

((g0, g1, · · · , gn, gn+1)×∆ v)×G y 7→ (g0, g1, · · · , gn, gn+1y)×∆ v.

One can apply (2.10) to show that it is a homeomorphism.

The Functor EG(�) : TOPG → TOPG

We have been neglecting the mapping bifunctor. There is an analogue of the
above explosion functor, namely a functor

EG(�) : TOPG → TOPG

which assigns to each Y in TOPG an exploded version EGY in TOPG. There
is also a natural transformation T ′ : 1 → EG(�) of functors, assigning to each
G-space Y a G-map T ′ : Y → EGY . The G-space is given by

(EGY )(q) = (Y EG(�,q))TOPG ,

i.e. EGY (q) is all G-maps EG(�, q)→ Y where the action assigns to g : q → q′

the map EGY (q)→ EGY (q′) as the composition φ 7→ φg∗ in

Y ←− EG(�, q) g∗←− EG(�, q′).

The natural transformation is the G-map

T ′ = τ# : Y ' (Y G)TOPG → (Y EG)TOPG ,

where τ : EG→ G is the natural G×Go-map EG→ G.
For each G-space Y and each q ∈ Ob G, the map Y (q) → (EGY )(q) is a

homotopy equivalence of spaces. We need a little background in order to prove
it.
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Given a G-space Y , denote by I × Y the G-space

(I × Y )(p) = I × Y (p),

where G acts on I×Y by g(t, y) = (t, gy). There are G-maps π0, π1 : Y → I×Y
given by π0(y) = (0, y) and π1(y) = (1, y). Define G-maps φ0 : Y → Y ′ and
φ1 : Y → Y ′ to be homotopic in TOPG if there exists a G-map Φ : I × Y → Y ′

such that φ0 = Φπ0 and φ1 = Φπ1. Define a G-map φ : Y → Y ′ to be a
homotopy equivalence in TOPG if there exists a G-map θ : Y ′ → Y such that
φθ and θφ are homotopic to the identity in TOPG.

We need the following generalization of (2.13).

(2.16) Let Y be a G×Go-space, and let EGY denote the G×Go-space

EGY = G
⊗

Y,

where the Go-action is given by

((g0, · · · , gn, y)×∆ v)g = (g0, · · · , gn, yg)×∆ v.

There is the natural G×Go-map EGY → Y given by

(g0, · · · , gn, y)×∆ v 7→ g0 · · · gny.

For each p ∈ Ob G, the Go-map EGY (p, �)→ Y (p, �) is a homotopy equivalence
of Go-spaces.

Proof. We need first to generalize the proof of (2.13). There is the topological
category H with objects (g0, y) ∈ G(p, �)×Ob G Y and morphisms

(g0, gy)
(g0,g,y)←−−−−− (g0g, y)

indexed by the elements of G(p, �) ×Ob G G ×Ob G Y . The category H splits
as a disjoint union of subcategories H(q) where H(q) is all objects with y ∈
Y (�, q) and all morphisms with y ∈ Y (�, q). Each q

g′←− q′ in G gives a functor
H(q) → H(q′) taking an object (g0, y) into (g0, yg

′) and a morphism (g0, g, y)
into (g0, g, yg

′). Thus we have a contravariant functor G → TOPCAT taking
q into H(q) and g into the above functor. Then by composition we get the
contravariant functor

G→ TOPCAT
|N�|−−−→ TOP

and thus we have |NH| =
∐
|N(H(q)| and in addition we have that {|N(H(q))|}

is a right G-space.
As in the proof of (2.13), there is the functor F ′F : H → H which takes

each H(q) into itself. Moreover F ′∗F∗ is seen to be a Go-map. The question is
whether the homotopy from the identity to F ′∗F∗ constructed in the proofs of
(2.13) and (2.11) is then a homotopy of Go-maps. One can do this by considering
I × H =

∐
I × H(q), by letting Go act on I × H as functors operating triv-

ially on the I-coordinate, and by showing that the induced functor I ×H → H
constructed in the above proofs commutes with the contravariant functors on
the two categories. We leave the details to the reader, but one obtains that the
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identity is homotopic to F ′∗F∗ as Go-maps.

We note that there is an opposite of (2.16), proved in a similar way. If X is a
G×Go-space and if p ∈ Ob G, there is the G-space X

⊗
GG(�, q) and a natural

G-map X
⊗

GG(�, q)→ X(�, q), which is a homotopy equivalence of G-spaces.

(2.17) For each q ∈ Ob G, the G-map EG(�, q)→ G(�, q) is a homotopy equiv-
alence in TOPG. Similarly for each p ∈ Ob G the Go-map EG(p, �) → G(p, �)
is a homotopy equivalence in TOPG

o

.

This is a corollary to (2.16) and its opposite.

(2.18) Let Y be a G-space, and let q ∈ Ob G. Then the G-map Y → EGY has
Y (q)→ (EGY )(q) a homotopy equivalence of spaces.

This follows from (2.17).

The Category 0→ 1

Note an example, that in which G is the category 0 → 1 with two objects
{0, 1} and a single nonidentity morphism 0 → 1. That is, G is the category
previously denoted in this chapter by I. A G-space is then a map g : Y0 → Y1

in TOP.
The G×Go-space EG can be computed. Up to natural homeomorphism it is

EG(�, 0)
g∗←−−−− EG(�, 1)

EG(0, �) 0 ←−−−− ∅

g∗

y i

y y
EG(1, �) I

j←−−−− 1.

Hence
(EGY )(0) ' EG(0, �)×G Y ' 0× Y0,

(EGY )(1) ' EG(1, �)×G Y ' I × Y0 ∪g Y1.

Thus EGY is up to natural isomorphism the inclusion

0× Y0 ↪→ I × Y0 ∪g Y1,

which is the standard model in homotopy theory for the cofibration associated
with the map g.

Similarly (EGY )(0) is all G-maps from EG(�, 0) into Y , hence

(EGY )(0) ⊂ Y0 × (Y1)I

consists of all (y0, σ) ∈ Y0 × (Y1)I with gy0 = σ(0). Moreover, (EGY )(1) is all
G-maps from EG(�, 1) into Y , hence (EGY )(1) = Y1. Thus EGY is the map

(EGY )(0)→ Y1, (y0, σ) 7→ σ(1),
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which is the standard model in homotopy theory for the fibration associated with
the map g.

We review in Chapter 3 the general topology of cofibrations, fibrations, and
homotopy equivalences, because these topics are deeply interwoven with the
study of actions of small categories. After having done that, we can then com-
plete in Chapter 4 the beginning we have made here.
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CHAPTER III

Cofibrations, Fibrations, and Homotopy Equivalences

We now take an interlude from development of simplicial spaces to review the
basic homotopy of cofibrations, fibrations and homotopy equivalences. Our even-
tual purpose is to review the equivariant general topology which has been in-
vented in order to understand homotopy theory better. That being the case, one
will understand better if one starts with the simple examples which have to do
with the role of cofibrations and fibrations in topology.

The reader who wishes to consult original sources will find an extensive liter-
ature. One could consult some of the older works such as those of Fox [3.3,1943],
J.H.C. Whitehead [3.9,1949], and Hurewicz [3.4,1955]. In the next generation
there are works such as those of Dold [3.2,1963], Spanier [2.12,1966], D. Puppe
[3.7,1967] and Strom [3.8,1966-1968]. Besides Spanier’s book, one should also
note the books of tom Dieck, Kamps, and Puppe [3.1,1970], G.W. Whitehead
[1.6,1978] and I.M. James [3.5,1984].

Cofibered Pairs

Let (X,A) be a closed pair of spaces in TOP. Then (X,A) is a cofibered pair
if given a map φ : X → Y in TOP and a homotopy H0 : I × A → Y with
H0(0, a) = φ(a) for all a ∈ A, then there exists a homotopy H : I×X → Y with

H(t, a) = H0(t, a), a ∈ A, H(0, x) = φ(x), x ∈ X.

Equivalently, (X,A) is a cofibered pair if and only if there exists a retracting
map of I ×X onto 0×X ∪ I ×A.

It is easily checked that if X ⊃ A ⊃ B and if (X,A) and (A,B) are cofibered
pairs, then (X,B) is a cofibered pair.

Suppose (X,A) is a cofibered pair and that r is a retraction of I × X onto
0×X ∪ I ×A. Let the projection maps be denoted by

I
π1←− I ×X π2−→ X,

and define a function u : X → I by

u(x) = lubt∈I |t− π1r(t, x)|.

59
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It follows from (1.10) that I ×X has the product topology of the category top,
and one can readily show that u is continuous. It is also the case that u(x) = 0
if and only if x ∈ A. For if x /∈ A, it can be seen that if t is a sufficiently small
positive number then π1r(t, x) = 0 and hence u(x) > 0. We start a collection of
properties of cofibered pairs (X,A) with this one.

(i) There exists a map u : X → I with u−1(0) = A.

Continue to assume a cofibered pair (X,A) with a retracting map r of I ×X
onto 0×X ∪ I ×A. There is a homotopy H : I ×X → X defined by

H(t, x) = π2r(t, x),

and it has the following properties;

(ii) H(0, x) = x for all x ∈ X ;
(iii) H(t, a) = a for all a ∈ A;
(iv) H(t, x) ∈ A whenever 1 ≥ t > u(x).

Conversely, if (X,A) is a pair in TOP such that there exists a map u : X → I
and a homotopy H : I ×X → X satisfying (i)-(iv), then (X,A) is a cofibered
pair (see Strom [3.8]). For one can then define the retracting map r by

r(t, x) =

{
(0, H(t, x)), for t ≤ u(x)
(t− u(x), H(u(x), x)), for t ≥ u(x).

If (X,A) and (Y,B) are cofibered pairs, then (X × Y,A × Y ∪ X × B) is a
cofibered pair. For if u,H satisfy (i)-(iv) for (X,A) and if v,K satisfy (i)-(iv)
for (Y,B), then w,L satisfy (i)-(iv) for (X × Y,A× Y ∪X ×B), where

w(x, y) = min (u(x), v(y)), L(t, x, y) = (H(min(t, v(y)), x),K(min(t, u(x)), y)).

If φ : (X,A) → (Y,B) is a relative homeomorphism of closed pairs in TOP,
then (X,A) a cofibered pair implies (Y,B) a cofibered pair. For let r be a
retraction of I ×X onto 0×X ∪ I ×A. The natural quotient map X tB → Y
yields a quotient map I × (X tB)→ I × Y . We have a retraction

r t 1I×B : I ×X t I ×B → 0× (X tB) ∪ I × (A tB).

The diagram

I ×X t I ×B −−−−→ 0× (X tB) ∪ I × (A tB)y y
I × Y 0× Y ∪ I ×B

induces a retraction I × Y → 0× Y ∪ I ×B.
A cofibered filtered space X =

⋃
Xn in TOP is a filtered space such that

(Xn, Xn−1) is a cofibered pair for each n > 0. It is then the case that (X,X0)
is a cofibered pair. Fix a map φ : X → Y and a homotopy H0 : I × X0 → Y
such that H0(0, x0) = φ(x0) for all x0 ∈ X0. One can extend to a homotopy
H1 : I ×X1 → Y such that

H1(t, x0) = H0(t, x0), x0 ∈ X0, H1(0, x1) = φ(x1), x1 ∈ X1.
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Similarly, one obtains inductively a sequence Hn : I × Xn → Y and obtains
H : I ×X → Y as the common value of the Hn.

The Category TOP\A of Spaces Under A

Fix a compactly generated space A. The category TOP\A of spaces under A
has as objects all maps ν : A → X in TOP. We most often denote the object
simply by X , regarding the map ν as implicit. The morphisms φ : X → Y of
TOP\A are the commutative diagrams

A A

ν

y ν′
y

X
φ−−−−→ Y

in TOP.
There is a homotopy relation ∼ in TOP\A. Given φ0, φ1 : X → Y with

φ0ν = ν′, φ1ν = ν′,

then φ0 is homotopic to φ1 in TOP\A if there exists a homotopy H : I×X → Y
joining φ0 to φ1 such that

H(t, ν(a)) = ν′(a), a ∈ A, t ∈ I.

The homotopy category πTOP\A has as objects all spaces X under A and as
morphisms X → Y all homotopy classes [φ] of morphisms φ : X → Y in TOP\A.
A map φ : X → Y in TOP\A is a homotopy equivalence in TOP\A if there
exists a map θ : Y → X in TOP\A with φθ and θφ homotopic to the identity in
TOP\A.

We call a map φ : X → Y in TOP\A a weak homotopy equivalence in TOP\A
if φ : X → Y is a homotopy equivalence in TOP. Such a φ has a homotopy
inverse in TOP but not necessarily in TOP\A.

Cofibrations and TOP\A

A map ν : A → X is a cofibration if ν is an inclusion map onto a closed
subset ν(A) of X , and if (X, ν(A)) is a cofibered pair. Denote by COF\A the
full subcategory of TOP\A whose objects are the cofibrations ν : A→ X .

Let ν : A→ X be an arbitrary space under A. There is then the diagram

I ×A i←− 1×A ' A ν−→ X

and its pushout diagram

1×A ν−−−−→ X

i

y j

y
I ×A π−−−−→ I ×A ∪ν X.

We then have the relative homeomorphism of pairs

(I ×A, ∂I ×A)→ (I ×A ∪ν X, 0×A tX),
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from which it follows that the latter pair is a cofibered pair. Since (0×AtX, 0×A)
is also a cofibered pair, then (I×A∪νX, 0×A) is a cofibered pair. Alternatively,
the map

A
ν′−→ I ×A ∪ν X

which identifies a ∈ A with (0, a) is a cofibration. This is the mapping cylinder
construction pointed out at the end of Chapter 2. There is the commutative
diagram

A A

ν′
y ν

y
I ×A ∪ν X

φ−−−−→ X

where φ is induced by the map I ×A tX → X which maps (t, a) into ν(a) and
x into x. It can be checked that φ is a weak homotopy equivalence in TOP\A.
We often denote I ×A ∪ν X by EX and ν′ by Eν.

Theorem 3.1 Consider the commutative diagram

A A

ν

y ν′
y

X
φ−−−−→ Y

in TOP, where ν and ν′ are cofibrations. If φ is a weak homotopy equivalence
in TOP\A, then φ is a homotopy equivalence in TOP\A.

Proof. Choose a map θ : Y → X with θφ ∼ 1X in TOP. Let H : I ×X → X
be a homotopy with

H(0, x) = θφ(x), H(1, x) = x.

One next uses the fact that ν′ is a cofibration. Define

K0 : 0× Y ∪ I × ν′(A)→ X

by

K0(t, ν′a) = H(t, νa), K0(0, y) = θ(y),

checking that the definitions coincide on 0× ν′A. Since ν′ is a cofibration, there
exists an extension K : I × Y → X .

Define µ : Y → X by µ(y) = K(1, y). Then

µ(ν′a) = K(1, ν′a) = H(1, νa) = νa,

and µ is a morphism of TOP\A.
One next shows that µφ ∼ 1X in TOP\A, using the cofibration condition on

ν. Since (X, νA) is a cofibered pair, so is

(I, ∂I)× (I, 0)× (X, νA).

Define

M0 : ∂I × I ×X ∪ I × 0×X ∪ I × I × νA→ X
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by

M0(0, u, x) = K(u, φ(x)), M0(1, u, x) = H(u, x),

M0(t, 0, x) = θφ(x), M0(t, u, νa) = K(u, ν′a) = H(u, νa),

and check that M0 is a well defined continuous function. Extend M0 to a map

M : I × I ×X → X,

and define L : I ×X → X by

L(t, x) = M(t, 1, x).

Then check that L is a homotopy in TOP\A from µφ to 1X .
Thus φ : X → Y has a left homotopy inverse µ : Y → X in TOP\A. Similarly

µ has a left homotopy inverse τ : X → Y in TOP\A, thus

φ ∼ τµφ ∼ τ

in TOP\A and φ and µ are homotopy inverses in TOP\A.

Corollary 3.2 Let (X,A) be a cofibered pair. Then the inclusion A
i−→ X is a

homotopy equivalence if and only if A is a strong deformation retract of X. In
particular, (X,A) is a cofibered pair if and only if 0 × X ∪ I × A is a strong
deformation retract of I ×X.

Proof. To obtain the first conclusion, apply (3.1) to

A A∥∥∥ i

y
A

i−−−−→ X.

To obtain the second, note that 0×X ∪ I ×A ↪→ I ×X is a homotopy equiva-
lence.

Fibrations and the Category TOP/B of Spaces over B

Fix a compactly generated space B. The category TOP/B of spaces over B
has as objects the maps g : X → B in TOP. As with spaces under A, we often
denote the object g : X → B by X . The morphisms φ : X → Y of TOP/B are
the commutative diagrams

X
φ−−−−→ Y

g

y g′
y

B B
in TOP.

Given an object g : X → B in TOP/B there is the object gπ : I ×X → B,
where π : I ×X → X is the projection. If θ0, θ1 : X → Y are maps in TOP/B,
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then θ0 is homotopic to θ1 in TOP/B, written θ0 ∼ θ1, if there is a morphism
H : I ×X → Y such that

H(0, x) = θ0(x), H(1, x) = θ1(x), x ∈ X.

A map φ : X → Y in TOP/B is a homotopy equivalence in TOP/B if there
is a map θ : Y → X in TOP/B with φθ ∼ 1Y and θφ ∼ 1X in TOP/B. A
homotopy equivalence in TOP/B is also called a fiber homotopy equivalence. A
map θ : X → Y in TOP/B is a weak homotopy equivalence in TOP/B if it is a
homotopy equivalence in TOP.

A fibration in TOP is a map g : Y → B such that for any commutative
diagram in TOP

0×X φ0−−−−→ Y

i

y g

y
I ×X φ1−−−−→ B

there exists a lifting: a map θ : I × X → Y such that θi = φ0 and gθ = φ1.
We denote by FIB/B the full subcategory of TOPwith objects the fibrations
g : Y → B.

Immediate remarks then include the following:

(3.3;i) A composition of two fibrations is a fibration.
(3.3;ii) Every projection map A× Y → Y in TOP is a fibration.
(3.3;iii) The maps e0 : BI → B , e0(σ) = σ(0), and e0,1 : BI → B ×B,
e0,1(σ) = (σ(0), σ(1)), in TOP are fibrations.

(3.3;iv) If B′
φ−→ B

g←− Y is a diagram in TOP where g is a fibration,
and if

Y ′
φ0−−−−→ Y

g′
y g

y
B′

φ−−−−→ B

denotes the pullback diagram, then g′ is a fibration; when the context
is clear, we will write it as g′ : φ∗Y → B′.

(3.3;v) If g : Y → B is a fibration and if B′ is a closed subset of B, then
g|Y ′ : Y ′ → B′ is a fibration, where Y ′ = g−1B′.

(3.3;vi) Given a map g : X → B in TOP, denote by E′X the subspace
of X × BI of all [(x, σ) : g(x) = σ(0)] and define E′g : E′X → B by
E′g(x, σ) = σ(1). E′X is the pullback of

X
g−→ B

e0←− BI

and the map E′g : E′X → B is a fibration.
(3.3;vii) Given a space B in TOP and a cofibered pair (X,A) in TOP,

then the restriction map BX → BA is a fibration.

The following theorem is due to Dold [3.2].
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Theorem 3.4 Consider the morphism φ : X → Y in TOP/B, i.e. the commu-
tative diagram in TOP

X
φ−−−−→ Y

g

y g′
y

B B

and suppose that g and g′ are both fibrations. If φ is a weak homotopy equiva-
lence in TOP/B, then φ is a homotopy equivalence in TOP/B.

Proof. Let θ : Y → X be a homotopy inverse for φ in TOP. Then φθ ∼ 1Y ,
and there is a homotopy H : I × Y → Y joining φθ to 1Y . Hence g′H is a
homotopy joining gθ to g′. Since g is a fibration, there is a map K : I × Y → X
with gK = g′H and K(0, y) = θ(y). Define µ : Y → X by µ(y) = K(1, y) and
note that µ is a morphism in TOP/B.

One next shows the existence of a homotopy L : I × Y → Y joining φµ to 1Y
and with g′L(t, y) = g′(y), i.e. that φµ ∼ 1Y in TOP/B. Define

M0 : I × 0× Y ∪ ∂I × I × Y → Y

by

M0(0, t, y) = φK(t, y),

M0(1, t, y) = H(t, y),

M0(s, 0, y) = φθ(y),

Define M : I × I × Y → B by

M(s, t, y) = gK(t, y) = g′H(t, y).

There is a homeomorphism (I × I, 0× I)→ (I × I, I × 0 ∪ ∂I × I) and hence a
homeomorphism (I × I × Y, 0× I × Y ) → (I × I × Y, I × 0× Y ∪ ∂I × I × Y ).
That is, there is a commutative diagram

0× I × Y h0−−−−→ I × 0× Y ∪ ∂I × I × Y

i

y j

y
I × I × Y h−−−−→ I × I × Y

in TOP with i, j inclusions and h0, h homeomorphisms. Since g′ is a fibration,
the commutative diagram

0× I × Y M0h0−−−−→ Y

i

y g′
y

I × I × Y Mh−−−−→ B

has a lifting L′ : I × I × Y → Y . Define L(s, y) = L′h−1(s, 1, y). Note that L is
a homotopy between φµ and 1Y in TOP/B.
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Thus φ has a right homotopy inverse µ in TOP/B. Similarly µ has a right
homotopy inverse τ , and

φ ∼ φµτ ∼ τ.
Thus φ and µ are homotopy inverses in TOP/B.

Cofibrations, Fibrations, and Liftings

Given a commutative diagram

A
φ0−−−−→ Y

f

y g

y
X

φ1−−−−→ B

in TOP, a lifting of the diagram is a map θ : X → Y in TOP such that θf = φ0

and gθ = φ1. We are interested in conditions on f and g that ensure that the
diagram has a lifting. We start with a theorem from Strom [3.8].

Theorem 3.5 Let g : Y → B be a fibration and let (X,A) be a cofibered pair
with the inclusion i : A → X a homotopy equivalence in TOP. Then every
commutative diagram

A
φ0−−−−→ Y

i

y g

y
X

φ1−−−−→ B

has a lifting θ : X → Y .

Proof. Let µ : X → I be a map with µ−1(0) = A. By (3.2) there is a strong
deformation retraction of X onto A, in the form H : I ×X → X of a homotopy
{Ht : 0 ≤ t ≤ 1} with H1 the identity map of X , with each Ht restricted to A
the identity map of A, and with H0 a retraction of X onto A. It is no restriction
to suppose in addition that

H(µ(x), x) = H(1, x) , x ∈ X.

For otherwise one would replace H by H ′, where

H ′(t, x) =

 H(t/µ(x), x), if µ(x) > 0 and µ(x) ≥ t ≥ 0
x, if µ(x) = 0 = t
H(1, x), if 1 ≥ t ≥ µ(x).

Hence we suppose the added condition holds. Then the commutative diagram

0×X φ0H0−−−−→ Y

j

y g

y
I ×X φ1H−−−−→ B
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has a lifting K : I ×X → Y . Define θ : X → E by θ(x) = K(µ(x), x).

Corollary 3.6 Consider the commutative diagram in TOP

0×X ∪ I ×A φ0−−−−→ Y

i

y g

y
I ×X φ1−−−−→ B

where (X,A) is a cofibered pair and g is a fibration. There is a lifting θ : I×X →
Y .

Proof. By (3.2), (I ×X, 0×X ∪ I × A) is a cofibered pair with the inclusion
a homotopy equivalence.

Theorem 3.7 Consider the commutative diagram in TOP

A
φ0−−−−→ Y

i

y g

y
X

φ1−−−−→ B

where (X,A) is a cofibration and where g is a fibration and a homotopy equiva-
lence in TOP. Then the diagram has a lifting.

Proof. There is the weak homotopy equivalence in TOP/B given by

Y
g−−−−→ B

g

y 1B

y
B B

which is then by (3.4) a homotopy equivalence in TOP/B. Let s : B → Y
denote a homotopy inverse in TOP/B. Then gs = 1B, and there is a homotopy
H : I ×Y → Y joining sg to 1Y as a fiber homotopy. Consider the commutative
diagram

0×X ∪ I ×A F0−−−−→ Yy g

y
I ×X F−−−−→ B

where

F (t, x) = φ1(x),

F0(0, x) = sφ1(x),

F0(t, a) = H(t, φ0(a)).
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By (3.6), there is a lifting G : I×X → Y and one can take G(1, x) as the desired
lifting.

Two Homotopy Lifting Theorems

Using the cofibration and fibration associated to a map in TOP, we next prove
two homotopy lifting theorems by weakening the hypotheses in (3.5) and (3.7).

Given a map ν : A→ X in TOP, there is the associated cofibration Eν : A→
EX and the pushout diagram

1×A ν−−−−→ X

i

y j

y
I ×A π−−−−→ EX.

Suppose that we are given a homotopy commutative diagram

A
φ0−−−−→ Y

ν

y g

y
X

φ1−−−−→ B

with homotopy H0 : I×A→ B joining gφ0 and φ1ν. The maps H0 : I×A→ B
and φ1 : X → B induce a map on the mapping cylinder f : EX → B. There is
a commutative diagram

A
φ0−−−−→ Y

Eν

y g

y
EX

f−−−−→ B.

Conversely, suppose that we are given a commutative diagram

A
φ0−−−−→ Y

Eν

y g

y
EX

f−−−−→ B.

The diagram

A
φ0−−−−→ Y

ν

y g

y
X

fj−−−−→ B

is homotopy commutative with homotopy fπ.
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Homotopy commutative diagrams can also be interpreted in terms of associ-
ated fibrations. Given a map g : Y → B in TOP, there is the associated fibration
E′g : E′Y → B and the pullback diagram

E′Y
τ−−−−→ BI

π

y e0

y
Y

g−−−−→ B.

Suppose that we are given a homotopy commutative diagram

A
φ0−−−−→ Y

ν

y g

y
X

φ1−−−−→ B

with homotopy H0 : I × A → B joining gφ0 and φ1ν. By (1.14) there is the
map LH0 : A → BI . The maps φ0 and LH0 induce a map f : A → E′Y . The
diagram

A
f−−−−→ E′Y

ν

y E′g

y
X

φ1−−−−→ B

is commutative. Conversely, given a commutative diagram

A
f−−−−→ E′Y

ν

y E′g

y
X

φ1−−−−→ B,

the diagram

A
πf−−−−→ Y

ν

y g

y
X

φ1−−−−→ B

is homotopy commutative with homotopy L−1(τf).

Theorem 3.8 Suppose that ν : A→ X is a homotopy equivalence in TOP, and
that g : Y → B is a fibration. Given a homotopy commutative diagram

A
φ0−−−−→ Y

ν

y g

y
X

φ1−−−−→ B

in TOPand a homotopy H0 : I ×A→ B joining gφ0 to φ1ν, there exists a map
θ : X → Y with gθ = φ1 and a homotopy H : I ×A→ Y joining φ0 and θν with
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H0 = gH.

Proof. There is the pushout diagram

1×A ν−−−−→ X

i

y j

y
I ×A π−−−−→ EX

and the commutative diagram

A
φ0−−−−→ Y

Eν

y g

y
EX

f−−−−→ B

described above. The map Eν : A → EX is a cofibration and a homotopy
equivalence in TOP. By (3.5) there is a lifting h : EX → Y . Let θ = hj and
H = hπ.

The following is the homotopy extension lifting property, or as Boardman and
Vogt [4.1] have called it, HELP.

Theorem 3.9 (HELP) Suppose that g : Y → B is a homotopy equivalence in
TOP, and that ν : A→ X is a cofibration. Suppose that

A
φ0−−−−→ Y

ν

y g

y
X

φ1−−−−→ B

is a homotopy commutative diagram and that we are given a homotopy H0 :
I×A→ B joining gφ0 to φ1ν. Then there exists a map θ : X → Y with θν = φ0

and a homotopy H : I ×X → B joining gθ to φ1 with H(1I × ν) = H0.

Proof. There is a commutative diagram

Y
k−−−−→ E′Y

g

y E′g

y
B

1B−−−−→ B

where k(x) = (x, σx) and σx denotes the constant path at g(x). Since g is a
homotopy equivalence in TOP, E′g is a homotopy equivalence in TOP. There
is the pullback diagram

E′Y
τ−−−−→ BI

π

y e0

y
Y

g−−−−→ B
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and the commutative diagram

A
f−−−−→ E′Y

ν

y E′g

y
X

φ1−−−−→ B

described above. By (3.7) there is a lifting h : X → E′Y . Let θ = πh and let
H = L−1(τh).

Homotopy Equivalences and Weak Homotopy Equivalences in TOPG

We now return to the mainstream of our topic by investigating further than at
the end of Chapter 2 the categoryG with two objects 0 and 1 and one nonidentity

morphism 0 → 1. The objects X of TOP0→1 are the maps X0
g−→ X1 and the

morphisms φ : X → Y are the G-maps, i.e. the commutative diagrams

X0
φ0−−−−→ Y0

g

y g′
y

X1
φ1−−−−→ Y1.

As introduced just prior to (2.16), there is a notion of homotopy in TOPG for
any small category G. Given the G-space X , there is the G-space I × X , and
there are the G-maps

π0, π1 : X → I ×X.
Two G-maps φ, θ : X → Y are homotopic in TOPG if there exists a G-map
H : I × X → Y with φ = Hπ0 and θ = Hπ1. This is an equivalence relation
∼ on the G-maps X → Y . A G-map φ : X → Y is a homotopy equivalence in
TOPG if there exists a G-map θ : Y → X with θφ and φθ both homotopic in
TOPG to the identity G-map. Denote by HE the subcategory of TOPG whose
morphisms are the homotopy equivalences in TOPG.

The homotopy category πTOPG of TOPG is the category whose objects are
the G-spaces X and whose morphisms are the homotopy classes [φ] of G-maps
φ : X → Y . There is the functor

F ′ : TOPG → πTOPG

which is the identity on objects and which takes φ into [φ]. The isomorphisms of
πTOPG are precisely the homotopy classes whose representatives are homotopy
equivalences in TOPG. Given any functor F : TOPG → C such that whenever
φ is a homotopy equivalence of TOPG then Fφ is an isomorphism of C, there
exists a unique functor F ′′ : πTOPG → C with F = F ′′F ′. To prove this, note
for any G-space X that π0, π1 : X → I×X are homotopy equivalences in TOPG

with common homotopy inverse the projection G-map ν : I × X → X . Then
Fπ0 = Fπ1 and if φ0, φ1 : X → Y are homotopic in TOPG then Fφ0 = Fφ1.
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In the language of Gabriel-Zisman [2.4], we thus have πTOPG = TOPG[HE−1].
That is, πTOPG is the category obtained from TOPG by inverting the homotopy
equivalences in TOPG.

We need also the weak homotopy equivalences of TOPG, that is the G-maps
φ : X → Y such that for each p ∈ Ob G the map φp : X(p) → Y (p) is a

homotopy equivalence in TOP. Denote by WHE the subcategory of TOPG

whose morphisms are the weak homotopy equivalences in TOPG.

Cofibrations and Fibrations as Objects of TOP0→1

We return to TOP0→1. Denote by COF the full subcategory of TOP0→1 whose
objects are all the cofibrations in TOP0→1, and by FIB the full subcategory of
TOP0→1 whose objects are the fibrations in TOP0→1.

Theorem 3.10 Let v : A → X and τ : B → Y be cofibrations in TOP, and
let φ : ν → τ be a morphism in TOP0→1 such that both φ0 : A → B and
φ1 : X → Y are homotopy equivalences in TOP. That is, suppose there is a
commutative diagram

A
φ0−−−−→ B

ν

y τ

y
X

φ1−−−−→ Y

with φ a weak homotopy equivalence in TOP0→1. Then φ is a homotopy equiv-
alence in TOP0→1.

Proof. We will prove that φ has a right homotopy inverse θ, and the usual
argument will then show that φ and θ are homotopy inverses. Start by picking
any homotopy inverse θ0 : B → A and picking any homotopy H0 : I × B → B
joining φθ0 to 1B. Then use (3.9) on the diagram

B
νθ0−−−−→ X

τ

y φ1

y
Y

1Y−−−−→ Y

and the homotopy τH0 to obtain θ1 : Y → X and a homotopy H1 : I × Y → Y
such that H0 and H1 give a homotopy joining φθ to 1.

The freedom to pick θ0 and the homotopy H0 arbitrarily will be useful in
other contexts.

Theorem 3.11 Consider the commutative diagram in TOP

Y ′
φ0−−−−→ Y

g′
y g

y
B′

φ1−−−−→ B
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where g′ and g are fibrations and where φ0 and φ1 are homotopy equivalences
in TOP. That is, consider the weak homotopy equivalence φ : E ′ → E in
TOP0→1, where E ′ and E are both fibrations. Then φ is a homotopy equiva-
lence in TOP0→1.

Proof. It suffices to show that φ has a left homotopy inverse. Choose a left
homotopy inverse θ1 : B → B′ for φ1 and a homotopy H1 : I × B′ → B′ joining
1B′ to θ1φ1. Now use (3.8) on the diagram

Y ′
1Y−−−−→ Y ′

φ0

y g′
y

Y
θ1g−−−−→ B′

and the homotopy H1(1I × g′) to obtain a map θ0 : Y → Y ′ and a homotopy
H0 : I × Y ′ → Y ′ joining 1Y and θ0φ0.

Categories with Principal Models

Let C be a category with a homotopy relation on its morphisms, and thus an
associated homotopy category πC. One assumes an equivalence relation ∼p,q on
each set of morphisms p ←− q, such that if g, g′ : q −→ p have g ∼p,q g′ then for
any

s
h←− p, q

f←− r

we have hgf ∼s,r hg′f . Denote by HE the subcategory of C whose morphisms
are the homotopy equivalences of C. Assume we are given a subcategory WHE of
C containing HE, whose morphisms are called the weak homotopy equivalences of
C. Let M be a subcategory of C, whose objects are called models. The objects of
M are called principal models or principal objects if there is a functor E : C → C
and a natural transformation T : E → 1 which satisfy the following:

(1) For each object X of C, the object EX is a model.
(2) For each object X of C, TX : EX → X is a weak homotopy equiva-

lence.
(3) If X and Y are models and φ : X → Y is a weak homotopy equiva-

lence, then φ is a homotopy equivalence.
(4) If φ, θ : X → Y are homotopic morphisms then Eφ,Eθ : EX → EY

are homotopic.
(5) If the morphism φ : X → Y is a weak homotopy equivalence, then
Eφ : EX → EY is a weak homotopy equivalence (and therefore a
homotopy equivalence by (3)).

Theorem 3.12 Suppose that C is a category with principal models as above, and
consider the diagram in C

A
φ−→ Y

θ←− X
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where A is a model and where θ is a weak homotopy equivalence. Then there is
exactly one homotopy class of maps µ : A→ X such that φ ∼ θµ.
Proof. Consider the diagram

EA
Eφ−−−−→ EY

Eθ←−−−− EX

TA

y TY

y TX

y
A

φ−−−−→ Y
θ←−−−− X.

It follows from our assumptions that TA and Eθ are homotopy equivalences,
therefore invertible in the homotopy category. Hence there exists µ with the ho-
motopy relation holding. We have now to show that it is unique up to homotopy.
Otherwise there are nonhomotopic maps µ1, µ2 : A→ X with θµ1 ∼ θµ2. From
the diagram

EA
Eµi−−−−→ EX

Eθ−−−−→ EY

TA

y TX

y TY

y
A

µi−−−−→ X
θ−−−−→ Y

we see that the maps Eµ1, Eµ2 are not homotopic while E(θ)E(µ1) ∼ E(θ)E(µ2).
But E(θ) is an isomorphism in the homotopy category, which furnishes a con-
tradiction.

Cofibrations as Principal Models in TOP0→1

Given a morphism φ in TOP0→1, that is a commutative diagram

A
φ0−−−−→ B

ν

y τ

y
X

φ1−−−−→ Y,

there is a commutative diagram

A
θ0−−−−→ B

Eν

y Eτ

y
EX

θ1−−−−→ EY,

where θ0 = φ0 and θ1 is the map on quotients induced by the map I ×AtX →
I × B t Y , (t, a) 7→ (t, φ0(a)), a ∈ A, t ∈ I, x 7→ φ1(x), x ∈ X . This gives
a functor E : TOP0→1 → TOP0→1 by ν 7→ Eν, φ 7→ θ. There is a natural
transformation T : E → 1 given by the diagram

A
1A−−−−→ A

Eν

y ν

y
EX

φ′−−−−→ X
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where φ′πν(t, a) = ν(a), a ∈ A, φ′πν(x) = x, x ∈ X .

The functor E and the natural transformation T exhibit COF as a subcat-
egory of principal models in TOP0→1. It is clear from the mapping cylinder
construction that each Eν is a model and each Tν : Eν → ν is a weak homo-
topy equivalence in TOP0→1. By (3.10) a weak homotopy equivalence between
models is a homotopy equivalence. The conditions (iv) and (v) will normally be
automatic in our cases. For (iv), suppose that ν : A → X and τ : B → Y are
objects in TOP0→1 and φ,θ : ν → τ are homotopic morphisms in TOP0→1, with
the homotopy being exhibited by the commutative diagram

I ×A H0−−−−→ I ×B

1I×ν
y 1I×τ

y
I ×X H1−−−−→ I × Y.

The functor E takes this diagram to the commutative diagram

I ×A G0−−−−→ I ×B

1I×Eν
y 1I×Eτ

y
I ×EX G1−−−−→ I ×EY

where G0 = H0 and G1 is the map on quotients induced by the map I× I ×At
I × X → I × I × B t I × Y , (t, s, a) 7→ (t,H0(s, a)), a ∈ A, (t, x) 7→ H1(t, x),
x ∈ X . G exhibits a homotopy between Eφ and Eθ.

The above argument also shows that, given an object A in TOP, COF\A is
a subcategory of principal models in TOP\A.

Another classic example of a category with principal models is as follows.
Take as starting point the category top, and apply the simplicial apparatus of
Chapter 2. There are functors

top
(�)∇−−−→ SET∆o |�|−→ TOP,

where for any space A denote by A∇ the simplicial set {A∇(n)} where the topol-
ogy on A∇(n) is replaced by the discrete topology. We thus have the composite
functor

E : top→ top

which sends A into |A∇|. Moreover one has a natural transformation T : E → 1
where given a space A then

TA : |A∇| → A

sends each σ×∆ (t0, · · · , tn) into σ(t0, · · · , tn). The principal models in this case
are the CW-complexes; the weak homotopy equivalences are those maps in top
which are always called the weak homotopy equivalences of top. There results,
then, an example of what we have called a category with principal models. See
Spanier [2.12] or Whitehead [1.6] for full treatment, perhaps in a different format.
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Categories with Coprincipal Models

As for categories with principal models, let C be a category with a homotopy
relation, associated homotopy category πC, and subcategories HE and WHE.
Let M be a subcategory of C, whose objects are called models. The objects
of M are called coprincipal models or coprincipal objects if there is a functor
E′ : C → C and a natural transformation T : 1→ E′ which satisfy the following:

(i) For each object X of C, the object E′X is a model.
(ii) Each TX : X → E′X , X an object of C, is a weak homotopy

equivalence.
(iii) If X and Y are models and φ : X → Y is a weak homotopy equiv-

alence, then φ is a homotopy equivalence.
(iv) If φ, θ : X → Y are homotopic morphisms then E′φ,E′θ : E′X →
E′Y are homotopic.

(v) If the morphism φ : X → Y is a weak homotopy equivalence, then
E′φ : E′X → E′Y is a weak homotopy equivalence (and hence a ho-
motopy equivalence).

Theorem 3.13 Let C be a category with coprincipal models as above. If

A
φ←− X µ−→ Y

is a diagram in C where A is a model and µ is a weak homotopy equivalence,
then there is a unique homotopy class of morphisms θ : Y → A with φ ∼ θµ.
In particular, given an object X of C, there is a model A and a weak homotopy
equivalence X → A unique up to a homotopy equivalence.

The proof is an exercise.

Fibrations as Coprincipal Models in TOP0→1

Given an object g : Y → B in TOP0→1, by (3.3;vi) there is an associated
fibration E′g : E′Y → B. Given a commutative diagram

X
φ0−−−−→ Y

f

y g

y
A

φ1−−−−→ B

in TOP, there is a commutative diagram

E′X
θ0−−−−→ E′Y

E′f

y E′g

y
A

θ1−−−−→ B,

where θ0(x, σ) = (φ0(x), φ1σ), x ∈ X , σ ∈ BI , and θ1 = φ1. This gives a functor
E′ : TOP0→1 → TOP0→1 by g 7→ E′g, φ 7→ θ. There is a natural transformation
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T : 1→ E′ given by the commutative diagram

Y
φ0−−−−→ E′Y

g

y E′g

y
B

1B−−−−→ B,

where φ0(y) = (y, σg(y)), y ∈ Y , and σg(y) is the constant path at g(y).
The functor E′ and the natural transformation T exhibit FIB as a subcategory

of coprincipal models in TOP0→1. Condition (iii) follows from (3.11), and the
other conditions follow routinely as for cofibrations. FIB/B is a subcategory of
coprincipal models for TOP/B.
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CHAPTER IV

A Basic Model for Equivariant General Topology

The equivariant general topology of actions of small categories emerged as an es-
tablished topic around 1970. Topological presentations were given by Boardman-
Vogt [4.1], May [2.8], and Segal [4.4], and a semi-simplicial presentation was given
by Bousfield-Kan [2.1]. Among other topics aimed at applications, each gave a
supporting model for the equivariant general topology that was needed for the
applications. Among new features were the consideration of equivariant topology
as a subject encompassing actions of small categories, the presentation of homo-
topy colimits and homotopy limits as primary invariants of a G-space, and the
more thorough incorporation of homotopy into the core of equivariant topology.

It is our goal in these first four chapters to give a beginning model for the sup-
porting equivariant general topology, drawn from the above work of Boardman-
Vogt, May, and Segal. In this chapter, we provide a beginning account of the
homotopy colimits and the homotopy limits of G-spaces in TOP, where G is
any small category. One needs a chosen way of producing for each G-space X
in TOP standard models for these homotopy limits and homotopy colimits. We
chose the most standard model for homotopy colimits in Chapter 2, the functor

BG(�) : TOPG → TOP, X 7→ BGX.

In this chapter, we have to explain the context in a meaningful way, i.e. the
special role of the principal G-spaces and their duals, the coprincipal G-spaces.
We want to end up for each small category G with a category of principal models
and a category of coprincipal models as was done in a simpler setting in Chapter
3; the terminology “principal” used there was motivated by the examples of this
chapter.

The material of this chapter is one of two approaches to the subject, that in
which general operator domains acting on spaces are taken as given and spaces
are used as invariants of the actions. In the other approach, spaces are taken as
given and one seeks an equivariant framework to understand the spaces better;
one seeks constructions which assign operator domains to a space. We wait until
later chapters to introduce this aspect of the subject, in which Stasheff has been
the leader. See his overview [4.5] for background on both sides.
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The Subcategory Id G of G and Extension TOPId G → TOPG

There is the subcategory Id G of G whose morphisms are all the identity
morphisms of G, and an Id G-space is precisely a collection A = {A(p)|p ∈
Ob G} of spaces. Thus the category TOPId G has as objects the collections A
of compactly generated spaces, and as morphisms φ : A → A′ all collections
φ = {φp : A(p)→ A′(p)} of maps.

If i : Id G→ G denotes the inclusion functor, there is the extension functor

i# : TOPId G → TopG

of Chapter 1. Given a collection A = {A(p)} of compactly generated spaces,
then the G-space i#A has

(i#A)(p) =
∐

q∈Ob G
G(p, q)×A(q),

and the action of G assigns to p′
g←− p and (g′, x) ∈ G(p, q) × A(q) the element

g(g′, x) = (gg′, x). Thus we can denote the G-space i#A by G×Ob G A. Clearly
if each A(p) is in TOP, then each (i#A)(p) is in TOP, and we have the functor

i# : TOPId G → TOPG.

Note that we could equivalently consider TOPId G as the category TOP/Ob G
of spaces over the discrete space Ob G.

These G-spaces i#A will be fundamental building blocks for nice G-spaces.
To see why, it is instructive to look first at the untopologized setting.

Free G-Sets

A G-set is a functor X : G → SET. It thus assigns to each p ∈ Ob G a set
X(p) and to each g : p→ q a function g∗ : X(p)→ X(q) sending x ∈ X(p) into
g∗x = gx ∈ X(q), satisfying g∗g′∗ = (gg′)∗ and 1p∗ = 1. A G-set X is said to be
free if there exists a collection A = {A(p)|p ∈ Ob G}, where each A(p) is a subset
of X(p), such that given q and x ∈ X(q) there is a unique p ∈ Ob G, a ∈ A(p)
and g : p→ q such that ga = x. In the semi-simplicial presentation of our topic,
the free G-sets are a basic notion. See Dror Farjun [4.2] for an exposition of the
use made of this concept. In a topological presentation such as this one, the
most basic G-spaces will be free as G-sets but the choice of generating set A has
to be tightly connected to the topology. We will soon introduce these G-spaces
precisely, and call them the principal G-spaces. They have been presented as
we present them in the monoid case by Steenrod [4.6], and in the general case
by Boardman-Vogt [4.1], although neither bothered to name them. The concept
of principal G-space used here differs somewhat from that used classically for
compact Lie groups, but we argue later in the chapter that it is the proper
concept, since it gives the appropriate class of principal G-spaces for the case in
which G is the category 0→ 1.

Consider the full subcategory SETG of TOPG whose objects are the dis-
crete G-spaces, i.e. the G-sets. Consider also the full subcategory SETId G of
TOPId G whose objects are the collections A of discrete Id G-spaces, i.e. the
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full subcategory whose objects A have each A(p) a set, and whose morphisms
φ : A(p)→ A′(p) have each φp a function from A(p) to A′(p). Then it is easy to
present the free G-sets in terms of the extension functor. There is the extension
functor i# : SETId G → SETG sending an Id G-set A into the G-set

i#A = G×Ob G A,

and X is a free G-set if and only if X is isomorphic in SETG to some i#A =
G×Ob G A.

Principal G-Spaces

As above, the category TOPId G has as objects all collections A = {A(p)|p ∈
Ob G} of compactly generated spaces, and as morphisms φ : B → A all collec-
tions φ = {φp} of maps φp : B(p) → A(p). If each B(p) is a closed subset of

A(p), then we speak of (A,B) as a closed pair in TOPId G. If each (A(p), B(p)) is
a cofibered pair in TOP, then we say that (A,B) is a cofibered pair in TOPId G.

There is the above functor

i# : TOPId G → TOPG

sending an Id G-space A into the G-space

i#A = G×Ob G A = {
∐

q∈Ob G
G(p, q)×A(q)}.

A G-space X is said to be a principal G-space if there exists a filtration X =⋃
n≥0Xn of X in TOPG such that:

(i) X0 is homeomorphic in TOPG to i#A0 = G×Id GA0 for some Id G-
space A0;

(ii) for each n > 0 there is a closed cofibered pair (An, Bn) in TOPId G

and a relative homeomorphism

(G×Ob G An, G×Ob G Bn)→ (Xn, Xn−1)

of G-spaces. Equivalently, there is a G-map G×Ob G Bn → Xn−1 and
a pushout diagram

G×Ob G Bn −−−−→ Xn−1y y
G×Ob G An −−−−→ Xn.

(4.1) For every Y in TOPG the G-space EGY of Chapter 2 is a principal G-
space. Similarly the G×Go-space EG of Chapter 2 is a principal G×Go-space.

Proof. We must first produce a filtration of EGY as a G-space. From (2.8),
each of its constituent spaces (EGY )(p) is filtered in TOP as (EGY )(p) =⋃

(G(p, �)
⊗

G Y )n. From the fact that (G(p, �)
⊗

G Y )n consists of all

(g0, g1, · · · , gn, y)×∆ (t0, · · · , tn)
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it is clear that any g : p→ p′ in G maps (G(p, �)
⊗

G Y )n into (G(p′, �)
⊗

G Y )n.
That is, EGY is naturally filtered as a G-space, say as EGY =

⋃
(EGY )n.

Clearly (EGY )0 is identified with all (g0, y) in G×Ob G Y , thus (EGY )0 is of
the desired form. More precisely, (EGY )0 is G×Ob G i#Y .

Let n > 0. We must use the existing relative homeomorphism from (2.8)

(G×Ob G (Gn, Gn,deg)×Ob G Y )×∆ (∇(n), ∂∇(n))→ ((EGY )n, (EGY )n−1)

in TOPG, where Gn,deg denotes all (g1, · · · , gn) ∈ Gn such that some gi is an
identity morphism. We can write the left hand side as

G×Ob G [((Gn, Gn,deg)×Ob G Y )×∆ (∇(n), ∂∇(n))]

which is of the desired form.
To see that EG is a principal G×Go-space one proceeds in an analogous way,

arriving finally at the building blocks

G×Ob G [(Gn, Gn,deg)×∆ (∇(n), ∂∇(n)))] ×Ob G G.

Thus we have the functor EG(�) : TOPG → TOPG together with the natural
transformation T : EG(�)→ 1, and each EGY is a principal G-space. We denote
by PRINCG the full subcategory of TOPG whose objects are the principal G-
spaces.

(4.2) If X is a principal G-space, then its colimit X/G is a compactly generated
space. Thus we have the colimit functor

colim : PRINCG → TOP.

Proof. Inductively one shows the filtration X/G =
⋃
Xn/G in Top has each

Xn/G compactly generated, from which it follows from (1.18) that X/G is com-
pactly generated. To establish the induction, one needs that Xn/G is a pushout
of

An ←↩ Bn → Xn−1/G

in TOP, after which one uses (1.20).

Homotopy Properties of Principal G-Spaces

We have adapted the following key theorem from Boardman-Vogt [4.1]. It is
the remaining nontrivial need in showing that TOPG is a category with prin-
cipal objects in the sense of Chapter 3. A G-map φ : X → Y is said to be a
weak homotopy equivalence in TOPG if each φp : X(p) → Y (p) is a homotopy
equivalence in TOP.

Theorem 4.3 If X and Y are principal G-spaces and if φ : X → Y is a weak
homotopy equivalence in TOPG, then φ is a homotopy equivalence in TOPG.
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Proof. Suppose X and Y are principal G-spaces, and that φ : X → Y is
a weak homotopy equivalence in TOPG. Let Y =

⋃
Yn be a filtration for Y

satisfying the properties for a principal G-space. Take n > 0 and make the
following inductive assumption: there exists a G-map θn−1 : Yn−1 → X and a
G-homotopy Hn−1 : I × Yn−1 → Y such that Hn−1 joins φθn−1 to the inclusion
i : Yn−1 → Y . The induction hypothesis will be established when we have
extended θn−1 to θn : Yn → X and Hn−1 to Hn : I × Yn → Y so that the
induction hypotheses hold at this next level.

Let (A,B) be a cofibered pair in TOPId G and let f : (G×Ob GA,G×Ob GB)→
(Yn, Yn−1) be a relative homeomorphism in TOPG. Note that for each p in Ob G
there is a natural inclusion of A(p) in G×Ob G A; simply identify y ∈ Y (p) with
(1p, y) ∈ G×Ob G Y . Let f ′ : A(p)→ Yn(p) and f ′′ : B(p)→ Yn−1(p) denote the
restriction of f to these subspaces. We then get a diagram of maps in TOP

B(p)
f ′′−−−−→ Yn−1(p)

(θn−1)p−−−−−→ X(p)

j

y k

y φp

y
A(p)

f ′−−−−→ Yn(p)
i−−−−→ Y (p)

for each p ∈ Ob G.

Associated with the shortened diagram

B(p)
(θn−1)pf

′′

−−−−−−→ X(p)

j

y φp

y
A(p)

if ′−−−−→ Y (p)

we also have a homotopy H ′0 : I × B(p) → Y (p) joining φp(θn−1)pf
′′ to if ′j,

obtained as the composition

I ×B(p)
id×f ′′−−−−→ I × Yn−1(p)

Hn−1−−−→ Y (p).

Thus we can apply (3.9) to obtain

Θ′ : A(p)→ X(p)

for all p ∈ Ob G with Θ′j = (θn−1)pf
′′ as well as a homotopy

H ′ : I ×A(p)→ Y (p)

for all p extending H ′0 and joining φpΘ
′ to if ′.

We now have a Id G-map Θ′ : A→ X and a Id G-homotopy H ′ : I ×A→ Y
joining φΘ′ to if ′. The Id G-map Θ′ : A → X has a unique extension to a
G-map Θ : G ×Ob G A → X and the Id G-homotopy H ′ : I × A → Y has a
unique extension to a G-homotopy H : I × (G×Ob G A)→ Y .
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We then have a commutative diagram

G×Ob G B −−−−→ Yn−1y θn−1

y
G×Ob G A Θ−−−−→ X

in TOPG, and hence a pushout G-map θn : Yn → X .

Similarly there is a commutative diagram

I × (G×Ob G B) −−−−→ I × Yn−1y y
I × (G×Ob G A) −−−−→ Y

in TOPG and a pushout G-map Hn : I × Yn → Y . The inductive assumption
can now be checked at the next level, and it can also be checked at the first level
as well.

Assuming the induction as having been established, there is a G-map θ : Y →
X and a G-homotopy H : I × Y → Y joining φθ to 1. Hence θ is a right homo-
topy inverse for φ in TOPG. Since X is also principal, θ in the same way has a
right homotopy inverse ψ in TOPG. Thus θ has both a right homotopy inverse
ψ and a left homotopy inverse φ and is thus a homotopy equivalence in TOPG.
Hence φ is a homotopy equivalance in TOPG.

Corollary 4.4 Consider the category TOPG, together with the notion of homo-
topy in TOPG and weak homotopy equivalence in TOPG. Take also the functor

EG(�) : TOPG → TOPG

given in Chapter 2, together with the natural transformation T : EG(�)→ 1. Let
the full subcategory of principal objects of TOPG be the full subcategory PRINCG

of principal G-spaces. With this given structure, TOPG is a category with prin-
cipal objects in the sense of Chapter 3.

The proof is an exercise.

A Homotopy Colimit BX of a G-Space X

Given a G-space X , a principalization of X is a pair (EX, [φ]) consisting of
a principal G-space EX and a homotopy class of G-maps φ : EX → X each of
which is a weak homotopy equivalence in TOPG. The standard principalization
of X is EGX together with the homotopy class of its natural G-map EGX → X .
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(4.5) Given two principalizations represented by φ0 : E0X → X and φ1 : E1X →
X, there exists a unique homotopy class of G-maps θ : E0X → E1X such that

E0X
θ−−−−→ E1X

φ0

y φ1

y
X X

is homotopy commutative in TOPG, and each θ is a homotopy equivalence in
TOPG.

This follows immediately from (3.12) and (4.4).
Let X be a G-space. A homotopy colimit BX of X is then a compactly

generated space BX together with a given homotopy class of maps BX → BGX ,
each of which is a homotopy equivalence in TOP. The standard homotopy colimit
BGX of X is the space defined in Chapter 2 and used above; in this case the given
homotopy class BGX → BGX is the class of maps homotopic to the identity.

Given two homotopy colimits B0X and B1X of X , we get a uniquely defined
homotopy class of maps B0X → B1X in TOP, those for which the diagram

B0X −−−−→ B1Xy y
BGX BGX

is homotopy commutative.
Every principalization (EX, [φ]) of a G-space X gives a homotopy colimit

BX = EX/G of X . This follows immediately from (4.5).
Consider for a moment where we are in categorical terms. We have a base

category πTOPG, the homotopy category of TOPG. We have another category
πPRINCG, the homotopy category of principal G-spaces, a full subcategory of
πTOPG with an inclusion functor S : πPRINCG → πTOPG. In the language of
MacLane [1.2,p.58], given an object X of πTOPG, a universal arrow for S at X
is a principal G-space E and a homotopy class of G-maps [φ] : E → X such that
if E′ is any principal G-space and [θ] : E′ → X is any homotopy class of G-maps
then there exists a unique homotopy class [ν] : E′ → E with [θ] = [φ][ν]. It can
readily be seen that if (E, [φ]) is a universal arrow for S at X , then φ is a weak
homotopy equivalence in TOPG. Thus the universal arrows are identical with
the principalizations.

The Category TOPG [WHE−1] in which WHE’s Are Inverted

Note that we have a model for TOPG [WHE−1] up to equivalence of categories.
The composed functor

TOPG
EG(�)−−−−→ PRINCG → πPRINCG

takes every weak homotopy equivalence into an isomorphism. Hence it induces
a functor

TOPG [WHE−1]→ πPRINCG.
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On the other hand there is composition

πPRINCG ↪→ πTOPG ' TOPG [HE−1]→ TOPG [WHE−1].

By adjointness arguments (see Gabriel-Zisman [2.4]), these set up an equivalence
of categories.

Theorem 4.6 There is the above equivalence of categories

TOPG [WHE−1] ∼ πPRINCG.

Alternatively we can take for a precise model for TOPG [WHE−1] the category
whose objects are the G-spaces and whose morphisms X → Y are the homotopy
classes in TOPG of G-maps EGX → EGY .

From this point of view one can consider the standard homotopy colimit as
the composition

TOPG [WHE−1]→ πPRINCG
colim−−−→ πTOP.

Note that it follows from (3.12) and (4.4) that in TOPG [WHE−1] the mor-
phisms X → Y are in one-to-one correspondence with the homotopy classes of
G-maps EGX → Y .

Principal G-Spaces for the Category 0→ 1

When we wish to test the meaning of some proposed construct, we first ex-
amine its meaning when G is the category 0→ 1. Here the G-spaces X are the
maps ν : X0 → X1. We seek a characterization of the principal G-spaces.

In this example, an Id G-space A is a pair [A(0), A(1)] of compactly generated
spaces, and G ×Ob G A is the inclusion A(0) ↪→ A(0) t A(1). These are the
building blocks. If X =

⋃
Xn is a principal G-space, then the G-space X0 must

be G-homeomorphic to some

A0(0) ↪→ A0(0) tA0(1).

Given a cofibered pair (Y,C) in TOP, we wish to show that the cofibration
C ↪→ Y is a principal G-space X =

⋃
Xn. As a first stage, we take for X0 the

identity map C → C, which is of the proper form.

The next stage X1 is obtained as the pushout in TOPG of a diagram

G×Ob G A←↩ G×Ob G B → X0.

For each p ∈ Ob G, this gives a rectangular pushout diagram. For 0 → 1, the
total diagram specifying X1 is therefore a cubical diagram. The proper choice
for our present purpose is to take A1 = [∅, Y ] and for B1 the pair [∅, C], so that
we obtain the G-space X1 as the vertical map X1(0) → X1(1) in the diagram
below.
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B1(0) = ∅

B1(0)
∐
B1(1) = C

A1(0)
∐
A1(1) = Y

A1(0) = ∅

X0(1) = C

X0(0) = C

X1(1) = Y

X1(0) = C

-

-

-

-

HHHHj

HHHHj

HHHHj

HHHHj

?

?

?

?

Clearly X1 is then just the given cofibration C ↪→ Y , thus we have the fol-
lowing.

(4.7) Every cofibration ν : C → Y is a principal G-space, where G is the cate-
gory 0→ 1.

We will prove the converse. In order to do so, we take any principal G-space
X =

⋃
Xn where X0 is of the form A0(0) ↪→ A0(0)tA0(1) and where inductively

Xn is read off the diagram below, it being assumed inductively that Xn−1 is a
cofibration.

Bn(0)

Bn(0)
∐
Bn(1)

An(0)
∐
An(1)

An(0)

Xn−1(1)

Xn−1(0)

Xn(1)

Xn(0)

νn-

-

-

-

HHHHj

HHHHj

HHHHj

HHHHj

?

?

?

?

The properties of the diagram are as follows.

(i) The top and bottom faces are pushout diagrams.
(ii) All maps in the right vertical face except possibly νn are cofibrations.
(iii) The left vertical face is a pullback diagram of cofibered inclusions.

In order to prove νn a cofibration, we use the following lemma.

(4.8) Assume the following commutative diagram in TOP.
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B

B′

A′

A

X ′

X

Y ′

Y

-

-

-

-

HHHHj

HHHHj

HHHHj

HHHHj

?

?

?

?θ′

θ

ϕ′

ϕ

κ ν

κ′ ν′

i′

i

j′

j

Assume also the following:

(i) the top face and the bottom face are pushout diagrams;
(ii) the left vertical face is a pullback diagram of cofibrations;
(iii) all maps in the right vertical face except possibly ν′ are cofibrations.

Then ν′ is a cofibration.

Proof. We may as well suppose in the left vertical face that all the cofibrations
are inclusion maps of cofibered pairs. The pullback property is then thatA∩B′ =
B.

For any space Z in TOP, there is the fibration π : ZI → Z which assigns to
a path f in Z its first point f(0). It is necessary and sufficient for ν′ : Y → Y ′

to be a cofibration that every commutative diagram

Y
µ−−−−→ ZI

ν′
y π

y
Y ′

µ′−−−−→ Z

have a lifting σ : Y ′ → ZI .

Since ν is a cofibration, and since π is both a fibration and a homotopy
equivalence, one can apply (3.7) to

X
µj−−−−→ ZI

ν

y π

y
X ′

µ′j′−−−−→ Z,

obtaining λ : X ′ → ZI with πλ = µ′j′ and λν = µj.

The map λφ′ : B′ → ZI then has

πλφ′ = µ′j′φ′ = µ′θ′i′.

Consider the maps

λφ′ : B′ → ZI , µθ : A→ ZI .
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It is seen that

B = A ∩B′ i−−−−→ A

k

y µθ

y
B′

λφ′−−−−→ ZI

commutes, since

λφ′k = λνφ = µjφ = µθi.

That is, we get a well defined map B′ ∪A→ ZI which we denote by λφ′ ∪ µθ.
We use without proof Lillig’s theorem; see Lillig [3.6] or James [3.5]. Lillig’s

theorem asserts that if X is a compactly generated space and if A and B are
closed subsets such that A, B and A∩B are cofibered subsets of X , then A∪B
is a cofibered subset of X .

By Lillig’s Theorem, (A′, B′ ∪A) is a cofibered pair. Hence the commutative
diagram

B′ ∪A λφ′∪µθ−−−−−→ ZIy π

y
A′

µ′θ′−−−−→ Z

has a lifting ρ : A′ → ZI with

πρ = µ′θ′, ρi′ = λφ′, ρk′ = µθ.

The commutative diagram

B′
φ′−−−−→ X ′

i′
y λ

y
A′

ρ−−−−→ ZI

gives, by the pushout property of the bottom face, a unique map σ : Y ′ → ZI

such that

σθ′ = ρ, σj′ = λ.

One then checks that σ is a lifting of the original diagram.

Corollary 4.9 For G the category 0 → 1, a G-space X of the form X0
ν−→ X1

is a principal G-space if and only if the map ν is a cofibration in TOP.
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Relationship Between the Reduced Product and Mapping Bifunctors

We come back to the mapping bifunctor of Chapter 1

TOPG × (TopG×H
o

)o → TOPH ,

where given X in TOPG and Y in TopG×H
o

we get (XY )TopG in TopH defined

by

(XY )TopG(q) = (XY (�,q))TopG .

That is, (XY )TopG(q) is the space of allG-maps Y (�, q)→ X . Here (XY (�,q))TopG

is a closed subset of
∏
pX(p)Y (p,q), which inherits the property of being com-

pactly generated from X(p), thus is in TOPH as asserted.
We risk confusion by using XY in place of (XY )TopG , and depend on the

reader to supply the context.

Theorem 4.10 Let X be in TOPG, let Y be in TopG×H
o

, and let Z be in
TopH×K

o

. We then have Y ×HZ in TopG×K
o

, and from TOPG×(TopG×K
o

)o →
TOPK get

XY×HZ

in TOPK . Alternatively, from TOPG × (TopG×H
o

)o → TOPH we get XY in

TOPH , whence from TOPH × (TopH×K
o

)o → TOPK we get

(XY )Z

in TOPK . There is a natural homeomorphism of K-spaces

XY×HZ ' (XY )Z .

Proof. We assume the following about the basic mapping bifunctor TOP ×
(Top)o → TOP.

(i) If M is closed in X , the natural map MY → XY is an inclusion map
onto a closed subset.

(ii) From (1.15), if π : Y → Z is a quotient map, then π# : XZ → XY

is an inclusion map onto a closed subset.

(iii) X

∐
q∈Q

Y (q) '
∏
q∈QX

Y (q).

(iv) (
∏
p∈P X(p))Y '

∏
p∈P X(p)Y .

(v)
∏
p,qX(p, q)Y (p,q) '

∏
p(
∏
qX(p, q)Y (p,q)) '

∏
q(
∏
pX(p, q)Y (p,q)).

(vi) XY×Z ' (XY )Z .

Assuming these, the proof transforms the spaces XY×HZ(r) and [(XY )Z ](r)
into closed subsets of the compactly generated space∏

p,q

X(p)Y (p,q)×Z(q,r).
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From the quotient map∐
q

Y (p, q)× Z(q, r)→ (Y ×H Z)(p, r)

and from (ii), (iii), (v) we get an inclusion map onto a closed subset

XY×HZ(r) ↪→
∏
p

∏
q

X(p)Y (p,q)×Z(q,r) '
∏
p,q

X(p)Y (p,q)×Z(q,r).

From (i), (iv), (v), and (vi) we get a closed inclusion

[(XY )Z ](r) ↪→
∏
q

(XY (�,q))Z(q,r) ↪→
∏
q

(
∏
p

X(p)Y (p,q))Z(q,r)

'
∏
q

∏
p

X(p)Y (p,q)×Z(q,r) '
∏
p,q

X(p, q)Y (p,q)×Z(q,r).

It is seen that both of the images in∏
p,q

X(p)Y (p,q)×Z(q,r)

consist of all
φp,q : Y (p, q)× Z(q, r)→ X(p)

such that if
p′

g←− p, y ∈ Y (p, q), z ∈ Z(q, r)

then φp′,q(gy, z) = gφp,q(y, z), and if

y ∈ Y (p, q′), q′
h←− q, z ∈ Z(q, r)

then φp,q(yh, z) = φp,q′(y, hz). The theorem follows.

The Standard Homotopy Limit

Corollary 4.11 Let X and Y be in TOPG, and consider the mapping bifunctor
TOPG × (TopG)o → TOP. There is a homeomorphism XEGY ' (EGX)Y in
TOP.

Proof. From (2.15), we can take EGY = EG×GY , while EGY is defined to be

XEG, using the mapping bifunctor TOPG× (TopG×G
o

)o → TOPG. From (4.10)
we get

XEGY ' XEG×GY ' (XEG)Y = (EGX)Y .

We now use the fact that TOPG and TOPG
o

have terminal objects. For
example, TOPG has as terminal object any G-space Z for which each Z(p) is a
singleton. The most natural such G-space Z has Z(p) = {p}, i.e. is Z = Ob G.
So we use Ob G to denote either a terminal G-space or a terminal Go-space as
well as the set of objects of G. If W is any G-space, its colimit can be taken to
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be (Ob G) ×G W where Ob G denotes the terminal Go-space, and its limit can
be taken to be (WOb G)TOPG , where Ob G denotes the terminal G-space. For
any Go-space W , similarly its colimit can be taken to be W ×G (Ob G).

The standard universal G-space EG is EGZ where Z = Ob G is the terminal
G-space. Up to natural isomorphism, it is given by EG = EG ×G (Ob G).
Similarly, we take EGo to be the Go-space (Ob G) ×G EG. It is seen that EG
can be taken to consist of all

(g0, g1, · · · , gn)×∆ (t0, · · · , tn),

with g((g0, g1, · · · , gn)×∆ (t0, · · · , tn)) = (gg0, g1, · · · , gn)×∆ (t0, · · · , tn), while
EGo can be taken to consist of all

(g1, · · · , gn, gn+1)×∆ (t0, · · · , tn).

Denote by BG the colimit of EG and by BGo the colimit of EGo . From the
associativity (1.21) of the reduced product, we have

BG ' (Ob G)×G (EG×G (Ob G)) ' ((Ob G)×G EG)×G (Ob G) ' BGo .

In fact, we take for BG = BGo the space |N(G)|, thus the space whose points
are of the form

(g1, · · · , gn)×∆ (t0, · · · , tn).

The compactly generated space BG = BGo is called the standard classifying
space of G or Go.

We also summarize as follows.

(4.12) For any small category G, we can take the standard classifying space BG
to be the Milnor realization |NG| of the nerve of G. If p is an object of G, then
EG is given by taking EG(p) to be the classifying space BG(p,�) of the category

G(p, �) whose objects are the morphisms p
g←− q of G, and with the morphisms

g′ ← g of G(p, �) being all commutative diagrams

r
g′′←−−−− q

g′
y g

y
p p

in G.

For any G-space Y , the standard homotopy colimit BGY of Y can be taken
by (2.14) to be the colimit of EGY , thus

BGY ' (Ob G)×G EGY ' (Ob G)×G (EG×G Y ) ' EGo ×G Y,

and we have the standard model EGo ×G Y for BGY .
For any G-space X , define the standard homotopy limit BGX of X to be the

limit of the G-space EGX . Thus

BGX = (EGX)Ob G ' (XEG)Ob G ' XEG×G(Ob G) ' XEG .
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Thus the standard homotopy limit BGX can be taken to be the space of G-maps
EG → X .

The Functor TOPId G → TOPG, A 7→ AG

The mapping bifunctor TOPId G × (Top(Id G)×Go)o → TOPG will be used.
Recall that an object A in TOPId G is a collection A = {A(p)} of compactly

generated spaces. As a fixed TOP(Id G)×Go-space, take {G(p, q)} where G acts
on the right. The resulting G-space is then

(AG)TopId G(q) =
∏

p∈Ob G
A(p)G(p,q),

together with its natural action of G. We denote this G-space by (AG)TopG , or

by greater abuse of notation, by AG. We then have the functor

�G : TOPId G → TOPG, A 7→ AG.

Consider (4.10) applied to A in TOPId G, G in TOP(Id G)×Go , and Y in
TOPG. Then

AG×GY ' (AG)Y .

In the notation used above, G×G Y results from the reduced product bifunctor

Top(Id Go)×G × TopG → TopId G

and in fact the above G ×G Y is seen to be i#Y where i denotes the inclusion
Id G → G. Thus the (Id G)-maps i#Y → A are naturally identified with the
G-maps Y → AG.

A morphism φ : A → A′ in TOPId G is called a fibration in TOPId G if each
φp : A(p) → A′(p) is a fibration in TOP. If C is in TOPId G and if (A,B) is a

closed cofibered pair in TOPId G, then the natural map CA → CB is a fibration
in TOPId G.

Consideration of (X,Y ) 7→ XY for X Fixed

Theorem 4.13 Let Y : Ho → TopG×G
o

be a functor, also interpreted as an Ho-
diagram in TopG×G

o

. Let colim Y denote the G×Go-space which is a colimit in
TopG×G

o

of the Ho-diagram Y . For X fixed in TOPG, there is the contravariant
functor

TopG×G
o

→ TOPG, W 7→ XW .

Thus we obtain the covariant functor XY : H → TOPG, which we interpret as
an H-diagram in TOPG. Then there is a natural homeomorphism

Xcolim Y ' lim XY

in TOPG.

Proof. From (4.10) we get

Xcolim Y ' XY×H(Ob H) ' (XY )Ob H ' lim XY .
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Thus for example if Y is the colimit in TopG×G
o

of a diagram

Y0 −→ Y1 −→ · · · −→ Yn −→ · · · ,

then XY is the limit in TOPG of the dual diagram

XY0 ←− XY1 ←− · · · ←− XYn ←− · · · .

As a special case, it follows from (4.1) that EG is a filtered colimitEG =
⋃

(EG)n
in TopG×G

o

, from which it follows that EGX = XEG is the limit in TOPG of
the diagram

X(EG)0 ←− · · · ←− X(EG)n ←− · · · .
We must understand the inductive relationship between X(EG)n−1 and X(EG)n ,
as well as the nature of X(EG)0 .

In order to do so, we recall first from (4.1) that there is a space A0 in

TOPId (G×Go) with

(EG)0 = G×Ob G A0 ×Ob G G.
Then

X(EG)0 ' (XG×Ob GA0)G ' ((i#X)A0)G.

If we let C0 denote the Id G-space (i#X)A0 , then we have X(EG)0 of the above
form (C0)G for some C0 in TOPId G.

It also follows from (4.1) that there is in TOPId (G×Go) a closed cofibered pair

(An, Bn) such that (EG)n is the pushout in TOPG×G
o

of a diagram

G×Ob G An ×Ob G G←↩ G×Ob G Bn ×Ob G G→ (EG)n−1.

Hence X(EG)n is the pullback of the diagram

((i#X)An)G → ((i#X)Bn)G ← X(EG)n−1.

If we let Cn = (i#X)An and Dn = (i#X)Bn in TOPId G, then we have that
X(EG)n is the pullback of a diagram

(Cn)G
(πn)G−−−−→ (Dn)G ←− (EG)n−1

in TOPG. Moreover πn : Cn → Dn is a fibration in TOPId G, being the dual of
a cofibration Bn ↪→ An.

Coprincipal G-Spaces

Given X in TOPG, then X is a coprincipal G-space if X is the limit in TOPG

of a diagram in TOPG

X0
ν1←− X1

ν2←− · · · νn←− Xn
νn+1←−−− · · · ,

and

(i) there exists a space C0 in TOPId G such that X0 is homeomorphic
in TOPG to (C0)G,
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(ii) for each n > 0 there exists a fibration πn : Cn → Dn in TOPId G

and a G-map Xn−1 → (Dn)G such that the diagram

(Cn)G
(πn)G−−−−→ (Dn)G ←− Xn−1

in TOPG has pullback Xn.

(4.14) For each G-space X in TOP, the G-space EGX is a coprincipal G-space.

The proof was given above.

Theorem 4.15 If φ : X → Y is a weak homotopy equivalence in TOPG, where
X and Y are coprincipal G-spaces, then φ is a homotopy equivalence in TOPG.

Proof. Since X is coprincipal, we assume it the limit of a diagram

X0
ν1←− · · · νn←− Xn

νn+1←−−− · · ·

in TOPG such that

(i) X0 is G-homeomorphic to (C0)G for some C0 in TOPId G,
(ii) for n > 0 there is a fibration πn : Cn → Dn in TOPId G and a

pullback diagram in TOPG

Xn
f ′−−−−→ (Cn)G

νn

y (πn)G
y

Xn−1
f−−−−→ (Dn)G.

As in (4.3), one proceeds inductively. We assume a G-map θn−1 : Y → Xn−1

together with a G-homotopy Hn−1 : I × X → Xn−1 which joins θn−1φ to the
G-map µn−1 : X → Xn−1 which comes with the limit structure of X .

In the inductive step, one uses the diagram

X(p)
µn−−−−→ Xn(p)

f ′−−−−→ (Cn)G(p)
ψ′−−−−→ Cn(p)

φp

y νn

y (πn)G
y πn

y
Y (p)

θn−1−−−−→ Xn−1(p)
f−−−−→ (Dn)G(p)

ψ−−−−→ Dn(p)

in its shortened form

X(p)
ψ′f ′µn−−−−→ Cn(p)

φp

y πn

y
Y (p)

ψfθn−1−−−−−→ Dn(p).

The homotopy Hn−1 : I×X(p)→ Xn−1(p) furnishes a homotopy commutativity
for the diagram as the map H0 = ψfHn−1.

Since φp is a homotopy equivalence and πn is a fibration, we can apply (3.8).
Thus there exists a map θ′ : Y (p) → Cn(p) and a homotopy H ′ : I × X(p) →
Cn(p) such that
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(i) H ′ joins θ′φp to ψ′f ′µn,
(ii) πnθ

′ = ψfθn−1,
(iii) πnH

′ extends H0.

Thus we have an Id G-map θ′ : Y → Cn and an Id G-map H ′ : I ×X → Cn.
There are the associated unique G-maps θ : Y → (Cn)G and H : I×X → (Cn)G.
The commutative diagram

Y
θ−−−−→ (Cn)G

θn−1

y (πn)G
y

Xn−1
f−−−−→ (Dn)G

gives θn : Y → Xn by the pullback property. Similarly one gets the homotopy
Hn : I ×X → Xn. The induction is established, and the theorem follows read-
ily.

Corollary 4.16 Consider the category TOPG, together with the notion of ho-
motopy in TOPG and of weak homotopy equivalence in TOPG given in Chapter
3. Take also the functor

EG(�) : TOPG → TOPG

given in Chapter 2, together with the natural transformation T ′ : 1 → EG(�).
Let the full subcategory of coprincipal objects be the full subcategory COPRINCG

of coprincipal G-spaces. With this given structure, TOPG is a category with co-
principal objects in the sense of Chapter 3.

The Homotopy Limits B′X of a G-Space X

A coprincipalization of a G-spaceX in TOP is a pair consisting of a coprincipal
G-space E′X and a homotopy class of G-maps φ : X → E′X each representative
of which is a weak homotopy equivalence in TOPG. Given two coprincipalizations
[φ0] : X → E′0X and [φ1] : X → E′1X , there exists a unique homotopy class of
G-maps θ : E′0X → E′1X such that

X X

φ0

y φ1

y
E′0X

θ−−−−→ E′1X

is homotopy commutative in TOPG, and each θ is a homotopy equivalence in
TOPG. This follows from (3.13).

For any G-space X , the above G-space EGX is called the standard coprinci-
palization of X .

A homotopy limit B′X = holimX of a G-space X in TOP is the pair (E′X,φ)
consisting of a compactly generated space B′X and a homotopy equivalence
φ : B′X → BGX in TOP.
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Given a coprincipalization (E′X,φ) of the G-space X , then the limit B′X of
the G-space E′X is a homotopy colimit of X .

Define a (not necessarily standard) universal G-space E to be a principal G-
space E such that each E(p) is contractible. By (4.4), any two such are joined by
a unique homotopy class of homotopy equivalences in TOPG. In particular, E
is joined to EG by a unique homotopy class of homotopy equivalences in TOPG.
Thus the colimit E/G is naturally homotopy equivalent to BG. We will call
B = E/G a (nonstandard) classifying space of G.

(4.17) Let X be a G-space in TOP and let E′ be a universal Go-space. Then
E′ ×G X is a homotopy colimit of X. Let E be a universal G-space. Then the
space (XE)TOPG is a homotopy limit of X.

The proof is clear.

Coprincipal G-Spaces for the Category 0→ 1

For G the category 0 → 1, then Id G can be considered as the set {0, 1}
with two objects, hence an object C of TOPId G is an ordered pair C(0), C(1)
of compactly generated spaces. Interpreting the objects of TOPG as maps π :
X → Y , one must first interpret CG. It is checked to be the projection map
C(0)× C(1)→ C(1).

Let X be a coprincipal G-space, thus the limit in TOPG of a diagram

X0
ν1←− · · · νn←− Xn

νn+1←−−− · · ·

such that

(i) X0 is of the form (C0)G for C0 in TOPId G,
(ii) for n > 0, Xn is determined by a pullback diagram

Xn −−−−→ (Cn)G

νn

y (πn)G
y

Xn−1 −−−−→ (Dn)G

in TOPG for some fibration πn : Cn → Dn in TOPId G.

Inductively, if Xn−1(0) → Xn−1(1) is known, then Xn(0) → Xn(1) comes
from the diagram below.
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Xn(0)

Xn(1)

Xn−1(1))

Xn−1(0)

Cn(1)

Cn(0)× Cn(1)

Dn(1)

Dn(0)×Dn(1)

-

-

-

-

HHHHj

HHHHj

HHHHj

HHHHj

?

?

?

?

The top and bottom faces are pullback diagrams, the vertical maps of the right
face are projections, and the horizontal maps of the right face are fibrations.

If π : E → B is a fibration in TOP, one can build a coprincipal G-space X
which, when interpreted as simply a map, gives π. For example, take X0 to be
the identity map B → B, and let X1 be given by the choices represented in the
diagram below.

E

B

B

B

B

E ×B

B

B ×B

-

-

-

-

HHHHj

HHHHj

HHHj

HHHHj

?

?

?

?=

diag

=

1× π
π proj

= proj

=

π

=

π × 1

Thus every fibration in TOP can be regarded as a coprincipal G-space for G
the category 0→ 1.

The converse is also true.

Theorem 4.18 For G the category 0→ 1, a G-space of the form π : X → Y is
a coprincipal G-space if and only if π is a fibration in TOP.

We do not bother to write out the details. The proof is based on an induction,
as we would do it not precisely dual to that given for (4.8). The interested reader
should be able to construct the inductive proof from the diagram.
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I ×A

0×A Xn(0)

Xn(1)

Xn−1(1))

Xn−1(0)

Cn(1)

Cn(0)× Cn(1)

Dn(1)

Dn(0)×Dn(1) Dn(0)

Cn(0)

-

-

?

-

-
HHHHj

-

-

-

-

HHHHj

HHHHj

HHHHj

HHHHj

?

?

?

?

We regard this work as having up to this stage concentrated on giving a very
basic model for equivariant general topology, that for arbitrary actions of any
untopologized small category on compactly generated spaces, where the actions
are assumed to be associative and have identities in the strictest sense. The
major emphasis of this model is on homotopy colimits and homotopy limits.
Topologists have used to advantage various models: relax somewhat the strict
requirements on associativity and identities of the action, put topology on G,
etc. We save any remarks on these until later chapters.
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CHAPTER V

The Construction of Principal G-Spaces

The basic tool of this chapter assigns to each functor θ : H → G the extension
functor θ# : TopH → TopG which generalizes the construction of Chapter 1.
This functor carries principal H-spaces into principal G-spaces.

For most small categories G the only principal G-spaces X that we thus far
noted are the standard principal G-spaces EGX of Chapters 2 and 4, one for
each X in TOPG. Thus the only model we have noted for the homotopy colimit
of a G-space X is the standard model BGX . We cannot explore the richness
of our subject with this handicap. In later chapters, nonstandard principal G-
spaces will have to be developed for some of the small categories G at the core
of topology. Some general principles for such constructions are available, and
in this chapter we collect some of the theory that we will use as a guide in
constructing nonstandard models case by case. This is collected from work of
Steenrod, as given by Cooke-Finney [5.2], Cartan [5.1], Grothendieck [5.4], Gray
[5.3], and Quillen [5.5].

Before doing so, we develop the capability for the systematic use of cell com-
plexes so that we will not be confined as we are at this point to those complexes
whose open cells and face relations are always modeled on open simplices. For
this we need Steenrod’s regular complexes with identifications, and in a cate-
gorical form. Steenrod has done most of the work for us, so we have only to
reformulate it. There will then be at hand what we call the cellular categories
Ψ. Every such Ψ has EΨ a regular cell complex and there is a family F of
identifications on EΨ with EΨ/F = BΨ through the natural quotient map

π : EΨ → BΨ.

Then BΨ is a regular cell complex with identifications in the sense of Steenrod,
with an open cell D(p) for each object p of Ψ and with D(q) a face of D(p) for
each morphism q → p of Ψ. For such categories, the homotopy colimit of any
Ψo-space X is already well presented in its form as X ×ΨEΨ and there is rarely
genuine need for nonstandard models for them.

We next translate certain constructions of Cartan, as they occur in his 1954-
1955 Cartan Notes [5.1], into topological terms. In topological terms, the goal
is a codified presentation of particularly interesting principal G-spaces for the

101
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important small categories G. One gets for each cellular category Ψ and each
functor θ : Ψ→ G the principal G-space θ#EΨ, where

θ# : TopΨ → TopG

denotes the extension functor generated by θ. As a rule of thumb, many geomet-
rically interesting principal G-spaces can be presented in the form θ#EΨ where
Ψ is a cellular category, EΨ is the standard universal Ψ-space, and θ : Ψ→ G is
some functor. Here we have followed similar constructions of Quillen [5.5].

One can describe the above as a variant of constructions of Gray [5.3]. Namely,
given a small category G there is the category CAT/G of small categories over
G. We then construct a functor

CAT/G→ PRINCG,

made out of a functor

CAT/G→ CATG

of Grothendieck [5.4] and Gray [5.3].

As another rule of thumb, for each G one can present geometrically interesting
nonstandard universal G-spaces E in the form E = θ#EΨ. This is a topological
form of Cartan’s acyclic constructions, and is closely related to Quillen’s Theorem
A [5.5]. We call a topological resolution of the small category G a pair consisting
of a cellular category Ψ and a functor θ : Ψ→ G such that θ#EΨ is a universal
G-space. Every θ#EΨ is automatically a principal G-space and one here confines
attention to those for which in addition (θ#EΨ)(p) is a contractible space for
each object p of G. It is then automatically the case that θ∗ : BΨ → BG is a
homotopy equivalence. In fact, for every G-space X , it is then the case that
θ#X ×Ψ EΨ is a nonstandard model for the homotopy colimit of the G-space
X . For those G which are not cellular, we can seek cellular categories Ψ and
functors Ψ → G such that θ#EΨ is a topological resolution of G, and thus can
be used as a replacement for the often difficult standard model EG.

The only nontrivial topological resolution of a small category that we compute
in this chapter is one for ∆, taken from Segal [4.4]. Let i : Mono ∆ ↪→ ∆ denote
the inclusion of the subcategory Mono ∆ of monos into ∆. Then we show that
i : Mono ∆→ ∆ is a topological resolution of ∆. Thus in particular i#EMono ∆

is a (nonstandard) universal space for ∆, and we obtain Segal’s form

(i#X)×Mono ∆ ∇

for the homotopy colimit of any ∆o-space X in TOP. We take some care in
exhibiting it clearly, since in the next chapter we have to thoroughly understand
its properties. Our treatment requires joins of categories, and classifying spaces
of such joins.

We are endebted to C.H. Giffin for much help in our efforts to understand
this material.
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Cellular Categories: the Poset Conditions

A small category Ψ will be called a cellular category if it satisfies three con-
ditions, which we develop slowly.

Condition 1 Given an object p of Ψ there are only a finite number of morphisms
of Ψ of the form ψ : q → p.

It follows immediately from Condition 1 that for each object p there are only
a finite number of diagrams of the form

r
ψ′−→ q

ψ−→ p.

Recall that we denote by Ψ(p, �) the category whose objects are the morphisms

q
ψ−→ p of Ψ, with the morphisms ψ → ψ′ in Ψ(p, �) being all commutative

diagrams

q
ψ′′−−−−→ r

ψ

y ψ′
y

p p

in Ψ. Thus it follows from Condition 1 that each category Ψ(p, �) has only a
finite number of objects and morphisms.

Recall from (4.12) that EΨ is determined by EΨ(p) = BΨ(p,�) for each object
p of Ψ. We seek in the next two conditions increasingly to restrict each category
Ψ(p, �), and thereby each EΨ(p) and EΨ.

We need a prototype example. For this we pick Mono ∆, the category whose
objects are the nonnegative integers and whose morphisms δ : m → n are the
order preserving monos

δ : {0, 1, · · · ,m} → {0, 1, · · · , n}.

Here the category (Mono ∆)(n, �) can be equated with the category whose
objects are the finite nonempty subsets of {0, · · · , n} and whose morphisms are
inclusions. In particular, the objects of (Mono ∆)(n, �) are naturally partially
ordered, with the structure of the category that given by the partial ordering.
This is the direction we go in Condition 2.

Condition 2 The small category Ψ satisfies the following:

(i) given morphisms p
ψ−→ q and q

ψ′−→ p in Ψ, then p = q and ψ = ψ′ =
1p;

(ii) given a diagram q
ψ−→ p

ψ′←− r in Ψ, then there exists at most one
morphism ψ′′ : q → r in Ψ such that

q
ψ′′−−−−→ r

ψ

y ψ′
y

p p
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commutes.

Now for each object p of Ψ, consider the set

{ψ ∈Mor Ψ | ψ : � → p}

and on this set define ψ ≤ ψ′ if and only if there exists a morphism ψ′′ in Ψ such
that ψ = ψ′ψ′′. Then the reader should check that Condition 2 is equivalent to
the condition that ≤ is a partial ordering on the above set for each object p of
Ψ, together with the condition that Ψ (p, �) is the category associated with this
poset. Note that our prototype Mono ∆ satisfies Condition 2.

Thus far we have required that each Ψ(p, �) be the category associated with
a finite poset. We now examine the benefits of this requirement. In order to do
so, we need the concept of a simplicial complex.

Let V be a given set. Denote by R(V ) the real vector space generated by V ;
i.e. the vector space of all functions t : V → R such that t(v) 6= 0 for only a
finite number of v ∈ V . Give R(V ) the topology induced by its finite dimensional
subspaces. The simplex ∇(V ) is then all t ∈ R(V ) with t(v) ≥ 0 for all v and
with ∑

v∈V
t(v) = 1.

A finite dimensional subsimplex is then a subset ∇{v0, v1, · · · , vn} for some
nonempty finite subset {v0, · · · , vn} of V , consisting of all t ∈ ∇(V ) with t(v) 6= 0
implying v = vi for some i. A standard simplicial complex is a subspace of some
∇(V ) consisting of a union of finite dimensional subsimplices of it; its simplices
are all ∇{v0, · · · , vn} contained in it. A simplicial complex is a space A together
with a homeomorphism h of some standard simplicial complex B onto A. The
simplices of A are all images under h of simplices of B.

(5.1) If G is a small category derived from a partial ordering on Ob G, then BG
is naturally a simplicial complex, with an n-simplex for every

s0 > s1 > · · · > sn

in Ob G, equivalently for every diagram in G of the form

s0
g1←− s1

g2←− · · · gn←− sn

where no gi is an identity morphism. The simplex consists of all

(g1, · · · , gn)×∆ (t0, t1, · · · , tn),

where (t0, · · · , tn) ∈ ∇(n).

Proof. One has to first examine the nerve X = NG in SET∆o

. The nerve has
a nondegenerate element for each diagram

s0
g1←− s1

g2←− · · · gn←− sn
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for which each gi is a nonidentity morphism. Note that the si then determine the
gj . Each face of a nondegenerate element is therefore a nondegenerate element.
In |NG|, we therefore get the points

(g1, g2, · · · , gn)×∆ (t0, t1, · · · , tn).

Now take ∇(Ob G) and in it take the standard simplicial complex B which is
the union of all ∇{s0, · · · , sn} for all

s0 > s1 > · · · > sn.

Let h : B → BG map a function t : ∇(Ob G)→ R in ∆{s0, · · · , sn} with

t(si) ≥ 0, t(s) 6= 0 for s 6= si,
∑

t(si) = 1

into

(g1, · · · , gn)×∆ (t(s0), · · · , t(sn)).

The remark follows.

We return now to a small category Ψ which satisfies Conditions 1 and 2. Fix
an object p of Ψ and consider the category Ψ(p, �). Then EΨ(p) = BΨ(p,�) is a
finite simplicial complex which has an n-simplex consisting of all

(ψ0, ψ1, · · · , ψn)×∆ (t0, t1, · · · , tn)

for each diagram

p
ψ0←− p0

ψ1←− · · · ψn←−− pn
in Ψ with no ψi an identity morphism for i > 0. Denote this n-simplex in EΨ(p)
by

[ψ0, ψ1, · · · , ψn].

Given a morphism ψ : q → p in Ψ, there is the induced map ψ∗ : EΨ(q)→ EΨ(p)
and ψ∗ maps each n-simplex

[ψ0, ψ1, · · · , ψn]

homeomorphically onto the n-simplex

[ψψ0, ψ1, · · · , ψn]

of EΨ(p).
One can now check from Condition 2 that each ψ : q → p is a monomorphism

in Ψ. That having been done, one can next check that each ψ∗ : EΨ(q)→ EΨ(p)
is an inclusion map onto a subcomplex of the finite simplicial complex EΨ(p).

For each p, let EdegΨ (p) denote the union of the images of all the

ψ∗ : EΨ(q)→ EΨ(p)

corresponding to ψ : q → p with q 6= p. Then EdegΨ (p) consists of all simplices

[ψ0, ψ1, · · · , ψn]
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for which all ψi including ψ0 are not identities. Given such a simplex, one can
form the (n+ 1)-simplex

[1p, ψ0, · · · , ψn]

in EΨ(p) and thus check that EΨ(p) is naturally the simplicial cone over EdegΨ (p).
Continue to assume that Ψ is a small category satisfying Conditions 1 and 2.

We next consider for a given diagram q
ψ−→ p

ψ′←− r in Ψ the intersection

ψ∗(EΨ(q)) ∩ ψ′∗(EΨ(r)).

Let x = ψ∗y = ψ′∗z where y ∈ EΨ(q) and z ∈ EΨ(r). There is the unique
representation

y = (ψ0, ψ1, · · · , ψm)×∆ (t0, · · · , tm),

where no ψi is an identity morphism for i > 0 and where ti > 0 for all i. There
is the unique representation

z = (ψ′0, ψ
′
1, · · · , ψ′n)×∆ (u0, · · · , un),

where no ψ′j is an identity for j > 0 and where uj > 0 for all j. Then

x = (ψψ0, ψ1, · · · , ψm)×∆ (t0, · · · , tm),

x = (ψ′ψ′0, ψ
′
1, · · · , ψ′n)×∆ (u0, · · · , un).

It follows from uniqueness that m = n, ψi = ψ′i for i > 0, ti = ui for all i, and
that ψψ0 = ψ′ψ′0. Thus ψ∗(EΨ(q)) ∩ ψ′∗(EΨ(r)) is the union of all the simplices

[ψψ0, ψ1, · · · , ψn] = [ψ′ψ′0, ψ1, · · · , ψn]

over all the commutative diagrams

s
ψ0−−−−→ q

ψ′0

y ψ

y
r

ψ′−−−−→ p.

Thus either ψ∗(EΨ(q)) ∩ ψ′∗(EΨ(r)) = ∅, or else for any

x ∈ ψ∗(EΨ(q)) ∩ ψ′∗(EΨ(r))

and y ∈ EΨ(q), z ∈ EΨ(r) with ψ∗y = x = ψ′∗z, there exist a commutative
diagram

s
ψ0−−−−→ q

ψ′0

y ψ

y
r

ψ′−−−−→ p

and w ∈ EΨ(s) such that ψ0∗w = y and ψ′0∗w = z.
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Cellular Categories: the Combinatorial Condition

Conditions 1 and 2 are weaker than the final condition 3, which we first check
in our prototype example and then state. This condition requires the language of
combinatorial topology, for which our reference is the Tata Lectures of Stallings
[5.6].

So return to the special case Ψ = Mono ∆ for a moment. We observed that
(Mono ∆)(n, �) can be taken to be all nonempty subsets of

{0, 1, · · · , n}

under inclusion, but we didn’t compute the resulting finite simplicial complex,
which has a vertex for each such subset S and a k-simplex for each strictly
decreasing sequence

S0 ⊃ S1 ⊃ · · · ⊃ Sk

of such subsets. One may as well take as a model for such a finite simplicial
complex the barycentric subdivision Sd ∇(n) of the standard n-simplex. Thus

we take EMono ∆(n) = Sd ∇(n) and EdegMono ∆(n) the barycentric subdivision of
∂∇(n). This is the route we go in Condition 3.

EMono∆(2) = BMono∆(2, �) ' Sd ∇(2)

{0} {0, 1} {1}

{2}

{0, 2} {1, 2}

{0, 1, 2}

- �






�

J
J
JJ]







�

J
J
JĴ

?

6
��
��*

HH
HHY

HHj ���

Condition 3 For each object p of Ψ, the finite simplicial complex EΨ(p) is com-
binatorially equivalent to a combinatorial cell C of some dimension d(p), in such

a way that the subcomplex EdegΨ (p) corresponds to the boundary sphere ∂C of C.

If Conditions 1-3 are satisfied, we say that Ψ is a cellular category.

In our example Mono ∆, note that if i : Mono ∆→ ∆ is inclusion, then sim-
plicially we haveEMono ∆ = Sd i#∇ and ignoring simplicial structureEMono ∆ '
i#∇.
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The Standard Classifying Space of a Cellular Category

We first summarize the topological structure of EΨ.

(5.2) Let Ψ be a cellular category. Denote by EΨ the disjoint union

EΨ =
∐

p∈Ob Ψ

EΨ(p).

For each ψ : q → p, let

C(ψ) = ψ∗(EΨ(q)−EdegΨ (q)) ⊂ EΨ(p) ⊂ EΨ.

Then the C(ψ) are pairwise disjoint and cover EΨ. There is the natural filtration
EΨ =

⋃
En, where En is the union of all C(ψ) where ψ : q → p and d(q) ≤ n.

Then EΨ is a CW-complex, with the above filtration, such that for each cell C
there is an attaching map

f : (∇(n), ∂∇(n))→ (C,C − C)

with f : ∇(n) → C a homeomorphism. With the simplicial structure taken into
account, f can be taken to be a combinatorial equivalence.

The proof is an exercise.
Let π : EΨ → BΨ denote the natural quotient map, and ∼ the equivalence

relation on EΨ for which BΨ = EΨ/ ∼.

(5.3) Let Ψ be a cellular category. If x ∈ EΨ(q) and y ∈ EΨ(r), then x ∼ y if
and only if there exists a diagram

q
ω←− s ω′−→ r

and an element z ∈ EΨ(s) with x = ω∗z and y = ω′∗z.

Proof. Let ∼′ be the relation described above. We must show that ∼′ is an
equivalence relation. Suppose x ∈ EΨ(p), x′ ∈ EΨ(p′), and x′′ ∈ EΨ(p′′) have

x ∼′ x′ and x′ ∼′ x′′. There exist p
ψ←− q

ψ′−→ p′ and y ∈ EΨ(q) with ψ∗y = x

and ψ′∗y = x′. Moreover, there exist p′
ψ0←− r

ψ′0−→ p′′ and z ∈ EΨ(r) with

ψ0∗z = x′ and ψ′0∗z = x′′. Since q
ψ′−→ p′

ψ0←− r has ψ′∗y = x′ = ψ0∗z, there exist
a commutative diagram

s
ω−−−−→ q

ω0

y ψ′
y

r
ψ0−−−−→ p′

and w ∈ EΨ(s) with ω∗w = y and ω0∗w = z. One then has p
ψω←−− s

ψ′0ω0−−−→ p′′

with

ψ∗ω∗w = x, ψ′0∗w = x′′,
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hence x ∼′ x′′. Thus ∼′ is an equivalence relation. It is then easy to see that
∼=∼′.

(5.4) Let Ψ be a cellular category. For each object p of Ψ, define D(p) ⊂ BΨ by
D(p) = π(C(1p)) where

C(1p) = EΨ(p)−EdegΨ (p).

Then the D(p) are pairwise disjoint and fill up BΨ. Let BΨ =
⋃
Bn where Bn

is the union of all D(p) for which d(p) ≤ n. This is a filtration of BΨ, and
π : EΨ → BΨ is a homeomorphism of each C(ψ) onto D(1q) for each ψ : q → p.
Thus BΨ is a CW-complex and π : EΨ → BΨ is a CW-map which maps open
cells homeomorphically onto open cells.

The proof is an exercise.
We should reexamine our prototype Mono ∆. Note that as an example of

(5.2), EMono ∆ is a CW-complex whose cells are the various faces of the various
simplices ∇(n). The barycentric subdivision is implicit only. The standard
classifying space BMono ∆ is given by

BMono ∆ = (
∐
∇(n))/ ∼,

where ∼ is the least equivalence relation such that

(t0, · · · , ti−1, 0, ti+1, · · · , tn) ∼ (t0, · · · , ti−1, ti+1, · · · , tn).

Thus BMono ∆ is the infinite dimensional dunce hat D of Zeeman, with points

[t0, t1, · · · , tn]

where (t0, · · · , tn) ∈ ∇(n) for some n and where any ti = 0 can be deleted. As
an example of (5.4), then D = BMono ∆ has exactly one open cell D(n) in each
dimension, the set of

[t0, t1, · · · , tn]

for which all ti > 0. The space D is contractible, as one can see by computing
its fundamental group and its homology groups.

In summary, if Ψ is a cellular category then BΨ is a CW-complex with an open
cell D(p) of dimension d(p) for each object p of Ψ, and D(q) is a face of D(p)
for each morphism ψ : q → p. This is really a matter of regular cell complexes
with identification, as we now see.

Steenrod’s Regular Complexes with Identifications

Steenrod in his lectures on cell complexes [5.2] defined a regular complex to
be a CW -complex K =

⋃
Kn such that for each open cell C there exists a

homeomorphism f : ∇(n)→ C mapping ∂∇(n) onto C − C. Thus (5.2) asserts
that EΨ is a regular complex.

Steenrod goes on to define a family F of identifications. Here F is a cate-
gory whose objects are the cells of K and whose morphisms f : C → C′ are
homeomorphisms f : C ' C′ mapping C − C onto C′ − C′, and such that
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(i) compositions in F are compositions of maps, and identities in F are
identity maps,

(ii) if f is in the family then so is f−1,
(iii) if f : C → C is in the family then f is the identity, and
(iv) if f : C → C′ is in F and if D is a cell of K with D ⊂ C, then the

restriction f |D : D → fD is in F .

Then he defined a regular complex with identifications to be an ordered pair
(K,F ), where K is a regular complex and F is a family of identifications on K.
Given (K,F ), he defined a space K/F which is the space of the regular complex
with identifications.

He also showed that ifK is a regular complex, then there is a naturally induced
regular complex Sd K, which is a simplicial complex, and a homeomorphism
Sd K ' K.

We now change slightly Steenrod’s regular complexes and hereafter assume
this change made. Given a cell C of K, we add that there must be a homeomor-
phism f : ∇(n) → C which is a combinatorial equivalence when the simplicial
subdivision is taken into account.

We can now state precisely the way in which we have translated Steenrod.

Theorem 5.5 Let Ψ be a cellular category. Then K = EΨ as given by (5.2) is

a regular cell complex. For each diagram p
ψ←− r ψ′−→ q in Ψ, let

g : C(ψ)→ C(ψ′)

be defined by g(ψx) = ψ′x. Then the family F of all such g is a family of
identifications, and K/F ' BΨ.

Conversely, suppose (K,F ) is a regular complex with identifications. We first
define a category Ψ. An object p of Ψ is an equivalence class of cells of K under
the action of F , and we write p = [C] if C is a representative of p. Consider the
set of all ordered pairs (C,D) of cells such that C ⊃ D, and on this set define
∼ to be the equivalence relation such that if we have (C,D) and an element
g : C → C′ = gC of F then

(C,D) ∼ (gC, gD).

Define a morphism of Ψ to be an equivalence class of such pairs. If (C,D)
represents a morphism, write the morphism as

ψC,D : [D]→ [C],

and define composition by ψC,DψD,E = ψC,E whenever C ⊃ D and D ⊃ E.
Then Ψ is a cellular category.

Proof. We consider the second part, thus fix the regular complex (K,F ) with
identifications. Suppose the category Ψ has been defined as above. Fix an object
[C] of Ψ, and consider the category Ψ([C], �). The objects of Ψ([C], �) are all
the ψC,D for which C ⊃ D. This is seen to be a one-to-one correspondence, so
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we can take the objects of Ψ([C], �) to be the subcells of C. We next assume a
commutative diagram

[E]
ψ′′−−−−→ [D]

ψ

y ψ′
y

[C] [C]

in Ψ. We may as well then pick D to be a subcell of C and ψ′ to be ψC,D. Then
we may as well pick E to be a subcell of D, and ψ′′ = ψE,D. Then ψ = ψC,E .
In short, Ψ([C], �) is the poset of all subcells of C under inclusion. Steenrod in
his lectures worked out BΨ([C],�) in all but name; he shows

BΨ([C],�) ' Sd C.

We have assumed Sd C to be a combinatorial cell. Thus Ψ is cellular.

Cellular Functors Joining Cellular Categories

For a cellular category Ψ, both EΨ and BΨ are naturally CW-complexes. In
passing, we denote here the nature of those functors φ : Ψ → Ψ′ which give
CW-maps

BΨ → BΨ′ .

Given cellular categories Ψ and Ψ′, define a functor φ : Ψ→ Ψ′ to be cellular
if given an object s of Ψ and a morphism ψ′ : � → φ(s) in Ψ′, then there exists
a morphism ψ : � → s in Ψ with φ(ψ) = ψ′. The functor φ is strictly cellular if
the morphism ψ above is always unique.

It is seen that if φ is cellular and r is a given object of Ψ, then for each diagram

φ(r)
ψ′0←− q0

ψ′1←− · · · ψ
′
n←−− qn

of Ψ′ there is a diagram

r
ψ0←− p0

ψ1←− · · · ψn←−− pn

of Ψ which maps into it. In particular the map

φ∗ : EΨ(p)→ EΨ′(φ(p))

is then an epi. It follows that the induced map φ∗ : BΨ → BΨ′ is a CW-map.

If in the above φ is strictly cellular, then φ∗ : EΨ(p)→ EΨ′(φ(p)) is a home-
omorphism and the map φ∗ : BΨ → BΨ′ maps each open cell D(p) from (5.4)
homeomorphically onto the open cell D(φ(p)). The definitions of cellular and
strictly cellular used above are meaningful even if the categories are not cellular.
Thus we can speak of cellular functors and strictly cellular functors θ : H → G
generally.
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Generalizations of the Restriction and Extension Functors

We need now to put the restriction and extension functors of Chapter 1 in
their proper form. Suppose given a functor θ : H → G joining small categories.
The restriction functor θ# : TopG → TopH is very easy to describe. Given a
G-space X , then the H-space θ#X has (θ#X)(s) = X(θ(s)) and the action is
given by

H(s′, s)×X(θ(s))→ X(θ(s′)), (h, x) 7→ (θ(h))x.

It is clear that we have θ# : TOPG → TOPH .
We now describe the extension functor θ# : TopH → TopG. First, the functor

1× θ : G×Ho → G×Go

induces

(1× θ)# : TopG×G
o

→ TopG×H
o

.

There is the natural element G of TopG×G
o

and thus one receives the (G×Ho)-
space

Cθ = (1× θ)#G.

The extension functor θ# : TopH → TopG then sends an H-space Y into the
G-space

θ#Y = Cθ ×H Y,

using the bifunctor TopG×H
o

× TopH → TopG.
The G×Ho-set Cθ can be written out as follows:

(i) for each object r of G and s of H, take Cθ(r, s) to be the set G(r, θ(s))

of all morphisms r
g←− θ(s) in G; when we need a topology on Cθ, we

take the discrete topology;
(ii) the left action of G on Cθ is given by

G(r′, r)× Cθ(r, s)→ Cθ(r
′, s), (g′, g) 7→ g′g;

the right action of H on Cθ is given by

Cθ(r, s)×H(s, s′)→ Cθ(r, s
′), (g, h) 7→ gθ(h).

As a G-space, the (G × Ho)-set Cθ is free in the sense of Chapter 2. Its
generating set is just the set of all 1θ(r) for all objects r of H.

(5.6) Suppose given a diagram G
θ←− H

φ←− K of small categories and functors.
Consider the G×Ho-set Cθ and the H ×Ko-set Cφ. For each triple of objects
r, s, t of G, H, K respectively there is the function

Cθ(r, s)× Cφ(s, t)→ Cθφ(r, t)

taking a pair consisting of r
g←− θ(s) in G and s

h←− φ(t) in H into the composition
g(θ(h)) of

s
g←− θ(s) θ(h)←−− θφ(r).
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Using the functor ×H : TopG×H
o

× TopH×K
o

→ TopG×K
o

to obtain Cθ ×H Cφ
in TopG×H

o

, we thus have from above a (G×Ko)-map

Cθ ×H Cφ → Cθφ, (g, h) 7→ g(θ(h)).

Proof. Let g ∈ Cθ(r, s), let s
h←− s′ be a morphism of H, and let h′ ∈ Cφ(s′, t).

The elements (gh, h′) = (gθ(h), h′) and (g, hh′) map into the same element
gθ(h)θ(h′) of Cθφ(r, t), thus giving a well defined map Cθ ×H Cφ → Cθφ.

(5.7) In the above diagram of small categories and functors G
θ←− H

φ←− K,
suppose that either θ or φ is an inclusion functor of a subcategory. Then

Cθ ×H Cφ ' Cθφ.

Proof. If φ is an inclusion functor, then given r
g←− θφ(t) in Cθφ(r, t) since

φ(t) = t we have r
g←− θ(t) in Cθ(r, t) and g ×H 1t in Cθ ×H Cφ maps onto the

element g of Cθφ. Thus the function is onto and one checks that it is one-to-one.
Similarly if θ is an inclusion functor.

Given a functor θ : H → G joining small categories, one can take the functor
θ# : TopG

o

→ TopH
o

to be given by θ#X = X ×G Cθ, which the reader should
check.

If X is a Go-space and Y is an H-space, then it follows from (1.21) that

θ#X ×H Y ' (X ×G Cθ)×H Y ' X ×G (Cθ ×H Y ) ' X ×G θ#Y,

and hence the generalized form of (1.22) holds.
One can use (5.6) with extension functors in the following way. Consider a

diagram G
θ←− H φ←− K of small categories and functors, and let Y be a K-space.

Then

θ#φ#Y ' (Cθ ×H Cφ)×K Y

and there is from (5.6) a (G×Ko)-map

θ#φ#Y → Cθφ ×K Y = (θφ)#Y.

Theorem 5.8 Let θ : H → G be a functor joining small categories, and consider
the extension functor

θ# : TopH → TopG.

If X is a principal H-space in TOP, then θ#X is a principal G-space in TOP.

Proof. Denote by Id H the subcategory of H consisting of all the identity
morphisms, and let i : Id H → H denote the inclusion functor. We first check
the assertion for those principal H-spaces of the form X = i#A. If X is such a
principal H-space, we must show that θ#X is a principal G-space of the building
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block type. For each collection A = {Ar} of compactly generated spaces indexed
by the objects of H, so that A is an (Id H)-space, consider

X = Ci ×Id H A, X(p) =
∐

q∈Ob H
H(p, q)×A(q).

Then we have

θ#X = Cθ ×H (Ci ×Id H A).

From (1.21) and (5.7) we get

θ#X ' (Cθ ×H Ci)×Id H A ' Cθi ×Id H A.

We can then also factor the composed functor θi as

Id H
θ′−→ Id G

j−→ G,

thus using (5.7) again rewrite as

θ#X ' Cj ×Id G (Cθ′ ×Id H A)

and check that θ#X is a principal G-space in TOP of the form j#Y .

One can pass to the general case by a typical adjointness argument. There
are natural transformations

TX : X → θ#θ#X, θ#θ
#Y → Y

for each H-space X in Top and each G-space Y in Top. The reader should write
these down. From this one gets a standard adjointness fact that θ# preserves
colimits of diagrams. Suppose we have a diagram of H-spaces Xp and H-maps

φp′,p. Let Z denote the colimit of the diagram in TopH . Then we have the

diagram θ#Xp and its colimit Y in TopG. Thus we have structure maps θ#Xp →
Y . Thus we obtain the diagram

Xp → θ#θ#(Xp)→ θ#Y

and the composition Xp → θ#Y . Thus we have a natural H-map Z → θ#Y .
Hence we get the G-maps

θ#Z → θ#θ
#Y → Y.

One then argues that θ#Z is in fact a colimit of θ#Xp.

Hence one gets that θ# takes principal H-spaces of the form i#A into princi-

pal G-spaces of the form j#B, it takes pushouts in TopH into pushouts in TopG,

and filtered spaces in TopH into filtered spaces in TopG. One then checks that
θ# takes principal H-spaces in TOP into principal G-spaces in TOP.
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Categorical Description of θ#EH for a Functor θ : H → G

If θ : H → G is a functor joining small categories, we can present the
principal G-space θ#EH quite explicitly. We first present it in a categori-

cal form. Construct Cθ in SETG×H
o

as above. Recall from Chapter 1 that
SETG×H

o

' (SETH
o

)G. Then from the functors

SETH
o M0−−→ CAT

N−→ TOP∆o |∗|−→ TOP

of Chapter 2 we get

(SETH
o

)G
(M0)G−−−−→ CATG NG−−→ (TOP∆o

)G
|∗|G−−→ TOPG.

Thus we get from the element Cθ of SETG×H
o

first an element of CATG and
from this an element of TOPG. Given θ : H → G then denote the above element
of CATG by Cθ : G −→ CAT. For each object r of G we have the category Cθ(r),
and for each morphism g : r→ r′ of G we have a functor g∗ : Cθ(r)→ Cθ(r′).

The functor Cθ : G −→ CAT can be readily displayed.

(i) The objects of Cθ(r) are all the ordered pairs (g, s) where s is an

object of H and where r
g←− θ(s) is a morphism of G.

(ii) For each morphism h : s′ → s in H and each object (g, s) in Cθ(r)
we get a morphism h : (gθ(h), s′)→ (g, s) in Cθ(r).

(iii) For each morphism g : r → r′ in G we get a functor g∗ : Cθ(r) →
Cθ(r′) which sends an object (g′, s) into the object (gg′, s) and we
get a morphism h : (g′θ(h), s′) → (g′, s) of Cθ(r) into the morphism
h : (gg′θ(h), s′)→ (gg′, s) of Cθ(r′).

The point of defining Cθ is that

(θ#EH)(r) ' BCθ(r).

Moreover for any morphism g : r → r′ in G we have the induced functor Cθ(r)→
Cθ(r′), and the induced map

BCθ(r) → BCθ(r′)

agrees with

g∗ : (θ#EH)(r)→ (θ#EH)(r′).

Thus θ#EH is readily exhibited from Cθ, and we thus call Cθ the categorical form
of θ#EH .

In the following, we use the fact that every functor n→ Cθ(r) is of the form

(g, s0)
h1←− (gθ(h1), s1)

h2←− · · · hn←− (g(θ(h1)) · · · (θ(hn)), sn)

for some diagram

s0
h1←− · · · hn←− sn

in H. Now fix an object r of G and consider the right H-space C(r, �) . We get

(θ#EH)(r) ' C(r, �)×H EH
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by the definition of θ#. But the above computation of all functors n → Cθ(r)
shows that

C(r, �)×H EH ' BCθ(r).

Hence we have the following.

(5.9) Let θ : H → G be a functor joining small categories. Consider the cate-
gorical form Cθ : G→ CAT of θ. Then we have

(θ#EH)(r) ' BCθ(r).

Note also from the above that we can present (θ#EΨ)(r) more directly in
terms of standard homotopy colimits as

(θ#EΨ)(r) = BHo(Cθ(r, �)).

In the style of Gray [5.3], denote by CAT/G the category of small categories
over G. That is, an object of CAT/G is a functor θ : H → G and a morphism is
a commutative diagram of functors

H0
θ′′−−−−→ H1

θ

y θ′
y

G G.

Then we have constructed the functor CAT/G → CATG and an associated
functor

CAT/G −→ PRINCG.

Topological Resolutions of a Small Category G

A topological resolution of a small category G is a pair consisting of a cellular
category Ψ and a functor θ : Ψ→ G such that for each object p of G, the space
(θ#EΨ)(p) is contractible; alternatively, such that in the categorical form Cθ,
each space BCθ(r) is contractible.

(5.10) Let θ : Ψ→ G be a topological resolution of G. Then the induced map

BΨ
θ∗−→ BG

is a homotopy equivalence in TOP.

Proof. On one hand, the colimit of the principal G-space θ#EΨ is given by

(Ob G)×G θ#EΨ ' (Ob Ψ)×Ψ EΨ ' BΨ.

On the other hand, the principal G-space θ#EΨ is a universal G-space in the
sense of (4.17) and its colimit is naturally homotopy equivalent to BG.

(5.11) Let θ : Ψ→ G be a topological resolution of the small category G. Then
θ#EΨ is a universal G-space in TOP with θ#EΨ a regular cell complex and with
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each (θ#EΨ)(p) a subcomplex of θ#EΨ. Moreover the colimit B of the G-space
θ#EΨ is a regular cell complex with identifications. In particular, these spaces
are all CW-complexes and the maps

g∗ : (θ#EΨ)(p)→ (θ#EΨ)(q)

corresponding to morphisms g : p→ q as well as the natural map

θ#EΨ → (θ#EΨ)/G ' BΨ

are all CW-maps which map open cells homeomorphically onto open cells.

We note two trivial examples of topological resolutions.
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Consider the group Z × Z where Z is the infinite cyclic group. Call its
generators g1 and g2, and write the group multiplicatively. Take the plane as a
regular complex acted upon by Z × Z where

g1(x, y) = (x + 1, y), g2(x, y) = (x, y + 1).

Denote by p0 the origin and take as 0-cells all its translates. Denote by p1,1

the segment from (0, 0) to (1, 0), and by p1,2 the segment from (0, 0) to (0, 1).
The 1-cells are all translates of p1,1 and p1,2. Denote by p2 the unit square with
vertices (0, 0), (1, 0), (0, 1) and (1, 1). The 2-cells are all translates of p2. Denote
an arbitrary choice among the cells p0, p1,1, p1,2, p2 by pω. These are the objects
of Ψ. There is a morphism pω ← pω′ for each pω ⊃ gpω′ , and composition is
given by

(pω ⊃ g(pω′))(pω′ ⊃ g′(pω′′)) = (pω ⊃ gg′(pω′′)).
These choices are as indicated in the latter part of (5.5). The functor θ : Ψ→ Z×
Z then sends each pω ⊃ g(pω′) into g. This translation of geometric information
into categorical language is illustrated above, obtaining the torus as nonstandard
classifying space for Z × Z.

As a second easy example of this kind of translation of geometric examples
into categorical terms, let G denote the category whose free generators are

0
g0←− 1

g1←− · · · gn−1←−−− n gn←− · · · .
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The standard universal space can here be presented. Let ∇(∞) denote the
infinite dimensional standard simplex whose vertices are {vi|0 ≤ i < ∞}. Let
∇n(∞) denote the infinite dimensional subsimplex spanned by all vi with n ≤ i.
Then the standard universal G-space EG can be checked to be

∇(∞)←↩ ∇1(∞)←↩ · · · ←↩ ∇n(∞)←↩ · · · .

Nevertheless, a classic easy presentation of homotopy colimits is Milnor’s map-
ping telescope which amounts to computing homotopy colimits of Go-spaces
using a topological resolution of G. We present the nonstandard universal space
and codify it in our style.

The nonstandard universal G-space E is the inverse system

E(0)
g0←− E(1)

g1←− · · · gn−1←−−− E(n)
gn←− · · · ,

where E(n) ⊂ R2 is all (x, n) with x ≥ n and where gn(x, n + 1) = (x, n). The
generating 0-cells are p0,n = (n, n) and the generating 1-cells are the intervals
p1,n consisting of all (x, n) with n ≤ x ≤ n + 1. The nonidentity morphisms of
Ψ are the inclusions

p1,n ⊃ p0,n, p1,n ⊃ gnp0,n+1.

Then we can present this in the form θ : Ψ→ G pictorially.
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θ : Ψ→ G

p1,0 p1,1
s

p0,0

s

p0,1

s

p0,2

-

BΨ ∼ BG

One should know the homotopy colimits generated by the above universal
G-space E. A Go-space X is a direct system

X0
f0−→ X1

f1−→ · · · fn−1−−−→ Xn
fn−→ · · · .

A nonstandard homotopy colimit of X is then the space X ×G E which can be
reinterpreted as

X ×G E ' (
∐
n≥0

Xn × [n, n+ 1])/ ∼,

where ∼ is the least equivalence relation with

(x, n+ 1) ∼ (fn(x), n+ 1)

for all x ∈ Xn. The homotopy colimit is then a bunch of mapping cylinders
strung together along a line, i.e. is Milnor’s mapping telescope.
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The Cone cG over a Small Category G

We will eventually show that the inclusion functor i : Mono ∆ → ∆ is a
topological resolution of ∆, following Segal [4.4]. We need to know about joins
in order to state the form of i#EMono ∆ most clearly. One can make joins out of
cones and products, so we first need to know about cones. Given a topological
category G, define the cone cG over G to be the topological category given by:

(i) Ob cG = Ob G t {−1}, where −1 has been picked arbitrarily as an
object disjoint from the objects of G;

(ii) Mor cG = Mor GtOb Gt{−1}; there are then three subspaces of
arrows; first, the already existing arrows of G; second, for each object
p of G an arrow from −1 to p which is denoted by (p,−1), the space
of all such being topologized as Ob G; finally, the singleton identity
morphism 1−1 of −1;

(iii) for any morphism p′
g←− p of G, commutativity holds in

−1 −1

(p′,−1)

y (p,−1)

y
p′

g←−−−− p.

There are also the standard cones over spaces. If A is a space, then the cone
cA over A is given by

cA = (I ×A)/ ∼,
where ∼ is the least equivalence relation on I × A such that (0, a) ∼ (0, a′) for
any a, a′ ∈ A. One checks that if A is compactly generated then cA is compactly
generated. For cA is a pushout of

I ×A←↩ 0×A −→ pt.

(5.12) The standard classifying space BcG = |N(cG)| is naturally homeomorphic
to the compactly generated space cBG which is the cone in the sense of spaces
over the space BG.

The proof is as an exercise for the reader.

The Join ∗ in TOPCAT

Given topological categoriesG0 and G1, we now consider the product category
cG0 × cG1. Its object space is the disjoint union

Ob G0 ×Ob G1 tOb G0 × {−1} t {−1} ×Ob G1 t {−1} × {−1}.

Let G0 ∗G1 denote the full subcategory of cG0 × cG1 whose object space is

Ob (G0 ? G1) = Ob G0 ×Ob G1 tOb G0 × {−1} t {−1} ×Ob G1.

We call the topological category G0 ∗G1 the join of G0 and G1.
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(5.13) There is a natural isomorphism c(G0 ∗G1) ' cG0×cG1 for all topological
categories G0 and G1.

Proof. Consider c(G0 ∗G1), whose objects are those of G0 ∗G1 together with
the object −1. Map the objects of G0 ∗G1 into objects of cG0×cG1 by inclusion.
Map the singleton −1 into the objects of cG0 × cG1 by sending −1 to (−1,−1).
Then finish by checking out morphisms.

One defines an (n+ 1)-fold join

G0 ∗G1 ∗ · · · ∗Gn
as the full subcategory of cG0 × · · · × cGn whose objects are all (r0, r1, · · · , rn)
such that each ri is either an object of Gi or else ri = −1, and such that for at
least one i we have ri an object of Gi. Secondly, one defines the morphisms

h = (h0, h1, · · · , hn) : (r0, · · · , rn)→ (s0, · · · , sn)

in G0 ∗ · · · ∗Gn by

(i) hi is a morphism of Gi if both ri and si are objects of Gi,
(ii) hi = 1−1 if ri = si = −1,
(iii) if ri = −1 and si ∈ Ob Gi then hi = (si,−1), and
(iv) requiring that it cannot happen that ri ∈ Ob Gi and si = −1.

The reader should check associativity up to natural isomorphism. Finally, one
should check that the join is commutative up to natural isomorphism.

Thus in summary we have the bifunctor

∗ : TOPCAT× TOPCAT→ TOPCAT.

This bifunctor is associative up to natural isomorphism, and also commutative
up to natural isomorphism. The empty category serves as neutral element of
the multiplication. Oddly enough, there are other ways of defining joins. The
computations which justify our choice are those of (5.16).

Joins of Compactly Generated Spaces

First there is the cone cA over a space A. By analogy with categories, given
compactly generated spaces A and B we can form the spaces cA×B and A×cB,
which we suppose intersect only in their common closed subset A ×B. We can
then take for the join A ∗ B the union cA × B ∪ A × cB. For spaces, there are
many ways to write joins but they are all naturally homeomorphic.

For example, write cA as the pushout, through a change of parameter, of

[1/2, 1]×A←↩ 1×A −→ pt,

so that cA×B is then the pushout of

[1/2, 1]×A×B ←↩ 1×A×B proj−−−→ B.

Similarly, regard cB as the pushout of

[0, 1/2]×B ←↩ 0×B −→ pt,
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so that A× cB is then the pushout of

[0, 1/2]×A×B ←↩ 0×A×B proj−−−→ A.

Regard A × B as 1/2 × A × B in each of these. Then A ∗ B is exhibited as a
pushout of

I ×A× B ←↩ {0, 1} ×A×B f−→ A tB,
where f(0, a, b) = a and f(1, a, b) = b. This is a second form.

Let Ψ denote the category whose objects are the nonempty subsets of the
doubleton {0, 1} and whose morphisms are inclusions. Then a diagram

A
f←− C g−→ B

is a Ψo-space; call it X . Then the standard homotopy colimit

BΨoX = X ×Ψ EΨ

is called the standard homotopy pushout of the diagram. One can take EΨ to be
the diagram

0 ↪→ I ←↩ 1.

Thus the homotopy pushout is

[A t I × C tB]/ ∼,

where ∼ is the least equivalence relation with (0, c) ∼ f(c) and (1, c) ∼ g(c).
That is, the homotopy pushout is the two-sided mapping cylinder A∪f I×C∪gB.

Thus the standard homotopy pushout of the diagram

A←− A×B −→ B,

in which the maps are projections, is homeomorphic to the join A ∗B. We take
any one of the above as the join A ∗B.

The Classifying Space of the Join G ∗H

Theorem 5.14 Let G and H be topological categories, and for any topological
category K let BK = |NK|. Then

BG∗H ' BG ∗BH .

Proof. Consider the topological category G ∗H, which is a certain full subcat-
egory of cG× cH. Included in it are the full subcategories cG×H and G× cH,
and every object of G ∗H is in cG×H or in G× cH. Moreover G×H is a full
subcategory of both of them, and is their intersection.

Let symbols ri, sj denote objects of cG, cH respectively. Let symbols pi, qj
denote objects of G,H respectively. Then cG × H has objects (ri, qj) while
G× cH has objects (pi, sj). Suppose we have a diagram

(r0, s0)
k1←− (r1, s1)

k2←− · · · kn←− (rn, sn)
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in G ∗H. If some object (ri, si) is in cG ×H but not in G ×H then we must
have ri = −1. It must then be the case that rj = −1 for all j ≥ i. Hence in
particular we have rn = −1.

If also some (ri, si) is in G× cH but not in G×H, then by similar reasoning
we have sn = −1. If both were the case, then we would have (rn, sn) = (−1,−1),
which is not in G ∗H. Hence the above diagram is either entirely contained in
cG×H or else is entirely contained in G× cH. From this it follows that BG∗H
is the union of BcG×H and BG×cH . Next one has to make the straight-forward
check that

BcG×H ∩BG×cH = BG×H .

Finally, one uses (5.12) and (2.9) to obtain that

BG∗H ' (cBG)×BH ∪BG × (cBH)

and thus BG∗H ' BG ∗BH .

We assume without proof the straight-forward fact that the join of compactly
generated spaces is associative up to natural homeomorphism. It then follows
that

BG0∗···∗Gn ' BG0 ∗ · · · ∗BGn .

The Topological Resolution i : Mono ∆→ ∆

The cone c∆ over ∆ is called the augmented simplicial category. One can take
as a model for it the category whose objects are the integers n ≥ −1, and whose
morphisms τ : m→ n are the order preserving functions

τ : {0, 1, · · · ,m} → {0, 1, · · · , n}.

Here the object −1 is interpreted as the empty set.
We need the associative bifunctor

⊕ : c∆× c∆→ c∆

corresponding to disjoint union. Given objects p and q of c∆, denote by

p
αp,q−−→ p+ q + 1

βp,q←−− q

the unique diagram of monos in c∆ where αp,q maps onto an initial segment and
βp,q maps onto a terminal segment. Given morphisms τ : p′ → p and γ : q′ → q
in c∆, there is then a unique morphism τ ⊕ γ : p′+ q′+ 1→ p+ q+ 1 in c∆ with
commutativity in

p′
αp′,q′−−−−→ p′ + q′ + 1

βp′,q′←−−−− q′

τ

y τ⊕γ
y γ

y
p

αp,q−−−−→ p+ q + 1
βp,q←−−−− q.

Then ⊕ is given on objects by p ⊕ q = p + q + 1, and as above on morphisms.
This bifunctor restricts to an associative bifunctor on ∆.
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(5.15) Given a morphism δ : m→ n in c∆ and given objects p and q of c∆ with
n = p+ q + 1, then there exist unique morphisms τ : p′ → p and γ : q′ → q with

δ = τ ⊕ γ.

Moreover, τ ⊕ γ is a mono if and only if τ and γ are both monos.

This is an exercise for the reader.

Theorem 5.16 Consider the cellular category Mono ∆, and the inclusion func-
tor i = θ : Mono ∆→ ∆. Let Cθ denote the categorical form of θ. Then

Cθ(0) 'Mono ∆, Cθ(m) ∗ Cθ(n) ' Cθ(m+ n+ 1).

Since BMono ∆ is contractible, then every BCθ(n) is contractible. Hence θ is a
topological resolution of ∆, and θ#EMono ∆ is a universal space for ∆. If X is
any ∆o-space in TOP, then

X ×∆ θ#EMono ∆ ' (i#X)×Mono ∆ EMono ∆ ' (i#X)×Mono ∆ ∇

is a homotopy colimit for the ∆o-space X.

Proof. The category Cθ(m) has as objects all morphisms δ : r → m of ∆, and
as morphisms α : δ → δ′ all commutative diagrams

r
α−−−−→ r′

δ

y δ′
y

m m

in ∆ for which α is a mono.

For m = 0, then the objects of Cθ(0) are in one-to-one correspondence with the
objects r ≥ 0 of Mono ∆. Moreover, the morphisms of Cθ(0) are clearly in one-
to-one correspondence with the morphisms of Mono ∆, thus Cθ(0) 'Mono ∆.

Suppose m,n ≥ 0, where we must write down an isomorphism

φ : Cθ(m) ∗ Cθ(n) ' Cθ(m+ n+ 1).

The objects of Cθ(m) ∗ Cθ(n) can be taken to be the ordered pairs (δ1, δ2) where

δ1 : p→ m, δ2 : q → n, p ≥ 0 or q ≥ 0.

We can regard all this as in c∆, and define

φ(δ1, δ2) = δ1 ⊕ δ2,

which is a morphism in ∆ from p + q + 1 to m + n + 1. It follows from (5.15)
that this is an isomorphism of object sets.
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Consider next the morphisms of Cθ(m) ∗ Cθ(n). These are in one-to-one cor-
respondence with the pairs of commutative diagrams in c∆,

p
α−−−−→ p′ q

β−−−−→ q′

δ

y δ′
y τ

y τ ′
y

m m n n

for which both α and β are monos, and where either both p, p′ ≥ 0 or both
q, q′ ≥ 0. Then define

φ(α, β) = α⊕ β
and check that φ is an isomorphism of morphism sets using (5.15). Thus Cθ(m)∗
Cθ(n) ' Cθ(m+ n+ 1).

Since BMono ∆ has been previously checked as contractible, and since the join
of contractible spaces is contractible, it follows from (5.14) that every BCθ(m) is
contractible. Hence i : Mono ∆ ↪→ ∆ is a topological resolution of ∆.
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CHAPTER VI

Homotopy Colimits of Simplicial Spaces

We are here again, as in Chapter 2, in the inner core of our subject. The simplicial
category ∆ has objects the non-negative integers and morphisms δ : m→ n the
order preserving functions

δ : {0, 1, · · · ,m} → {0, 1, · · · , n}.

The most primitive reason that TOP∆o

is at the inner core is because of the
functors

TOPCAT→ TOP∆o−→←TOP

of Chapter 2. We will continue to stress the interplay between TOP and these
two fattened versions of TOP which are useful in its study.

We have first to understand for which simplicial spaces X the Milnor realiza-
tion |X | is a (non-standard) homotopy colimit. One needs a judiciously chosen
non-standard universal ∆-space E and an equivariant map φ : E →∇ such that
one can analyze when the induced map

X ×∆ E → X ×∆ ∇ = |X |

is a homotopy equivalence. Here we use i#EMono ∆, set up in Chapter 5 for
this purpose. Thus for any ∆o-space X , one has the homotopy colimit BX =
X ×Mono ∆∇ of X . It then turns out that |X | is a homotopy colimit of X if for
each epi γ : n→ n−1 the pair (X(n), γ∗X(n−1)) is a cofibered pair in TOP; our
treatment has been adapted from Segal [4.4]. This is vital to our development
of the subject, since it is one of the justifications for basing the entire study of
homotopy colimits on the realization. In order to prove this, we have to continue
the study of homotopy equivalences that was started in Chapter 3.

In Chapter 4 we developed the basic theory of homotopy colimits only for
TOPG with G a discretely topologized small category. We next develop the
theory for TOPG where G is a topological category, having finally enough infor-
mation on homotopy colimits in TOP∆o

to do it properly. For any topological
category, one has as in Chapter 2 the diagram of functors

TOPG
M1−−→ TOPCAT

N−→ TOP∆o

.

125
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For topological categories, one takes as the standard model BG(�) for the homo-
topy colimit the composition

TOPG
M1−−→ TOPCAT

N−→ TOP∆o B−→ TOP

assigning to the G-space X the space BG(X) = NM1(X) ×Mono ∆ ∇. If G
satisfies a suitable cofibration condition, then the natural map BG(X)→ BG(X)
is a homotopy equivalence and one can think of BG(X) as a small model for
BG(X). IfG does not satisfy the cofibration condition, then one uses only BG(X).
One then uses as standard classifying space BG the space NG×Mono ∆ ∇.

We next consider a topological monoid, i.e. a topological category whose space
of objects is a singleton. For a topological monoid G, one thus has a continuous
and associative multiplication G×G→ G with a unit element 1 ∈ G. There is
then readily defined what it means for a topological monoid to have homotopy
inverses. We then prove a classic theorem that if G is a topological monoid with
homotopy inverses, then there is a natural homotopy equivalence of the space G
with the loop space ΩBG. The purpose of this is to open up for later chapters
the problem of exhibiting models for loop spaces.

By way of specific models, we exhibit in this chapter only the James model
for the loop space ΩSA of the reduced suspension SA of a compactly generated
space A with given base point, where A is further constrained by

(i) A is path connected,
(ii) the base point is cofibered in A, and
(iii) A is of the homotopy type of a CW-complex.

The theorem of James [6.4,1955] then asserts that ΩSA is of the homotopy
type of the free topological monoid JA whose generators are the points of A,
with the base point being the unit element. As a special case, the loop space of
Sn for n > 1 is then up to homotopy the free topological monoid generated by
Sn−1.

One proves it by a homotopy colimit computation, i.e. by showing that if A
is a compactly generated space with cofibered base point then BJA ∼ SA and
then applying the theorem on topological monoids with homotopy inverses. In
the conclusion of this chapter, JA is itself interpreted as a homotopy colimit.
Thus a major intent of the chapter is to treat the most classical homotopy
colimit problems connected with actions of small categories, those connected
with ∆o-spaces and the Milnor realization, with topological monoids which have
homotopy inverses, and with the free topological monoids JA generated by spaces
A with base point.

We assume in the course of the exposition some theorems of the 1960’s about
fibrations due to the German homotopy theorists. For proofs of these background
facts, we refer either to Dold [3.2] or to tom Dieck, Kamps and Puppe [3.1]. We
also assume without proof a theorem of Hastings [6.3] on fibrations.

The Universal ∆-Space i#EMono ∆

In Chapter 5, we showed that if Mono ∆ denotes the subcategory of ∆ con-
sisting of all monos in ∆ and if i : Mono ∆→ ∆ denotes the inclusion functor,
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then i#EMono ∆ is a universal ∆-space. Moreover, we can take

EMono ∆ =
∐
n≥0

∇(n)

with Mono ∆ acting as the face operators (although this is not the simplicial
structure on EMono∆ used there). We restate (5.16) as Segal’s form [4.4] of a
homotopy colimit BX for any simplicial space.

Theorem 6.1 Let X be any simplicial space in TOP. Then we can take for a
homotopy colimit BX of X the compactly generated space

BX = X ×∆ i#EMono ∆ ' i#X ×Mono ∆ ∇ ' (
∐

X(n)×∇(n))/ ∼,

where ∼ is the least equivalence relation such that if α : n− 1→ n is the mono
in ∆ whose image does not contain the vertex vi,n, then

(x, (t0, · · · , ti−1, 0, ti+1, · · · , tn)) ∼ (xα, (t0, · · · , ti−1, ti+1, · · · , tn))

for all x ∈ X(n).

Every point of BX has representatives x ×Mono ∆ (t0, · · · , tn) for various n,
where x ∈ X(n). Moreover, any ti = 0 can be deleted, replacing x by xα
for the appropriate mono α. Hence every point of BX has a representation as
x ×Mono ∆ (t0, · · · , tn) where ti > 0 for all i. We leave it to the reader to show
as in (2.7) that each point of BX has a unique representation in this form.

There is the following easier version of (2.8), whose proof we leave to the
reader.

(6.2) Let X be any simplicial space in TOP, and let

τ :
∐

X(n)×∇(n)→ BX

denote the natural quotient map onto the above homotopy colimit of X. Then
BX is filtered in TOP as BX =

⋃
(BX)n where (BX)n = τ(X(n)×∇(n)), and

there is the relative homeomorphism

τ ′ : X(n)× (∇(n), ∂∇(n))→ ((BX)n, (BX)n−1).

A Description of the Map i#EMono ∆ →∇

Let E = i#EMono ∆ abbreviate the universal ∆- space given by

E(n) = ∆(n, �)×Mono ∆ ∇;

for each n there is the map

φn : ∆(n, �)×Mono ∆ ∇→ ∆(n, �)×∆ ∇ ' ∇(n).

There results a ∆-map φ : E →∇. For every ∆o-space X we get the map

1×∆ φ : BX = X ×∆ E → X ×∆ ∇ = |X |.
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In order to understand this map, we need another form of the join of spaces.

Given compactly generated spaces X0, X1, · · · , Xn, the iterated join can be
exhibited as

X0 ∗ · · · ∗Xn = (∇(n)×X0 × · · · ×Xn)/ ∼

where ∼ is the equivalence relation such that

((t0, · · · tn), x0, · · · , xn) ∼ ((t0, · · · , tn), y0, · · · , yn)

if and only if xi = yi whenever ti 6= 0. Denote by

π : ∇(n)×X0 × · · · ×Xn → X0 ∗ · · · ∗Xn

the natural quotient map.

The two-fold join X0 ∗X1 then becomes X0 ∗X1 = (I×X0×X1)/ ∼, where ∼
is the equivalence relation given above. This is a form of the homotopy pushout
of the diagram

X0
proj←−−− X0 ×X1

proj−−−→ X1,

i.e. is the two-sided mapping cylinder of this diagram. Hence the two-fold join
as used here coincides up to homeomorphism with that of Chapter 5.

Let δ : m→ n be a morphism of ∆, i.e. an order preserving function

δ : {0, · · · ,m} → {0, · · · , n}.

Then for each 0 ≤ i ≤ n there is the face of ∇(m), possibly empty, spanned by
the vertices vj,m for which δ(j) = i. Denote this face by ∇(mi − 1), where mi

is the number of elements in δ−1(i), with ∇(−1) the empty set. Then there is a
homeomorphism

f : ∇(m0 − 1) ∗ · · · ∗ ∇(mn − 1) ' ∇(m).

One simply defines

fπ((t0, · · · , tn), (u0,0, · · · , um0−1,0), · · · , (u0,n, · · · , umn−1,n)) =

(t0u0,0, · · · , t0um0−1,0, · · · , tnu0,n, · · · , tnumn−1,n),

and checks that f is a homeomorphism. If some δ−1(i) is empty, the appro-
priate u�,i terms will simply not appear. Out of it, one gets for fixed n,m a
homeomorphism

F : ∆(n,m)×∇(m) '
∐

m0+···+mn=m+1

(∇(m0 − 1) ∗ · · · ∗ ∇(mn − 1)).

Recall that following (5.4) we exhibited the infinite dimensional dunce hat

D = BMono ∆ = (
∐
∇(m))/ ∼
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as all points [u0, · · · , um] where (u0, · · · , um) is a point of ∇(m) and where any
ui = 0 can be deleted. Let ρ :

∐
∇(m) → D denote the natural quotient map.

There is then the diagram∐
∆(n,m)×∇(m)

F−−−−→
∐
m0+···+mn=m+1(∇(m0 − 1) ∗ · · · ∗ ∇(mn − 1))

τ

y ρ∗···∗ρ
y

E(n) D ∗ · · · ∗D
and hence an induced map E(n) → D ∗ · · · ∗D which makes the diagram com-
mutative. It is tedious but not difficult to see that this is a homeomorphism of
E(n) onto the (n+ 1)-fold iterated join

Dn+1,∗ = D ∗D ∗ · · · ∗D.

There is a natural map Dn+1,∗ → D. On one hand, it can be taken as the
map E(n) → E(0) induced by the unique morphism n → 0 in ∆. On the other
hand, it can be exhibited as

π((t0, · · · , tn), [u0,0, · · · , um0−1,0], · · · , [u0,n, · · · , umn−1,n]) 7→

[t0u0,0, · · · , t0um0−1,0, · · · , tnu0,n, · · · , tnumn−1,n].

(6.3) The above universal ∆-space E =
∐
E(n) can be exhibited explicitly as

follows. Take each E(n) to be the (n+ 1)-fold iterated join Dn+1,∗ of the dunce
hat D. Given a morphism δ : m → n in ∆, let mi denote the number of points
in δ−1(i), consider the above maps

Dm0,∗ −→ D, · · · , Dmn,∗ −→ D

and form the iterated join map

Dm+1,∗ = Dm0,∗ ∗ · · · ∗Dmn,∗ −→ D ∗ · · · ∗D = Dn+1,∗.

This is the action map δ∗ : Dm+1,∗ −→ Dn+1,∗. The ∆-map φ : E → ∇ is for
each n ≥ 0 the join of maps D → pt as given by

E(n) = D ∗ · · · ∗D → pt ∗ · · · ∗ pt = ∇(n).

Relations Between Homotopy Equivalences and Posets

We need now an effective overview of the elementary relations between cofi-
brations and homotopy equivalences. These interconnections can be regarded in
two ways. The first is as follows.

Let Ψ be a poset. Then Ψ satisfies the finiteness condition if for each object
p of Ψ the set {q|q ≤ p} is finite. Define a cofibered Ψ-filtered space X in TOP
to be a compactly generated space together with closed subsets X(p) for each
object p such that:

(i) X =
⋃
p∈ΨX(p) and A ⊂ X is closed inX if and only if each A∩X(p)

is closed;
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(ii) if q ≤ p then X(q) is contained in X(p) and (X(p), X(q)) is a
cofibered pair;

(iii) if we have q ≤ p and r ≤ p and x ∈ X(q) ∩X(r), then there exists
s with s ≤ q and s ≤ r such that x ∈ X(s).

We also regard the poset as a category, with a single morphism q → p whenever
q ≤ p and no morphisms otherwise. This is the second way to look upon the
interconnections. The two ways are related as follows.

Theorem 6.4 Let Ψ be a poset which satisfies the finiteness condition, and let
X be a cofibered Ψ-filtered space in TOP. If Ψ also denotes the category associ-
ated with the poset Ψ, then there is the Ψ-space which associates to each p the
space X(p) and to the morphism ψ : q → p corresponding to q ≤ p the inclusion
X(q) ↪→ X(p). This is a principal Ψ-space and the total space X is its colimit.

Proof. For each object p of Ψ, let d(p) be the maximal non-negative integer n
such that there exists a diagram

p0 < p1 < · · · < pn = p.

Check that d(p) is well-defined, and that d(p) is of the form 1 + d(q) where d(q)
is the maximum of the d(q′) with q′ < p, whenever this set is non-empty. Let
Xn be the Ψ-space with Xn(p) all x ∈ X(p) for which there exists q ≤ p with
d(q) ≤ n and x ∈ X(q). Let An be defined by

An(p) =

{
X(p), for d(p) = n

∅, for d(p) 6= n.

For each object p let Xdeg(p) be the union of all the X(q) with q < p. Note by
(ii) and extended use of Lillig’s Theorem that eachXdeg(p) ⊂ X(p) is a cofibered
inclusion. Then define Bn by

Bn(p) =

{
Xdeg(p), for d(p) = n

∅, for d(p) 6= n.

The reader will then show, using (iii) and Lillig’s Theorem, that (An(p), Bn(p))
is a cofibered pair, that there is a relative homeomorphism

(Ψ×Ob Ψ An,Ψ×Ob Ψ Bn)→ (Xn, Xn−1),

and that X =
⋃
Xn is therefore a principal Ψ-space. It can be checked that the

total space is its colimit.

Let Ψ be a poset satisfying the finiteness condition, and let X and Y be
cofibered, Ψ-filtered spaces in TOP. Then a Ψ-filtered map f : X → Y is a
collection of maps fp : X(p) → Y (p) such that whenever q ≤ p commutativity
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holds in

X(q)
fq−−−−→ Y (q)

i

y j

y
X(p)

fp−−−−→ Y (p).

There is then an induced map X → Y in TOP which on X(p) agrees with fp,
and this map we also denote by f . This map f is the colimit of the collection
{fp}.
Theorem 6.5 Let Ψ be a poset satisfying the finiteness condition. Let X and
Y be cofibered, Ψ-filtered spaces in TOP, and suppose we have a Ψ-filtered map
f : X → Y such that each fp : X(p)→ Y (p) is a homotopy equivalence in TOP.
Then the induced map f : X → Y is a homotopy equivalence in TOP.

This is an immediate corollary of (6.4) and (4.3).
Example 1. Let Ψ be the poset with elements {0, 1, 2} and partial order 1 >
0 < 2. Then a cofibered Ψ-filtered space X in TOP is a compactly generated
space X together with two closed subsets X1 and X2 such that X = X1 ∪ X2

and such that X0 = X1 ∩X2 is cofibered in both X1 and X2. Let Y be another
cofibered, Ψ-filtered space; i.e. we have closed subsets Y1 and Y2 of Y with
Y = Y1 ∪ Y2 and with Y1 ∩ Y2 cofibered in both Y1 and Y2. Suppose we have
maps

f1 : X1 → Y1, f2 : X2 → Y2

such that if x ∈ X1 ∩X2 then f1(x) = f2(x). Let f0 : X1 ∩X2 → Y1 ∩Y2 denote
the map defined by f0(x) = f1(x) = f2(x). Then if f0, f1 and f2 are homotopy
equivalences in TOP, so is the induced map f : X → Y a homotopy equivalence
in TOP.
Example 2. Let Ψ be the poset

0 < 1 < · · · < n < · · · .

Then a cofibered, Ψ-filtered space in TOP is a compactly generated space X
together with a cofibered filtration X =

⋃
n≥0Xn in TOP. Given two such, a

Ψ-filtered map f : X → Y is a collection of maps fn : Xn → Yn such that each
fn is an extension of fn−1. There is then the induced map f : X → Y in TOP.
If each fn is a homotopy equivalence in TOP, then so is f : X → Y a homotopy
equivalence in TOP.
Example 3. Let Ψ be the poset of proper subsets ω = {i0, · · · , ik} of {0, 1, · · · , n},
under inclusion. Then a cofibered, Ψ-filtered space in TOP is a space X in TOP
together with closed subsets X(ω) such that:

(i) X =
⋃
X(ω);

(ii) if ω′ ⊂ ω then X(ω′) is a cofibered subset of X(ω);
(iii) X(ω)∩X(ω′) = X(ω∩ω′); we will assume in addition that X(∅) =
∅.

Given two such, a Ψ-filtered map is a collection of maps fω : X(ω) → Y (ω)
satisfying the consistency condition. These induce a single map f : X → Y of
the total spaces. If each fω is a homotopy equivalence, then so is f .
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We need one more fact about homotopy equivalences.

(6.6) Consider the commutative diagram in TOP

X
i←−−−− A

g−−−−→ Y

h0

y h1

y h2

y
X ′

i′←−−−− A′
g′−−−−→ Y ′

in which (X,A) and (X ′, A′) are cofibered pairs and h0, h1, h2 are homotopy
equivalences. Then the induced map X ∪g Y → X ′ ∪g′ Y ′ is a homotopy equiva-
lence.

Proof. Each row in the above diagram has a homotopy pushout, and these
homotopy pushouts are two-sided mapping cylinders. Denote them by

X ∪i I ×A ∪g Y, X ′ ∪i′ I ×A′ ∪g′ Y ′

respectively. We have an induced map F of homotopy colimits and by (4.3) this
induced map will itself be a homotopy equivalence in TOP. The added step
needed is that each pushout is naturally homotopy equivalent to the homotopy
pushout. Look at the first row. There is the commutative diagram

1×A = A Ay i

y
X ∪i I ×A −−−−→ X

which by (3.1) represents a homotopy equivalence in TOP\A. Hence the pushouts
of the diagrams

X
i←− A g−→ Y, X ∪i I ×A

j←− A g−→ Y

are naturally homotopy equivalent. The pushout of the second of these is the
homotopy pushout of the first.

The Cofibration Condition for Simplicial Spaces

In order to use effectively the cofibration results above, one considers simplicial
spaces X which satisfy a cofibration condition. Call a morphism δ of ∆ an
elementary degeneracy if δ is an epi of the form δ : n → n − 1 for some n > 0.
As in Chapter 2, δ∗ : X(n− 1)→ X(n) is an inclusion map onto a closed subset
δ∗X(n − 1) of X(n) for every elementary degeneracy. Say that X satisfies the
cofibration condition for simplicial spaces if (X(n), δ∗X(n − 1)) is a cofibered
pair for every elementary degeneracy.

Fix a simplicial space X which satisfies the cofibration condition. The reader
can show that every epi in ∆ is a composition of elementary degeneracies, and
consequently that if δ : n→ m is an epi in ∆ then (X(n), δ∗X(m)) is a cofibered
pair. Hence for every n ≥ 0, the pair (X(n), Xdeg(n)) is cofibered, using Lillig’s
Theorem.
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We finally have more than one cosimplicial space that concerns us, having
both ∇ and E = i#EMono ∆ to consider. We need a temporary name for a
cosimplicial space Y which satisfies the conditions of (2.3) as well as having
that if α : n → m is a mono in ∆, then the pair (Y (m), α∗Y (n)) is a cofibered
pair. We call such a cosimplicial space in TOP nicely cofibered. Thus for such a
cosimplicial space Y , we have:

(i) if α : n→ m is a mono, then α∗ maps Y (n) homeomorphically onto a
closed subset α∗Y (n) of Y (m) and (Y (m), α∗Y (n)) is a cofibered pair;

(ii) given y ∈ Y (m), there exists a unique triple consisting of n ≤ m, a
mono α : n→ m, and a non-degenerate u ∈ Y (n) with y = αu;

(iii) if the diagram n1
α1−→ m

α2←− n2 of monos has no pullback in
Mono ∆, then

α1∗Y (n1) ∩ α2∗Y (n2) = ∅;
(iv) if the above diagram of monos has a pullback diagram of monos

r
ρ1−−−−→ n1

ρ2

y α1

y
n2

α2−−−−→ m

and if α1ρ1 = α2ρ2 = β, then

α1∗Y (n1) ∩ α2∗Y (n2) = β∗Y (r)

.
(v) if γ : m → n is an epi and if y ∈ Y (m) is non-degenerate, then
γy ∈ Y (n) is nondegenerate.

The set Y deg(m) of degenerate elements of a nicely cofibered cosimplicial
space is the union of all the closed, cofibered subsets α∗Y (n) over all monos
α : n → m with n < m. It follows from Lillig’s Theorem that (Y (m), Y deg(m))
is a cofibered pair.

(6.7) Let X be a simplicial space in TOP which satisfies the cofibration condition
for simplicial spaces, and let Y be a nicely cofibered cosimplicial space in TOP.
Let ∼ denote the equivalence relation on

∐
X(n)× Y (n) such that

X ×∆ Y = (
∐

X(n)× Y (n))/ ∼ .

Then the analogues of (2.7) and (2.8) hold.

In fact, their proofs as given used only the above conditions. We have that
X ×∆ Y is filtered as

X ×∆ Y =
⋃

(X ×∆ Y )n,

where if π :
∐
X(n)× Y (n)→ X ×∆ Y denotes the natural quotient map, then

(X ×∆ Y )n = π(X(n)× Y (n)).

Moreover, there is the relative homeomorphism

π′ : (X(n), Xdeg(n)) × (Y (n), Y deg(n))→ ((X ×∆ Y )n, (X ×∆ Y )n−1).
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The space X ×∆ Y is then a cofibered filtered space.

Theorem 6.8 Let X be a simplicial space in TOP which satisfies the cofibration
condition for simplicial spaces, let Y and Z be nicely cofibered cosimplicial spaces,
and let φ : Y → Z be a ∆-map which is also a weak homotopy equivalence in
TOP∆. Then the induced map

1×∆ φ : X ×∆ Y → X ×∆ Z

is a homotopy equivalence in TOP.

Proof. The proof is an extended exercise in the paragraphs above on the
relationship between cofibrations and homotopy equivalences. Let f denote the
map 1×∆ φ and let

fn : (X ×∆ Y )n → (X ×∆ Z)n

denote the restricted maps. By Example 2, it suffices to show each fn a homotopy
equivalence in TOP. This will be by induction on n.

We have first to look at φn : Y (n)→ Z(n), to note that this restricts to a map
θ : Y deg(n) → Zdeg(n), and we have to prove that θ is a homotopy equivalence
in TOP. This follows from Example 3 above.

We next have to consider the commutative diagram

X(n)× Y (n) ←−−−− Xdeg(n)× Y (n) ∪X(n)× Y deg(n) −−−−→ (X ×∆ Y )n−1y y y
X(n)× Z(n) ←−−−− Xdeg(n)× Z(n) ∪X(n)× Zdeg(n) −−−−→ (X ×∆ Z)n−1,

and to check that the vertical maps are homotopy equivalences. One then uses
(6.6) to establish the induction.

Corollary 6.9 The cosimplicial spaces E = i#EMono ∆ and ∇ are both nicely
cofibered cosimplicial spaces Y such that each Y (n) is a contractible space. The
∆-map φ : E →∇ defined earlier is automatically a weak homotopy equivalence
in TOP∆. Hence for each simplicial space X satisfying the cofibration condition,
the map

1×∆ φ : BX = X ×∆ E → X ×∆ ∇ = |X |
is a homotopy equivalence in TOP. Hence for such X, |X | is a homotopy colimit
of X.

Easy Examples of |X | as a Homotopy Colimit

Note as a first corollary that all the simplicial sets X satisfy the cofibration
condition for simplicial spaces, where a simplicial set X =

∐
X(n) is considered

as a simplicial space by giving each X(n) the discrete topology. Every subset of
a discrete space is clearly both closed and cofibered. Hence for simplicial sets X ,
the realization |X | is a homotopy colimit.
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As a second corollary, fix a small category G and consider the functors

TOPG
o

× TOPG
M−→ TOPCAT

N−→ TOP∆o

of Chapter 2. Fix a Go-space X in TOP and a G-space Y in TOP. Then
NM(X,Y ) is the simplicial space Z =

∐
Z(n) where

Z(n) = X ×Ob G Gn ×Ob G Y.
Then Z(n) breaks up into open and closed subsets Z(g1, · · · , gn), one for each
diagram

p0
g1←− · · · gn←− pn

in the small category G. Here

Z(g1, · · · , gn) = {(x, g1, · · · , gn, y)}
with (x, y) ∈ X(p0)× Y (pn). There are two cases:

(i) some gi is an identity morphism and so Z(g1, · · · , gn) is contained in
Zdeg(n);

(ii) no gi is an identity morphism and so no points of Z(g1, · · · , gn) are
degenerate.

Thus Z(n) then breaks up into a disjoint union of open and closed subsets,
and we consider δ∗Z(n− 1) where δ : n→ n− 1 is an elementary degeneracy. It
is seen that δ∗Z(n− 1) consists of all

Z(g1, · · · , gi−1, 1p, gi+1, · · · , gn)

so that δ∗N(n−1) is a disjoint union of some of the open and closed subsets into
which Z(n) is broken. Thus (Z(n), δ∗Z(n − 1)) is a cofibered pair in TOP and
Z satisfies the cofibration condition for simplicial spaces. It then follows from
(6.9) that |NM(X,Y )| is a homotopy colimit of NM(X,Y ). Thus the constructs
BGX , EGX , EG, and X

⊗
G Y of Chapter 2 all are included in the case in which

the simplicial space used in the construction satisfies the cofibration condition,
so that the realization in all these cases is a homotopy colimit of the simplicial
space.

The Classifying Spaces BG of a Topological Category

We can now treat topological categories properly. Start with the question of
how one makes classifying spaces of a topological category G. We continue to
take the nerve functor

N : TOPCAT→ TOP∆o

as a given start. The question is how to follow it with a functor

F : TOP∆o

→ TOP.

An answer is with something taking the nerve NG of the given topological cat-
egory into a homotopy colimit of the simplicial space NG. Any two choices will
then automatically be naturally homotopy equivalent.

Having given above a specific homotopy colimit functor

B : TOP∆o

→ TOP
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for all simplicial spaces, one can then take as classifying space functor B� :
TOPCAT→ TOP the composition

TOPCAT
N−→ TOP∆o B−→ TOP.

Thus one has an answer for all G. How does it compare with the standard
BG that we have used for small categories? For G a small category, the nerve
NG =

∐
Gn satisfies the cofibration condition for simplicial spaces, thus there

is the homotopy equivalence BG → BG. Which topological categories G have
the simplicial space NG satisfying the cofibration condition, so that we can then
use |NG| as a classifying space?

Topological Categories Satisfying a Cofibration Condition

Before answering this, we have to generalize the notion of cofibration. We
have to consider the meaning of cofibration in the category TOP/P of compactly
generated spaces over a compactly generated space P .

Take an object ν : X → P of TOP/P . Then I × X denotes the object of
TOP/P whose structural map is given by ν′(t, x) = ν(x). Projection of I ×X
onto X is a map in TOP/P . So are the maps X−→→I×X which send x into (0, x)
and (1, x) respectively. Thus there is the homotopy category of TOP/P , already
considered in Chapter 3.

Closed pairs in TOP/P are easy. Given X in TOP/P , and any closed subset
A of X , then A inherits the structure of a space over P from X and (X,A)
becomes a closed pair in TOP/P .

Thus one has the cofibered closed pairs (X,A) in TOP/P , where given a map
φ : X → Y in TOP/P and a homotopy H0 : I × A → Y in TOP/P with
H0(0, a) = φ(a) for all a ∈ A, then there exists a homotopy H : I ×X → Y in
TOP/P which extends H0 and has H(0, x) = φ(x) for all x ∈ X .

Consider now a topological categoryG. Then Mor G and Ob G are compactly
generated spaces, and among the structural maps of G is the map

Mor G→ Ob G×Ob G, (p
g←− q) 7→ (p, q).

There is contained in Mor G the closed subset Id G of all identity morphisms
of G.

Say that the topological category G satisfies the cofibration condition if the
above closed pair (Mor G, Id G), considered as a closed pair in TOP/(Ob G ×
Ob G), is a cofibered pair in TOP/(Ob G×Ob G).

Suppose for example that G is a topological monoid, so that Ob G is a sin-
gleton, and we can identify G with the space of morphisms Mor G. Then G
satisfies the cofibration condition if and only if (G, {1}) is a cofibered pair in
TOP.

Theorem 6.10 Let G be a topological category which satisfies the cofibration
condition for topological categories. Then the simplicial space NG satisfies the
cofibration condition for simplicial spaces. Hence the realization |NG| is natu-
rally homotopy equivalent to the homotopy colimit of NG and thus to BG.
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TOP/(P ×Q) and the Proof of the Preceding Theorem

Consider TOP/(P × Q) where P and Q are compactly generated spaces.
Regard the structural maps of a space over P ×Q as the diagram

P
ν1←− X ν2−→ Q

in TOP, and a morphism X → Y as a commutative diagram

P
ν1←−−−− X

ν2−−−−→ Q∥∥∥ φ

y ∥∥∥
P

ν′1←−−−− Y
ν′2−−−−→ Q.

If G is a topological category, then as above we have

Ob G
ν1←−Mor G

ν2−→ Ob G,

where ν1 and ν2 take a morphism into its target and source respectively. Denote
this space over Ob G × Ob G simply by G. As above, we have the closed pair
(G, Id G) in TOP/(Ob G×Ob G).

If P , Q, and R are compactly generated spaces, there is a bifunctor

×Q : TOP/(P ×Q)× TOP/(Q×R)→ TOP/(P ×R).

Namely, given X in TOP/(P ×Q) with structural maps

P
ν1←− X ν2−→ Q

and given Y in TOP/(Q×R) with structural maps

Q
ν′1←− Y ν′2−→ R,

there are the maps X × Y−→→Q taking (x, y) into ν2(x) and ν′1(y) respectively.
Denote by X ×Q Y the closed subset of X × Y consisting of all (x, y) with
ν2(x) = ν′1(y). Then X ×Q Y is closed in X × Y , and hence is compactly
generated. Moreover, there are the structural maps

P
ν′′1←− X ×Q Y

ν′′2−→ R,

where ν′′1 (x, y) = ν1(x) and ν′′2 (x, y) = ν′2(y). One completes the functor by
assigning to f : X → Y in TOP/(P ×Q) and f ′ : X ′ → Y ′ in TOP/(Q×R) an
induced map

f ×Q f ′ : X ×Q Y → X ′ ×Q Y ′.
This functor is easily extended to multifunctors such as

TOP/(P ×Q)× TOP/(Q×R)× TOP/(R× S)→ TOP/(P × S).

Thus we regard the above multifunctor as associative.
If (X,A) is a closed pair in TOP/(P × Q) and (Y,B) is a closed pair in

TOP/(Q×R), one receives a closed pair

(X,A)×Q (Y,B) = (X ×Q Y,A×Q Y ∪X ×Q B)
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in TOP/(P ×R). We need the following fact. If (X,A) is a closed cofibered pair
in TOP/(P × Q) and (Y,B) is a closed cofibered pair in TOP/(Q × R), then
(X,A)×Q (Y,B) is a closed cofibered pair in TOP/(P ×R). The reader will have
to check that relevant portions of a simpler case at the beginning of Chapter 3
extend without change.

Consider finally a topological category G satisfying the cofibration condition.
There is the simplicial space NG, and

(NG)(n) = G×Ob G · · · ×Ob G G

is the n-fold reduced product Moreover, if δ : n → n − 1 is an elementary
degeneracy then δ∗NG(n− 1) is a reduced product

G×Ob G · · · ×Ob G G×Ob G Id G×Ob G G×Ob G · · · ×Ob G G

and (NG(n), δ∗NG(n− 1)) can be expressed as

G×Ob G · · ·G×Ob G (G, Id G)×Ob G G×Ob G · · · ×Ob G G.

By multiple use of the preceding paragraph, this is cofibered in TOP/(Ob G ×
Ob G) and thus in TOP. The theorem follows.

TOPG and TOPGo for G a Topological Category

Out of the bifunctor ×Q : TOP/(P ×Q) × TOP/(Q× R) → TOP/(P × R),
we can take P = pt or R = pt or both and get special cases such as

×Q : TOP/(P ×Q)× TOP/Q→ TOP/P.

We assume these special cases, but leave details to the reader.
If G is a topological category, a G-space X in TOP consists of

(i) a space X in TOP/Ob G with structure map ν : X → Ob G;
(ii) a morphism G×Ob GX → X in TOP/Ob G, (g, x) 7→ gx; this is the
action map;

(iii) for each (g, g′, x) ∈ G×Ob GG×Ob GX, it is required that g(g′x) =
(gg′)x;

(iv) it is required for each (1p, x) ∈ Id G×Ob G X that 1px = x.

Given G-spaces X and X ′ in TOP, a G-map φ : X → X ′ is a map in
TOP/Ob G such that commutativity holds in the diagram of maps in TOP/Ob G

G×Ob G X act−−−−→ X

1×Ob Gφ
y φ

y
G×Ob G X ′ act−−−−→ X ′.

We thus have the category TOPG whose objects are the G-spaces in TOP,
and whose morphisms are the G-maps.

There is similarly the category TOPG
o

of right G-spaces and G-maps.
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If G and H are topological categories, the G × Ho-spaces X in TOP merit
special attention. First, X is a space over Ob G×Ob H and as such has structure
maps

Ob G
ν1←− X ν2−→ Ob H.

Second, we take the action map as a map

G×Ob G X ×Ob H H → X (g, x, g′) 7→ (gx)g′ = g(xg′) = gxg′

in TOP/(Ob G × Ob H), with the appropriate extra conditions. As in Chapter
2, there is the functor

M : TOPG×H
o

× TOPH×K
o

→ TOPCAT,

where Ob M(X,Y ) = X ×Ob H Y , and Mor M(X,Y ) = X ×Ob H H ×Ob H Y .
There are natural maps

Ob M(X,Y )→ Ob G×Ob K,Mor M(X,Y )→ Ob G×Ob K,

which amount to a continuous functor

M(X,Y )→ Ob G×Ob K

into the topological category whose morphisms are all identity morphisms.
The functor N : TOPCAT→ TOP∆o

then sends M(X,Y ) into an NM(X,Y )
for which there is for each n a map

(NM(X,Y ))(n)→ Ob G×Ob K

commuting with the action maps coming from morphisms δ : m → n of ∆. In
short, the composition

TOPG×H
o

× TOPH×K
o M−→ TOPCAT

N−→ TOP∆o

maps each (X,Y ) into (TOP/Ob G×Ob K)∆o

. The realization | � | can then be
seen to provide a commutative diagram

(TOP/(Ob G×Ob K))∆o |�|−−−−→ TOP/(Ob G×Ob K)y y
TOP∆o |�|−−−−→ TOP.

(6.11) If G is a topological category which satisfies the cofibration condition,
then there is the functor

TOPG → TOP∆o

sending X into the simplicial space NM(G,X). This is a simplicial space sat-
isfying the cofibration condition for simplicial spaces. Thus |NM(G,X)| is a
homotopy colimit for NM(G,X). Define EGX = |NM(G,X)|. Then EGX is
in TOP/Ob G and also in TOPG, there is a natural G-map T : EGX → X, and
T is a homotopy equivalence in TOP/Ob G.
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Proof. Let δ : n→ n−1 be an elementary degeneracy, and abbreviate the com-
pactly generated space Ob G by P . Then (NM(G,X))(n), δ∗(NM(G,X))(n −
1)) is of the form

G×P · · · ×P G×P (G, Id G)×P G×P · · · ×P G×P X

and is thus a cofibered pair in TOP/P , where the structure map is given by

(g0, g1, · · · , gn, x) 7→ target g0.

It is then clear that NM(G,X) satisfies the cofibration condition for simplicial
spaces.

We must next see that |NM(G,X)| is in TOP/P . This follows from the
remarks above.

One next has to see that |NM(G,X)|, together with |NM(G,X)| → P , its
structure map given above, is in TOPG. The action function is clear, it is just a
matter of seeing that it is an action map in TOP/P . We only give the outline.
One needs besides NM(G,X) also NM(G×PG,X), both in (TOP/P )∆o

. There
is a natural morphism in (TOP/P )∆o

fromNM(G×PG,X) to NM(G,X) which
follows from the morphism in TOP/(P × P )

G×P G→ G, (g, g′) 7→ gg′.

This natural morphism induces a morphism

|NM(G×P G,X)| → |NM(G,X)|

in TOP/P . Finally,

|NM(G×P G,X)| ' G×P |NM(G,X)|.

Thus, |NM(G,X)| can be considered a G-space.
The final part of the proof consists in generalizing (2.11) and (2.13). The

generalization of (2.11) takes the following form. Let P denote a compactly gen-
erated space, and let also P denote the topological category whose object space
is P , and whose morphisms are all identity morphisms. Denote by TOPCAT/P
the category whose objects are pairs consisting of a topological category G and a
continuous functor G→ P , and whose morphisms are all commutative diagrams

G −−−−→ G′y y
P P.

Then (2.11) takes the following form. Suppose G and H are in TOPCAT/P
and that φ, θ : G → H are morphisms of TOPCAT/P such that there exists a
continuous natural transformation T : φ→ θ. Then the maps

|φ|, |θ| : |NG| → |NH|

in TOP/P are homotopic in TOP/P .
Then the proof of (2.13) is repeated verbatim for the rest of the theorem.
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Principal G-Spaces for a Topological Category

The main arena of this tract is with actions of small categories. Nevertheless,
we want to leave enough traces for the case of a topological category so that
the interested reader can reconstruct this extended case. Besides, it gives good
experience in the myriad possible extensions of the earlier chapters. We are ready
now to outline the categories with principal models in the case of a topological
category.

Fix a topological category G. There is then a functor TOP/(Ob G) →
TOP/(Ob G) sendingA intoG×Ob GA. Moreover there is a map in TOP/(Ob G),

G×Ob G G×Ob G A→ G×Ob G A,

which sends (g, g′, a) into (gg′, a). Thus G×Ob GA is a G-space and we have the
functor

i# : TOP/(Ob G)→ TOPG, A 7→ G×Ob G A.
A principal G-space X in TOP is a G-space for which there exists a filtration

X =
⋃
n≥0Xn in TOPG such that

(i) there exists a space A0 in TOP/(Ob G) such that

X0 ' G×Ob G A0

in TOPG, and
(ii) for each n ≥ 0 there exists a closed cofibered pair (An, Bn) in TOP/(Ob G)

and a pushout diagram

G×Ob G Bn −−−−→ Xn−1y y
G×Ob G An −−−−→ Xn

in TOPG.
If G is a topological category satisfying the cofibration condition, then each

EGX is a principal G-space; i.e. the generalization of (4.1) then holds. Recall
also from (6.11) that EGX → X is then a G-map and a homotopy equivalence
in TOP/(Ob G). For the case of a topological category G, these will be defined
to be the weak homotopy equivalences in TOPG; i.e. they are the G-maps which
are also homotopy equivalences in TOP/(Ob G).

The reader who checks all details of these paragraphs will have to start with
a burdensome extension of (3.9) from TOP to TOP/P , where P is a compactly
generated space. Namely, consider the diagram

A
φ0−−−−→ Y

ν

y g

y
X

φ1−−−−→ B

in TOP/P where ν is a cofibration in TOP/P and where g is a homotopy equiv-
alence in TOP/P . Suppose we are given a homotopy H0 : I×A→ B in TOP/P
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joining gφ0 to φ1ν. Then there exist a map θ : X → Y in TOP/P and a homo-
topy H : I ×X → B in TOP/P joining gθ to φ1 and with H(1I × ν) = H0. The
appropriate supporting lemmas and proof will work as before.

With this extended form of (3.9). the reader can check that the proof of (4.3)
continues to hold; i.e. if G is a topological category and if φ : X → Y is a weak
homotopy equivalence in TOPG joining the principal G-space X to the principal
G-space Y , then φ is a homotopy equivalence in TOPG.

Theorem 6.12 Let G be a topological category satisfying the cofibration con-
dition. Consider the category TOPG, together with the notion of homotopy in
TOPG and of weak homotopy equivalence in TOPG. Take also the functor

EG(�) : TOPG → TOPG

of (6.9), together with the natural transformation T : EG(�) → 1. Continue to
denote by PRINCG the full subcategory of principal G-spaces. With this struc-
ture, TOPG is a category with principal objects in the sense of Chapter 3.

The point of the above is that it is a direct extension of (4.4). How does
one handle the case in which the topological category G does not satisfy the
cofibration condition? The answer is that one can then substitute a functor
EG(�) : TOPG → TOPG for the above, based on the homotopy colimit functor

B : TOP∆o

→ TOP. Namely, take NM(G,X) in TOP∆o

and follow with the
functor B.

Theorem 6.13 Let G be a topological category. Assume the structures of (6.12)
except replace EG(�) by EG(�) and a corresponding natural transformation

T ′ : EG(�)→ 1.

With this given structure, TOPG is a category with principal objects in the sense
of Chapter 3.

Homotopy Pullback Diagrams

We have found occasion to use already the standard homotopy pushout of a
diagram

X1
f←− X0

φ0−→ Y0

in TOP, namely the two-sided mapping cylinder

C = X1 ∪f I ×X0 ∪φ0 Y0.

A commutative diagram

X0
φ0−−−−→ Y0

f

y g

y
X1

φ1−−−−→ Y1
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in TOP is said to be a homotopy pushout diagram, or to be homotopy cocartesian,
if the natural map

X1 ∪f I ×X0 ∪φ0 Y0 → Y1

is a homotopy equivalence in TOP.
We need now the dual notion. Let Ψ denote the small category

0 ↪→ 2←↩ 1,

and consider the Ψ-space

X1
φ1−→ Y1

g←− Y0.

The standard homotopy limit, or standard homotopy pullback, of this Ψ-space is
the compactly generated space

L = X1 ×Y1 (Y1)I ×Y1 Y0,

consisting of triples

x ∈ X1, σ : I → Y1, y ∈ Y0

such that σ(0) = φ1(x) and σ(1) = g(y).
A commutative diagram

X0
φ0−−−−→ Y0

f

y g

y
X1

φ1−−−−→ Y1

in TOP is said to be a homotopy pullback diagram, or to be homotopy cartesian,
if the natural map

X0 → L = X1 ×φ1 (Y1)I ×g Y0

is a homotopy equivalence in TOP. We come back to such diagrams after setting
up a circumstance in which they are needed.

Specializing the Topological Category to a Topological Monoid

A topological monoid is a topological category G for which the space Ob G is a
singleton. Thus it is a compactly generated space G together with an associative
multiplication

G×G→ G, (g1, g2) 7→ g1g2,

for which there is a two-sided identity 1 ∈ G. A homomorphism f : G → G′

joining topological monoids is a map with

f(g1g2) = f(g1)f(g2), f(1) = 1.

Denote by TOP MON the category of topological monoids and homomorphisms.
The topological monoid G is said to have homotopy inverses if there exists a

map θ : G→ G such that the map

G→ G, g 7→ g(θ(g))

is homotopic to the constant map sending each g into 1. Technically this requires
only a right homotopy inverse, but it follows that the right homotopy inverse is
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also a left homotopy inverse. Let µ(g) = (θ(g))g. Then the map g 7→ (µ(g))(µ(g))
is homotopic to g 7→ µ(g). Operating with θ(µ(g)) on the right we get that µ is
homotopic to the constant map.

Return now to the problem at hand; i.e. properties of the classifying space
of a topological monoid. Consider first the case in which the base point {1} is
cofibered in G. We can then take the standard universal G-space EG and the
standard classifying space BG to be

EG = |NM1(G)|, BG = |N(G)|

as in Chapter 2. Since (BG)0 = Ob G is a singleton, then BG has a natural
cofibered base point b0. Since Ob G is a singleton, also EG is a single compactly
generated space upon which the monoid acts continuously. Moreover BG is the
space of orbits and there is the natural quotient map π : EG → BG. It is readily
checked that π−1(b0) ' G. There is then the natural commutative diagram

π−1(b0) ' G −−−−→ EGy π

y
b0 −−−−→ BG.

We assume for the moment the following theorem, whose proof will occupy
us for the rest of the chapter. Such theorems go back to Dold-Lashof [6.1] with
weak homotopy equivalences replacing homotopy equivalences. In the present
generality, the theorem is due to M. Fuchs [6.2]. Segal [4.4] has generalized such
theorems; we use the language and methods of Segal and of V. Puppe [6.5].

Theorem 6.14 Let G be a topological monoid with homotopy inverses, such that
the base point 1 ∈ G is cofibered in G. Then the above commutative diagram

G −−−−→ EGy π

y
b0 −−−−→ BG

is a homotopy pullback diagram in TOP.

If the base point is not cofibered in G, then we must use (6.13) instead of
(6.12). We then have the G-space EG instead of EG, and the compactly generated
space BG instead of BG, where

BG = NG×Mono ∆ ∇.

Theorem 6.15 Let G be a topological monoid with homotopy inverses. Then
the commutative diagram

G −−−−→ EGy y
b0 −−−−→ BG
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is a homotopy pullback diagram in TOP.

We will begin shortly the proof of (6.15), but will first restate the theorems
in terms of the natural maps

G ↪→ ΩBG, G ↪→ ΩBG.

Corollary 6.16 Let G be a topological monoid with homotopy inverses. Then
the natural map

G→ ΩBG,
which takes g ∈ G into the loop t 7→ g ×Mono ∆ (1 − t, t) of BG, is a homo-
topy equivalence in TOP. If also the base point 1 ∈ G is cofibered in G, then
G→ ΩBG is a homotopy equivalence in TOP.

Proof. Since EG is contractible, the unique map EG → b0 is a homotopy
equivalence. We have the commutative diagram

G Gy y
b0 ×BG (BG)I ×BG EG −−−−→ b0 ×BG (BG)I ×BG b0 ' ΩBG.

The left hand map and the bottom map are homotopy equivalences, hence the
righthand map is a homotopy equivalence.

We have taken the following from Fuchs [6.2].

Theorem 6.17 Let G be a topological monoid. Denote by π0G the monoid of
path components of G, with base point the path component containing 1 ∈ G. If
π0G is a group and if G is of the homotopy type of a CW-complex, then G has
homotopy inverses.

Proof. The proof rests on consideration of the commutative diagram

G×G θ−−−−→ G×G

f

y f

y
G G,

where f(g1, g2) = g1 and θ(g1, g2) = (g1, g1g2). Now f is a fibration, and the
fibers are the ordered pairs with fixed first coordinate. Then θ maps each fiber
into itself. Since π0G is a group, then θ maps each fiber into itself by a homotopy
equivalence. If the base space G is of the homotopy type of a CW-complex, it
then follows from a remarkable theorem of Dold [3.2] that θ is a fiber homotopy
equivalence in the category of spaces over G. See also tom Dieck, Kamps and
Puppe [3.1] for a proof. Now let φ : G×G→ G×G be a fiber homotopy inverse.
Since θφ is homotopy equivalent to the identity in spaces over G, it is checked
that g1 7→ φ(g1, 1) is a right homotopy inverse.
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The James Model for ΩSA

We continue to motivate the later work involving homotopy pullback dia-
grams with examples from their history, and thus now give an account of early,
influential constructions of James [6.4]; see also tom Dieck, Kamps and Puppe
[3.1].

Let A be a compactly generated space with cofibered base point a0. We need
the free topological monoid JA generated by the points of A, where the base point
a0 becomes the identity element of JA. As with the rest of this example, this
is due to James. Define JA = (

∐
n≥1A

n)/ ∼, where ∼ is the least equivalence
relation such that

(a1, · · · , an) ∼ (a1, · · · , ai−1, a0, ai, · · · , an)

and where A0 is a0. There is the natural quotient map π :
∐
An → JA. Let

(JA)n = πAn, and show that JA =
⋃

(JA)n is a cofibered filtered space in TOP
whose term (JA)0 is the singleton 1 = π(a0). For each positive n, there is the
relative homeomorphism

π : (An, An,deg)→ ((JA)n, (JA)n−1),

where An,deg consists of all (a1, · · · , an) with at least one ai = a0.
The natural homeomorphisms Am ×An ' Am+n give a well defined map

[(
∐

Am)/ ∼]× [(
∐

An)/ ∼] −→ (
∐

Ar)/ ∼,

thus we have the natural map JA × JA → JA, which makes JA a topological
monoid. It is also the case that since a0 is cofibered in A, then 1 is cofibered
in JA. The monoid JA is filtered in the sense that the multiplication sends
(JA)m × (JA)n into (JA)m+n. Moreover (JA)1 can be taken to be A. Thus we
have the free topological monoid generated by A.

The following construction of James is then the prototype for numerous vari-
ations later. Denote by CA the reduced cone over A; that is,

CA = I ×A/0×A ∪ I × a0.

Identify A as a closed subspace of CA by identifying A with its copy 1×A. Thus
we have

A = (JA)1 ⊂ CA, JA×A ⊂ JA× CA.
We then have also the composition

JA×A = JA× (JA)1 → JA

where the last map is multiplication. Thus we have the diagram

JA× CA←↩ JA×A→ JA.

Denote the pushout of this diagram by E.
We see next that E is naturally filtered as E =

∐
n≥0En. For n = 0 take E0

as the natural base point, alternatively the pushout of

∅ ← ∅ → 1
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and for n > 0 as the pushout of

(JA)n−1 × CA←↩ (JA)n−1 ×A→ (JA)n.

It is next checked that for n ≥ 1 there is a relative homeomorphism

((JA)n−1, (JA)n−2)× (CA, e)→ (En, En−1),

where e is the base point of CA. Thus (En, En−1) is a cofibered pair. Since e is
a strong deformation retract of CA, then En−1 is a strong deformation retract
of En. It then follows that the base point E0 is a strong deformation retract of
E. In particular, the space E is contractible.

One next proceeds to the commutative diagram

JA× CA i←−−−− JA×A m−−−−→ JA

p

y p1

y y
CA

j←−−−− A −−−−→ pt,

where p and p1 are projection maps. The pushout of the top line is the con-
tractible space E, the pushout of the bottom line is the reduced suspension
SA = CA/A, and we have a map q : E → SA of pushouts. Thus we have a
commutative diagram

JA −−−−→ Ey q

y
pt −−−−→ SA.

Whenever this diagram is a homotopy pullback diagram, then we will have a
natural homotopy equivalence JA→ ΩSA.

We will later prove the following theorem about homotopy pullbacks.

Theorem 6.18 Suppose given the commutative diagram

X0
φ0←−−−− Y0

θ0−−−−→ Z0

ν

y ν′
y ν′′

y
X1

φ1←−−−− Y1
θ1−−−−→ Z1,

where φ0 and φ1 are cofibrations and where both rectangles are homotopy pullback
diagrams. Then both rectangles of the commutative diagram

X0 −−−−→ X0 ∪θ0 Z0 ←−−−− Z0

ν

y ν′′′
y ν′′

y
X1 −−−−→ X1 ∪θ1 Z1 ←−−−− Z1

are homotopy pullback diagrams, where ν′′′ is the induced map of pushouts.

For the moment we assume the theorem in order to obtain from it the following
classic theorem of James [6.4].
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Theorem 6.19 Let A be a path connected space with cofibered base point a0, and
suppose A is of the homotopy type of a CW-complex. Then there is the homotopy
pullback diagram

JA −−−−→ Ey q

y
pt −−−−→ SA

and hence we have a homotopy equivalence JA ∼ ΩSA.

Proof. The theorem will follow from (6.18) if we can show that each rectangle
of

JA× CA i←−−−− JA×A m−−−−→ JA

p

y p1

y y
CA

j←−−−− A −−−−→ pt

is a homotopy pullback diagram.
The first rectangle is a pullback diagram of fibrations, hence is a homotopy

pullback diagram.
The second rectangle is a homotopy pullback diagram if and only if the map

µ : JA×A→ JA×A, (w, a) 7→ (wa, a)

is a homotopy equivalence. This map JA × A → JA × A can be regarded as a
map of spaces over A, and the proof of (6.17) can be applied. For each fixed a, µ
is a homotopy equivalence of the fiber over a, since A and therefore JA are path
connected. Since A has been assumed of the homotopy type of a CW-complex,
then µ is a homotopy equivalence as in (6.17) by Dold’s Theorem.

The Category PULL of Homotopy Pullback Diagrams

Denote by MAP the category whose objects X are all maps

ν = νX : X0 → X1

in TOP, and whose morphisms φ : X → Y are the commutative diagrams

X0
φ0−−−−→ Y0

ν

y ν′
y

X1
φ1−−−−→ Y1

in TOP. This is the category we have previously denoted by TOP0→1. Recall
that we denote by WHE the subcategory consisting of all φ : X → Y such
that both φ0 and φ1 are homotopy equivalences in TOP. Recall also that the
coprincipal objects of MAP are those X for which ν : X0 → X1 is a fibration.
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Denote by PULL the subcategory whose morphisms are all homotopy pullback
diagrams. Then for each φ : X → Y in PULL, we have the homotopy equivalence

X0 ∼ L(φ) = X1 ×Y1 (Y1)I ×Y1 Y0.

For each object Y in MAP, there is the functorial factorization

Y0 ↪→ E′Y0
E′ν′−−−→ Y1

of the map ν′ : Y0 → Y1, as in (3.3;vi). Here E′Y0 = (Y1)I ×Y1 Y0. Then the
homotopy pullback of the original diagram can be checked to be the pullback of
the diagram

X1
φ1−→ Y1

E′ν′←−−− E′Y0.

Thus we have the pullback diagram

φ∗1E
′Y0 −−−−→ E′Y0y E′ν′

y
X1

φ1−−−−→ Y1,

and φ is in PULL if and only if the natural map X0 → φ∗1E
′Y0 is a homotopy

equivalence in TOP. Equivalently, φ is in PULL if and only if the natural map

E′X0 → φ∗1E
′Y0

is a homotopy equivalence. It then follows from (3.4) that E′X0 → φ∗1E
′Y0 is a

fiber homotopy equivalence in TOP/X1.

If φ : X → Y and θ : Y → Z are in PULL, then θφ : X → Z is in PULL

For since θ is in PULL, then the map

E′Y0 → θ∗1E
′Z0

is a fiber homotopy equivalence as spaces over Y1. It then follows that

φ∗1E
′Y0 → φ∗1θ

∗
1E
′Z0

is a fiber homotopy equivalence as spaces over X1. Since φ is in PULL, then

E′X0 → φ∗1E
′Y0

is a homotopy equivalence. The remark follows by combining these.
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WHE is Contained in PULL

For consider the commutative diagram

X0 −−−−→ φ∗1E
′Y0 −−−−→ X1

φ0

y f

y φ1

y
Y0

i−−−−→ E′Y0 −−−−→ Y1.

We at this time assume without proof a standard theorem of fibrations: namely,
since the above map φ1 is a homotopy equivalence, then the above map f :
φ∗1E

′Y0 → E′Y0 is a homotopy equivalence. For a proof, see tom Dieck, Kamps
and Puppe [3.1,p.137]. Since φ0, i and f are homotopy equivalences, then

X0 → φ∗1E
′Y0

is a homotopy equivalence.
Note the special case that all identity morphisms of MAP are in PULL.

If θφ is in PULL and one of φ, θ is in WHE, then the other is in
PULL

Suppose for example that φ is in WHE, and that θφ is in PULL. Using again
the above cited theorem concerning fibrations induced by homotopy equivalences,
we get the diagram

E′X0
∼−−−−→ φ∗1E

′Y0 −−−−→ φ∗1θ
∗
1E
′Z0

∼
y ∼

y
E′Y0 −−−−→ θ∗1E

′Z0.

It follows readily from the hypotheses that

φ∗1E
′Y0 → φ∗1θ

∗
1E
′Z0

is a homotopy equivalence, from which it follows that

E′Y0 → θ∗1E
′Z0

is a homotopy equivalence.
The following is taken from tom Dieck, Kamps and Puppe [3.1].

Theorem 6.20 Assume the commutative diagram in TOP,

X0

X1

X ′1

X ′0

Y1

Y0

Y ′1

Y ′0

-

-

-

-

HHHHj

HHHHj

HHHHj

HHHHj

?

?

?

?
∼

∼

∼

∼
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where the four designated maps are homotopy equivalences in TOP. Then the
back face is a homotopy pullback diagram if and only if the front face is a homo-
topy pullback diagram.

The proof is left as an exercise; use the preceding proposition.
The above are superficial properties of the category PULL. There are less

superficial properties, taken from Segal[4.4] and V. Puppe [6.5], which do things
like prove (6.18). We proceed slowly with these, and start by trying to under-
stand better fiber homotopy equivalences.

A Characterization of Fiber Homotopy Equivalences

Given a compactly generated space B, denote by TOP/B the category whose
objects are the maps ν : E → B and whose morphisms are the commutative
diagrams

E
φ−−−−→ E′

ν

y ν′
y

B B.

A Dold fibration ν : E → B is an object of TOP/B which is homotopy equivalent
in TOP/B to a fibration ν′ : E′ → B.

We assume basic properties of Dold fibrations; see Dold [3.2] or tom Dieck,
Kamps and Puppe [3.1]. Among these is the local characterization: if ν : E → B
is a map in TOP such that there exists a numerable covering {Vj |j ∈ J} of B
with each νj : ν−1Vj → Vj a Dold fibration, then ν is a Dold fibration [3.1,p.157].

DEFINITION. Consider the class of fibrations ν : E → B for B fixed. Define
the fibrations ν0 : E0 → B and ν1 : E1 → B to be equivalent if there exists a
Dold fibration π : E → I ×B and for ε > 0 sufficiently small pullback diagrams

[0, ε]×E0 −−−−→ E ←−−−− [1− ε, 1]×E1

1×ν0

y π

y 1×ν1

y
[0, ε]×B i−−−−→ I ×B j←−−−− [1− ε, 1]×B.

Write ν0 ∼ ν1 if this condition is satisfied.
The relation ∼ is an equivalence relation. Transitivity follows readily from

the local characterization of Dold fibrations.
If ν0 and ν1 are equivalent as above, then they are fiber homotopy equivalent.

This is again a version of a standard theorem of fibrations. See tom Dieck,
Kamps and Puppe [3.1,p.132].

In fact, it follows from methods of Dold that fibrations ν0 and ν1 are equivalent
as above if and only if they are fiber homotopy equivalent. We proceed to set
up the machinery needed, assuming fibrations ν0 and ν1 and a fiber homotopy
equivalence φ : E0 → E1.

Assume first the following straight-forward special case of a theorem of Hast-
ings [6.3]: the map

p : (E1)I → E1 ×B BI ×B E1
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sending a path σ into the triple (σ(0), ν1σ, σ(1)) is a fibration.
Next consider the inclusion map

i : E1 ×B E1 ↪→ E1 ×B BI ×B E1

sending the pair (e, e′) with ν1(e) = ν1(e′) into the triple (e, σ, e′) where σ is the
constant path at ν1(e). Take the pullback fibration

q : i∗(E1)I → E1 ×B E1

whose total space consists of all triples

e ∈ E1, σ : I → E1, e′ ∈ E1

such that ν1(e) = ν1(e′) and ν1σ is a constant path in B; i.e. such that the path
σ lies in a fiber of ν1.

Next factor into the above the fiber homotopy equivalence φ. Specifically,
take the homotopy equivalence

φ×B 1 : E0 ×B E1 → E1 ×B E1

and pull back the fibration q, obtaining the pullback diagram

W (φ) −−−−→ i∗(E1)I

ν′
y q

y
E0 ×B E1 −−−−→ E1 ×B E1.

Since q is a fibration, then ν′ is a fibration.
It is readily checked that projection E0 ×B E1 → E1 is a fibration, hence the

composition

W (φ)
ν′−→ E0 ×B E1 −→ E1

gives a fibration ν : W (φ) → E1 due to Dold [3.2]. Here W (φ) consists of all
triples

e0 ∈ E0, σ : I → E1, e1 ∈ E1

with σ contained in a single fiber of ν1 and with φ(e0) = σ(0) and σ(1) = e1.
Moreover ν maps (e0, σ, e1) into e1.

There is the natural inclusion of E0 in W (φ), sending e0 into the triple
(e0, σ, φ(e0)) where σ is the constant path at φ(e0). This is clearly a homotopy
equivalence. Thus we have Dold’s factorization of the fiber homotopy equivalence
φ,

E0 −−−−→ W (φ)
ν−−−−→ E1

ν0

y ν′′
y ν1

y
B B B,

where ν, ν0, ν
′′, ν1 are fibrations, all the top maps are homotopy equivalences,

and where ν′′ maps (e0, σ, e1) into ν0e0 = ν1e1.

Theorem 6.21 Let B be a compactly generated space, and let ν0 and ν1 be fi-
brations over B. Then ν0 ∼ ν1 in the above sense if and only if ν0 and ν1 are
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fiber homotopically equivalent.

Proof. Suppose ν0 and ν1 are fiber homotopically equivalent, via φ : E0 → E1.
We have to prove in the above construction that ν0 ∼ ν′′ and ν′′ ∼ ν1.

In order to prove ν0 ∼ ν′′, we need that

[0, 1/2]×E0 ∪E0 [1/2, 1]×W (φ)→ I ×B

is a Dold fibration. We leave it as an exercise for the reader that it is fiber
homotopy equivalent to the fibration 1× ν0 : I ×E0 → I ×B.

The heart of the matter is proving that ν′′ ∼ ν1. Since ν : W (φ)→ E1 is both
a fibration and a homotopy equivalence, we can use (3.8) on the commutative
diagram

W (φ) W (φ)

ν

y ν

y
E1 E1

to obtain a map s : E1 → W (φ) with νs = 1 and a homotopy D : I ×W (φ) →
W (φ) joining 1 to sν such that for each w ∈W (φ) all the D(t, w) lie in a single
fiber of ν. This having been noted, we leave it as an exercise to show that

[0, 1/2]×W (φ) ∪E1 [1/2, 1]×E1 → I ×B

is fiber homotopically equivalent to 1 × ν1 : I × E1 → I × B. It follows that
ν′′ ∼ ν1.

Corollary 6.22 Consider the fibrations ν0 : E0 → B and ν1 : E1 → B, and let
φ : E0 → E1 be a fiber homotopy equivalence in FIB/B. Then ν0 ∼ ν1 by means
of the Dold fibration π : E(φ)→ I ×B where

E(φ) = [0, 1/3]×E0 ∪W (φ) [1/3, 2/3]×W (φ) ∪E1 [2/3, 1]×E1,

with the map π the natural map.

We also interpret the above as follows. Suppose we are given the fiber homo-

topy equivalence E0
φ−→ E1 of fibrations over B. Replace it by the commutative

diagram

E0
i−−−−→ W (φ)

ν−−−−→ E1
1−−−−→ E1

ν0

y ν′′
y ν1

y ν1

y
B B B B.

Denote by T0 the mapping telescope of the top line, and by T1 the mapping
telescope T1 = I ×B of the bottom line. Then the induced map ρ : T0 → I ×B
is a Dold fibration.
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Extension of the Above Methods to PULL

Consider now a commutative diagram

X0
φ0−−−−→ Y0

ν

y ν′
y

X1
φ1−−−−→ Y1,

in TOP, where ν and ν′ are fibrations. We wish to characterize when φ is a
homotopy pullback diagram in terms of Dold fibrations.

Suppose first that φ is in PULL. There is then the fiber homotopy equivalence

X0
φ′0−−−−→ φ∗1Y0

ν

y y
X1 X1,

hence there is the Dold fibration π : E(φ′0)→ I ×X1 of (6.22).
There is also a fibration

π′ : E′(φ)→ [1, 3/2]×X1 ∪φ1 [3/2, 2]× Y1

at hand. Namely there is the natural map

[1, 3/2]×X1 ∪φ1 [3/2, 2]× Y1 → Y1

and one can pull back the fibration ν′.
There is in both E(φ′0) and E′(φ) the subset 1 × φ∗1Y0 so that we can form

the union

D(φ) = E(φ′1) ∪1×φ∗
1
Y0 E

′(φ)

and obtain a union map

τ : D(φ)→ [0, 3/2]×X1 ∪φ1 [3/2, 2]× Y1

which is checked to be a Dold fibration. The base space of τ is a variation of the
mapping cylinder of φ1; denote it by M(φ1) so that we have the Dold fibration
τ : D(φ)→M(φ1).

There is the similar variation M(φ0) = [0, 3/2]× X0 ∪φ0 [3/2, 2]× Y0 of the
mapping cylinder of φ0, and a natural homotopy equivalence

D(φ) ∼M(φ0).

Thus from the homotopy pullback diagram we have obtained a commutative
diagram

D(φ)
ρ−−−−→ M(φ0)

τ

y y
M(φ1) M(φ1),

where τ is a Dold fibration and ρ is a homotopy equivalence.
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We restate the construction. We have considered the diagram

X0 −−−−→ W −−−−→ φ∗1Y0 −−−−→ Y0 −−−−→ Y0y y y y y
X1 −−−−→ X1 −−−−→ X1 −−−−→ Y1 −−−−→ Y1

and have taken the mapping telescopes T0 and T1 of top and bottom, as well as
the induced map τ : T0 → T1. This has turned out to be a Dold fibration, and
T0 ' D(φ).

For simple linear diagrams in PULL, one can fit together the various D(φ).
Consider first a commutative diagram

Y0
φ0←−−−− X0

θ0−−−−→ Z0

ν

y ν′
y ν′′

y
Y1

φ1←−−−− X1
θ−−−−→ Z1

in PULL. One then has the commutative diagram

D(φ) ←−−−− X0 −−−−→ D(θ)

τ

y ν′
y τ ′

y
M(φ1) ←−−−− X1 −−−−→ M(θ1)

and thus can form the union

τ ∪X1 τ
′ : D(φ) ∪X0 D(θ)→M(φ1) ∪X1 M(θ1).

Denote the domain by D, and denote the range by M(1). There is a similar
M(0) = M(φ0) ∪X0 M(θ0) and a commutative diagram

D
∼−−−−→ M(0)

τ ′′
y y

M(1) M(1)

where τ ′′ is a Dold fibration.
The payoff then comes as follows. We have a commutative diagram

Y0 −−−−→ D ←−−−− Z0

ν

y τ ′′
y ν′′

y
Y1 −−−−→ M(1) ←−−−− Z1

which is a diagram of Dold fibrations and pullback diagrams. That is, this
diagram is a diagram in PULL. It then follows from (6.20) that

Y0 −−−−→ M(0) ←−−−− Z0y y y
Y1 −−−−→ M(1) ←−−−− Z1
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is a diagram in PULL. But M(0) is just a form of the homotopy pushout of

Y0
φ0←− X0

θ0−→ Z0,

M(1) is the corresponding form of the homotopy pushout of the base maps, and
the connecting map is that induced on homotopy pushouts.

We have proved a basic theorem of V. Puppe [6.5].

Theorem 6.23 Suppose given the diagram

Y0
φ0←−−−− X0

θ0−−−−→ Z0

ν

y ν′
y ν′′

y
Y1

φ1←−−−− X1
θ1−−−−→ Z1

of homotopy pullback diagrams. Let M0 and M1 denote the standard homotopy
pushouts of the top row and bottom row respectively, and let ν′′′ : M0 → M1

denote the induced map. Then the rectangles of

Y0 −−−−→ M0 ←−−−− Z0y y y
Y1 −−−−→ M1 ←−−−− Z1

are homotopy pullback diagrams.

Theorem 6.18 follows as a corollary from (6.23), using (6.20) as an aid.
We leave the entirely similar following proposition to the reader. One must

first prove it in terms of mapping telescopes, and then convert to cofibered filtered
spaces with (6.20).

Theorem 6.24 Suppose X =
⋃
Xn and Y =

⋃
Yn are cofibered filtered spaces,

and that we have the following diagram of maps

X0 −−−−→ X1 −−−−→ X2 −−−−→

f0

y f1

y f2

y
Y0 −−−−→ Y1 −−−−→ Y2 −−−−→

where each rectangle is a homotopy pullback diagram. Let f : X → Y be the
induced map of total spaces. Then

X0 −−−−→ X

f0

y f

y
Y0 −−−−→ Y

is a homotopy pullback diagram.
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Final Remarks on PULL

Let Ψ be a poset satisfying the finiteness condition as in (6.5). LetX and Y be
Ψ-filtered spaces and suppose we have a Ψ-filtered map f : X → Y , inducing the
restriction maps fp : X(p)→ Y (p). Suppose in addition one has a commutative
diagram

X
g0−−−−→ Z

f

y h

y
Y

g1−−−−→ W

such that for each p the composed diagram

X(p) −−−−→ Z

fp

y h

y
Y (p) −−−−→ W

is a homotopy pullback diagram. We may as well assume h a fibration, and we
do so. We then prove that the diagram

X
g0−−−−→ Z

f

y h

y
Y

g1−−−−→ W

is a homotopy pullback diagram.
Let E be the pullback g∗1Z, so that we have the fibration h′ : E → Y . Then

the natural map X(p)→ h′−1
Y (p) is a homotopy equivalence for each p. Since

Y (p) is a cofibered subset of Y , then h′−1
Y (p) is cofibered in E by a result of

Strom [3.8]. Thus E is the total space of a Ψ-filtered space. We can then apply
(6.5) to obtain that the natural map X → E is a homotopy equivalence. Thus
the result follows.

Proof of (6.15)

Let G be a topological monoid with homotopy inverses. Let X denote the
simplicial space with X(n) = Gn+1, for which

EG = X ×Mono ∆ ∇ = ||X ||.

Similarly let Y = NG denote the simplicial space with Y (n) = Gn, for which

BG = Y ×Mono ∆ ∇ = ||Y ||.

There is the ∆0-map f : X → Y given by

f(g0, g1, · · · , gn) = (g1, · · · , gn),

which induces the natural map EG → BG.
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The spaces ||X || and ||Y || are filtered as ||X || =
⋃
||X ||n and ||Y || =

⋃
||Y ||n,

and there are relative homeomorphisms

Gn × (∇(n), ∂∇(n))→ (||Y ||n, ||Y ||n−1)

and similarly for X . At the first stage we have ||X ||0 = G and ||Y ||0 = pt. To
prove (6.15), it suffices to prove that each diagram

||X ||n−1 −−−−→ ||X ||ny y
||Y ||n−1 −−−−→ ||Y ||n

is a homotopy pullback diagram. This will follow from (6.18) if we can prove
that each rectangle of

Gn+1 ×∇(n) ←−−−− Gn+1 × ∂∇(n) −−−−→ ||X ||n−1y y y
Gn ×∇(n) ←−−−− Gn × ∂∇(n) −−−−→ ||Y ||n−1

is a homotopy pullback diagram.
The only difficulty is with the right hand rectangle above. Thus we confine

our attention to
Gn+1 × ∂∇(n) −−−−→ ||X ||n−1y y
Gn × ∂∇(n) −−−−→ ||Y ||n−1.

Let Ψ be the poset of non-empty, proper subsets of n. Then for each ω in Ψ we
have subsets A(ω) of Gn+1 × ∂∇(n) and B(ω) of Gn × ∂∇(n); that is, the two
spaces are Ψ-filtered and we have the Ψ-filtered map f : A→ B.

For each ω, there is a unique mono δ in ∆ with range n, such that the image
of δ : m→ n is precisely ω. If we let ∇(ω) denote the image of δ : ∇(m)→∇(n)
then we get a commutative diagram

Gn+1 ×∇(ω) −−−−→ Gm+1 ×∇(m)y y
Gn ×∇(ω) −−−−→ Gm ×∇(m).

Here a fundamental computation enters, which we leave to the reader. Namely,
for any ω this is a homotopy pullback diagram. The various ∇(ω) and ∇(m) do
not effect this outcome, and for starters one can delete them all. The horizontal
maps such as Gn+1 → Gm+1 are then the induced maps δ∗ : X(n)→ X(m) and
one proceeds.

With an inductive hypothesis, one can then take the composition of

Gn+1 ×∇(ω) −→ Gm+1 ×∇(m) −→ ||X ||m −→ ||X ||n−1
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and similarly with Gn ×∇(ω) to obtain a homotopy pushout diagram

Gn+1 ×∇(ω) −−−−→ ||X ||n−1y y
Gn ×∇(ω) −−−−→ ||Y ||n−1.

One then has to take the above remarks on Ψ-filtered spaces to obtain that

Gn+1 × ∂∇(n) −−−−→ ||X ||n−1y y
Gn × ∂∇(n) −−−−→ ||Y ||n−1

is homotopy pullback. This establishes the induction and (6.15).
Turn finally to the proof of (6.14). There is the commutative diagram

G −−−−→ EG ∼−−−−→ EGy y y
pt −−−−→ BG

∼−−−−→ BG.

By (6.15), the left hand diagram is in PULL. The right hand diagram is in WHE
and therefore in PULL. Hence the composite diagram is in PULL.

A Categorical Interpretation of the Theorem of James

In this work on homotopy colimits, it is appropriate to point out that the
James space JA is the colimit of a certain G-space A∞, that if the base point is
cofibered then JA is also a homotopy colimit of A∞, and that the theorem (6.19)
of James thus yields another homotopy colimit ΩSA for A∞ when A satisfies
the conditions of (6.19).

We first replace the augmented simplicial category c∆ by an isomorphic copy
∆+. In this version of c∆, the objects of ∆+ are the non-negative integers and
the morphisms δ : m→ n are the order preserving functions

δ : {1, · · · ,m} → {1, · · · , n}.

The bifunctor ⊕ : ∆+ × ∆+ → ∆+ corresponding to disjoint union then has
m⊕n = m+n. Denote by Mono ∆+ the subcategory whose morphisms are the
order preserving monos.

Denote by TOP∗ the category whose objects are compactly generated spaces
A with base point a0, and whose morphisms are base point preserving maps.
There is a functor

�∞ : TOP∗ → TOPMono ∆+ , A 7→ A∞ =
∐
n≥0

An,

where if δ : m→ n then

δ(a1, · · · , am) = (b1, · · · , bn)
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with bj = aδ−1(j) whenever δ−1(j) is non-empty, and bj = a0 whenever δ−1(j) is
empty.

If A is a compactly generated space with cofibered base point, it is readily
checked that A∞ is a principal Mono ∆+-space. For as free generators one can
take all (a1, · · · , an) for n > 0 with each ai 6= a0, and the empty set for n = 0.

The James space JA is precisely the colimit of A∞. If the base point is
cofibered, so that A∞ is principal, then JA is also a homotopy colimit of A∞.

Thus one can restate (6.19) as the computation of a homotopy colimit.

Theorem 6.25 Let A be a compactly generated space with cofibered base point,
and let A∞ =

∐
An be the Mono ∆+-space above. If A is path connected and of

the homotopy type of a CW-complex, then ΩSA is a homotopy colimit of A∞.

Proof. It follows from (6.19) that for such an A we have a natural homotopy
class of homotopy equivalences JA→ ΩSA. Since JA is a homotopy colimit of
A∞, then so is ΩSA.
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CHAPTER VII

The Gabriel-Zisman Category oΛ and the Construction of
Topological Categories

In this chapter we review colimit constructions of small categories and homotopy
colimit constructions of topological categories. We start by outlining the addi-
tional structure required of the small category G and the Go-space X in order
that colimits and homotopy colimits have the needed extra structure.

A strictly monoidal small category G is a small category G for which one has
given a bifunctor ⊕ : G×G→ G, with functional values denoted by (p, q) 7→ p⊕q
and (g, h) 7→ g ⊕ h, such that associativity holds and such that there is a given
object 0 such that p⊕ 0 = p and 0⊕ p = p for all objects p, as well as g⊕ 10 = g
and 10 ⊕ g = g for all morphisms g. Thus both Ob G and Mor G are then
monoids.

Let G be a strictly monoidal small category, and let X be a Go- space. The
functor ⊕ : G × G → G then induces ⊕# : TOPG

o

→ TOPG
o×Go . We obtain

the Go ×Go-space ⊕#X , given by

(⊕#X)(p, q) = X(p⊕ q)

with its natural right action of G×G. There is also the Go ×Go-space X ×X ,
given by

(X ×X)(p, q) = X(p)×X(q)

with its natural action.
We say that a Go-space X is comultiplicative if there is given a Go ×Go-map

θ : ⊕#X → X ×X , i.e. an equivariant collection of maps

X(p⊕ q)→ X(p)×X(q),

such that associativity holds, and for each object p the compositions

X(p) = X(p⊕ 0) −→ X(p)×X(0)
proj−−−→ X(p),

X(p) = X(0⊕ p) −→ X(0)×X(p)
proj−−−→ X(p)

are both the identity map of X(p).

161
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In the above, we can project X(p)×X(0) and X(0)×X(p) onto X(0), and
thus assign to each x ∈ X(p) two elements of X(0), which we call the source and
target of x.

If X is a comultiplicative Go-space, for each pair (p, q) of objects we thus have
the map

θp,q : X(p⊕ q) −→ X(p)×X(0) X(q).

The comultiplicative G-space X is said to be strictly comultiplicative if each of
these maps θp,q is a homeomorphism.

Denote by COMULT TOPG
o

the category whose objects are the comultiplica-
tive Go-spaces X , and whose morphisms X → X ′ are the Go-maps µ : X → X ′

which preserve the comultiplicative structures. Denote by STR COMULT TOPG
o

the full subcategory of COMULT TOPG
o

whose objects are the strictly comul-
tiplicative Go-spaces.

If G is a strictly monoidal small category whose neutral object 0 is a terminal
object, then there is a functor

STR COMULT TOPG
o

→ CAT

which assigns to each strictly multiplicative Go-space X a small category whose
set of objects is X(0) and whose set of morphisms is the colimit of the Go-space
X . Here the topology on the colimit is ignored because it may not be weakly
Hausdorff.

To obtain a reliable topology, one needs to use homotopy colimits. If G is
a strictly monoidal small category whose neutral object 0 is a terminal object,
then there is a functor

W : STR COMULT TOPG
o

→ TOPCAT

which assigns to each strictly comultiplicative Go-space X a topological category
whose space of objects is X(0), and whose space of morphisms is the standard
homotopy colimit BGoX .

We next present two basic strictly monoidal small categories Λ and oΛ which
are closely related to ∆. First of all, for each ∆o-space X we need the Eilenberg-
Moore maps on X [7.2,p.218], a family of maps

θm,n : X(m+ n)→ X(m)×X(n)

which sends an element x ∈ X(m+n) into the pair (x′, x′′) where x′ is the front
m-face of x and x′′ is the back n-face.

This makes full sense categorically only when one restricts the structural cat-
egory from ∆o to Λo, where Λ is a certain subcategory of ∆. The objects of
Λ are the non-negative integers and the morphisms λ : m → n are the order
preserving functions

λ : m = {0, 1, · · · ,m} → n = {0, 1, · · · , n}

for which λ(0) = 0 and λ(m) = n. By identifying the last point of m with the
first point of n, we obtain a bifunctor ⊕ : Λ × Λ → Λ, which on objects has
m⊕ n = m+ n.
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Then Λ is strictly monoidal with 0 a terminal object, thus one can consider
comultiplicative Λo-spaces and can put in a natural setting the properties of the
Eilenberg-Moore maps on each simplicial space X . There is the functor

TOP∆o

→ COMULT TOPΛo , X 7→ i#X,

which sends X into the result i#X of restricting the structural category, and
from using the Eilenberg-Moore maps X(m + n) → X(m) × X(n). This is an
equivalence of categories.

If G is a topological category, one then has the simplicial space NG. The re-
sulting Λo-space is strictly comultiplicative, and this characterizes the topological
categories up to natural isomorphism in TOPΛo . Thus one gets a composition

TOPCAT −→ STR COMULT TOPΛo −→ TOPCAT.

We conjecture that this functor is the Boardman-Vogt functor [4.1]W : TOPCAT
→ TOPCAT which assigns to each topological category G an exploded topolog-
ical category WG using the Boardman-Vogt trees.

We now enlarge Λ to a category oΛ, which we call the Gabriel-Zisman category.
An object of oΛ is a subset A of some m = {0, 1, · · · ,m} such that 0 ∈ A and

m ∈ A. Given such subsets A of m and B of n, there is a morphism λ : A→ B
in oΛ for each morphism λ : m → n in Λ for which λ(A) ⊃ B. The objects can
also be considered as ordered partitions (m1, · · · ,mk) of m into positive integers,
where the partition yields the subset

A = {0,m1,m1 +m2, · · · ,m1 + · · ·+mk}.

The category oΛ is strictly monoidal with a natural functor ⊕ given on objects
by

(m1, · · · ,mj)⊕ (n1, · · · , nk) = (m1, · · · ,mj , n1, · · · , nk).

Moreover, the neutral object of oΛ is also a terminal object.
The point of oΛ is that there is a functor

TOP∆o

→ STR COMULT TOP(oΛ)o

which assigns to the ∆o-space X a strictly comultiplicative (oΛ)o-space oX which
has

(oX)(m1, · · · ,mk) = X(m1)×X(0) · · · ×X(0) X(mk)

and whose action is natural. This functor is an equivalence of categories.
By composing functors, we get a functor

TOP∆o

−→ STR COMULT TOP(oΛ)o −→ CAT

which we call the Gabriel-Zisman construction [2.4], since it gives their functor

SET∆o

→ CAT which is adjoint to the nerve functor. The composition

TOP −→ TOP∆o

−→ CAT

yields the fundamental groupoid functor.
We also get a composition

W : TOP∆o

−→ STR COMULT TOP(oΛ)o −→ TOPCAT
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which can be regarded as either an extended Gabriel-Zisman construction [2.4],
or an extended Boardman-Vogt construction [4.1].

The functor W : TOP∆o

→ TOPCAT completes the diagram of basic functors
to

TOPCAT←−→TOP∆o−→←TOP.

We can then use the methods of Segal to compute up to homotopy the space
of morphisms of WX , at least for an appropriate generalization of Segal’s special
∆o-spaces X [4.4]. Roughly speaking, we call a ∆o-space X special if each X(n)
is suitably determined up to homotopy by X(0) and X(1). More precisely, call
the ∆o-space X special if each of the Eilenberg-Moore maps

X(m+ n) −→ X(m)×X(0) X(n)

is a homotopy equivalence in TOP/X(0)×X(0).
We then prove a theorem of the Segal type [4.4]. Namely, for a special ∆o-

space X , the homotopy colimit of oX is X(1), up to homotopy in TOP/X(0)×
X(0). Thus for some purposes a special ∆o-space X can be replaced by the
topological category WX which has X(0) as space of objects and has space of
morphisms X(1) up to homotopy equivalence.

In the last part of the chapter, in the fashion of Stasheff [7.6] we show that oΛ
is related to cubes as ∆ is related to simplices. Thus we can also regard oΛ as the
cubical category. Here one can obtain small models WX for WX , generalizing
a construction of Vogt [4.7].

Simplicial Spaces as Comultiplicative Λo-Spaces

For each ∆o-space X we have the Eilenberg-Moore maps on X [7.2,p.218], a
family of maps

θm,n : X(m+ n)→ X(m)×X(n)

which send an element x ∈ X(m+ n) into the pair (x′, x′′) where x′ is the front
m-face of x and x′′ is the back n-face.

As in the introduction, this makes full sense categorically only when one
restricts the structural category from ∆o to Λo, where Λ is the subcategory of
∆ whose objects are the non-negative integers and whose morphisms λ : m→ n
are the order preserving functions

λ : {0, 1, · · · ,m} → {0, 1, · · · , n}

for which λ(0) = 0 and λ(m) = n.
There is an associated bifunctor ⊕ : Λ×Λ −→ Λ which on objects has m⊕n =

m+n; if λ : m→ m′ and λ′ : n→ n′ then λ⊕λ′ : m+n→ m′+n′ is defined by

(λ⊕ λ′)(i) =

{
λ(i), for 0 ≤ i ≤ m
m′ + λ′(i−m), for m ≤ i ≤ m+ n.

Then Λ is a strictly monoidal category.
Other properties of Λ include the fact that 0 is a terminal object, that the

only morphism with source 0 is the identity morphism of 0, and that given a
morphism λ : m + n → r then there exist unique morphisms λ′ : m → p and
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λ′′ : n → q for which λ = λ′ ⊕ λ′′. There is the initial object 1 of Λ. If one
denotes by εn the unique morphism 1 → n then every morphism λ : m → n
except 10 has a unique representation as

λ = εn1 ⊕ · · · ⊕ εnm
where n1 + · · ·+nm = n. That is, the morphisms of Λ constitute a free monoid,
as do the objects.

Because Λ is strictly monoidal, one has the comultiplicative Λo-spaces and can
put in a natural setting the properties of the Eilenberg-Moore maps on simplicial
spaces.

Theorem 7.1 There is the functor

TOP∆o

→ COMULT TOPΛo , X 7→ i#X,

which sends X into the result i#X of restricting the structural category, and
from using the Eilenberg-Moore maps X(m + n) → X(m) × X(n). This is an
equivalence of categories.

Proof. We take the first sentence as clear. Suppose X ′ is any comultiplicative
Λo-space; we must define a corresponding ∆o-space X . Take X(n) = X ′(n). We
must then use the comultiplication on X ′ to extend the action of the structural
category from Λo to ∆o. Every morphism δ : m → n of ∆ can be uniquely
factored as a morphism λ : m → q of Λ, followed by a mono α : q → n of ∆
whose image is a full subinterval of {0, · · · , n}. The question is then how to
define

α∗ : X ′(n)→ X ′(q).

Here one can write n = p+ q + r for appropriate p, r and take the composition

X ′(p+ q + r) −→ X ′(p)×X ′(q)×X ′(r) proj−−−→ X ′(q).

Thus we have a first reformulation of ∆o-spaces as the comultiplicative Λo-
spaces.

The small category Λ has another form, related to the other strictly monoidal
category associated with the simplicial category ∆, namely the augmented sim-
plicial category ∆+ of Chapter 6, whose objects are the non-negative integers,
and whose morphisms δ : m→ n are the order preserving functions

δ : {1, · · · ,m} → {1, · · · , n},

where the object 0 corresponds to the empty set. Then ∆+ is a strictly monoidal
category whose neutral element 0 is an initial object, and the only morphism into
0 is the identity morphism 10. Thus ∆+ is a natural strictly monoidal category
which contains a copy of ∆ as a full subcategory.

(7.2) The categories ∆+ and Λ are related by an isomorphism

(∆+)o ' Λ.
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The isomorphism interprets the ordered set {0, 1, · · · , n} as the set of initial in-
tervals of {1, · · · , n}. If δ : m→ n is a morphism in ∆+, then the isomorphism
assigns to it the morphism δ−1 : n→ m of Λ which assigns to an initial interval
J its inverse δ−1J .

We have completed the interpretation of simplicial spaces as comultiplicative
Λo-spaces. Thus one can rewrite a simplicial space by restricting the structural
category to Λo ' ∆+ and incorporating the Eilenberg-Moore maps.

The category COMULT TOPΛo can only be an interim setting for us. Because
Λ has an initial object 1, then Λo has a terminal object. Hence a Λo-space X has
X(1) as colimit and (non-standard) homotopy colimit. We need a larger category
for which colimits and homotopy colimits are more non-trivial. The clues are in
the Gabriel-Zisman construction [2.4] of a functor SET∆o

→ CAT adjoint to the
nerve functor. We thus call the resulting category the Gabriel-Zisman category.

The Gabriel-Zisman Category oΛ

From one point of view, oΛ has as objects all the ordered partitions ω =
(m1, · · · ,mk) of a positive integer m into positive integers, together with the
single partition of m = 0 that we denote by ω = ∅.

In this notation, every ω = (m1, · · · ,mk) determines a unique object even if
we only assume mi ≥ 0. One simply deletes all mi = 0 and takes the object
which results.

From another point of view, an object of oΛ is a subset A of some n =
{0, 1, · · · ,m} such that 0 ∈ A and m ∈ A. Given ω = (m1, · · · ,mk) then we can
take

A = {0,m1,m1 +m2, · · · ,m1 + · · ·+mk}.

If the object A of oΛ is presented as a subset of m with 0,m ∈ A, and if the
object B is presented as a subset of n with 0, n ∈ B, then there is a morphism
λ : A → B in oΛ for each morphism λ : m → n in Λ for which λ(A) ⊃ B. The
identity morphism 1A is obtained by taking λ = 1m and A = B. Compositions
are obtained using the composition in Λ.

One can also regard the objects of oΛ as the monos ω of Λ, with a morphism
ω → ω′ for each commutative diagram

k −−−−→ k′ ←−−−− j

ω

y y ω′
y

m
λ−−−−→ n n

in Λ, all of whose morphisms except possibly λ are monos in Λ.

There is a natural inclusion functor j : Λ→ oΛ, namely as the full subcategory
whose objects are the empty partition and the singleton partitions. There is also
a natural functor µ : oΛ→ Λ sending (m1, · · · ,mk) into m1 + · · ·+mk and λ into
λ. In terms of objects A, Λ is the full subcategory of oΛ whose objects are all
subsets {0,m} of m for all m ≥ 0, and there is the retracting functor µ : oΛ→ Λ.
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The category oΛ is strictly monoidal, with a bifunctor ⊕ such that on objects

(m1, · · · ,mj)⊕ (n1, · · · , nk) = (m1, · · · ,mj , n1, · · · , nk).

The object ∅ is both a neutral object and a terminal object of oΛ. The value
of ⊕ on morphisms of oΛ is readily written out in terms of the value of ⊕ on
morphisms of Λ.

If one wishes, one can write out oΛ as a Grothendieck construction in the
fashion of Thomason [7.7]. Here one displays a functor F : Λ→ CAT for which
the Grothendieck construction Λ o F is the Gabriel-Zisman category. Let F (m)
be the category whose objects A are all {0,m} ⊂ A ⊂ m and which has a
morphism A→ B whenever A ⊃ B. For each λ : m→ n in Λ, take the functor
λ∗ : F (m)→ F (n) given on objects by λ∗(A) = λ(A).

(7.3) One can specify generators for the morphisms of oΛ as follows.

(i) For singleton objects (m) and (n) with m,n > 0, and each morphism
λ : m → n in Λ, one gets a morphism (m) → (n) of oΛ for each
λ : m→ n of Λ.

(ii) For each n > 0, there is a unique morphism (n)→ ∅ corresponding
to the unique morphism n→ 0 of Λ.

(iii) For each doubleton ω = (m,n) with m,n > 0, there is a morphism
(m,n)→ (m+n) corresponding to the morphism 1m+n : m+n→ m+n.

(iv) One gets the morphisms obtained as ρ1 ⊕ · · · ⊕ ρk where each term
is one of the above and where ⊕ is the bifunctor for oΛ.

Every morphism of oΛ is a composition of such.

No doubt if one is persistent enough, one can write down an explicit proof in
terms of the list of morphisms given above. A little such effort will convince one
that the proposition is clear.

Theorem 7.4 Consider a comultiplicative Λo-space X. Consider the inclusion
j : Λ→ oΛ noted above. The composition

STR COMULT TOP(oΛ)o −→ TOP(oΛ)o j#−→ TOPΛo

maps STR COMULT TOP(oΛ)o into COMULT TOPΛo and provides an equiva-
lence of categories

STR COMULT TOP(oΛ)o ∼ COMULT TOPΛo .

Alternatively, there is a functor

COMULT TOPΛo → STR COMULT TOP(oΛ)o

which assigns to the comultiplicative Λo-space X the unique strictly comultiplica-
tive (oΛ)o-space oX which has

(oX)(m1, · · · ,mk) = X(m1)×X(0) · · · ×X(0) X(mk)

and whose action on the generators of (7.3) are the natural actions, using the
comultiplication for generators of type (iii).
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Proof. We outline the first assertion of the theorem. Suppose that Y is a
strictly comultiplicative (oΛ)o-space. Then the Λo-space X = j#Y constructed
above has X(0) = Y (∅) and X(n) = Y ((n)) for n > 0. For m,n > 0 the
generator (m,n)→ (m+ n) of type (iii) in (7.3) and the strict comultiplication
gives a composition

X(m+ n) = Y ((m+ n)) −→ Y ((m,n)) = Y ((m)⊕ (n)) ' Y ((m)) × Y ((n))
= X(m)×X(n);

one has to consider also the cases m = 0 and n = 0, and convince oneself that
the result is a comultiplication on X .

We also merely outline the existence of the functor

o : COMULT TOPΛo → STR COMULT TOP(oΛ)o

which has (oX)(m1, · · · ,mk) = X(m1)×X(0) · · ·×X(0)X(mk). Take as model for
oΛ the category with objects A and morphisms λ : A → B as described above.
Let H denote the subcategory of oΛ whose morphisms are all λ : A→ B = λ(A).
Then the generators of type (i), (ii) and (iv) generate H and one can convince
oneself that Ho acts because no generators of type (iii) are included.

Let K denote the subcategory of oΛ whose morphisms consist of all morphisms
A→ B where

{0, n} ⊂ B ⊂ A ⊂ n
and where the given morphism of Λ is 1n : n → n. The associativity of the
comultiplication then gives an action of Ko.

Finally, every morphism of oΛ can be written as a morphism of H followed by
a morphism of K. Since each of Ho and Ko acts, one gets a candidate for an
action of (oΛ)o. One has to convince oneself that it is an action.

Corollary 7.5 There is a functor

o : TOP∆o

→ STR COMULT TOP(oΛ)o

which assigns to a ∆o-space X the (oΛ)o-space oX which has

(oX)(m1, · · · ,mk) = X(m1)×X(0) · · · ×X(0) X(mk),

and whose action is naturally given on the generators of (7.3) using the Eilenberg-
Moore comultiplication for generators of type (iii). This functor is an equivalence
of categories.

The Gabriel-Zisman Construction

We can easily construct small categories from strictly comultiplicative Go-
spaces.

(7.6) Let G be a strictly monoidal small category whose neutral object 0 is also
a terminal object of G. There is a functor

STR COMULT TOPG
o

→ CAT
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which assigns to a strictly comultiplicative G-space X the small category whose
set of objects is X(0), whose set of morphisms is the colimit of the Go-space X,
whose identity morphisms are given as the composition

X(0) −→ X(p) ↪→ X −→ colim X,

and whose composition is induced by the comultiplication. Here we have not
bothered with the topology on the small category because colim X may not be
compactly generated.

Proof. The comultiplication yields the maps X(p)→ X(0)×X(0) which assign
a source and target to each x ∈ X(p). These maps are natural, and thus induce

colim X → X(0)×X(0),

and source and target functions for the category. The unique morphisms p→ 0
in G yield compositions

X(0)→ X(p) ↪→ X −→ colim X,

which gives the identity morphisms of the category. The strict comultiplication
yields natural homeomorphisms

X(p)×X(0) X(q) ' X(p+ q),

which gives a well defined

colim X ×X(0) colim X → colim X

and composition in the category.

The following is a form of the Gabriel-Zisman construction.

Corollary 7.7 The composition

SET∆o

↪→ TOP∆o o−→ STR COMULT TOP(oΛ)o −→ CAT

is the Gabriel-Zisman functor SET∆o

→ CAT adjoint to the nerve functor
N : CAT→ SET∆o

.

It is worth while to write the above construction out explicitly. Fix a ∆o-
space X . There is then the small category whose objects are all x ∈ X(0), i.e.
all vertices of X . The morphisms can be described as follows. Take all k-tuples
(x1, · · · , xk) where each xi is in some X(mi) and where the last vertex of xi−1

coincides with the first vertex of xi. Put an equivalence relation on this set as
follows:

(i) any xi ∈ X(0) can be deleted if k > 0;
(ii) if λ : ni → mi and if xiλ = yi, then xi can be replaced by yi;
(iii) if mi = m + n then xi can be replaced by x′i, x

′′
i where x′i is the

front m-face and x′′i is the back n- face of xi.
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The result is the category defined as the image of X under the composition

TOP∆o

→ STR COMULT TOP(oΛ)o −→ CAT.

One gets then as did Gabriel-Zisman that the composition of

TOP
�∇−−→ TOP∆o

−→ CAT

is the fundamental groupoid functor, assigning to the space A the category whose
objects are the points of A and whose morphisms from x1 to x0 are the path
homotopy classes of paths in A from x0 to x1.

The Extended Gabriel-Zisman Construction and the Extended
Boardman-Vogt Construction

Let G be a strictly monoidal small category. Say that a G-space Y is mul-
tiplicative if one is given a G × G-map φ : Y × Y → ⊕#Y , i.e. equivariant
maps

φp,q : Y (p)× Y (q)→ Y (p⊕ q), (y, y′) 7→ yy′,

such that

(i) associativity holds, so that there are uniquely defined maps

φp,q,r : Y (p)× Y (q)× Y (r)→ Y (p⊕ q ⊕ r),

(ii) and there exists an element ε in Y (0) such that yε = y and εy = y
for all y.

The G-space Y is strictly multiplicative if it is multiplicative, if Y (0) is the
singleton ε, and if each φp,q : Y (p)× Y (q)→ Y (p⊕ q) is a homeomorphism.

(7.8) For a strictly monoidal category G, there is a natural multiplicative G-
space, namely the standard universal G-space EG with multiplication

⊕∗ : EG(p)×EG(q)→ EG(p⊕ q).

The bifunctor ⊕ : G×G→ provides the multiplication

EG ×EG ' EG×G −→ EG.

Theorem 7.9 Consider a strictly monoidal small category G whose neutral ob-
ject 0 is a terminal object. Then from each strictly comultiplicative Go-space X
we get a topological category whose space of objects is X(0) and whose space of
morphisms is the homotopy colimit

BGoX = X ×G EG.
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Proof. Since 0 was required to be a final object, for each p the unique morphism
p → 0 gives a uniquely defined map X(0) → X(p). Thus for each object p we
have the natural diagram

X(0)→ X(p)→ X(0)×X(0)

whose composition sends x0 into (x0, x0).
We now examine X×GEG for the structure required of a space of morphisms.

In the first place, for every x×G e in X ×G EG, the element x has a source and
a target in X(0) and these are independent of the representation. There is also
a natural copy of X(0) in the homotopy colimit. For each x0 ∈ X(0), there is
the element x0 ×G ε in X ×G EG. We have finally to check that compositions
are defined in X ×G EG. Let

x×G e, x′ ×G e′

be elements for which the source of x equals the target of x′. Then we have that
(x, x′) ∈ X(p)×X(0) X(q) and we can take the element

x′′ = θ−1
p,q(x, x

′) ∈ X(p⊕ q)

and define the composition

(x×G e)(x′ ×G e′) = (θ−1
p,q)(x, x

′)×G ee′.

As an application, recall that we get from a topological category G its nerve
and then from

i# : TOP∆o

→ TOPΛo

we get a strictly comultiplicative NG in STR COMULT TOPΛo . We can then
apply the above functor

STR COMULT TOPΛo → TOPCAT,

thus obtaining from NG the topological category WG, whose space of objects
is Ob G and whose space of morphisms is

NG×Λ EΛ.

Note that there is a natural functor WG → G which is the identity on objects
and which sends a morphism (g1, · · · , gn)×Λe of WG into the morphism g1 · · · gn
of G. We call this construction the Boardman-Vogt construction [4.1], although
we have not checked that it coincides precisely with their construction. Such a
homotopy colimit form of a Boardman-Vogt construction has been given by Shea
[7.5].

We get an extended form of this construction.

Corollary 7.10 Given a ∆o-space X there is the topological category WX whose
space of objects is X(0) and whose space of morphisms is the homotopy colimit

B(oΛ)o(oX) = oX ×oΛ EoΛ
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of the strictly comultiplicative (oΛ)o-space oX. This gives a functor

W : TOP∆o

→ TOPCAT.

We can regard this construction as an extended Gabriel-Zisman construction
[2.4], or an extended Boardman-Vogt construction [4.1].

For later purposes, we state the following mild generalization of (7.9), whose
proof is precisely that of (7.9).

(7.11) Let G be a strictly monoidal small category whose neutral object 0 is also
a terminal object. Given a strictly comultiplicative Go-space X and a multiplica-
tive G-space Y , we get a small category whose set of objects is X(0) and whose
set of morphisms is X×GY . If X×GY is weakly Hausdorff, this is a topological
category.

Special ∆o-Spaces of the Type of Segal

Generalizing slightly Segal’s definition [4.4], a ∆o-space X is special if each of
the Eilenberg-Moore maps

θm,n : X(m+ n)→ X(m)×X(0) X(n)

is a homotopy equivalence in TOP/X(0)×X(0). Then for any m > 0 we have
the homotopy equivalence

X(m) ∼ X(1)×X(0) · · · ×X(0) X(1)

in TOP/X(0)×X(0), thus we regard the special ∆o-spaces as those ∆o-spaces
in which X(0) and X(1) determine each X(m) up to homotopy. If X is special,
we also say that the Λo-space i#X is strictly comultiplicative up to homotopy.

The simple ∆o-spaces that we use here are all special. For starters, the
∆o-spaces in the image of TOPCAT → TOP∆o

have the above maps natu-
ral homeomorphisms and are thus special. Next, the ∆o-spaces in the image of
�∇ : TOP→ TOP∆o

all have X(m) = A∇(m) naturally homotopy equivalent to
A and thus are very special in the sense that X(0) determines each X(m) up to
homotopy. There is next Segal’s variant of �∇, presented as a functor

TOP∗ → TOP∆o

where TOP∗ is the category of compactly generated spaces A with base point
a0. Here ∇0(m) denotes the subset of ∇(m) consisting of all vertices, and for
each m we take all maps of pairs

σ : (∇(m),∇0(m))→ (A, a0).

Thus one considers singular simplices of A all of whose vertices are at a0. For
the (m+n)-simplex ∇(m+n), the union of the front m-face and the back n-face
is a strong deformation retract containing all vertices. Hence this construction
yields special ∆o-spaces.
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We now have a homotopy colimit theorem, generalizing a theorem of Segal
[4.4].

Theorem 7.12 For any ∆o-space X, there is a compactly generated space Y in
TOP/X(0)×X(0) and a natural diagram of maps

X(1)
φ←− Y θ−→ hocolim oX

in TOP/X(0)×X(0), with φ a homotopy equivalence in TOP/X(0)×X(0). If X
is a special ∆o-space, then θ is also a homotopy equivalence in TOP/X(0)×X(0).
Thus if X is a special ∆0-space, then X(1) is a homotopy colimit of oX in
(TOP/X(0)×X(0))(oΛ)o .

Proof. Consider any ∆o-space X and the (oΛ)o-space oX . The natural functors

oΛ µ−→ Λ
i−→ ∆,

where µ(m1, · · · ,mk) = m1 + · · ·+mk, give restriction functors

TOP∆o i#−→ TOPΛo µ#

−−→ TOP(oΛ)o .

We thus have for each X the (oΛ)o-space oX with

(oX)(m1, · · · ,mk) = X(m1)×X(0) · · · ×X(0) X(mk)

and the (oΛ)o-space µ#i#X given by

(µ#i#X)(m1, · · · ,mk) = X(m1 + · · ·+mk).

Moreover, there is the (oΛ)o-map µ#i#X → oX given by the Eilenberg-Moore
maps. Hence we get the map

θ : Y = hocolim µ#i#X → hocolim oX

of the theorem.
For the special ∆o-spaces this is a weak homotopy equivalence in (TOP/X(0)×

X(0))(oΛ)o , and thus induces a homotopy equivalence of homotopy colimits in
TOP/X(0)×X(0). Here we have assumed that the basic results on homotopy
colimits in TOPG extend to (TOP/Q)G for any compactly generated space Q.

We next have to compute the homotopy colimit of µ#i#X . In order to do so,
we compute the categorical form of the Λ-space µ#EoΛ as in Chapter 5, in terms
of the small categories Cr for each non-negative integer r. Here the objects of
Cr are the ordered pairs (λ, (m1, · · · ,mk)) where λ : m1 + · · · + mk → r is a
morphism of Λ. If we consider the singleton object (r) of oΛ, then the objects of
Cr are also precisely the morphisms

(m1, · · · ,mk)→ (r)

of oΛ. Thus we obtain by the methods of Chapter 5 that

(µ#EoΛ)(r) ' EoΛ((r)),
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hence that this space is contractible, hence that µ#EoΛ is a universal Λ-space.
Hence

hocolim µ#i#X = µ#i#X ×oΛ EoΛ ' i#X ×Λ µ#EoΛ ∼ hocolim i#X.

Finally we note that Λo has 1 as terminal object, thus that i#X has homotopy

colimit X(1). Thus we get the homotopy equivalence X(1)
φ←− Y of the theorem

as the composition

hocolim µ#i#X → hocolim i#X → X(1)

of homotopy equivalences. Here we have also assumed that the treatment of ho-
motopy colimits of Chapters 4 and 5 extends routinely from TOPG to (TOP/Q)G

for any compactly generated space Q.

Among the consequences is the following corollary yielding for each compactly
generated space A with base point a0 a very large topological monoid of the
homotopy type of the loop space ΩA.

Corollary 7.13 Denote by TOP∗ the category of compactly generated spaces
with base point, and by

TOP∗ → TOP∆o

the functor assigning to A the simplicial space of all singular simplices in A all
of whose vertices are a0. Then the composition

TOP∗ → TOP∆o

→ TOP(oΛ)o hocolim−−−−−→ TOP

assigns to (A, a0) a topological monoid of the homotopy type of ΩA.

We need a little more than (7.12) and (7.13); we need the relationship between
a special ∆o-space X and the ∆o-space NW (X). We turn to this now.

A Special ∆o-Space X Is Isomorphic to NW (X) in TOP∆o

[WHE−1]

It is convenient to denote by TopCat the category analogous to TOPCAT
except that there is only a k-space topology required on spaces of morphisms. If
G is a strictly monoidal category whose neutral object is also a terminal object,
we can then write (7.11) as a functor

STR COMULT TOPG
o

×MULT TOPG −→ TopCat, (X,Y ) 7→ X ×G Y.

(7.14) Let G be a strictly monoidal category. Consider the categories Gn for
each non-negative integer n, where Go is the category with one object 0 and one
morphism. Given a comultiplicative Go-space X, let Xn for n > 0 denote the
Gn-space given by

Xn(p1, · · · , pn) = X(p1 ⊕ · · · ⊕ pn),

with its natural action, and let X0 denote the space X(0). Given a multiplicative
G-space Y , let Y n for n > 0 denote the Gn-space given by

Y n(p1, · · · , pn) = Y (p1)× · · · × Y (pn),
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and let Y 0 denote the singleton ε. Then there is a functor

COMULT TOPG
o

×MULT TOPG −→ Top∆o

, (X,Y ) 7→ {Xn ×Gn Y n|n ≥ 0},

where the action map is given in the proof.
If 0 is a terminal object of G and if X is strictly comultiplicative, this ∆o-

space coincides with the nerve of the object of TopCat given by (7.11).

Proof. Let δ : m → n be a morphism of ∆. There is generated a functor
δ∗ : Gn → Gm given on morphisms by

δ∗(g1, · · · , gn) = (gδ(0)+1 ⊕ · · · ⊕ gδ(1), · · · , gδ(m−1)+1 ⊕ · · · ⊕ gδ(m)),

and similarly on objects. If δ(i − 1) = δ(i), then the ith-coordinate is taken as
10 in the morphism case, or as 0 in the object case. If m = 0, the functor is
unique anyway; if n = 0, the object maps into (0, · · · , 0) and the morphism into
(10, · · · , 10).

Fix a morphism δ : m → n of ∆, an object (p1, · · · , pn) of Gn and the
image object (p′1, · · · , p′m) as given above. We then get δ∗ : Y n(p1, · · · , pn) →
Y m(p′1, · · · , p′m) by

δ∗(y1, · · · , yn) = (yδ(0)+1 · · · yδ(1), · · · , yδ(m−1)+1 · · · yδ(m)).

The cases n = 0 and m = 0 also give well-defined maps.
One also gets a well defined map

δ∗ : Xn(p1, · · · , pn)→ Xm(p′1, · · · , p′m).

This requires a map

X(p1 ⊕ · · · ⊕ pn)→ X(pδ(0)+1 ⊕ · · · ⊕ pδ(m)),

which follows from the comultiplication. The cases m = 0 and n = 0 are also
covered.

Thus for each δ : m→ n one gets a map

Xn ×Gn Y n → Xm ×Gm Y m, a×Gn p 7→ δ∗(a)×Gm δ∗(b).

This can be checked to be well defined and an action. The last sentence can also
be checked, using

X(p1 ⊕ · · · ⊕ pn) ' X(p1)×X(0) · · · ×X(0) X(pn).

Theorem 7.15 Let X be a ∆o-space. Then X is special if and only if there
exists a diagram

X
φ←− Y θ−→ NW (X)

of ∆o-spaces such that

(i) Y (0) = X(0) and φ and θ are the identity on vertices,
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(ii) the maps φ : Y (n) → X(n) and θ : Y (n) → (NW (X))(n) are
homotopy equivalences in TOP/X(0)×X(0).

Proof. It is easy to see that if X satisfies (i) and (ii) then X is special. For
NW (X) is special, and the conditions then imply X special.

Suppose now that X is special. We must make changes in the proof of (7.12).
Most importantly, we must define the ∆o-space Y . From (7.14), we have the
functor

COMULT TOPΛo ×MULT TOPΛ → Top∆o

.

We have the comultiplicative Λo-space i#X . From the multiplicative space EoΛ
we have constructed in (7.12) the Λ-space µ#EoΛ, and one checks that it is
multiplicative. Thus one applies (7.14) to obtain a ∆o-space

Y = {(i#X)n ×(Λ)n (µ#EoΛ)n}.

The spaces involved are compactly generated, thus Y is in TOP∆o

. With this
start, one can proceed to prove the theorem in the style of (7.12).

One can now obtain from (6.14) and (6.17) the following theorem of Segal
[4.4]. In it, one considers a special ∆o-space X which has X(0) = pt. Then one
has in each X(n) a natural base point, hence one can consider the simplicial set
{π0(X(n)}. From the homotopy equivalence X(m+n)→ X(m)×X(0)X(n) one
then gets

π0(X(m+ n)) ' π0(X(m))× π0(X(n)),

hence the simplicial set is the nerve of a monoid up to natural isomorphism.
Thus π0(X(1)) is then naturally a monoid.

Corollary 7.16 Let X be a special ∆o-space which also has

(i) X(0) is a singleton,
(ii) each X(n) is of the homotopy type of a CW-complex, and
(iii) the monoid π0(X(1)) is a group.

Let B : TOP∆o

→ TOP be the homotopy colimit functor used in Chapter 6.
Then the natural inclusion X(1) ↪→ ΩBX is a homotopy equivalence. Alterna-
tively, if X also satisfies the cofibration condition for simplicial sets, then the
natural inclusion X(1) ↪→ Ω|X | is a homotopy equivalence.

The Stasheff Realization of (oΛ)o-Spaces

For ∆o-spaces X which satisfy the cofibration condition, there is a smaller
model for the homotopy colimit of oX which is constructed in a fashion similar
to the Milnor realization, i.e. by fixing a oΛ-space which is much smaller
than EoΛ and considering oX ×oΛ rather than oX ×oΛ EoΛ. We call this the
Stasheff realization of X , since our definition of grows out of constructions
of Stasheff [7.6], who was the first to use cubes categorically.

We first relate cubes to Λ in what at first sight will appear ad hoc. Put a
monoid structure on I, say by choosing the multiplication

s ∗ t = max(s, t).
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Then 0 is the unit element, and there is the useful element 1 with 1 ∗ t = 1 for
all t. In any case, we then have the Λ-space , where

(n) ⊂ In+1, (n) = {(t0, t1, · · · , tn) ∈ In+1|t0 = 1, t1 = 1}.

The action map assigns to λ : m→ n the map

λ∗ : (m)→ (n)

given by

λ∗(t0, · · · , tm) = (max{ti|λ(i) = 0}, · · · ,max{ti|λ(i) = j}, · · · ,max{ti|λ(i) = n}).

Thus to check that is a multiplicative Λ-space requires appropriate maps
(m)× (n)→ (m+ n), which are given by

φm,n((1, t1, · · · , tm−1, 1), (1, u1, · · · , un−1, 1) = (1, t1, · · · , tm−1, 1, u1, · · · , un−1, 1).

We can obtain from the strictly multiplicative Λ-space a strictly multiplica-
tive oΛ-space, which we also denote by .

(7.17) There is the natural oΛ-space given by

(A) = {(t0, · · · , tn) ∈ In+1|ti = 1 for i ∈ A}.

Here if A and B are objects of oΛ as above and if λ : A→ B then

λ∗(t0, · · · , tm) = (u0, · · · , un)

where uj is the max of all ti for which λ(i) = j, or is zero if λ−1(j) is empty.

We then have the natural homeomorphism

(A)× (B) ' (A⊕B),

((1, t1, · · · , tm−1, 1), (1, u1, · · · , un−1, 1)) 7→ (1, t1, · · · , tm−1, 1, u1, · · · , un−1, 1).

The oΛ-space is strictly multiplicative.

We can now define the second of the realizations of ∆o- spaces as the functor

| � |oΛ : TOP∆o

→ TOP

defined by |X |oΛ = oX ×oΛ . Having set the historic pattern for realizations in
our earlier consideration of the Milnor realization, we have only to note that the
pattern continues to hold.
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Properties of the Stasheff Realization

The reader should first check that Λ has a unique splitting of its morphisms
into epimorphisms followed by monomorphisms.

For {0,m} ⊂ A ⊂ {0, 1, · · · ,m} and {0, n} ⊂ B ⊂ {0, 1, · · · , n}, define a
morphism λ : A → B in oΛ to be a mono in oΛ if λ is a mono in Λ. Similarly,
define a morphism λ : A → B in oΛ to be an epi in oΛ if λ is an epi in Λ and if
B = λ(A).

(7.18) The category oΛ satisfies the conclusions of (2.1). The subcategory Epi oΛ
has pushouts. The subcategory Mono o Λ has the restricted pullback condition.

We can now define what it means for a oΛ-space to be nicely cofibered, sim-
ply by repeating the definition preceding (6.7) with the name of the category
changed. If Y is a oΛ-space, then an element y ∈ Y (A) is degenerate if there
exists a mono λ : B → A in oΛ which is not the identity and a y′ ∈ Y (B) such
that λy′ = y.

7.19 The oΛ-spaces EoΛ and are both nicely cofibered. For any nicely cofibered
oΛ-space Y , we have that each (Y (A), Y deg(A)) is a cofibered pair in TOP.

Proof. A point of EoΛ can be written uniquely in the form

e = (τ0, τ1, · · · , τn)×∆ (t0, · · · , tn),

where the τi are morphisms of oΛ such that the composition exists and for i > 0
no τi is the identity, and where ti > 0 and t0 + · · ·+ tn = 1. The action of oΛ is
given by

τ((τ0, τ1, · · · , τn)×∆ (t0, · · · , tn)) = (ττ0, τ1, · · · , τn)×∆ (t0, · · · , tn).

That EoΛ is nicely cofibered is readily checked. Similarly for .

Let now X be a ∆o-space, and consider the associated (oΛ)o-space oX . Then
we can say that x ∈ (oX)(A) is degenerate if there exists an epi µ : A→ B in oΛ
which is not an identity morphism, and a y ∈ (oX)(B) with x = yµ. Otherwise,
x is nondegenerate.

We will say that the simplicial space X satisfies the strong cofibration con-
dition if for each epi µ : m → n in ∆ the pair (X(m), µ∗X(n)) is cofibered in
TOP/X(0) ×X(0). If Xdeg(m) denotes the union of all µ∗X(n) for all proper
epis µ, then the pair (X(m), Xdeg(m)) is cofibered in TOP/X(0)×X(0).

(7.20) Let X be in TOP∆o

and consider the associated (oΛ)o-space oX. Let Y
be a nicely cofibered oΛ-space. Then

(1) the analogue of (2.5) holds for oX,
(2) if ∼ denotes the equivalence relation on

∐
(oX)(A)×Y (A) for which

oX ×oΛ Y = (
∐

(oX)(A)× Y (A))/ ∼,

then the analogues of (2.7) and (2.8) hold, and
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(3) considering Ob o Λ as being a poset with B ≤ A the least relation
such that B ≤ A if either there is a mono B → A in oΛ or else there
is an epi A→ B in oΛ, then oX ×oΛ Y is a filtered Ob o Λ-space

oX ×oΛ Y =
⋃

A∈Ob oΛ
(oX ×oΛ Y )A

and there is a relative homeomorphism in TOP/X(0)×X(0)

((oX)(A), (oX)deg(A))× (Y (A), Y deg(A))
→ ((oX ×oΛ Y )A,

⋃
B<A(oX ×oΛ Y )B).

Note in the above that if (p1, · · · , pk) is an object of oΛ, then it is greater than
any object either obtained from (p1, · · · , pk) by reducing the size of some pi, or
eliminating some pi, or by replacing some singleton term pi by a doubleton p, q
where p + q = pi. If X satisfies the cofibration condition for simplicial spaces,
then oX ×oΛ Y is a cofibered, oΛ-filtered space in the sense preceding (6.4).

|X |oΛ is a Homotopy Colimit When X Satisfies the Strong
Cofibration Condition

We now need to understand EMono oΛ. First of all, there is an action of oΛ on
EMono oΛ given by the following general proposition.

Theorem 7.21 Suppose that G is a small category with subcategories H and K
such that

Ob H = Ob K = Ob G

and such that every morphism g of G has a unique factorization g = hk where
h is a morphism of H and k is a morphism of K. Then G acts on EH by

g((h0, h1, · · · , hn)×∆ (t0, · · · , tn)) = (h′0, h
′
1, · · · , h′n)×∆o (t0, · · · , tn),

where

gh0 = h′0k0, k0h1 = h′1k1, · · · , kn−1hn = h′nµn

as in the commutative diagram

p
h0←−−−− p0

h1←−−−− · · · hn←−−−− pn

g

y k0

y kn

y
q

h′0←−−−− q0
h′1←−−−− · · · h′n←−−−− qn.

We also get from (7.21) a natural G-map EG → EH . Namely, send

(g0, g1, · · · , gn)×∆ (t0, · · · , tn)

into

(h0, h1, · · · , hn)×∆ (t0, · · · , tn)
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where the hi are from the commutative diagram

p
g0←−−−− p0

g1←−−−− · · · gn←−−−− pn

g

y k0

y kn

y
q

h0←−−−− q0
h1←−−−− · · · hn←−−−− qn.

As a particular case, we get a natural oΛ-map EoΛ → EMono oΛ.
We now compute EMono oΛ. Let

{0, n} ⊂ A ⊂ n

be an object of oΛ. Then (Mono oΛ)(A, �) is naturally the poset whose elements
are all

{0, n} ⊂ A ⊂ B ⊂ C ⊂ n;

if we denote this object by (B,C) then there is a morphism

(B,C)→ (B′, C′)

whenever

A ⊂ B′ ⊂ B ⊂ C ⊂ C′.
This is just a poset PA, and its classifying space can be computed to be the
subcube of In+1 consisting of all (1, t1, · · · , tn−1, 1) such that ti = 1 whenever
i ∈ A. Each (B,C) contributes to this cube the face which has ti = 0 whenever
i /∈ C and ti = 1 whenever i ∈ B.

{0, 3} ⊂ {0, 3}

{0, 3} ⊂ {0, 2, 3}

{0, 2, 3} ⊂ {0, 2, 3}

{0, 3} ⊂ {0, 1, 3}

{0, 3} ⊂ {0, 1, 2, 3}

{0, 2, 3} ⊂ {0, 1, 2, 3}

{0, 1, 3} ⊂ {0, 1, 3}

{0, 1, 3} ⊂ {0, 1, 2, 3}

{0, 1, 2, 3} ⊂ {0, 1, 2, 3}

The Cube EMono oΛ({0, 3})

6

?

6

?

6

?

-

-

-

�

�

�

�
�
�
�
�
�
��3

Q
Q
Q
Q
Q
Q
QQs

Q
Q
Q
Q
Q
Q
QQk

�
�
�
�
�
�
��+

The left action of oΛ on EMono oΛ, which is assured by (7.21), can be written
out explicitly in poset terms. The above poset can thus be checked to have
classifying space BPA the subcube of In+1 consisting of all (1, t1, · · · , tn−1, 1) for
which ti = 1 whenever i ∈ A, and the boundary of the cube is just the set of
degenerate elements. That is, Mono o Λ is a cellular category.
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(7.22) Suppose one takes EMono oΛ together with its action by oΛ given by (7.19).
This is precisely the oΛ-space and we then have from (7.19) the natural oΛ-
map EoΛ → . It then follows, using (7.19) and a variant of (6.8), that for any
∆o-space X satisfying the strong cofibration condition the induced map

oX ×oΛ EoΛ → oX ×oΛ

is a homotopy equivalence in TOP/X(0) × X(0). Hence |X |oΛ is a homotopy
colimit for oX as a (oΛ)o-space in TOP/X(0)×X(0).

The Topological Category WX = |X |oΛ for X a ∆o-Space

The following theorem gives an extended Vogt construction [4.7].

(7.23) For every ∆o-space X there is the topological category WX whose space
of objects is X(0) and whose space of morphisms is

Mor WX = oX ×oΛ .

The generators of the morphisms are all

x×oΛ (1, t1, · · · , tn−1, 1)

for x ∈ X(n) and (1, t1, · · · , tn−1, 1) ∈ In−1. Every generator can be written
uniquely as a finite composition of those for which x is non-degenerate and 0 <
ti < 1 for all i. The relations are generated by the following. If ti = 0, this
element is equal to the element obtained by deleting ti and replacing x by its face
opposite the ith vertex. If ti = 1, this element is equal to the composition

(x′ ×oΛ (1, t1, · · · , ti−1, 1))(x′′ ×oΛ (1, ti+1, · · · , tn−1, 1))

where x′ is the front i-face of x and x′′ is the back (n−i)-face. If x is a degenerate
element so that x = yδ for some epi δ and some nondegenerate y, then the above
element is equal to y ×oΛ δ∗(1, t1, · · · , tn−1, 1).

If X satisfies the strong cofibration condition, then the continuous functor
WX → WX given by (7.19) is the identity on objects and a homotopy equiva-
lence on morphisms, where the homotopy equivalence can be taken in TOP/X(0)×
X(0).

Thus if X satisfies the strong cofibration condition, then WX can be used to
give a homotopy model for WX . This assumes its simplest form for simplicial
sets X . In particular, if A is any space with base point a0, then one can apply
the above to the simplicial set X = (A, a0)(∇,∇0) where topology is ignored. The
above category WX may well be a topological form of the cobar construction
of Adams [7.1], and |X |oΛ is then a topological monoid which should be weakly
homotopy equivalent to the loop space ΩA, although we have not checked in this
non-topologized form.
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CHAPTER VIII

Loop Space Models for the Homotopy Category of Based,
Connected CW-Complexes

Consider the category D whose objects (A, a0) are path connected spaces A
with base point a0, where A has a CW-structure in which a0 is a vertex, and
whose morphisms are maps of pairs. This category has the homotopy relation
of maps of pairs, and one thus has the homotopy category D [HE−1]. In this
chapter we present a little of a substantial body of work which presents categories
equivalent to D [HE−1], constructed in one way or another from the loop spaces
of (A, a0) and from operations on the loop spaces. There is an extensive historical
background not covered in the body of this chapter.

In 1956, Milnor [8.1,8.2] introduced the category C whose objects are the
CW-groups, and whose morphisms are the homomorphisms. There is on this
category the weak homotopy equivalences, which are the homomorphisms of
CW-groups which are also homotopy equivalences of spaces. The basic result is
that C [WHE−1] is equivalent to D [HE−1]. His account required countability
assumptions on both the complexes and the CW-groups, but these can be elim-
inated using later work on k-space topologies. Milnor’s methods are simplicial,
and use the natural piecewise linear paths on a simplicial complex. We leave it
to the reader to consult his papers.

If one thinks of the objects of C as spaces made out of loop spaces together
with their H-space operations, the subject thus starts with this tightest of H-
space structures, that of a group.

Later there was Stasheff’s work [7.6] which sought the loosest of structure; this
structure of his on a space A with base point a0 has come to be called a strongly
homotopy associative H-space structure on (A, a0). Later work of Boardman-
Vogt [4.1] and May [2.8] gave in passing alternate presentations, similarly with
loose structure. See for example Thomason [7.8] as well as the work of Stasheff
and May already cited.

One may as well take for D the full subcategory of the category TOP∗ of
spaces with base point whose objects are the pairs (A, a0) which are homotopy
equivalent in TOP∗ to path connected CW-complexes modulo a vertex; for this
category is equivalent to the model used above.
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We only give an account of Segal’s treatment [4.4] of this subject, which works
in terms of even looser structure. One can take as a starting point the functor

R : D → TOP∆o

which assigns to (A, a0) the ∆o-space X whose n-simplices are the singular n-
simplices in A all of whose vertices are at a0. At first sight, X might appear to
have a far more complicated structure than the loop space ΩA. But on closer
examination, one has

(i) X(0) = pt,
(ii) X(1) = ΩA, and
(iii) for each n > 1 one has the fibration and homotopy equivalence
X(n)→ (ΩA)n which assigns to a singular n-simplex σ its sequence of
n edges from vertex to successive vertex. In particular, X is a special
∆o-space in the sense of Chapter 7, and moreover X(0) = pt.

One begins then by examining the special ∆o-spaces X which have X(0) = pt.
Each X(n) then has a natural base point, and thus π0(X(n)) is well defined as
a set with base point. In fact,

∐
π0(X(n)) then becomes a simplicial set, and

the fact that X is special implies that
∐
π0(X(n)) is strictly comultiplicative.

Thus π0(X(1)) receives in a natural way a monoid structure. In the above
construction, π0(X(1)) = π0(ΩA) is a group. Thus we add this condition as

well. Finally, we let C denote the full subcategory of TOP∆o

whose objects X
are such that

(i) X(0) = pt,
(ii) X is a special ∆o-space,
(iii) the monoid π0(X(1)) is a group, and
(iv) each X(n) is of the homotopy type of a CW-complex.

Then we prove Segal’s theorem that C [WHE−1] is equivalent to D [HE−1].
We give one example of a corollary. Consider the category TOP MON of

topological monoids and homomorphisms. Let WHE denote the subcategory
whose morphisms are the homomorphisms f : G→ G′ which are also homotopy
equivalences of spaces. There is the full subcategory C′ of TOP MON whose
objects G are such that

(i) G is of the homotopy type of a CW-complex, and
(ii) the monoid π0(G) is a group.

Then the category C′ [WHE−1] is equivalent to D [HE−1].

The Functors TOP∆o � TOP

We look for structures of the following type. Choose as the starting point
a category D of topological objects, endowed with a natural homotopy relation
and a subcategory HE of homotopy equivalences. One seeks a category C whose
objects and morphisms have an appropriate equivariant interpretation, endowed
both with homotopy and with weak homotopy equivalences. Along with D one
seeks a functor R : D → C, with the goal of interpreting D[HE−1] by use of R.
As an auxiliary, one seeks a functor L : C → D so that one has a diagram

C←−→D.
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Also R should take homotopy equivalences into weak homotopy equivalences and
L should take weak homotopy equivalences into homotopy equivalences. There
should be a natural transformation S : 1 → RL and a natural isomorphism
T : LR→ 1 for which the derived diagram

C [WHE−1]←−→D [HE−1]

is an adjoint diagram. It will then be the case that the homotopy category
D [HE−1] is equivalent to the full subcategory of C [WHE−1] whose objects are all
the RA’s. If one can get this far, then one will have a good start on a redescription
of D [HE−1]. Such a structure we call informally a partial model for D [HE−1],
where partial refers to the fact that we may not have an independent description
in terms of C alone of the full subcategory whose objects are isomorphic in
C [WHE−1] to some RA. A full model for D [HE−1] will have been attained if
one is in addition able to describe gracefully the full subcategory C′ of C whose
objects are isomorphic to some RA in C [WHE−1]. In this event, one has an
equivalence

C′ [WHE−1] ∼ D [HE−1].

As an example for starting purposes, let D be the category TOP. Choose C to
be the category TOP∆o

with its standard choice of weak homotopy equivalences.
Let E =

∐
E(n) be the universal ∆-space used in Chapters 5 and 6. There is the

functor R : D → C defined by RA = AE =
∐
AE(n), and the functor L : C → D

defined by LX = X ×∆ E. These provide an adjoint diagram

C←−→D.

There is in ∆ the terminal ∆-space Ob ∆ and the weak homotopy equivalence
E → Ob ∆ of ∆-spaces. There is thus a weak homotopy equivalenceAOb ∆ → AE

of ∆o-spaces and an induced homotopy equivalence AOb ∆ ×∆ E → AE ×∆ E of
spaces. But AOb ∆ is the constant ∆o-space which assigns to each non-negative
integer the space A and to each morphism of ∆ the identity map. We then have
that

AOb ∆ ×∆ E ' A×BMono ∆ ∼ A,
where BMono ∆ is the contractible infinite dimensional dunce hat D. Thus each
T : LR(A)→ A is a homotopy equivalence.

We can now exhibit the full subcategory C′ as the full subcategory of TOP∆o

whose objects X are such that for each δ : n → m in ∆ the map δ∗ : X(m) →
X(n) is a homotopy equivalence in TOP. Suppose X is an object of C′. One

can then consider X ′ in TOP∆o

where for each n, X ′(n) ⊂ X(n) is the image
δ∗(X(0)) for the unique morphism δ : n→ 0. Inclusion X ′ → X is then a weak

homotopy equivalence in TOP∆o

, hence we have a weak homotopy equivalence
RL(X ′)→ RL(X) in TOP∆o

. But the natural transformation S : X ′ → RL(X ′)
is readily checked to be a weak homotopy equivalence in TOP∆, and we have
checked all the conditions for this model.

Theorem 8.1 There is the adjoint diagram

TOP∆o←−→TOP
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where L(X) = X×∆E and R(A) = AE. Let C′ be the full subcategory of TOP∆o

whose objects X are such that δ∗ : X(m)→ X(n) is a homotopy equivalence in
TOP for each δ : n→ m in ∆. Then we have the equivalence of categories

C′ [WHE−1] ∼ TOP [HE−1].

In this full model for TOP [HE−1], one can equally well use R(A) = A∇, or
even let R(A) be the ∆o-space X which assigns to each n the space A and to
each δ : m→ n the identity map of A.

Note that the above C′ can be thought of as the full subcategory of TOP∆o

consisting of all simplicial spaces X for which all X(n) are determined up to
homotopy by X(0).

The Functors R : TOP∆o � PAIR TOP

One generalize R above by constructing a simplicial space X = R(A,A0) from
each closed pair (A,A0) of compactly generated spaces such that A0 intersects
every path component of A. Denote the category with these as objects and maps
of pairs as morphisms by PAIR TOP. Let us proceed with an attempt to use
this as D, subject to alterations.

There is functorial choice for a functor R : PAIR TOP → TOP∆o

and a
slightly less functorial model, amounting to the same in the end. If one chooses
the slightly less functorial ∆-space ∇, then one replaces each ∇(n) by the closed
pair (∇(n),∇0(n)), where ∇0(n) is the 0-skeleton of ∇(n). Then take

X = R(A,A0) = (A,A0)(∇,∇0) =
∐

(A,A0)(∇(n),∇0(n)).

If one considers only pairs (A,A), then one retrieves the case of the preceding
paragraphs.

We usually will make the more functorial choice of E rather than ∇. Then the
∆-space E can be replaced by the pair (E,E0) of ∆-spaces, where E0 =

∐
E0(n)

and E0(n) is the union of all δ∗E(0) over the morphisms δ : 0 → n in ∆. Then
one defines the more functorial

R : PAIR TOP→ TOP∆o

so that
RA = (A,A0)(E,E0) =

∐
(A,A0)(E(n),E0(n)).

The natural map (E,E0)→ (∇,∇0) shows the two choices for R to be naturally

isomorphic in TOP∆o

[WHE−1].

A choice for L : TOP∆o

→ PAIR TOP is readily at hand. Namely, one can
take

LX = (X ×∆ E,X ×∆ E0).

It is checked that X ×∆ E0 is precisely the space X(0)×E(0) where E(0) = D
is the infinite dimensional dunce hat. Since D is contractible, this is homotopy
equivalent to X(0).

Theorem 8.2 Let PAIR TOP denote the category whose objects are the closed
pairs (A,A0) of compactly generated spaces such that A0 intersects every path
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component of A, and whose morphisms are the maps of pairs. There are then
adjoint functors

TOP∆o←−→PAIR TOP,

defined by

LX = (X ×∆ E,X ×∆ E0), R(A,A0) = (A,A0)(E,E0).

Up to weak homotopy equivalence in TOP∆o

, one can use

R(A,A0) = (A,A0)(∇,∇0).

The Map LR(A,A0)→ (A,A0)

For a pair (A,A0) in PAIRTOP, we need to understand better the above map

LR(A,A0)→ (A,A0).

We use the slightly less functorial choice (∇,∇0). Let X denote the simplicial
space (A,A0)(∇,∇0); then we must analyze the pair

(X ×∆ E,X ×∆ E0) = (X ×Mono ∆ ∇, X ×Mono ∆ ∇0).

The subspace X ×∆ E0 is trivial to analyze; since X(0) ' A0, it is precisely the
space A0×E(0) and since E(0) is contractible the projection map is a homotopy
equivalence onto A. Thus we have only to understand X ×∆ E.

We need a companion ∆o-space Y . Let Y (n) be the space of all maps ρ :
I ×∇(n)→ A such that

ρ(0×∇(n)) = const, ρ(1×∇0(n)) ⊂ A0.

For each δ : m→ n in ∆, define the action map by

(δ∗ρ)(t, u) = ρ(t, δ∗(u)).

There is a variant presentation Y ′ of Y , which follows by collapsing 0×∇(n)
to a point, thus obtaining ∇(n + 1) and a natural map I × ∇(n) → ∇(n + 1).
In this variant, Y ′(n) becomes all maps ρ′ : (∇(n + 1),∇0,+(n + 1)) → (A,A0)
where ∇0,+(n+ 1) denotes the union of all vertices of ∇(n+ 1) except the first
one. We leave it to the reader to supply the action of ∆ on Y ′. There is then
the natural map Y → Y ′ in TOP∆o

, a homotopy equivalence in TOP∆o

.
There is a natural ∆o-map µ : Y → X . For each n, send ρ into the restriction

of ρ to 1×∇(n). Alternatively, there is the natural ∆o-map Y ′ → X . It is readily

checked that this latter is a weak homotopy equivalence in TOP∆o

, hence so also
is Y → X . Thus the natural map

Y ×∆ E → X ×∆ E

is a homotopy equivalence. Thus we can understand X ×∆ E up to homotopy
equivalence by understanding Y ×∆ E.

There is a natural map π : Y ×∆ E → A which maps each point ρ×∆ e into
ρ(0×∇(n)). Our next problem is to present an extensive array of cases in which
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π is a homotopy equivalence of spaces. As a first assumption, it is helpful to
have π onto, and in order to achieve this we assume that A0 intersects each path
component of A. To obtain that π is a homotopy equivalence of spaces, we need
also that (A,A0) is a CW-pair.

Theorem 8.3 Let (A,A0) be a CW-pair such that A0 intersects each path com-
ponent of A. Then the natural map

(A,A0)(E,E0) ×∆ E → A

of (8.2) is a homotopy equivalence of spaces.

Proof. The proof rests on the map π : Y ×∆ E → A given above.
We prove first that π is a Dold fibration. Given a path γ of A from a to b, there

is a map γ∗ : π−1(b) → π−1(a). Denote by Yb all ρ such that ρ(0 ×∇(n)) = b,
so that we have

π−1(b) = Yb ×∆ E.

We then have the ∆o-map γ# : Yb → Ya sending ρ into γ ∗ ρ where

(γ ∗ ρ)(t, u) =

{
γ(2t), for 0 ≤ t ≤ 1/2

ρ(2t− 1, u), for 1/2 ≤ t ≤ 1.

We then get an induced map

γ∗ : π−1(b) = Yb ×∆ E → Ya ×∆ E = π−1(a).

Suppose we are given a path homotopy {γt|0 ≤ t ≤ 1} of paths from a to b.
The ∆o-maps

γ0#, γ1# : Yb → Ya

are readily seen to be homotopic as ∆o-maps and hence

γ0∗, γ1∗ : π−1(b)→ π−1(a)

are homotopic.
If we denote by AI ×A Y all (γ, ρ) with γ(1) = ρ(0 × ∇(n)), then we can

regard the above as giving a ∆o-map

AI ×A Y → Y

and hence a commutative diagram of maps

AI ×A (Y ×∆ E) −−−−→ Y ×∆ Ey π

y
AI

p−−−−→ A,

where p(γ) = γ(0). That is, continuity of the action is readily checked.
Let now U be an open set of the CW-complex A which has some u0 ∈ U as

strong deformation retract. We then have for each u ∈ U a natural path γu from
u to u0 determined by the deformation. We also have the map

U × π−1(u0)→ π−1(U), (u, x) 7→ γu∗(x)
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which is seen to be a homotopy equivalence of maps over U . Hence π is a Dold
fibration over U . Since A is a CW-complex, it then follows from results of Dold
[3.2] that π is a Dold fibration, since the open sets U which strongly contract
onto a point then cover A.

We have now to prove that each fiber π−1(a) is contractible. It suffices to
prove this for each a0 ∈ A0. This requires an argument about simplicial path
spaces, implying that each fiber of π : π−1(A0)→ A0 is contractible. Thus with
this theorem we will have the diagram of homotopy equivalences

A
π←− Y ×∆ E −→ X ×∆ E

and the theorem will follow.
Given the above simplicial space X , denote by PX the simplicial space with

(PX)(n) = X(n+ 1). An n-simplex of PX is then a map

σ : (∇(n+ 1),∇0(n+ 1))→ (A,A0).

Given δ : m→ n in ∆, there is the morphism m+1→ n+1 in ∆ given by 0 7→ 0
and i 7→ δ(i− 1) + 1 for i > 0. Denote this morphism by 10⊕ δ : m+ 1→ n+ 1.
There results the action of ∆o on PX .

The above space π−1(A0) can then be taken to be

π−1(A0) = PX ×Mono ∆ ∇,

and we designate a point of it as σn+1×Mono ∆ t where σn+1 : (∇(n+ 1),∇0(n+
1))→ (A,A0) and where t ∈ ∇(n). The map π : π−1(A0)→ A0 can be taken as

π(σn+1 ×Mono ∆ t) = σ(v0,n+1).

For each n ≥ 0, there is the morphism ρn+1 : n+ 2→ n+ 1 in ∆ given by

ρn+1(0) = ρn+1(1) = 0, ρn+1(i) = i− 1

for 2 ≤ i ≤ n+ 1. If δ : m→ n in any morphism in ∆, there is the commutative
diagram

m+ 2
11⊕δ−−−−→ n+ 2

ρm+1

y ρn+1

y
m+ 1

10⊕δ−−−−→ n+ 1.

One can write down in an elementary fashion a homotopy

H : I × π−1(A0)→ π−1(A0)

which is a strong deformation retraction of π−1(A0) onto a closed set intersecting
each fiber in a point, and which takes a fiber into itself at every stage of the
homotopy. One simply defines

H(u, σn+1 ×Mono ∆ t) = σn+1ρn+1 ×Mono ∆ (u, (1− u)t).
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A Partial Model for PAIR CW

We now pass from the above to a precise model. Think of PAIR TOP as the
full subcategory of TOP0→1 whose objects are the closed inclusions A0 ↪→ A1,
for convenience adding the condition that A0 intersects each path component of
A. Take for homotopy in this category that of TOP0→1. Thus f0, f1 : (A,A0)→
(B,B0) are homotopic if there is an appropriate H : (I ×A, I ×A0)→ (B,B0).

Denote by PAIR CW the full subcategory of PAIR TOP whose objects are
those which are homotopy equivalent to some (C,C0) where C is a CW-complex
and C0 is a subcomplex intersecting every path component of C.

It is readily seen that if f : (A,A0) → (B,B0) is a morphism in PAIR CW
such that f and f0 are homotopy equivalences in

A0
f0−−−−→ B0

i

y j

y
A

f−−−−→ B,

then f is a homotopy equivalence in PAIR CW. This category has been defined
so that homotopy equivalence and weak homotopy equivalence coincide. The
equivariant categories C that we consider will have both homotopy and weak
homotopy, while the categories D of topological objects and morphisms that we
consider will have only homotopy. Thus we have passed to a category PAIR CW
for which the possible notion of weak homotopy coincides with homotopy.

There is the usual functor c : TOP → TOP which assigns to each A a CW-
complex. Namely let cA = A∇ ×∆ ∇ where A∇ is given the discrete topology.
If f : A→ B is a map, then cf : cA→ cB is a CW-map.

There is then the induced functor

c : PAIR CW→ PAIR CW, (A,A0)→ (cA, cA0)

and a natural homotopy equivalence c(A,A0)→ (A,A0).

Denote by CW∆o

the full subcategory of TOP∆o

whose objects are the simpli-
cial spaces X such that each X has the homotopy type of a CW-complex. Then
CW∆o

inherits homotopy and weak homotopy from TOP∆o

. Given a simplicial
space X , there is the simplicial space cX , defined as the composition

∆o X−→ TOP
c−→ TOP.

Clearly cX is always in CW∆o

. If X is also in CW∆o

, then the natural ∆o-map
cX → X is a weak homotopy equivalence in CW∆o

, and in CW∆o

[WHE−1] we
have that cX and X are naturally isomorphic.

Now cX is a very nice model for a simplicial space. Each (cX)(n) has a
standard structure as a CW-complex, the maps δ∗ : (cX)(n) → (cX)(m) are
cellular, hence the subsets (cX)deg(n) ⊂ (cX)(n) are CW-subcomplexes, hence
|cX | is a CW-complex. Moreover, cX automatically has the cofibration property
so that cX×∆E is homotopy equivalent to |cX |, thus has the homotopy type of
a CW-complex. The following theorem then summarizes where we are, in terms
of having constructed a partial model for PAIR CW [HE−1].
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Theorem 8.4 We have adjoint functors

CW∆o←−→PAIR CW,

where

R : PAIR CW→ CW∆o

, (A,A0) 7→ (A,A0)(E,E0),

and where

L : CW∆o

→ PAIR CW, X 7→ (X ×∆ E,X ×∆ E0).

The natural transformation LR→ 1 is always a homotopy equivalence in PAIR CW.
Thus we have a partial model for PAIR CW [HE−1].

It is entirely possible that one could turn this into a full model for PAIR CW,
but it is easier to handle Segal’s case in which one presents a full model for
D′ [HE−1] where D′ is the full subcategory of PAIR TOP whose objects are
homotopy equivalent in PAIR TOP to (C,C0) where C is a path connected
CW-complex and C0 is a contractible subcomplex.

Segal’s Full Model for the Case A0 Contractible

Thus we now pass to the full subcategory D′ of PAIR CW whose objects are
of the form (A,A0) where A is path connected and where A0 is contractible.
There is the equivalent category D whose objects are all (A, a0) in PAIR CW for
which A is path connected. We use these interchangeably, since they amount to
the same in the end. Because it is slightly more convenient, we start with the
case A0 contractible.

There is the functor

R : D′ → CW∆o

, (A,A0) 7→ (A,A0)(∇,∇0)

obtained by restricting the functor used earlier.
We have to make a selection of a full subcategory C of CW∆o

in order to
obtain a full model for D′ [HE−1]. At a minimum we need to work within the

full subcategory of all X in TOP∆o

for which X(0) is contractible. We may as
well cut down further at the start by using whatever properties have already
been noted for all R(A,A0) as (A,A0) ranges over D′. Here we have first the
fact that each R(A,A0) is a special ∆o-space.

There is a further reduction that is natural. For every ∆o-space X with X(0)
contractible, there is a copy of X(0) in each X(n) and hence for each n, the set of
path components of X(n) has a natural base point; i.e. we can consider π0(X(n))
as a set with base point. Hence we can consider

∐
π0(X(n)) as a simplicial set.

However, the fact that X has comultiplication strict up to homotopy implies that∐
π0(X(n)) is strictly comultiplicative, which implies that π0(X(1)) is naturally

a monoid. The fact then is that each R(A,A0) for A0 contractible can be checked
to have this associated monoid a group.

Theorem 8.5 Let D′ denote the full subcategory of PAIR CW consisting of all
(A,A0) with A path connected and A0 contractible; as in the introduction, let D
denote the full subcategory of PAIR CW whose objects are all (A, a0) where A
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is path connected. Let C be the full subcategory of TOP∆o

whose objects are the
∆o-spaces X such that

(i) each X(n) is of the homotopy type of a CW-complex,
(ii) X(0) is contractible,
(iii) X is a special ∆o-space, and
(iv) π0(X(1)) is a group in its natural monoid structure.

Then we have the equivalences of categories

C [WHE−1] ∼ D′ [HE−1] ∼ D[HE−1].

On the left hand side of this equivalence, one can use instead of condition (ii)
the condition that X(0) is a singleton.

Suppose we use in the above the condition that X(0) is a singleton. Then we
can use Chapter 7 to give another full model for D [HE−1]. One has functors

TOP∆o W−→ TOPCAT
N−→ TOP∆0

.

If one takes C as in (8.5) with the option X(0) = pt, then one has

C W−→ TOP MON
N−→ C

and one can use (7.12) and additional work to show the following.

Theorem 8.6 Suppose we let C′ be the full subcategory of TOP MON whose
objects are all topological monoids G such that

(i) G is of the homotopy type of a CW-complex, and
(ii) π0(G) is a group.

Define a weak homotopy equivalence φ : G → G′ in TOP MON to be a
homomorphism which is also a homotopy equivalence of spaces. Continue to
denote by D the full subcategory of PAIR CW whose objects are all (A, a0) where
A is path connected. Then we have an equivalence of categories

C′ [WHE−1] ∼ D [HE−1].
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CHAPTER IX

The Infinite Symmetric Product as a Source of Models of
Spectra

We have thus far confined ourselves to those classical small categories of topology
based in one way or another on order preserving functions from one finite ordered
set to another. We must finally take some cognizance of those for which it is no
longer required that they preserve order.

We interpret the beginning as being with the category Mono Σ whose objects
are the non-negative integers, and whose morphisms σ : m→ n are all the monos

σ : {1, · · · ,m} → {1, · · · , n}.

Recall that TOP∗ denotes the category of compactly generated spaces A with
base point a0. There is the functor

TOP∗ → TOPMono Σ, A 7→ A∞ =
∐

An,

where the action map assigns to the morphism σ : m → n of Mono Σ the map
σ∗ : Am → An given by

σ∗(a1, · · · , am) = (a′1, · · · , a′n)

where a′j = aσ−1(j) if σ−1(j) 6= ∅ and a′j = a0 if σ−1(j) = ∅.
The composition

TOP∗ −→ TOPMono Σ colim−−−→ Top

then assigns to each compactly generated space A with base point a0 a compactly
generated space due to Dold-Thom [9.2,1958], which they called the infinite
symmetric product of (A, a0) and denoted by SP∞(A). Points of SP∞(A) can
be written as [a1, · · · , an], where ai ∈ A, where any ai = a0 can be deleted, and
where the point is unchanged if any permutation of its coordinates is performed.
Then SP∞(A) is an abelian monoid, with operation

[a1, · · · , am][a′1, · · · , a′n] = [a1, · · · , am, a′1, · · · , a′n].

193
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Thus we start with this Dold-Thom functor

SP∞ : TOP∗ → AB TOP MON.

If SA denotes the reduced suspension of A, then

SP∞(SA) ' BSP∞(A).

Since SP∞(S1) is of the homotopy type of S1, the Dold-Thom theorem follows,
that SP∞(Sn) is a K(Z, n) for n > 0.

A spectrum is a sequence {An, fn|n ≥ 0} where each An is a compactly gen-
erated space with base point and where fn is a base point preserving map

fn : An → ΩAn+1.

A spectrum is an Ω-spectrum if each fn is a homotopy equivalence of pairs. Thus
Dold-Thom constructed the spectrum {SP∞(Sn)} with natural maps fn. It is
almost an Ω-spectrum; all but f0 are homotopy equivalences. It can also be
described without the infinite symmetric product language in classifying space
terms. If G is an abelian topological monoid, then so is BG. Given any abelian
topological monoid G, one thus constructs a spectrum BnG whose 0th-term is the
given G, and where thereafter a term is the classifying space of the preceding
term. Dold-Thom thus gave an explicit construction for the spectrum described
iteratively as starting with Z+, the discrete abelian monoid of non-negative in-
tegers.

We next give McCord’s generalization [1.3] of the infinite symmetric product
construction to a functor

SP∞ : TOP∗ ×AB TOP MON→ AB TOP MON, (A,G) 7→ SP∞(A;G).

To define it, we introduce Segal’s category Γ [4.4] whose objects are the non-
negative integers, and whose morphisms γ : m→ n are all functions

γ : {0, 1, · · · ,m} → {0, 1, · · · , n}

for which γ(0) = 0. Note that one can interpret the category Γ as having
objects certain finite sets with base point and as having morphisms all base point
preserving maps joining them. That is, one has a natural functor Γ → TOP∗.

There is a functor

TOP∗ → TOPΓo , A 7→ A∞ =
∐

An,

where An is interpreted as all base point preserving maps

{0, 1, · · · , n} → A,

so that there is a natural right action of Γ. By abuse of notation, we have used �∞
as the name of a functor TOP∗ → TOPMono Σ and a functor TOP∗ → TOPΓo .
This is not as bad as it might be; at least they are interconnected by a natural
functor Mono Σ → Γo which sends an object n into n, and which sends a
morphism σ : m → n of Mono Σ into the morphism γ : n → m of Γ given by
γ(j) = i whenever σ(i) = j and γ(j) = 0 whenever j = 0 or σ−1(j) = ∅.
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One also gets a functor

AB TOP MON→ TOPΓ, G 7→
∐

Gn,

where γ : m→ n induces γ∗ : Gm → Gn given by

γ∗(g1, · · · , gm) = (g′1, · · · , g′n),

with

g′j =

{
gk1 + · · ·+ gkj , for γ−1(j) = {k1, · · · , kj}
0, for γ−1(j) = ∅.

Then the reduced product bifunctor for Γ yields the McCord functor

TOP∗ ×AB TOP MON −→ TOP, (A,G) 7→ SP∞(A;G) = A∞ ×Γ (
∐

Gn).

It is again important that SP∞(A;G) has more structure than that of a space,
it is in fact an abelian topological monoid, so that we have

SP∞ : TOP∗ ×AB TOP MON −→ AB TOP MON.

We give McCord’s generalization of the Dold-Thom facts, namely that

SP∞(A;SP∞(B;G)) ' SP∞(A ∧B;G),

from which one gets

SP∞(Sn+1;G) ' SP∞(S1;SP∞(Sn;G)) ' BSP∞(Sn;G).

If G is a discrete abelian group, then SP∞(Sn;G) is a K(G,n). Thus one has a
functor

AB GP→ Ω− SPECTRA

assigning to each discrete abelian group an Ω-spectrum {SP∞(Sn;G)}, with its
alternative description as the spectrum of iterated classifying spaces which starts
with G.

In the notation of Chapter 7, every Γ-space is comultiplicative. Every strictly
comultiplicative Γ-space Y with Y (0) = pt is naturally homeomorphic to one
associated with an abelian topological monoid as above.

Segal observed that there were interesting Γ-spaces Y in addition to those
derived from an abelian topological monoid, and that the interesting Γ-spaces
Y are those for which Y (0) = pt (or equivalently Y (0) contractible) and which
are also strictly comultiplicative up to homotopy, i.e. have each Y (m + n) →
Y (m)× Y (n) a homotopy equivalence in TOP.

As an example, we consider the composition

Γ −→ TOP∗ −→ TOPMono Σ hocolim−−−−−→ TOP,

thus obtaining a version of Segal’s most basic example of a Γ-space. Explic-
itly, this Γ-space assigns to n the homotopy colimit Y (n) of the Mono Σ-space
{0, 1, · · · , n}∞. We show that the space Y (1) is homotopy equivalent to

∐
BΣ(n),

where Σ(n) is the symmetric group on n letters. In the next chapter, we present
the small model for this Γ-space and clarify its connections with stable homotopy.
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A third level of generality in the infinite symmetric product is due to Segal
[4.4]. Namely, TOPΓo × TOPΓ → TOP yields a functor

TOP∗ × TOPΓ −→ TOP, (A, Y ) 7→ SP∞(A;Y ) = A∞ ×Γ Y.

There is the natural question of whether the added generality of using any Γ-
space Y instead of an abelian topological monoid leads to extraordinary homol-
ogy theories; this is Segal’s topic.

In order to carry the program out, Segal had to extend the infinite symmet-
ric product construction to a fourth level of generality, in order to display any
additional structure SP∞(A;Y ) would have in addition to being a space. We
follow Segal in constructing a functor

SP∞ : TOP∗ × TOPΓ → TOPΓ, (A, Y ) 7→ SP∞(A;Y )

such that when one fixes the object n = 1 of Γ one obtains SP∞(A;Y ). Thus
the additional structure becomes the action of Γ on this Γ-space. Moreover, one
has

SP∞(A;SP∞(B;Y )) ' SP∞(A ∧B;Y )

so that for any Γ-space Y with Y (0) = pt one gets a spectrum {SP∞(Sn;Y )} and
an extraordinary homology theory associated with it. Naturally special attention
is given to putting conditions on Y which make this an Ω-spectrum. Having done
it for Y (0) = pt, one readily generalizes to the case Y (0) contractible.

In summary, we introduce in this chapter consideration of TOPMono Σ and
TOPΓ as of basic importance to topology, concentrating on TOPΓ as a source
of spectra by means of a bifunctor

TOP∗ × TOPΓ → TOPΓ

which generalizes the classic infinite symmetric product

TOP∗ ×AB TOP MON→ AB TOP MON.

There is an the extensive body of material associated with producing spectra
categorically, and analyzing the result in important special cases. We cover here
the merest introduction, and from only one point of view. May is a pioneer in
this field and one should see his works, for example [7.4]. A small sample of his
work is in the next chapter.

The Infinite Symmetric Products of Dold-Thom

Denote by Σ the category whose objects are the non-negative integers, and
whose morphisms σ : m→ n are all the functions

σ : {1, · · · ,m} → {1, · · · , n}.

Note that the augmented simplicial category ∆+ is a subcategory of Σ. There is
also the subcategory Iso Σ of all isomorphisms in Σ. For each n ≥ 0 the isomor-
phisms n → n constitute the symmetric group Σ(n), thus Iso Σ =

∐
n≥0 Σ(n)

where Σ(0) denotes the category whose object is the empty set and which has
just one morphism.
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Any finite set of objects of Σ has a coproduct. For an ordered pair m,n of
objects, choose a standard model m⊕ n for the coproduct by the diagram

m
αm,n−−−→ m+ n

βm,n←−−− n,

where αm,n(i) = i and βm,n(i) = m + i. It is then readily checked that Σ
becomes naturally strictly monoidal. For given σ1 : m1 → n1 and σ2 : m2 → n2,
the diagram

m1
αm1,m2−−−−−→ m1 +m2

βm1,m2←−−−−− m2

σ1

y σ2

y
n1

αn1,n2−−−−→ n1 + n2
βn1,n2←−−−− n2

gives a well-defined σ1 ⊕ σ2 : m1 +m2 → n1 + n2.
It is clear that Σ is somewhat trivial from the point of view of the colimit

and homotopy colimit of a Σ-space Y . Since 1 is a terminal object of Σ, then
Y (1) is the colimit of Y . Then (EΣY )(1) must be the homotopy colimit of Y .
But the weak homotopy equivalence EΣY → Y in TOPΣ implies the homotopy
equivalence (EΣY )(1) → Y (1), hence Y (1) is also a non-standard homotopy
colimit of Y .

It is different with the subcategory Mono Σ. Dold-Thom [9.2] pointed out
early the interest of colimits in this setting. Consider the category TOP∗ of
compactly generated spaces with base point, and define a functor

TOP∗ → TOPMono Σ, A 7→ A∞ =
∐
n≥0

An,

assigning to each mono σ : m→ n in Σ the action map σ∗ : Am → An given by

σ∗(a1, · · · , am) = (b1, · · · , bn)

where

bj =

{
aσ−1(j), for σ−1(j) 6= ∅
a0, for σ−1(j) = ∅.

The colimit of A∞ they called the infinite symmetric product of A and denoted
by SP∞A.

(9.1) Consider the functor

TOP∗ → TOPMono Σ, A 7→ A∞,

and denote by SP∞A the colimit of A∞. Then SP∞A is compactly generated
and has a natural filtration SP∞A =

⋃
SP pA.

Proof. We first filter A∞ as A∞ =
⋃
A∞,p in TOPMono Σ. Here A∞,p =∐

An,p where An,p ⊂ An consists of all (a1, · · · , an) with ai 6= a0 for at most p
values of i. Denote by π : A∞ → SP∞A the natural quotient map. Each A∞,p

is readily seen to be a full inverse set. Since A∞,p is closed in A∞, then π(A∞,p)
is closed in SP∞A; let

SP pA = πA∞,p.
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Clearly SP∞A =
⋃
SP pA is then a filtration in Top.

One next uses (1.8) to show that Ap → SP pA is a quotient map. Consider
the diagram

Ap
∐
An,py π′
y

SP pA
=−−−−→ SP pA,

where π′ is a quotient map. For each S ⊂ {1, · · · , n} having p points, let A∞(S)
denote all (a1, · · ·an) such that ai = a0 whenever i /∈ S. If the points of S are
enumerated in order as

S = {i1, · · · , ip},
there is the map µS : A∞(S)→ Ap sending (a1, · · · , an) into (ai1 , · · · , aip), and
one applies (1.8) to obtain the quotient map Ap → SP pA.

We then have the map of pairs

π′′ : (A, a0)× · · · × (A, a0)→ (SP pA,SP p−1A),

and this is a quotient map as well. We next have to consider the natural right
action of the symmetric group Σ(p) on Ap.

The orbit space Ap/Σ(p) of this action is compactly generated. This follows
for any action of a finite group on a compactly generated space from (1.19).

Proceeding thusly, one gets shortly a relative homeomorphism

((A, a0)× · · · × (A, a0))/Σ(p)→ (SP pA,SP p−1A)

from which it follows inductively that SP pA is weakly Hausdorff by (1.20), thus
SP∞A is weakly Hausdorff by (1.18).

Cofibration Properties of SP∞A

(9.2) Suppose A is a compactly generated space with cofibered base point a0.
Then the pair

((A, a0)× · · · × (A, a0))/Σ(p)

is a cofibered pair. Hence SP∞A =
⋃
SP pA is a cofibered filtered space.

Proof. Since (A, a0) is cofibered, there exists a map u : A→ I and a homotopy
H : I ×A→ A such that

(i) u−1(0) = {a0};
(ii) H(0, a) = a for all a ∈ A;
(iii) H(t, a0) = a0 for all t ∈ I;
(iv) H(t, a) = a0 whenever 1 ≥ t ≥ u(a).

One considers next the pair (Ap, B) = (A, a0)×· · ·×(A, a0). Define v : Ap → I
by

v(a1, · · · , ap) = min(u(a1), · · · , u(ap))

and define K : I ×Ap → Ap by

K(t, a1, · · · , ap) =
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(H(min(t, u(a2), · · · , u(ap)), a1), · · · , H(min(u(a1), · · · , u(ap−1), t), ap)).

One checks that (i)-(iv) hold for the pair (Ap, B) and the maps v, K. Hence
(Ap, B) is a cofibered pair. Next one observes that the action of Σ(p) on Ap

relates well to v and K. For v takes the same value on an entire orbit, hence
induces a map w : Ap/Σ(p) → I. Moreover K : I × Ap → Ap is equivariant,
hence induces a map

L : I × (Ap/Σ(p))→ Ap/Σ(p).

The resulting maps w and L satisfy (i)-(iv) for the pair (Ap/Σ(p), B/Σ(p)), and
the result follows.

The Classifying Space of the Abelian Topological Monoid SP∞A

The Mono Σ-spaces A∞ are strictly comultiplicative in the terms of Chapter
7. That is, there are functorial homeomorphisms Am+n → Am×An. Since A0 =
pt, it follows automatically that the colimit of A∞ is a monoid. The bifunctor
on Mono Σ derives from a coproduct on Σ, hence there is the isomorphism
σ : m ⊕ n ' n ⊕m which identifies two different coproducts of the unordered
pair m,n. Hence SP∞(A) is abelian.

Thus SP∞A is an abelian topological monoid. We stop a moment for a few
generalities about abelian topological monoids. Let G be such, where we assume
the identity element 1 of G cofibered in G, so that we can use the standard BG as
a classifying space. Considering G as a category with one object and composition
G×G→ G, one sees that the abelian hypothesis makes composition G×G→ G
a functor, so that we get

BG ×BG ' BG×G → BG.

It is easy to check that this is an associative operation on BG. Now (BG)0 is a
singleton, corresponding to the fact that G has a single object ∗. This element
of BG is seen to be an identity element for the operation on BG, for the diagram

∗ 1←− · · · 1←− ∗

leads to the representation ∗ = (1, · · · , 1) ×∆ (t0, · · · , tn), which is clearly the
identity element of the monoid BG.

(9.3) If G is an abelian topological monoid with cofibered base point, then the
standard classifying space BG has the same property. If G is an abelian topolog-
ical group with cofibered base point, so also is BG.

Proof. We have left only to show that if G is a topological group, then so is
BG. Let

x = (g1, · · · , gn)×∆ (t0, · · · , tn)

be an element of BG. Then

y = (g−1
1 , · · · , g−1

n )×∆ (t0, · · · , tn)
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is seen to have xy = 1.

Theorem 9.4 Let A be a compactly generated space with cofibered base point,
and let SA denote the reduced suspension of A. Then there is an isomorphism

BSP∞A ' SP∞(SA)

of abelian topological monoids.

Proof. We need a map

f : SP∞A ∧ (I/∂I)→ SP∞(SA),

where SA denotes the reduced suspension (I/∂I)∧A. We exhibit the map as a
collection of base point preserving maps

ft : SP∞A→ SP∞(SA)

such that f0 and f1 are constant maps into the base point, leaving it to the reader
to check continuity. Regard A as a subspace of SP∞A, and use the property
that every base point preserving map of A into an abelian topological monoid
G can be extended uniquely to a morphism SP∞A → G of abelian topological
monoids. Then for each t there is the map A → SP∞(SA) sending a ∈ A into
t ∧ a ∈ SA ⊂ SP∞(SA), and denote by ft : SP∞A → SP∞(SA) the unique
extension to a morphism of abelian topological monoids.

We next wish to write down a map F : BSP∞A → SP∞(SA). First it
is convenient to shift models for ∇(n). Denote by ∇(n) the revised standard
simplex

∇(n) = {(u1, · · · , un) ∈ In|0 ≤ u1 ≤ · · · ≤ un ≤ 1}.
These coordinates are related to the standard coordinates (t0, · · · , tn) by

u1 = t0, u2 = t0 + t1, · · · , un = t0 · · ·+ tn−1.

Thus points of BSP∞A are now written as

x = (x1, · · · , xn)×∆ (u1, · · · , un)

where xi ∈ SP∞A and 0 ≤ u1 ≤ · · · ≤ un ≤ 1. Then define

F ((x1, · · · , xn)×∆ (u1, · · · , un)) = fu1(x1) · · · fun(xn),

where the right hand side uses the product in the abelian monoid SP∞(SA).
Given two elements x and y of BSP∞A, they can always be rewritten so as

to have the same u1, · · · , un coordinates, from which it follows that F preserves
the product.

We next need a base point preserving map h : SA→ BSP∞A. The 1-skeleton
of BSP∞A is S(SP∞A), which contains SA. Take this inclusion as the map
h : SA→ BSP∞A. There is then the unique extension to a morphism

H : SP∞(SA)→ BSP∞A
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of abelian topological monoids. The maps F and H are inverse to each other,
and the theorem follows.

In order to apply (6.17), we point out the following.

(9.5) If A is a simplicial complex with a0 a vertex, then SP∞A is a simplicial
complex. If A has cofibered base point and is of the homotopy type of a CW-
complex, then SP∞A is of the homotopy type of a CW-complex.

Proof. First let A be a simplicial complex, with a0 a vertex. Let An first be
taken as a polyhedral cell complex whose cells are all the product cells, and then
replace this polyhedral cell complex by its second barycentric subdivision, so that
An is a simplicial complex. The symmetic group then operates simplicially on
each Ap, and the orbit space Ap/Σ(p) receives a simplicial subdivision in which
each π′ : Ap → Ap/Σ(p) is simplicial. Then inductively one receives a simplicial
decomposition of each SP pA in which SP p−1A is a subcomplex. Then SP∞A
is a simplicial complex.

Suppose next that A has cofibered base point, and is of the homotopy type of
a CW-complex. Take then the simplicial set A∇ of singular simplices in A, with
the topology of A∇(n) ignored, and take the homotopy colimit

B = A∇ ×Mono ∆ ∇.

First of all, there is the natural map B → A and this map is a homotopy
equivalence. Next, there is a natural base point b0 for B and the homotopy
equivalence B → A gives by a cofibration fact a homotopy equivalence

(B, b0)→ (A, a0)

of pairs. Hence SP∞A and SP∞B are homotopy equivalent.
There is a choice to be made in the cellular structure on B, depending on

whether one uses ∇(n) or Sd ∇(n) or Sd2 ∇(n). For present purposes, the best
choice is Sd2 ∇(n), for then B is a simplicial complex. Then SP∞B is a simpli-
cial complex. The result follows.

Corollary 9.6 Let A be a path connected, compactly generated space with cofibered
base point, with A of the homotopy type of a CW-complex. Then we have the
natural homotopy equivalence

SP∞A ∼ ΩBSP∞A

of (6.16), and using (9.4) we have the homotopy equivalence

SP∞A ∼ ΩSP∞(SA).

Corollary 9.7 We have that SP∞S0 = Z+, where Z+ denotes the abelian
monoid of non-negative integers, and for n > 0 we have that SP∞Sn is a
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K(Z, n).

Proof. We have only to show that SP∞S1 is a K(Z, 1), which will follow if it
is of the homotopy type of a circle. Since SP∞S1 ' BZ+ , it suffices to demon-
strate a non-standard model for BZ+ which is precisely S1. This is easy, using
the non-negative reals for a universal space with Z+ operating by the transla-
tions through positive integers.

The Homotopy Colimit of the Mono Σ-Space (S0)∞ =
∐

(S0)n

It is natural to enquire about the homotopy colimits of the Mono Σ-space
A∞. We wait until the next chapter to consider this problem generally. Here
we consider a very special case, the example A = S0 where S0 consists of two
points, say with a as the only non-base point. The functor

M1 : TOPMono Σ → TOPCAT

of Chapter 2 then converts (S0)∞ into a small category C(1) and the homotopy
colimit of (S0)∞ is the classifying space BC(1). We need a precise model for C(1).

The objects of C(1) are just the points of the various (S0)p. Each such point
is characterized by specifying which of the p coordinates are a, thus we can take
the objects of C(1) to be all subsets

S ⊂ {1, · · · , p}

for all p ≥ 0. We will have a morphism in C(1) with domain S for each choice of
a mono σ : p→ q in Σ. The target of the morphism is seen to be precisely σ(S),
thus for each mono σ : p→ q and each S ⊂ {1, · · · , p} we get a morphism

σ : S → σ(S)

in C(1).

Our problem is to compute BC(1) up to homotopy. In order to do so we exhibit
functors

φ : C(1)→ Iso Σ, θ : Iso Σ→ C(1)

for which φθ = 1 and for which there is a natural transformation

T : θφ→ 1.

It will then follow that BC(1) ∼ BIso Σ =
∐
p≥0 BΣ(p).

Recall that Mono ∆+ is a subcategory of Mono Σ, where ∆+ is the aug-
mented simplicial category of Chapters 6 and 7. Given an object S of C(1),
there is then a unique mono δS : k→ p in ∆+ with

δS{1, · · · , k} = S.
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Define φ(S) = k. Given a morphism σ : S → σ(S) in C(1), let φ(σ) be such that

k
φ(σ)−−−−→ k

δS

y δσ(S)

y
p

σ−−−−→ q

commutes. Thus we have φ.
There is the subcategory of C(1) whose objects are all the

S = {1, · · · , p},

and whose morphisms are in natural correspondence with Iso Σ. Let θ be the
inclusion map onto this subcategory.

We have left only to define T : θφ → 1. The morphisms δS : k → p in
Mono ∆+ perform this function, because of the commutative diagram

k = θφ(S)
θφ(σ)−−−−→ k = θφ(σ)

δS

y δσ(S)

y
S

σ−−−−→ σ(S)

for each morphism σ : S → σ(S) of C(1).
We have thus proved the following theorem.

Theorem 9.8 The Mono Σ-space (S0)∞ has as a non-standard homotopy col-
imit

BIso Σ =
∐
p≥0

BΣ(p).

We should formalize a little better the strictly monoidal category Iso Σ, as
a subcategory of the strictly monoidal category Mono Σ. Its objects are the
non-negative integers; its morphisms are the isomorphisms of Σ; the bifunctor

⊕ : Iso Σ× Iso Σ→ Iso Σ

is obtained by restricting the bifunctor of Mono Σ.

Generalization to the Finite Sets {0, 1, · · · , n} with Base Point 0

We now follow Segal through the generalization of (9.8) resulting from replac-
ing S0 by any finite set with base point. It is just as well to restrict ourselves to
the finite sets {0, 1, · · · , n} with base point 0. Let Γ denote the category whose
objects are the non-negative integers, and whose morphisms γ : m→ n are the
base point preserving functions

γ : {0, 1, · · · ,m} → {0, 1, · · · , n}.

Beware: Segal denoted this category by Γo.
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We then have the composite functor

Γ ↪→ TOP∗ → TOPMono Σ hocolim−−−−−→ TOP,

giving a Γ-space which we want to compute up to homotopy. More precisely, we
want to find a Γ-space which to equivalent to this one in TOPΓ [WHE−1]. This
will be our form of a basic Γ-space of Segal [4.4]. As above, for each n we let
C(n) denote the category resulting by applying

M1 : TOPMono Σ → TOPCAT

to the Mono Σ-space {0, 1, · · · , n}∞. For each σ : m→ n in Γ, we also compute
the resulting functor

γ∗ : C(m)→ C(n);

i.e., we have to start with the functor C which is the composition

Γ→ TOPMono Σ M1−−→ TOPCAT

from which one obtains the associated composite functor

Γ
C−→ TOPCAT

B�−−→ TOP,

i.e. the Γ-space
∐
n≥0BC(n). The following theorem of Segal then exhibits

homotopy models for BC(n).

Theorem 9.9 Consider the Γ-space Y =
∐
n≥0 Y (n) where Y (n) is the homo-

topy colimit of the Mono Σ-space {0, 1, · · · , n}∞. Then Y (0) is contractible and
Y (n) for n > 0 is naturally homotopy equivalent to the classifying space

BIso Σ×···×Iso Σ = BIso Σ × · · · ×BIso Σ,

where the products are n-fold products.

Proof. We show first that BC(0) is contractible. It is readily seen that Y (0) is
precisely BMono Σ. Now the element 0 of Mono Σ is an initial object such that
the only morphism n→ 0 is the identity morphism of 0. Hence in the language
of Chapter 5, Mono Σ is the cone over the full subcategory D whose objects
are the positive integers. By (5.12), BMono Σ is then the cone over BD and is
therefore contractible.

Next take n > 0. We can then take for the objects of C(n) all of the disjoint
n-tuples of subsets

(S1, · · · , Sn) ⊂ {1, · · · ,m};
given another object

(T1, · · · , Tn) ⊂ {1, · · · , p},
we get a morphism

σ : (S1, · · · , Sn)→ (T1, · · · , Tn)

for each mono σ : m → p in Σ for which σ(Si) = Ti for each i. As in (9.8), we
must present a small homotopy model for BC(n).
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For each (S1, · · · , Sn), there are unique monos δSi : ki → m in ∆+ whose
image is Si. Thus for each object S = (S1, · · · , Sn), we get the induced morphism
of the coproduct,

δS : k1 ⊕ · · · ⊕ kn → m,

which is a mono in Σ. Thus as in (9.9) we have a functor

φ : Iso Σ× · · · × Iso Σ→ C(n),

and precisely as in (9.8) one can show that

φ∗ : BIso Σ×···×Iso Σ → BC(n)

is a homotopy equivalence.

Elementary Properties of Γ-Spaces

It is unfair to make entry into Γ-spaces only with the above complicated Γ-
space, basic though it may turn out to be. Here we back off and point out that
Γ arises for elementary purposes as well.

First of all, each abelian topological monoid G gives a Γ-space. Think of G
as written additively and as having as its natural base point its neutral element
0, and think of Gm as the space of all functions

g : {0, 1, · · · ,m} → G

which preserve base point, i.e. have g(0) = 0, and agree to write an element
either as a function or alternatively simply by writing g = (g1, · · · , gm) where
gi is the value of the function at i. Then we get the Γ-space NG =

∐
m≥0G

m,
where a morphism γ : m→ n induces the action map γ∗ : Gm → Gn given by

γ∗(g1, · · · , gm) = (g′1, · · · , g′n)

where

g′j =

{∑
σ(i)=j gi, for σ−1(j) 6= ∅

0, for σ−1(j) = ∅.

Thus we have a natural functor N : AB TOP MON→ TOPΓ, which is perhaps
the most elementary reason for paying attention to Γ-spaces. This functor relates
well to the nerve functor N : TOP MON→ TOP∆o

, as we will soon see.
In order to do so, we recall (7.2), which asserted that (∆+)o is naturally

isomorphic to the subcategory Λ of ∆ consisting of all order preserving functions

λ : {0, 1, · · · ,m} → {0, 1, · · · , n}

for which λ(0) = 0 and λ(m) = n. By dropping the element 0 of ∆+, and
renaming objects, we get the following.

(9.10) The category ∆o can be taken to be the category whose objects are the
non-negative integers and whose morphisms µ : m → n are all order preserving
functions

µ : {0, 1, · · · ,m+ 1} → {0, 1, · · · , n+ 1}
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for which µ(0) = 0 and µ(m + 1) = n + 1. The ∆-space ∇ =
∐
∇(n) in this

model has ∇(n) the space of all order preserving functions

t : {0, 1, · · · , n+ 1} → I

for which t(0) = 0 and t(n+ 1) = 1, i.e. ∇(n) consists of all

0 = t(0) ≤ t(1) ≤ · · · ≤ t(n) ≤ t(n+ 1) = 1.

We can now define the natural functor

θ : ∆o → Γ

by identifying the two base points 0 and n+ 1 of an object {0, 1, · · · , n+ 1} of
∆o to obtain the single base point 0 of the object {0, 1, · · · , n} of Γ. Clearly each
morphism µ : m→ n in ∆o then gives a well defined morphism θ(µ) : m→ n of
Γ.

There is also a natural functor

TOP∗ → TOPΓo ,

where given a compactly generated space A with base point a0, we can interpret
An as all base point preserving functions

a : {0, 1, · · · , n} → A,

and thus obtain the Γo-space
∐
An with its natural right action of Γ. Of central

importance here is the Γo-space arising from the choice A = I/∂I, which can be
written as the Γo-space

S1 =
∐
n≥0

(I/∂I)n.

(9.11) The Γo-space S1 =
∐

(I/∂I)n given above is related to the ∆o-space ∇
by

S1 ' θ#∇ = (
∐
∇(m)× Γ(m,n))/ ∼,

where ∼ is the least equivalence relation such that if

t ∈ ∇(m), m
µ←− m′, m′

γ←− m,

where µ is in ∆o and γ is in Γ, then

(tµ, γ) ∼ (t, θ(µ)γ).

Proof. Denote the elements of the Γo-space θ#∇ by t ×∆o γ. There is a well
defined map

(θ#∇)(n)→ (I/∂I)n

assigning to (t1, · · · , tm)×∆o γ the point represented by (t1, · · · , tm)γ in (I/∂I)n.
We need a Γo-map

S1 →∇×∆o Γ.
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In order to get it, we must have a relationship between the ∇(m)’s and the
(I/∂I)n’s. Given a point u of In/∂In, there is a unique pair consisting of a point

0 < t1 < · · · < tm < 1

of ∇(m) − ∂∇(m) and an epi m
γ←− n in Γ so that (t1, · · · , tm)γ represents u

in (I/∂I)n. Given this uniqueness and given u ∈ (I/∂I)n, one can map u into
(t1, · · · , tm)×∆o γ. The remark follows.

The Realization Functor | � |Γo : TOPΓ → TOP

The category Γ will not by itself lead to interesting homotopy limit or homo-
topy colimit problems. This is because 0 is both an initial and a terminal object
of Γ, so that if Y is a Γ-space then Y (0) is a non-standard homotopy colimit
and a non-standard homotopy limit. To associate interesting homotopy colimit
problems with TOPΓ one has to have such a functor as θ : ∆o → Γ, so that one
can use the composition

TOPΓ θ#

−−→ TOP∆o hocolim−−−−−→ TOP

as an interesting alternative. Alternatively, one has the composition

TOPΓ θ#

−−→ TOP∆o |�|−→ TOP

to exploit. In the beginning stages, as with simplicial topology, the latter choice
is the more compelling geometrically, and we examine it first. It is best to express
this composition internally as a functor | � |Γo : TOPΓ → TOP.

Let Y be a Γ-space. We then have from the pairing

×Γ : TOPΓo × TOPΓ → Top,

and the choice S1 ∈ TOPΓo , the functor

| � |Γ : TOPΓ → Top, Y 7→ S1 ×Γ Y.

Having chosen now a direct model for ∆o, the associated bifunctor for it is now
written as

TOP(∆o)o ×∆o TOP∆o

→ Top,

and the realization | � | : TOP∆o

→ TOP is now written as

|Z| = ∇×∆o Z.

We now have the following theorem.

Theorem 9.12 The realization functor | � |Γ is a functor

| � |Γ : TOPΓ → TOP,

and is related to the simplicial realization by

|Y |Γ = S1 ×Γ Y ' θ#∇×Γ Y ' ∇×∆o θ#Y.

Thus |Y |Γ ' |θ#Y |.
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If G is an abelian topological monoid with cofibered base point, we can now
relate the permutative nerve NG to the simplicial nerve NG. Clearly θ#NG '
NG, so that from (9.12) we have

|NG|Γ ' |NG| = BG.

Thus for such a G we can now write the points of BG as points of |NG|Γ, i.e. in
the form

(t1, · · · , tn)×Γ (g1, · · · , gn)

where permutations as well as other identifications are allowed. It is this inter-
pretation which makes (9.3) more obvious at a glance.

Note that there are numerous properties of | � |Γ which follow from Chapter
2 and (9.12). One example is a product theorem.

(9.13) If Y and Y ′ are in TOPΓ, let Y ×Z+ Y ′ denote the product Γ-space∐
Y (n)× Y ′(n) with its diagonal action. The natural map

|Y ×Z+ Y
′|Γ → |Y |Γ × |Y ′|Γ

is then a homeomorphism.

The Cofibration Condition for Γ-Spaces

There are various useful choices of unique factorization pairs for the category
Γ. One of these assigns to each morphism γ : m→ p in Γ the unique factorization
γ = δγ1 where γ1 : m→ p is an epi in Γ and where

δ : {0, 1, · · · , n} → {0, 1, · · · , p}

is an order preserving mono with δ(0) = 0.
Define the cofibration condition for a Γ-space Y to be the condition that each

order preserving mono

δ : {0, 1, · · · ,m} → {0, 1, · · · , n}

for which δ(0) = 0 induces an action map δ∗ : Y (m)→ Y (n) which is an inclusion
map onto a cofibered closed subset δ∗Y (m) ⊂ Y (n). It is automatic that δ∗ is an
inclusion map onto a closed subset. Every mono γ : m→ n in Γ can be written
as an isomorphism followed by a δ, hence it then follows that if Y satisfies the
cofibration condition, then for every mono γ : m→ n we have γ∗Y (m) cofibered
in Y (n). The subset Y deg(n) of Y (n) can be defined to be either the union of
the images δ∗Y (m) for all monos δ satisfying the above condition and for which
m < n, or as the union of all γ∗Y (m) for all monos γ : m → n in Γ for which
m < n. If Y satisfies the cofibration condition, then Y deg(n) is cofibered in
Y (n).

We will assume the cofibration conditions on our Γ-space Y whenever it seems
to make the work easier. It is no big deal to do so. Thus, for example, it
can be checked that every principal Γ-space satisfies the cofibration condition
because of the above unique factorization. Thus every Γ-space Y is isomorphic
in TOPΓ [WHE−1] to a Γ-space satisfying the cofibration condition.



THE INFINITE SYMMETRIC PRODUCT SP∞(A; Y ) WITH COEFFICIENTS 209

For a Γ-space Y satisfying the cofibration condition, the composition

TOPΓ θ#

−−→ TOP∆o |�|−→ TOP

gives from (6.9) a non-standard homotopy colimit for the ∆o-space θ#Y . Thus
there is no real restriction in confining ourselves to Γ-spaces Y satisfying the
cofibration condition and to using |Y |Γ as the closest thing we have to a homotopy
colimit for Y .

The Infinite Symmetric Product SP∞(A;Y ) with Coefficients

One can now take take a second step in the evolution of the infinite symmetric
product.

First one needs that the functor

TOP∗ × TOPΓ → Top, (A, Y ) 7→ (
∐

An)×Γ Y

actually maps into TOP. We leave full details to the reader. The bottom line is
that B = (

∐
An)×Γ Y is naturally filtered as B =

⋃
Bn. Given n > 0, consider

the pair (An, An,deg) where An,deg consists of all (a1, · · · , an) where either for
some i we have ai = a0 or else for some i 6= j we have ai = aj . Consider
also the pair (Y (n), Y deg(n)) where Y deg(n) is the union of all the images of all
δ∗ : Y (m)→ Y (n) as δ ranges over all monos

δ : {0, 1, · · · ,m} → {0, 1, · · · , n}

which preserve order, have δ(0) = 0, and have m < n. Then there is a relative
homeomorphism

(An, An,deg)× (Y (n), Y deg(n))→ (Bn, Bn−1)

in the style of (2.8). The root fact is the unique factorization of morphisms of Γ
into epimorphisms of Γ followed by those monos

{0, 1, · · · ,m} → {0, 1, · · · , n}

which preserve order and map 0 into 0.
We thus leave to the reader the full details of the following.

(9.14) For each compactly generated space A and each Γ-space Y , define the
infinite symmetric product SP∞(A;Y ) by

SP∞(A;Y ) = (
∐

An)×Γ Y.

There results the functor

SP∞ : TOP∗ × TOPΓ → TOP.

The space SP∞(A;Y ) is naturally filtered as

SP∞(A;Y ) =
⋃
SP p(A;Y ).
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If G is an abelian topological monoid, then we obtain SP∞(A;NG), which we
denote simply by SP∞(A;G). Then SP∞(A;G) is an abelian topological monoid
and we thus obtain the special case

SP∞ : TOP∗ ×AB TOP MON→ AB TOP MON.

Proof. We have left to observe only that given a compactly generated space A
with base point a0, and given an abelian topological monoid G, then SP∞(A;G)
is an abelian topological monoid. The points of SP∞(A;G) are of the form

s = (a1, · · · , am)×Γ (g1, · · · , gm).

These are subject to the following relations.

(i) If ai = a0, then ai and gi can be deleted.
(ii) If gi = 0, then ai and gi can be deleted.
(iii) Both sides can be permuted by the same permutation of n letters.
(iv) If ai = aj for some i < j, then aj and gj can be deleted with gi

replaced by gi + gj .

These relations generate all the relations. That being the case, if

t = (a′1, · · · , a′n)×Γ (g′1, · · · , g′n)

is another element, we can define the sum to be

s+ t = (a1, · · · , am, a′1, · · · , a′n)×Γ (g1, · · · , gm, g′1, · · · , g′n),

and SP∞(A;G) is clearly an abelian topological monoid. Of course, this can be
presented in more abstract form, but we wait until it is essential to do so.

For Y a Γ-space, the spaces SP∞(S0;Y ) and SP∞(S1;Y ) deserve special
note. In fact, (9.12) has already pointed out that SP∞(S1;Y ) is just the chosen
realization |Y |Γ, or for that matter the simplicial realization |θ#Y |. We leave it
to the reader to show that SP∞(S0;Y ) ' Y (1).

McCord’s Theorem SP∞(A;SP∞(B;G)) ' SP∞(A ∧B;G)

We confine ourselves for the moment to the bifunctor

SP∞ : TOP∗ ×AB TOP MON→ AB TOP MON,

and are now able to put (9.4) in a more satisfactory form.
Fix the abelian topological monoid G, and fix the compactly generated space

A with base point a0. We must understand better the abelian topological monoid
SP∞(A;G), and especially if H is another abelian topological monoid we must
understand how many morphisms SP∞(A;G) → H there are of abelian topo-
logical monoids.

Consider the filtration SP∞(A;G) =
⋃
SP p(A;G), where SP p(A;G) consists

of all

s = (a1, · · · , ap)×Γ (g1, · · · , gp).
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Then SP 0(A;G) is the base point, and SP 1(A;G) is the smashed product A∧G.
The basic fact is then that for each base point preserving map

φ : A ∧G→ H, a ∧ g 7→ φ(a ∧ g)

such that φ(a ∧ g) + φ(a ∧ g′) = φ(a ∧ (g + g′)), we get a unique morphism

Φ : SP∞(A;G)→ H

which is given by φ on the 1-skeleton. For one can simply define

Φ((a1, · · · , an)×Γ (g1, · · · , gn)) = φ(a1 ∧ g1) + · · ·+ φ(an ∧ gn)

and check that the generating relations are all preserved.
We seek to use this by defining natural maps

φ : A ∧B ∧G→ SP∞(A;SP∞(B;G)).

The right hand side has 1-skeleton A ∧ (SP∞(B,G)) ⊃ A ∧ B ∧ G so that we
have only to take the natural map from A ∧B ∧G to SP∞(A;SP∞(B,G)), to
check the above condition of φ, and thus get the morphism

Φ : SP∞(A ∧B;G)→ SP∞(A,SP∞(B;G)).

We also need natural maps Θ : SP∞(A;SP∞(B;G)) → SP∞(A ∧ B;G).
Here we need for starters a map

θ : A ∧ (SP∞(B;G))→ SP∞(A ∧B;G).

One checks that

θ(a ∧ ((b1, · · · bn)×Γ (g1, · · · , gn)) = (a ∧ b1, · · ·a ∧ bn)×Γ (g1, · · · , gn)

suffices. Thus the reader can readily finish the check of the following theorem.

Theorem 9.15 For compactly generated spaces A and B with base point and for
G an abelian topological monoid, there is the natural isomorphism

SP∞(A ∧B;G) ' SP∞(A;SP∞(B;G))

of abelian topological monoids.

The following corollary then gives the extended form of (9.4).

Corollary 9.16 Let G be an abelian topological monoid with cofibered base point,
and let BnG denote the sequence of abelian topological monoids with cofibered base
point which has B0

G = G and which has Bn+1
G the classifying space of BnG. Then

BnG ' SP∞(Sn;G)

for all n ≥ 0.

proof. We have already expressed BG as SP∞(S1;G). Hence its classifying
space B2

G is

SP∞(S1;SP∞(S1;G)) ' SP∞(S2;G).
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One continues this use of (9.15) for all n > 0. The case n = 0 can be shown
directly.

We can now put (9.6) in an extended form due to McCord [1.3].

(9.17) Let G be an abelian topological monoid which is of the homotopy type of
a CW -complex and has cofibered base point. Then for every n > 0 we get that
the natural inclusion

SP∞(Sn;G) ⊂ ΩSP∞(Sn+1;G)

is a homotopy equivalence. If π0(G) is a group, then also

G ⊂ ΩSP∞(S1;G)

is a homotopy equivalence. Thus if G is a discrete abelian group, then SP∞(Sn;G)
is the K(G,n)-spectrum, and is an Ω-spectrum.

Outline of a Functor B : TOPΓ → TOPΓ

We have now completed McCord’s topological presentation of the spectrum
{K(π, n)} for each abelian group π. The bottom line is a functor

AB TOP MON→ AB TOP MON, G 7→ SP∞(S1;G),

or its equivalent formulation in terms of classifying spaces, so that starting with
G = π one can produce the spectrum iteratively.

As one can look at the above in two ways, one can look at Segal’s general-
izations in two ways. We first present his generalization of the above classifying
space approach. Since classifying spaces are special cases of Milnor realizations,
this generalization is based on the above remarks about realizations.

Here we need Segal’s functor

B : TOPΓ → TOPΓ,

for which commutativity holds in

AB TOP MON
B�−−−−→ AB TOP MONy y

TOPΓ B−−−−→ TOPΓ.

We now outline his construction in its most minimal form, leaving some details
to be checked later when they are done in a more general form anyway.

We can readily define realizations | � |Γn : TOPΓn → TOP. One simply uses
the product (Γn)o-space S1 × · · · × S1 = (S1)n and the functor

TOP(Γn)o × TOPΓn → Top

to produce

|Z|Γn = (S1)n ×Γn Z,
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for Z in TOPΓn . Then

|Z|Γn = (S1)n ×Γn Z = (θ#∇)n ×Γn Z

= θ#(∇n)×Γn Z = ∇n ×∆n θ#Z = ∇×∆ i#θ#Z,

where i is the diagonal inclusion ∆ ↪→ ∆n. It follows that |Z|Γn is compactly
generated, thus we have the functor

| � |Γn : TOPΓn → TOP

and the various ways of presenting |Z|Γn . Thus |Z|Γn is the Γ-realization of
the Γ-space j#Z, where j is the diagonal inclusion Γ ↪→ Γn, or is the Milnor
realization |i#θ#Z|. Writing it out in more detail,

|Z|Γn =
∐

((S1)p1 × · · · × (S1)pn × Z(p1, · · · , pn))/ ∼

= (
∐

(S1)p × Z(p, · · · , p))/ ∼ = (
∐
∇(p)× Z(p, · · · , p))/ ∼ .

These observations are due to Segal.
Suppose now that we fix a Γ-space Y . There is the functor

⊕n : Γn → Γ, (p1, · · · , pn) 7→ p1 + · · ·+ pn, (γ1, · · · , γn) 7→ γ1 ⊕ · · · ⊕ γn.

This induces the functor

⊕#
n : TOPΓ → TOPΓn ,

and we get a sequence {Yn} where Yn is the Γn-space Yn = ⊕#
n Y given by

Yn(p1, · · · , pn) = Y (p1 + · · ·+ pn).

(9.18) Let Y be a Γ-space, and let Yn be the Γn-space given by

Yn(p1, · · · , pn) = Y (p1 + · · ·+ pn).

Then the sequence {|Yn|Γn} is a Γ-space, so that we get a functor

B : TOPΓ → TOPΓ, Y 7→
∐
|Yn|Γn .

This functor can also be described as follows. For each n ≥ 0, let Y ′n denote the
Γ-space given by

Y ′n(p) = Y (np) = Y (p+ · · ·+ p)

where Γ acts diagonally on Y (p+ · · ·+ p). Then we get the Γ- space∐
|Y ′n|Γ =

∐
SP∞(S1;Y ′n)

which is naturally homeomorphic to BY in TOPΓ.

The equivalence of the two presentations is clear, up to presenting the action
of Γ. The details of the action is buried in the more general arithmetic outline
which we now develop. This general arithmetic is in the fashion of May [7.4],
but is done in a special case.
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Small Categories with Based Choice Functions for Finite Coproducts

In order to prepare for the more extensive production of the Γ-spaces Y which
play the role of coefficients in SP∞(A;Y ), we will use some categorical machinery
concerning permutations of the type that May has provided. It seems clearest if
done at an intermediate level of generality, and we choose to put it in terms of
small categoriesG with finite coproducts. In fact, we put the following conditions
on G.

(i) We require that G have associated with each ordered pair p, q of
objects a standard coproduct

p
αp,q−−→ p⊕ q βp,q←−− q,

with the associativity condition that for each ordered triple p, q, r of
objects we have that (p⊕q)⊕r = p⊕(q⊕r) as well as that the diagram

q
βp,q−−−−→ p⊕ q

αq,r

y αp⊕q,r

y
q ⊕ r βp,q⊕r−−−−→ p⊕ q ⊕ r

commutes. We then have a standard choice for a coproduct p1 ⊕ · · · ⊕
pn for any ordered n-tuple (p1, · · · , pn) of objects. For each n-tuple
(p1, · · · , pn) of objects and each permutation σ of n letters we get an
isomorphism

p1 ⊕ · · · ⊕ pn → pσ−1(1) ⊕ · · · ⊕ pσ−1(n)

coming from the uniqueness of the coproduct up to natural isomor-
phism.

(ii) We require that p⊕ q = q ⊕ p for every ordered pair of objects.
(iii) We require that G have a given object 0 which is both an initial

object and a final object. We also require that p ⊕ 0 = p = 0 ⊕ p for
all objects p, and that

αp,0; p→ p⊕ 0 = p, β0,p : p→ 0⊕ p = p

are both identity morphisms.

If these are satisfied, we say that G is a small category with a based choice
function for finite coproducts . Then Γ is an example of a small category with a
based choice function for finite coproducts, as the reader should check. In fact,
Γ is the only small category with a based choice function for finite coproducts
that we use, and the generality is only to provide clarity in the proofs.

If G has a based choice function for finite coproducts, then G is naturally a
strict monoidal category. We also use

⊕ : G×G→ G
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for the defining bifunctor for this structure. Here assign to each ordered pair
p, q of objects the object p ⊕ q, and given g : p → p′ and h : q → q′, let
g ⊕ h : p⊕ q → p′ ⊕ q′ be the unique morphism such that

p
αp,q−−−−→ p⊕ q βp,q←−−−− q

g

y g⊕h
y h

y
p′

αp′,q′−−−−→ p′ ⊕ q′
βp′,q′←−−−− q′

commutes.
If G is a small category with a based choice function for finite coproducts,

then for each ordered pair p, q of objects we have the diagram

p
ρp,q←−− p⊕ q µp,q−−→ q

where ρp,q = 1p ⊕ εq with εq the unique morphism q → 0, and similarly for
µp,q. These are functorial in p and q in a way that the reader can supply. As a
consequence, for each (p1, · · · , pi, · · · , pn) we get a natural morphism

p1 ⊕ · · · ⊕ pi ⊕ · · · ⊕ pn → p1 ⊕ · · · ⊕ pi−1 ⊕ pi+1 ⊕ · · · ⊕ pn.

Of course, using the unique morphisms νp : 0 → pi one also gets a natural
morphism

p1 ⊕ · · · ⊕ pi−1 ⊕ pi+1 ⊕ · · · ⊕ pn → p1 ⊕ · · · ⊕ pi ⊕ · · · ⊕ pn.

It is important to observe that all these natural morphisms come in pairs, with
source and target reversed. Similarly there are natural morphisms corresponding
to omitting any subcollection of the objects, or to inserting a collection of new
objects.

The problem is now to put the natural isomorphisms and the natural mor-
phisms above into a context that fits what we want to do. Perhaps it is best to
simply plunge into what we want to do, which is to define for any G, having a
based choice function for finite coproducts, a bifunctor

TOPG
o

× TOPG → TopΓ.

The Bifunctor TOPGo ×TOPG → TopΓ

Fix a Go-space X and a G-space Y . For each n ≥ 0, let

⊕n : Gn → G

denote the multifunctor given by

⊕n(p1, · · · , pn) =
⊕

1≤i≤n
pi, ⊕n(g1, · · · gn) =

⊕
1≤i≤n

gi.

There are the functors

⊕#
n : TOPG → TOPG

n

, ⊕#
n : TOPG

o

→ TOP(Gn)o ,
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and we denote ⊕#
nX by Xn and ⊕#

n Y by Yn. These spaces then have

Xn(p1, · · · , pn) = X(p1 ⊕ · · · ⊕ pn), Yn(p1, · · · , pn) = Y (p1 ⊕ · · · ⊕ pn).

One can then form the space Xn ×Gn Yn.
We have next to provide a map γ∗ : Xm ×Gm Ym → Xn ×Gn Yn for each

morphism γ : m → n in Γ. First we need a functor Fγ : Gm → Gn. We can
partition {1, · · · ,m} into the subsets

Sj = γ−1(j) ∩ {1, · · · ,m}, j ∈ {1, · · · , n}.

Denote those Sj which are non-empty by

Sj = {j1 < · · · < jkj}.

Define the functor Fγ : Gm → Gn by

Fγ(g1, · · · , gm) = (g′1, · · · , g′n),

where

g′j =

{
gj1 ⊕ · · · ⊕ gjkj , for γ−1(j) 6= ∅
10, for γ−1(j) = ∅.

The formula for Fγ(p1, · · · , pm) is entirely similar. Let pω = (p1, · · · , pm) be an
object of Gm and let

pω′ = (p′1, · · · , p′n)

be its image under the functor Fγ . Denote by ⊕(pω) the object

⊕(pω) = p1 ⊕ · · · ⊕ pm
of G. We then need maps

Xm(pω)→ Xn(pω′), Ym(pω)→ Yn(pω′),

equivalently maps

X(⊕(pω))→ X(⊕(pω′)), Y (⊕(pω))→ Y (⊕(pω′))

which are equivariant with respect to the functor. Since X is a right G-space, a
morphism g′ : ⊕(pω′)→ ⊕(pω) in G serves to give a map

X(⊕(pω))→ X(⊕(pω′)), x 7→ xg′.

Since Y is a left G-space, a morphism g : ⊕(pω)→ ⊕(pω′) serves to give a map

Y (⊕(pω)→ Y (⊕(pω′)), y → gy.

Hence our problem is to associate with γ : m→ n in Γ two natural morphisms

gγ : pω → pω′ , g′γ : pω′ → pω

for each pω = (p1, · · · , pm).
We have

pω′ = (p11 ⊕ · · · ⊕ p1k1
, · · · , pn1 ⊕ · · · ⊕ pnkn ),

where zeroes are to be inserted wherever γ−1(j) = ∅. There is then a natural
morphism gγ : ⊕(pω) → ⊕(pω′) as follows from the above discussion. Those pi
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for which γ(i) = 0 can be deleted and there results a natural morphism, zeros
can be inserted for those j for which γ−1(j) = ∅ and the identity morphism can
be used, and finally the natural isomorphism connected with a permutation can
be used.

Also, there is a natural morphism g′γ : ⊕(pω′) → ⊕(pω). Here one uses the
permutation inverse to that used in gγ , and follows with a natural inclusion.

The natural morphisms give the action maps

(g′γ)∗ : X(⊕(pω))→ X(⊕(pω′)), (gγ)∗ : Y (⊕(pω))→ Y (⊕(pω′))

that we need. These can also be displayed as well defined maps

Xm(pω)→ Xm(pω′), x 7→ xg′γ

and similarly for Y .
We define the map

γ∗ : Xm ×Gm Ym → Xn ×Gn Yn
by

γ∗(x×Gm y) = xg′γ ×Gn gγy.
The morphisms gγ can be regarded as a natural transformation ⊕m → ⊕nγ,
similarly g′γ as a natural transformation ⊕nγ → ⊕m, hence γ∗ is well defined.

Theorem 9.19 Let G be a small category with a based choice function for finite
coproducts. . Then there is the functor

TOPG
o

× TOPG → TopΓ

defined as above. Given a Go-space X and a G-space Y , form the (Gn)o-spaces
Xn and the Gn-spaces Yn for each n ≥ 0. Then there is the natural action of Γ
on
∐
n≥0Xn×GnYn, thus the functor takes (X,Y ) into the Γ-space

∐
Xn×GnYn.

Proof. The question is whether the array of maps γ∗ constitutes an action of
Γ. Consider a diagram

p
γ′←− n γ←− m

in Γ, and the resulting functors

F (γ′γ) : Gm → Gp, F (γ′)F (γ) : Gm → Gp.

When written out in coordinate form, then in each jth-coordinate the functors
differ only by a permutation. Hence the two functors are related by a natural
isomorphism

Tγ′,γ : F (γ′γ)→ F (γ′)F (γ).

One can next consider the compositions

G
⊕p←−− Gp ←− Gm

and get the natural isomorphism

⊕pTγ′,γ : ⊕pFγ′γ → ⊕pFγ′Fγ .
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For each (p1, · · · , pm), we can denote the resulting isomorphism of G by

hγ′,γ : ⊕pFγ′γ → ⊕pFγ′Fγ
and get

hγ,γ′gγ′γ = gγ′gγ ,

g′γg
′
γ′hγ′,γ = g′γγ′.

We can now compute

γ′∗γ∗(x×Gm y) = xg′γg
′
γ′ ×Gp gγ′gγ(y)

as

xg′γ′γh
−1
γ′,γ ×Gp hγ′,γgγ′γ(y),

which is equal to

(γ′γ)∗(x×Gm y).

The Extended Functor SP∞ : TOP∗ ×TOPΓ → TOPΓ

We can now finish generalizing the infinite symmetric product by presenting
a bifunctor

SP∞ : TOP∗ × TOPΓ → TOPΓ,

which is a form of a result of Segal [4.4]. If we fix A to be S1, then the Γ-space
SP∞(S1;Y ) will be precisely the Γ-space

∐
|Yn|Γn exhibited in (9.18). The

general case will have completed the proof of (9.18).
Fix a compactly generated space A with base point a0, and fix a Γ-space Y .

We then have the Γo-space
∐
Ap, and first need to review its properties. We

have A0 = pt, and the natural homeomorphism Ap+q ' Ap × Aq, so that
∐
Ap

is a strictly multiplicative Γo-space with the natural homeomorphisms

Ap1+···+pm ' Ap1 × · · · ×Apm .

If we denote
∐
Ap by A, then the spaces An of the preceding paragraphs are the

n-fold products

An = A× · · · × A.
Applying the bifunctor TOPΓo × TOPΓ → TopΓ to the Γo-space A =

∐
Ap

and the Γ-space Y , we define

SP∞(A;Y ) =
∐
An ×Γn Yn

to be the resulting Γ-space in Top. Note that each Am×Γm Ym can be presented
as the image of a quotient map

πn :
∐

Ap1+···pm × Y (p1 + · · ·+ pm)→ Am ×Γm Ym,

by taking the equivalence relation ∼ such that if

a ∈ Aq1+···+qm , qi
γi←− pi, y ∈ Y (p1 + · · · pm)
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then

(a(γ1 ⊕ · · · ⊕ γm), y) ∼ (a, (γ1 ⊕ · · · ⊕ γm)y).

We denote the image of Ap1+···+pm × Y (p1 + · · · + pm) in Am ×Γm Ym by
SPp1,··· ,pm(A;Y ), thus obtaining a generalized filtration.

(9.20) The bifunctor SP∞ is a bifunctor

SP∞ : TOP∗ × TOPΓ → TOPΓ.

Each of the spaces Am ×Γm Ym is filtered as⋃
SPp1,··· ,pm(A;Y )

and there is a relative homeomorphism

(Ap1 , Ap1,deg)× · · · × (Apm , Apm,deg)×Σ(p1)×···×Σ(pm) (Y (p), Y deg(p))

→ (SPp1,··· ,pm(A;Y ),
⋃
SPq1,··· ,qm(A;Y )),

where p = p1 + · · ·+ pm and the union is over all (q1, · · · , qm) such that qi ≤ pi
for all i and qi < pi for some i.

One should examine the elementary case SP∞(S0;Y ) and show that Y '
SP∞(S0;Y ). Note also the relationship between SP∞(A;Y ) and SP∞(A;Y ).
Namely, as a Γ-space SP∞(A;Y ) has a space assigned for each m ≥ 0, and
SP∞(A;Y ) is the space assigned when m = 1.

If Y is the permutative nerve NG of an abelian topological monoid, it is
the case that SP∞(A;NG) is precisely the permutative nerve of the abelian
topological monoid SP∞(A;G). Thus the generalization coincides in this case
with the more classical construct.

The Associative Law SP∞(A;SP∞(B;Y )) ' SP∞(A ∧B;Y )

Following Segal, we can now put (9.15) in the above extended form. We will
need first of all a map

φ : SP∞(A;SP∞(B;Y ))→ SP∞(A ∧B, Y ).

This is obtained from the family of maps

φp1,··· ,pm : Am × (Bp1+···+pm × Y (p1 + · · ·+ pm))→ SP∞(A ∧B, Y )

given by

((a1, · · · , am), ((b1, · · · , bp1+···+pm), y) 7→

(a1 ∧ b1, · · · , a1 ∧ bp1 , · · · , am ∧ bp1+···+pm−1+1, · · · , am ∧ bp1+···+pm)×Γ y.

We write this map as φω : Am × (Bω × Y (ω)) → SP∞(A ∧ B, Y ). The maps
φω give a well defined map if for each morphism γ : m → n in Γ, the two
compositions

An × (Bω × Y (ω))
γ∗×1−−−→ Am × (Bω × Y (ω)) −→ SP∞(A ∧B, Y )
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and

An × (Bω × Y (ω))
1×γ∗−−−→ An × (Bω

′ × Y (ω′)) −→ SP∞(A ∧B, Y )

coincide. We leave it to the reader to make this check. There results a well
defined map

φ : SP∞(A,SP∞(B;Y ))→ SP∞(A ∧B, Y ).

We need also a map

θ : SP∞(A ∧B, Y )→ SP∞(A;SP∞(B;Y )).

This map will be given by a family of maps

θm : (A ∧B)m × Y (m)→ SP∞(A;SP∞(B;Y )),

((a1 ∧ b1, · · · , am ∧ bm), y) 7→ (a1 · · · , am)×Γ ((b1, · · · , bm)×Γm y).

We also leave it to the reader to make the tedious check that this gives a well
defined map

θ : SP∞(A ∧B, Y )→ SP∞(A,SP∞(B;Y ))

and that both compositions are the identity.

Theorem 9.21 Given compactly generated spaces A and B with base points,
and given a Γ-space Y , we have the natural homeomorphism

φ : SP∞(A,SP∞(B;Y ))→ SP∞(A ∧B;Y ).

The Spectra Generated by Γ-Spaces

The most general fact about producing spectra from Γ-spaces is as follows.

Theorem 9.22 For each Γ-space Y with Y (0) contractible, one gets a spectrum
as follows. In TOPΓ [WHE−1], one may as well suppose that Y (0) = pt. Then
form the spectrum whose spaces are SP∞(Sn;Y ) and whose maps are the natural
maps

SP∞(Sn;Y )→ ΩSP∞(Sn+1;Y ) = ΩSP∞(S1;SP∞(Sn;Y ).

Proof. We have noted previously that we can replace Y by a Γ space satisfying
the cofibration condition, for example by replacing Y by a principal Γ-space over
it. Suppose this has been done. The unique morphisms n → 0 and 0 → n give
a natural embedding of Y (0) in each Y (n) as a cofibered closed subspace. One
can then form Y (n)/Y (0) for each n, thus the Γ-space

∐
Y (n)/Y (0). There is

the Γ-map ∐
Y (n)→

∐
Y (n)/Y (0),

a weak homotopy equivalence in TOPΓ. Since now Y (0) = pt, we can then form
the spectrum as stated.
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Note that every Γ-space Y is comultiplicative, with the maps

ρp,q∗ × µp,q∗ : Y (p+ q)→ Y (p)× Y (q).

These maps are to be considered as maps

Y (p+ q)→ Y (p)×Y (0) Y (q).

Since we assume Y (0) = pt, we can drop the subscript. We then say that Y
is a special Γ-space, or is strictly comultiplicative up to homotopy, if each map
Y (p+ q)→ Y (p)× Y (q) is a homotopy equivalence in TOP.

We can now obtain Segal’s generalizations of (9.17).

Theorem 9.23 Let Y be a Γ-space which has Y (0) = pt, which satisfies the cofi-
bration condition, which has each Y (m) of the homotopy type of a CW -complex,
and which is strictly comultiplicative up to homotopy. Then the inclusion maps

fn : SP∞(Sn;Y )→ ΩSP∞(Sn+1;Y )

are homotopy equivalences for n > 0. If in addition π0(Y (1)) with its natural
abelian monoid structure is a group, then the natural inclusion

Y (1) = SP∞(S0;Y )→ SP∞(S1;Y )

is also a homotopy equivalence.

Proof. Here we have only to mesh with earlier results. Consider the ∆o-space
X = θ#Y of (9.12). It has X(0) = pt, it satisfies the cofibration condition, it is
a special ∆o-space, and each X(n) is of the homotopy type of a CW-complex.
We also have X(1) = Y (1) and |θ#Y | = SP∞(S1;Y ). Whenever we know that
π0(Y (1)), with its natural monoid structure, is a group it follows from (7.16)
that

Y (1)→ ΩSP∞(S1;Y )

is a homotopy equivalence. All that remains is to prove that SP∞(S1;Y ) inherits
the above conditions from Y , noting also that since SP∞(S1;Y ) is automatically
path connected then π0(SP∞(S1;Y )) is trivial. The spectrum SP∞(S1;Y ) has
been displayed in (9.18) and the reader can check the conditions.

Corollary 9.24 Let Y be a Γ-space such that Y (0) is contractible, such that
Y is strictly comultiplicative up to homotopy and such that each Y (n) is of the
homotopy type of a CW-complex. Then one can replace it in TOPΓ[WHE−1]
by a Γ-space satisfying all the hypotheses of (9.23) and thus obtain a spectrum
satisfying the conclusions of (9.23).
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CHAPTER X

Homotopy Colimit Problems Associated with the
Symmetric Groups

This chapter is devoted to two problems. In Chapter 9, we interpreted the
infinite symmetric product A 7→ SP∞A as a composition of functors

TOP∗
�∞−−→ TOPMono Σ colim−−−→ Top,

where A∞ =
∐
Ap with its natural left action of Mono Σ. The first purpose of

this chapter is to review the corresponding homotopy colimit problem; i.e. the
analysis of the composition

TOP∗
�∞−−→ TOPMono Σ hocolim−−−−−→ TOP.

The goal here is to interpret work of J.P. May [2.8] as implying that there
exists a natural homotopy class of maps

hocolim A∞ = E(Mono Σ)o ×Mono Σ A
∞ −→ Ω∞S∞A,

these maps being homotopy equivalences whenever A is path connected, is of
the homotopy type of a CW-complex, and has cofibered base point. That is, for
such A we use results of May to show that Ω∞S∞A is a non-standard homotopy
colimit of the Mono Σ-space A∞. A quick outline of the reduction of this
problem to results of May is as follows.

In the style of Chapter 9, the functor �∞ : TOP∗ → TOPMono Σ and the
reduced product bifunctor for Mono Σ give a functor

TOP(Mono Σ)o × TOP∗ → TOP, (V,A) 7→ V ×Mono Σ A
∞.

Choosing V = E(Mono Σ)o gives the the standard homotopy colimit of A∞;
we then follow the lead of May by investigating the freedom of choice in the
selection of V such that V ×Mono Σ A

∞ is a (possibly non-standard) homotopy
colimit of A∞. Given any (Mono Σ)o-space V , one gets by restriction a right

action of Σ(p) on each V (p), and thus an element V (p) of TOP(Σ(p))o for each p.
We show that a homotopy colimit of A∞ results for any choice of V for which
each V (p) is homotopy equivalent in TOP(Σ(p))o to a universal (Σ(p))o-space.

223
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One can then follow Boardman-Vogt [4.1] by producing appropriate models
for V . The first candidate V has V (p) the space of distinct p-tuples (x1, · · · , xp)
in R∞, where if σ : q → p is a mono of Σ, then

(x1, · · · , xp)σ = (xσ(1), · · · , xσ(q)).

We then give the classic result that each V (p) is a universal (Σ(p))o-space, thus
V is admissible. Note that each V (p) is naturally filtered as

⋃
Vn(p), where

Vn(p) is the space of distinct p-tuples in Rn.
The final Boardman-Vogt model uses the space V ′n(p) of p-tuples (J1, · · · , Jp)

of little n-cubes in In = [−1, 1]n, where the interiors of the little cubes are
required to be disjoint and where each little n-cube is a product of closed subin-
tervals of [−1, 1]. This gives a (Mono Σ)o-space V ′n for which there is a natural
map

V ′n ×Mono Σ A
∞ → ΩnSnA.

Passing to the colimit of the natural inclusions

V ′1 −→ · · · −→ V ′n −→ · · ·

induced by sending an n-cube J into the (n + 1)-cube J × [−1, 1], one receives
a (Mono Σ)o-space V ′ for which V ′(p) consists of p-tuples (J1, · · · , Jp) of little
∞-cubes with disjoint interiors, with an action as above. One has the natural
(Mono Σ)o-map V ′ → V induced by the maps V ′n(p) → Vn(p) which send each
cube into its centroid. We refer to May for the straight-forward check that each
V ′(p)→ V (p) is a homotopy equivalence in TOP(Σ(p))o ; thus V ′ is an admissible
model.

For A in TOP∗, there is the compactly generated space Ω∞S∞A, obtained as
the colimit of the inclusions

A −→ ΩSA −→ · · ·ΩnSnA −→ .

Passing to the colimit from the maps

V ′n ×Mono Σ A
∞ −→ ΩnSnA,

one gets a natural map

V ′ ×Mono Σ A
∞ −→ Ω∞S∞A.

We then simply quote the classic theorem of May, in our form that this map is a
homotopy equivalence whenever A is path connected, has cofibered base point,
and is of the homotopy type of a CW-complex. He proves it by proving that
each V ′n ×Mono Σ A∞ is homotopy equivalent to ΩnSnA; the interested reader
will consult May [2.8,Th. 6.1].

In the course of this review, we are plunged a little way into the body of work
which presents universal and classifying spaces for the symmetric groups. The
second purpose of this chapter is to plunge a little further by presenting some of
the work of Japanese topologists on this topic. In particular, we interpret work
of Nakamura [10.2], and the related work of Fox-Neuwirth [10.1], as presenting
definitive models for the universal and classifying spaces of the symmetric groups.
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The Bifunctor TOP(Mono Σ)o ×TOP∗ → TOP

Recall that Σ is the category whose objects are the non-negative integers and
whose morphisms σ : m→ n are the functions

σ : {1, · · · ,m} → {1, · · · , n}.

Thus Mono Σ is the subcategory of all such one-to-one functions.
The subcategory Mono ∆+ denotes all σ : p → q which are not only one-to-

one but also order preserving. Iso Σ denotes the subcategory of all isomorphisms,
i.e. all σ : p→ p which are one-to-one and onto. Thus Iso Σ =

∐
p≥0 Σ(p) where

Σ(p) denotes the symmetric group.
The subcategories Mono ∆+, Iso Σ provide a unique factorization pair for

Mono Σ. That is, every morphism σ of Σ can be written uniquely as σ = δρ
where δ is in Mono ∆+ and ρ is in Iso Σ.

Let X be a (Mono Σ)o-space. For each compactly generated space A with
base point a0, we then get the space

X ×Mono Σ A
∞ = (

∐
X(p)×Ap)/ ∼ .

(10.1) The equivalence relation ∼ on
∐
X(p) × Ap has the following proper-

ties. Call an element (a1, · · · , ap) ∈ Ap nondegenerate if no ai is the base point.
Every equivalence class in

∐
X(p) × Ap admits a representative of the form

(x, a) ∈ X(q)× Aq where a is nondegenerate. If (x′, a′) ∈ X(r) ×Ar is another
representative with a′ nondegenerate, then r = q and for some ρ ∈ Σ(q) we have
x′ = xρ and a = ρa′. For any other representative (x′′, a′′) ∈ X(s) × As of the
equivalence class we have s > q.

Proof. We assume that given a ∈ Ap there exists a unique a′ ∈ Aq and
morphism δ : q → p in Mono ∆+ with a = δa′. We can define an explicit map

Φ :
∐

X(p)×Ap →
∐

X(p)×Ap

sending (x, a) ∈ X(p) × Ap into a well-defined (x′, a′) ∈ X(q) × Aq with a′

nondegenerate. Namely, take the unique nondegenerate a′ ∈ Aq and δ : q → p
in Mono ∆+ for which a = δa′ and define

Φ(x, a) = (xδ, a′).

Note that if a is nondegenerate, then Φ(x, a) = (x, a). Note also that (x, a) ∼
Φ(x, a).

Among the things we must see is that q is constant on each equivalence class.
Next we must interpretX(q)×Aq as a space upon which Σ(q) acts; this is evident.
Having done so, we must check that as the (x, a) vary over an equivalence class
of ∼, then the Φ(x, a) vary over a single orbit of the action of Σ(q) on X(q)×Aq.

In order to show these, one notes first that Φ(xδ′, a) = Φ(x, δ′a) for any

x ∈ X(p′), δ′ : p→ p′ in Mono ∆+, a ∈ Ap.
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This is trivial. Only slightly less trivial is showing that if

x ∈ X(p), ρ ∈ Σ(p), a ∈ Ap,

then Φ(xρ, a) and Φ(x, ρa) have the same q-value and lie in the same orbit of
Σ(q) on X(q)×Aq. The remark follows readily.

It follows from the above that X ×Mono Σ A
∞ is nicely filtered, say as

X ×Mono Σ A
∞ =

⋃
(X ×Mono Σ A

∞)p,

where (X ×Mono Σ A
∞)p is all

x×Mono Σ (a1, · · · , ap)

for which x ∈ X(p). Let Ap,deg ⊂ Ap be all (a1, · · · , ap) ∈ Ap such that some ai
is the base point. One then gets readily the following remark.

(10.2) For each (Mono Σ)o-space X and each A in TOP∗, the space X×Mono Σ

A∞ is filtered as

X ×Mono Σ A
∞ =

⋃
(X ×Mono Σ A

∞)p,

where (X ×Mono Σ A
∞)p is the pushout of a diagram

X(p)×Σ(p) A
p ←− X(p)×Σ(p) A

p,deg −→ (X ×Mono Σ A
∞)p−1.

Since Σ(p) is a finite group, the first two spaces of this pushout diagram can be
checked to be weakly Hausdorff, hence by induction so is X ×Mono Σ A

∞. Thus
we have the functor

TOP(Mono Σ)o × TOP∗ → TOP.

If A has cofibered base point, it follows from an argument of the type of (9.2)
that the filtration is cofibered.

We can now return to the question of when X×Mono ΣA
∞ yields a homotopy

colimit of A∞.

Theorem 10.3 Consider the class C of all (Mono Σ)o- spaces X such that
each (Σ(p))o-space X(p), obtained by restricting the action of (Mono Σ)o, is

homotopy equivalent in TOP(Σ(p))o to E(Σ(p))o . Then

(i) E(Mono Σ)o is in the class C,
(ii) if X is in the class C, then there exists a natural homotopy class of

(Mono Σ)o- maps f : E(Mono Σ)o → X, and
(iii) if f : X → X ′ is a (Mono Σ)o-map, if X and X ′ are in the class
C, and if A has cofibered base point, then

f ×Mono Σ 1 : X ×Mono Σ A
∞ → X ′ ×Mono Σ A

∞

is a homotopy equivalence of spaces.
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Thus if X is in the class C and A has cofibered base point, then X×Mono ΣA
∞

is a homotopy colimit for A∞.

Proof. To show (i), we must consider the space E(p) = E(Mono Σ)o(p) together
with its action of Σ(p). It will suffice to see that E(p) is a principal (Σ(p))o-space,
for being contractible it will then be a (non-standard) universal (Σ(p))o-space.
This in turn will be true for all p if E is a principal (Iso Σ)o-space. But this
follows from the fact that if B =

∐
p≥0B(p) is a Z+-space, then

B ×Z+ (Mono Σ) = (B ×Z+ (Mono ∆+))×Z+ (Iso Σ),

for this implies that the restriction of a principal (Mono Σ)o- space to (Iso Σ)o

is principal.
Property (ii) follows from generalities. Given X in the class C, consider the

(Mono Σ)o-space
EX = E(Mono Σ)oX.

Each X(p) is contractible, thus each (EX)(p) is contractible. Hence EX is a uni-
versal (Mono Σ)0-space. Hence there is a unique homotopy class of (Mono Σ)o-
maps E(Mono Σ)o → EX , and composing with the map EX → X , we get a well
defined homotopy class of maps E(Mono Σ)o → X .

Of course the major proposition is (iii). Let X and X ′ be in C, and let
f : X → X ′ be a (Mono Σ)o-map. For each p, we get the commutative diagram

X(p)×Σ(p) A
p ←−−−− X(p)×Σ(p) A

p,deg −−−−→ X ×Mono Σ A
∞

f ′
y f ′′

y f ′′′
y

X ′(p)×Σ(p) A
p ←−−−− X ′(p)×Σ(p) A

p,deg −−−−→ X ′ ×Mono Σ A
∞.

The maps fp : X(p) → X ′(p), being homotopy equivalences in TOP(Σ(p))o , in-
duce homotopy equivalences f ′ and f ′′. It follows inductively that the f ′′′ are
homotopy equivalences for all p. Hence the conclusion follows.

The Space V (p) of Distinct p-Tuples in R∞

At the heart of model-making involving the symmetric group Σ(p) is the right
action of Σ(p) on (R∞)p, and on (Rn)p, by

(x1, · · · , xp)ρ = (xρ(1), · · · , xρ(p)).

We start in a very elementary way with this important action.
Allow p to be any non-negative integer, with (R∞)0 interpreted as a singleton,

the empty set.

(10.4) We can consider (R∞)p as a simplicial complex in such a way that the
action of Σ(p) is simplicial. If ∇ is a simplex of (R∞)p, and if ρ ∈ Σ(p) has
ρ∗(∇) ⊂ ∇ or ρ∗(∇) ⊃ ∇, then ρ is the identity on ∇.

Proof. First make each (R∞)p into a regular cell complex. Choose a represen-
tation of the real numbers as a regular cell complex in which 0 is a vertex. To
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be explicit, let the 1-cells be the closed intervals [i, i+ 1]. Then Rn is a product
of regular cell complexes, and as such is a regular cell complex. The inclusion
Rn → Rn+1 obtained by setting the last coordinate equal to 0 establishes Rn as
a regular cell subcomplex of Rn+1. Hence R∞ is a regular cell complex. Then
each (R∞)p is also naturally a regular cell complex. Moreover, the cells of all
these regular cell complexes are bounded Euclidean cells. Hence each cell has a
well defined barycenter.

We can then make each (R∞)p into a simplicial complex by taking its barycen-
tric subdivision. This is the simplicial complex which is associated with the poset
whose objects C are the open cells of the regular cell complex (R∞)p, and which
has C ≤ D iff C ⊂ D.

Thus one sees that the vertices of (R∞)p are all (v1, · · · , vp) where vi is a
vertex of the simplicial complex R∞. Moreover,

(v1, · · · , vp) < (w1, · · · , wp)

iff vi ≤ wi for 1 ≤ i ≤ p and vi < wi for some i. One can then proceed to check
the assertion.

(10.5) Let X denote the subspace of (R∞)p consisting of all (x1, · · · , xp) such
that xi = xj for some i 6= j. Then X is the total space of the simplicial subcom-
plex of (R∞)p which consists of all simplices ∇ of (R∞)p which are pointwise
fixed by some ρ ∈ Σ(p) other than the identity.

This is left as an exercise. For the finite dimensional case (Rn)p, we denote
the corresponding subset by Xn.

We now consider the open subset V (p) = (R∞)p −X of (R∞)p, equivalently,
we consider the space of one-to-one functions

x : {1, · · · , p} → R∞.

If K denotes the simplicial complex (R∞)p and if L denotes the subcomplex of
(10.5), then

V (p) = |K| − |L|,
where |K| denotes the union of the simplices of K. We outline a classical con-
struction which then exhibits V (p) = |K| − |L| as a simplicial complex.

(10.6) Let K be a simplicial complex, and let L be a subcomplex such that if ∇
is a simplex of K with ∇∩ |L| 6= ∅, then ∇∩ |L| is a face of ∇. Then |K| − |L|
is naturally a simplicial complex. Moreover, if (K,L) is any simplicial pair then
(Sd K, Sd L) satisfies the above condition, thus |K|−|L| is naturally a simplicial
complex.

Proof. One utilizes a subdivision Sd∗ K of the simplicial complex K, one
which subdivides simplices of K which intersect |L| and which leaves all the rest
undivided.

The simplices of K are of the form

(i) a simplex ∇′ of |K| − |L|, or
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(ii) a simplex ∇′′ of |L|, or
(iii) a join ∇′∗∇′′ where ∇′ is a simplex of |K|−|L| and ∇′′ is a simplex

of |L|.
To obtain Sd∗ K, one subdivides each simplex ∇ of K, proceeding inductively

on the dimension of the simplex. Suppose the subdivision has been defined for
all dimensions < k, and that we now have a k-simplex ∇. If ∇ = ∇′ as above,
let Sd∗ ∇ = ∇. If either ∇ = ∇′′ or ∇ = ∇′ ∗ ∇′′ as above, then let Sd∗ ∇
be the simplicial cone from the barycenter of ∇ over Sd∗ (∂∇). Thus Sd∗ K is
defined.

Denote by K − L the subcomplex of K whose simplices ∇ have ∇∩ |L| = ∅.
Denote by Sd L the standard barycentric subdivision of L. Then K−L and Sd L
are simplicial subcomplexes of Sd∗ K. Since we now have the pair (Sd∗ K,Sd L),
we can iterate the construction on this pair to obtain a subdivision Sd2

∗ K of
Sd∗ K, which has Sd∗ K − Sd L and Sd2 L as subcomplexes. Continuing
inductively, we get (Sdn∗ K,Sd

n L) and we get a diagram of simplicial inclusions

K − L −→ Sd∗ K − Sd L −→ Sd2
∗ K − Sd2L −→ .

We thus get a simplicial complex

M =
⋃

(Sdn∗ K − Sdn L).

We leave it to the reader to check that |M | = |K| − |L|.

Theorem 10.7 The space V (p) = (R∞)p −X with its right action of Σ(p) is a
(non-standard) universal right Σ(p)-space. The corresponding model for a non-
standard classifying space B(p) for Σ(p) is then the colimit B(p) = V (p)/Σ(p),
which can be regarded as the suitably topologized set of all finite subsets of R∞

which have precisely p elements. The space B(p) is filtered as B(p) =
⋃
Bn(p),

where Bn(p) = ((Rn)p−Xn)/Σ(p) is called the configuration space of all subsets
of Rn with exactly p elements.

Proof. We must first show V (p) to be principal. We may assume that V (p)
is a simplicial complex, that the action is simplicial, and that if ∇ is a simplex
and ρ is a non-identity element of Σ(p) then the interiors of ∇ and ρ∗(∇) are
disjoint.

Let V k(p) denote the k-skeleton of V (p). We can then pick one k-dimensional
simplex ∇ki from each orbit class of k- dimensional simplices, and thus obtain a
relative homeomorphism∐

(∇ki , ∂∇ki )× Σ(p)→ (V k(p), V k−1(p)).

Hence V (p) =
⋃
V k(p) is a principal right Σ(p)-space.

We must show that V (p) is contractible. Let Vn(p) ⊂ V (p) denote all one-to-
one functions

x : {1, · · · , p} → Rn.

Then V (p) =
⋃
Vn(p), and each Vn(p) is a subcomplex of V (p).
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One proves that V (p) is ∞-connected by proving that each Vn(p) is (n− 2)-
connected. Since V (p) is a CW-complex, it then follows that V (p) is con-
tractible. We leave it as an exercise to the reader to prove the classical assertion
that Vn(p) is (n − 2)-connected. As a hint, the most elegant proof applies to
Vn(p) = (Rn)p −Xn, where Xn is contained in the (np − n)-skeleton of (Rn)p,
and then uses the fact that Xn is disjoint from the (n − 1)-skeleton of the dual
cellular subdivision of the simplicial manifold (Rn)p.

We now combine (10.7) and (10.3) to exhibit a basic model for the homotopy
colimit of A∞ when A has cofibered base point.

Corollary 10.8 Consider the (Mono Σ)o-space
∐
p≥0 V (p), where if a point

x = (x1, · · · , xq) ∈ V (q) and σ : p → q is one-to-one, then xσ ∈ V (p) is the
composition xσ of one-to-one functions. Then V ×Mono Σ A∞ is a homotopy
colimit for A∞.

Boardman-Vogt Spaces of Little Cubes and Their Use by May

We need now a variant of the above space V (p) of all x = (x1, · · · , xp) in R∞

with xi 6= xj for i 6= j.
There is a slight convenience here in considering the basic closed interval of

real numbers as I = [−1, 1]. Thus in this section, the suspension SA of a space
with base point is (I/∂I)∧A and the loop space ΩA is the space of based maps
I/∂I → A, all with I = [−1, 1].

A little interval J is a nondegenerate subinterval [a, b] of the interval I. There
is a space D(1) of little intervals, where the topology is that of the space

D(1) = {(a, b) ∈ R2 : −1 ≤ a < b ≤ 1}.

Regard the space D(1) as having the base point I = [−1, 1].
A little n-cube J is a product

[a1, b1]× · · · × [an, bn]

of little intervals, and is a subset of the n-cube In. There is then the space D(n)
of little n-cubes, topologized as a product. By the interior of J we will mean the
product

(a1, b1)× · · · × (an, bn)

of the open intervals.
There is the natural map D(n) → Rn which assigns to a little n-cube its

centroid.
There is a closed inclusion D(n)→ D(n+ 1) given by

[a1, b1]× · · · × [an, bn] 7→ [a1, b1]× · · · × [an, bn]× [−1, 1].

From the closed inclusions

D(1) −→ · · · −→ D(n) −→ · · ·
we can form the colimit, the space D(∞) of little ∞-cubes J . We can regard
D(∞) =

⋃
D(n) as a filtered space. There is the natural map D(∞) → R∞
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induced by the maps D(n)→ Rn. In fact, we have chosen I = [−1, 1] so that its
centroid is 0, so that this map is well defined.

The Boardman-Vogt space V ′n(p) of disjoint little n-cubes is then the space
of all p-tuples (J1, · · · , Jp) of little n-cubes such that the interiors are disjoint.
Considering the space Vn(p) as all distinct p-tuples in Rn, we get a natural map
V ′n(p)→ Vn(p) which assigns to each little n-cube its centroid.

Two little n-cubes have disjoint interiors iff the corresponding (n + 1)-cubes
have disjoint interiors. Thus it is meaningful to speak of two little ∞-cubes as
having disjoint interiors.

The Boardman-Vogt space V ′(p) is then the space of p-tuples of little ∞-
cubes whose interiors are disjoint. This space is filtered as V ′(p) =

⋃
V ′n(p).

The elements of this space are the functions p → D(∞) whose images have
disjoint interiors.

Theorem 10.9 Consider the (Mono Σ)o-space V ′ =
∐
V ′(p) of p-tuples of little

∞-cubes with disjoint interiors. Then V ′ is in the class C of (10.3). Hence if A
has cofibered base point then V ′ ×Mono Σ A

∞ is a homotopy colimit of A∞, and
the map

V ′ ×Mono Σ A
∞ → V ×Mono Σ A

∞

is a homotopy equivalence of spaces.

That V ′ is in the class C is written out in May [2.8,p. 34-36]. The proof is
elementary but detailed, and we simply refer the reader to it. The rest follows.

The Basic Theorem of May

We now come to the point of the little cubes, namely their relationship to
iterated loop spaces. Suppose we have a p-tuple (J1, · · · , Jp) of little n-cubes
with disjoint interiors, and also a p-tuple (f1, · · · , fp) in the iterated loop space
ΩnA. First consider each fi as a map of pairs (In, ∂In) → (A, a0). By change
of scale, next consider each fi : (Ji, ∂Ji)→ (A, a0). Then map the complement

In − (J1 ∪ · · · ∪ Jp)

into the base point. There results from the given data a single map f : (In, ∂In)
→ (A, a0), thus a well defined point of ΩnA. In the following elementary propo-
sition, this is formalized into a map

µn : V ′n ×Mono Σ (ΩnA)∞ → ΩnA

which sends

(J1, · · · , Jp)×Mono Σ (f1, · · · , fp)
into f .

Theorem 10.10 Let A be a compactly generated space with base point. Consider
the (Mono Σ)o-space V ′n =

∐
V ′n(p). The nth-loop space ΩnA is a compactly

generated space with base point, and there is a natural map

µn : V ′n ×Mono Σ (ΩnA)∞ → ΩnA.
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Replacing A by the nth-suspension SnA, we get a natural map

V ′n ×Mono Σ (ΩnSnA)∞ → ΩnSnA.

Using the natural map A→ ΩnSnA, we get a natural map

τn : V ′n ×Mono Σ A
∞ → ΩnSnA.

Letting n tend to infinity, we get a natural map

τ : V ′ ×Mono Σ A
∞ → Ω∞S∞A.

We leave it to the reader either to invent the proofs, or to look them up in
May.

We come now to the basic theorem of May [2.8,p.52]. Here at the very heart
of the matter we have no new proof to offer, and simply refer the reader to May’s
Theorem 6.1 [2.8,p. 50].

Theorem 10.11 Let A be a path connected space, of the homotopy type of a
CW-complex, and with cofibered base point. Then the natural maps

V ′n ×Mono Σ A
∞ → ΩnSnA, V ′ ×Mono Σ A

∞ → Ω∞S∞A

are homotopy equivalences of spaces. Hence Ω∞S∞A is a homotopy colimit of
A∞.

BMono Σ(A∞) Interpreted in Terms of Γ-Spaces

Recall that we have interpreted Segal’s basic Γ-space Y as follows. For p ≥ 0,
let C(p) denote the category whose objects are all the disjoint p-tuples of subsets

S = (S1, · · · , Sp) ⊂ {1, · · · ,m}.

Given another object

T = (T1, · · · , Tp) ⊂ {1, · · · , n}

then we get a morphism σ : S → T in C(p) for each morphism σ : m → n in
Mono Σ with σ(Si) = Ti for all i. For each morphism γ : p → q in Γ one
writes down a functor γ : C(p) → C(q) and checks that there results a functor
F : Γ→ CAT. Using the classifying space functor, one gets the composition

Γ
F−→ CAT −→ TOP,

and thus the special Γ-space Y . If F ′ : Γ → CAT denotes the functor related
to F by F ′(n) = F (n)o then we can also regard Segal’s basic Γ-space as the
composition

Γ
F ′−→ CAT −→ TOP.

Theorem 10.12 The homotopy colimit BMono Σ(A∞) is naturally homeomor-
phic to the infinite symmetric product SP∞(A;Y ) of Chapter 9, where Y is
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Segal’s special Γ- space.

Proof. There is a natural inclusion functor i : (Mono Σ)o → Γ. If σ : p → q
is a morphism of Mono Σ, then one assigns to it the morphism γ : q → p in Γ
where γ(j) = σ−1(j) if σ−1(j) 6= ∅ and γ(j) = 0 if σ−1(j) = ∅. The category
(Mono Σ)o is then identified with the subcategory Π of Γ whose morphisms
α : q → p are the functions

{0, 1, · · · , q} → {0, 1, · · · , p}

which send 0 into 0 and which map α−1{1, · · · , p} one-to-one onto {1, · · · , p}.
The induced functor i# : TopΠ → TopΓ has i#(EΠ) ' Y . For let D(p)

denote the category whose objects are all morphisms α : � → p in Π, and whose
morphisms are all the commutative diagrams

q′
α′′←−−−− q

α′
y α

y
p p

in Π, so that EΠ(p) = BD(p). From (5.9), we can present (i#EΠ)(r) as BC′(r)
where C′(r) has objects all γ : � → r in Γ and morphisms all commutative
diagrams

q′
α←−−−− q

γ′
y γ

y
r r.

It is then checked that C′(r) ' (C(r))o. The theorem follows.

We can now put May’s results in terms of the infinite symmetric product
SP∞(A;Y ), where Y is Segal’s special Γ-space.

Theorem 10.13 Consider the categories C(p) for which BC(p) = Y (p). We have
natural bifunctors

C(p)× C(q)→ C(p+ q)

which make the Γ-space Y a multiplicative Γ-space. It then follows from (7.9)
that SP∞(A;Y ) is a topological monoid. If A is path connected, has the homo-
topy type of a CW-complex, and has cofibered base point, then SP∞(A;Y ) is
naturally homotopy equivalent to Ω∞S∞A.

An Equivariant Partitioning of (Rm)p into Convex Sets

We now review partitions of (Rm)p of the type of Nakamura [10.2] and Fox-
Neuwirth [10.1].

Fix the positive number p and consider simultaneously all the spaces (Rm)p.
A point x of (Rm)p can be considered as a function

x : p = {1, · · · , p} → Rm.
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Here we regard x as a function from the linearly ordered set p to the linearly
ordered set Rm, where Rm has the lexicographic order. There is a unique mono-
epi factorization of such maps x; i.e. given x there is a unique positive integer
pm, a unique epi σ : p→ pm, and a unique order preserving mono xm : pm → Rm

with x = xmσ. Moreover, if x is order preserving, then σ is order preserving.
Let πm−1 : Rm → Rm−1 denote the order preserving map

πm−1(t1, · · · , tm) = (t1, · · · , tm−1).

We then have the order preserving map

πm−1xm : pm → Rm−1.

Applying the unique mono-epi factorization, we get a positive integer pm−1,
an order preserving epi δm−1 : pm → pm−1, and an order preserving mono

xm−1 : pm−1 → Rm−1 with πm−1xm = xm−1δm−1. We can continue the process
to obtain from x a unique commutative diagram

p1
δ1←−−−− · · · ←−−−− pm−1

δm−1←−−−− pm
σ←−−−− p

x1

y xm−1

y xm

y ∥∥∥
R1 π1←−−−− · · · ←−−−− Rm−1 πm−1←−−−− Rm

x←−−−− p,

where each δi is an order preserving epi, where σ is an epi, and where each xi
is an order preserving mono. The top line of this diagram will be denoted by ω,
and we let C(ω) ⊂ (Rm)p denote the set of all x ∈ (Rm)p which yield the above
diagram with top line ω.

The subset C(ω) can be checked to be a finite intersection of closed halfspaces
and open halfspaces in the Euclidean space (Rm)p. As ω ranges over the set Cm
of all

p1
δ1←− · · · δm−1←−−− pm σ←− p

with each δi an order preserving epi and σ an epi, we thus have the partition
of (Rm)p into non-empty disjoint subsets C(ω), with each C(ω) a finite inter-
section of open and closed halfspaces. For x ∈ (Rm)p, p1 counts the number of
distinct first coordinates of the various functional values x(j), p2 the maximum
number of distinct second coordinates of the various x ∈ C(ω), etc. Thus C(ω)
is homeomorphic to an open disk of dimension p1 + · · ·+ pm. The action of Σ(p)
permutes the C(ω) by

C(δ1, · · · , δm−1, σ)τ = C(δ1, · · · , δm−1, στ).

(10.14) Fix an element ω of Cm as the diagram

p1
δ1←− · · · ←− pm−1

δm−1←−−− pm σ←− p,

where each δi is an order preserving epi and where σ is an epi. Then the closure
of C(ω) is the disjoint union of all C(ω′), where ω′ is

q1
δ′1←− · · · ←− qm−1

δ′m−1←−−− qm σ′←− p,
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for which there exists a commutative diagram

p1
δ1←−−−− · · · ←−−−− pm−1

δ′m−1←−−−− pm
σ←−−−− p

τ1

y τm−1

y τm

y ∥∥∥
q1

δ′1←−−−− · · · ←−−−− qm−1

δ′m−1←−−−− qm
σ′←−−−− p,

where τ1 is an order preserving epi and where τi for i > 1 is an epi which is order
preserving on each δ−1

i−1(pt). For each ω′, there is at most one such commutative
diagram and the diagram is completely determined by τm.

If we regard Cm as a category whose objects are the ω and whose morphisms
are the τ : ω → ω′ in the above proposition, then Cm is then a poset with a unique
morphism τ : C(ω)→ C(ω′) whenever C(ω) ⊃ C(ω′).

Proof. In this outline, we leave the following to the reader. The closure C(ω)
consists of all x : p→ Rm for which there exists a commutative diagram

p1
δ1←−−−− · · · ←−−−− pm−1

δm−1←−−−− pm
σ←−−−− p

x1

y xm−1

y xm

y ∥∥∥
R1 π1←−−−− · · · ←−−−− Rm−1 πm−1←−−−− Rm

x←−−−− p,

where x1 is order preserving and for i > 0 each xi is order preserving on any
δ−1
i−1(pt). Assuming this, we outline the theorem. Fix x in the closure, and

consider the above commutative diagram. Consider the diagram

x1(p1)
π1←− · · · ←− xm−1(pm−1)

πm−1←−−− xm(pm)
x←− p.

Note that the functions are epis, and use commutativity to show that all except
the last of the functions are order preserving. Each xi(pi) is a finite set which
is also linearly ordered by lexicographic order. Hence there is a unique qi and
order preserving isomorphism of xi(p1) with qi. Thus we have a commutative
diagram

p1
δ1←−−−− · · · ←−−−− pm−1

δm−1←−−−− pm
σ←−−−− p

τ1

y τm−1

y τm

y ∥∥∥
q1

δ′1←−−−− · · · ←−−−− qm−1

δ′m−1←−−−− qm
σ′←−−−− p

i1

y im−1

y im

y ∥∥∥
R1 π1←−−−− · · · ←−−−− Rm−1 πm−1←−−−− Rm

x←−−−− p,

where τj is an epi, where ij is an order preserving epi, and where ijτj = xj . The
theorem follows.
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Cellular Categories Related to the Symmetric Groups

The following piecewise linear theorem is a variant of that found in Stallings
[5.6], but we will assume that it follows similarly.

(10.15) Let U be an open subset of Rn for which we have a finite, disjoint
partition C into nonempty sets C ∈ C, where

(i) each C ∈ C is a finite intersection of open and closed halfspaces, and
(ii) the closure of each C ∈ C in U is a union of C′ ∈ C.

Consider C as a category which has a morphism C → C′ whenever the closure
of C contains C′. Choose a point x(C) ∈ C for each C, and consider the union
X of all the simplices

〈x(C0), · · · , x(Ck)〉
for all sequences such that Ci is contained in the boundary of Ci+1. Then X is
a deformation retract of U . Note that X is naturally homeomorphic to BC. For
each C ∈ C, fix C0 = C and take the union of all the

〈x(C), x(C1), · · · , x(Ck)〉

as above. Then we get a combinatorial (n − k)-cell where k is the dimension of
C. Thus C is then a cellular category in the sense of Chapter 5.

We can now apply the above in several slightly different ways.
Example 1. Consider U = (Rm)p with the partition {C(ω)} of (10.14). The
associated category we have denoted by Cm in (10.14). It has objects

p1
δ1←− · · · ←− pm−1

δm−1←−−− pm σ←− p,

where each δi is an order preserving epi and where σ is an epi. Moreover, it has
morphisms all τ : ω → ω′ corresponding to commutative diagrams

p1
δ1←−−−− · · · ←−−−− pm−1

δ′m−1←−−−− pm
σ←−−−− p

τ1

y τm−1

y τm

y ∥∥∥
q1

δ′1←−−−− · · · ←−−−− qm−1

δ′m−1←−−−− qm
σ′←−−−− p,

where τ1 is an order preserving epi and where τi for i > 1 is an epi which is order
preserving on each δ−1

i−1(pt). Pick the points x(ω) ∈ C(ω) for all ω for which σ is
order preserving, and then pick the others equivariantly with respect to the Σ(p)-
action. There is a natural right action of Σ(p) on both X and BCm and they are
equivariantly homeomorphic. Moreover, X is an equivariant deformation retract
of (Rm)p. No doubt one can make the choices so that X lies in the m(p − 1)-
dimensional subspace of (Rm)p which is orthogonal to the diagonal, and take X
to be a closed equivariant neighborhood of the origin in the subspace.
Example 2. Let U = (Rm)p − Xm, where Xm denotes all x : p → Rm which
are not one-to-one. Consider the category Dm whose objects are all

ω : p1
δ1←− · · · ←− pm−1

δm−1←−−− p σ←− p
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for which each δi is an order preserving epi and for which σ ∈ Σ(p), with a
morphism τ : ω → ω′ for each commutative diagram

p1
δ1←−−−− · · · ←−−−− pm−1

δm−1←−−−− p
σ←−−−− p

τ1

y τm−1

y τm

y ∥∥∥
q1

δ′1←−−−− · · · ←−−−− qm−1

δ′m−1←−−−− p
σ′←−−−− p,

where τ1 is an order preserving epi and where τi for i > 0 is an epi and also is
order preserving on each δ−1

i−1(pt). Then BDn can be considered as an equivariant
deformation retract of the space (Rm)p−Xm and thus its orbit space BDm/Σ(p)
is a homotopy model for the configuration space of all subsets of Rm with exactly
p elements.
Example 3. If one wishes to go directly to orbit spaces, then consider the
category Em which has an object for each

ω : p1
δ1←− · · · ←− pm−1

δm−1←−−− p

with each δi an order preserving epi, and a morphism τ : ω → ω′ for each
commutative diagram

p1
δ1←−−−− · · · ←−−−− pm−1

δm−1←−−−− p

τ1

y τm−1

y τm

y
q1

δ′1←−−−− · · · ←−−−− qm−1

δ′m−1←−−−− p

for which the τi have the above properties. Note that there is a functor

θ : Em → Σ(p)

which sends a morphism τ into τm ∈ Σ(p). It can be seen that Em is a cellular
category, since Dm is. Moreover, BEm is homotopy equivalent to the configura-
tion space of subsets of Rm with exactly p elements.
Example 4. One has natural inclusions of Em into Em+1 as full subcategories.
Thus one can take the colimit of

E1 −→ · · · −→ Em −→,

giving a category E which has objects all diagrams

p1
δ1←− · · · ←− pk

δk←− · · ·

for which each δk is an order preserving epi and for which for all k large each
pk = p. The morphisms τ : ω → ω′ are all commutative diagrams

p1
δ1←−−−− · · · δk−1←−−−− pk

δk←−−−− · · ·

τ1

y τk

y
q1

δ′1←−−−− · · ·
δ′k−1←−−−− qk

δ′k←−−−− · · ·
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which have τ1 an order preserving epi and for i > 1 have τi an epi and also order
preserving on each δ−1

i−1(pt). Moreover, E is cellular since each Em is. There is
the functor θ : E → Σ(p) which takes a morphism τ : ω → ω′ into the common
value of the τk for k large. This is a topological resolution of Σ(p) in the sense
of Chapter 5. Hence BE ∼ BΣ(p), and we have a CW-model for BΣ(p) with a cell
of dimension

∑
(p− pk) for each object ω.
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