
THE ACHILLES’ HEEL OF O(3, 1)?

WILLIAM FLOYD, BRIAN WEBER, AND JEFFREY WEEKS

Abstract. What’s the best way to represent an isometry of hyperbolic 3-

space H3 ? Geometers traditionally worked in SL(2, C), but for software devel-
opment many now prefer the Minkowski space model of H3 and the orthogonal
group O(3, 1). One powerful advantage is that ideas and computations in S3

using matrices in O(4) carry over directly to H3 and O(3, 1). Furthermore,
O(3, 1) handles orientation reversing isometries exactly as it handles orienta-
tion preserving ones. Unfortunately in computations one encounters a nagging
dissimilarity between O(4) and O(3, 1): while numerical errors in O(4) are neg-
ligible, numerical errors in O(3, 1) tend to spiral out of control. The question
we ask (and answer) in this article is, “Are exponentially compounded errors
simply a fact of life in hyperbolic space, no matter what model we use? Or
would they be less severe in SL(2, C)?” In other words, is numerical instability
the Achilles’ heel of O(3, 1)?

What’s the best way to represent an isometry of hyperbolic 3-space H3? More
often than not, geometers have chosen to work in SL(2, C). With the advent of
widespread computing, however, many geometers have abandoned the Poincaré
ball model and switched their thinking to the Minkowski space model of H3. That
is, they visualize H3 as the set {v ∈ E1,3|〈v, v〉 = −1 and vo > 0}, where E1,3 is the
Minkowski space defined as R4 with a metric of signature (−+++). The isometries
of H3 are then just matrices in the orthogonal group O(3, 1).

The orthogonal group O(3, 1) has some powerful advantages over SL(2, C). First
and foremost are the strong ties between the Minkowksi space model of Hn and the
usual picture of an n-sphere as {v ∈ En+1|〈v, v〉 = +1}. Most theorems you prove
about the geometry of Sn transfer easily to theorems about Hn, and indeed their
proofs transfer almost word-for-word, the only modifications being the introduction
of an occasional minus sign. Similarly, most computations that you do in Sn using
matrices in O(n + 1) carry over directly to Hn using matrices in O(n, 1). For
example, in computer graphics, modern PCs all come with 3D graphics cards that
are hard-wired to do the matrix operations necessary for real time animations in
E3. These same off-the-shelf graphics cards, when fed transformation matrices in
O(4) or O(3, 1), will correctly render scenes in Sn or Hn, because the computations
are the same [Weeks 2001b].

A further advantage of O(3, 1) over SL(2, C) is O(3, 1)’s egalitarian approach to
orientation reversing isometries, which it handles exactly as it handles orientation
preserving ones. SL(2, C), by contrast, is built for the orientation preserving case,

Date: December 20, 2001.
This paper arose out of an undergraduate research project of the second author in the Math-

ematics Department at Virginia Tech. The first two authors gratefully acknowledge support of
NSF grant DMS-9971783 and of an REU Supplement to that grant. The third author thanks the
MacArthur Foundation for its support. We thank Christopher Beattie and Silvio Levy for helpful
comments and suggestions.

1

2 WILLIAM FLOYD, BRIAN WEBER, AND JEFFREY WEEKS

and handles orientation reversing isometries awkwardly, via the complex conjugate,
i.e. an orientation reversing isometry is given by z 7→ (az̄ + b)/(cz̄ + d). (This awk-
wardness may partially explain the shameless neglect of nonorientable 3-manifolds
in much of the existing literature.)

Many geometers, especially those with an interest in computing, have embraced
O(3, 1) for most or all of their work, generally with good results. However, when
one gets into the thick of the computations one encounters a nagging dissimilarity
between O(4) and O(3, 1). While numerical errors in O(4) are generally negligible,
numerical errors in O(3, 1) have the nasty habit of spiraling out of control, especially
if the computation involves matrices with large entries. The question we ask (and
answer) in this article is “Are the problems with numerical error the Achilles’ heel
of O(3, 1)?” In other words, would the problems with numerical error be less
severe in SL(2, C)? Or are exponentially accumulating errors simply a fact of life
in hyperbolic space, no matter what model we use?

To answer this question, first consider the multiplication of two real numbers
x and y. In theory the answer is simply the product xy. But in numerical com-
putations we know the factors only approximately, with errors ∆x and ∆y. The
computed product is (x + ∆x)(y + ∆y) = xy + x∆y + y∆x + ∆x∆y. Keeping
only the first order error terms and dropping the negligible ∆x∆y, the computed
product becomes xy + x∆y + y∆x.

Now consider the product of two n × n matrices M and N . The ikth entry in
the product MN is given by the sum∑

j

(Mij + ∆Mij)(Njk + ∆Njk) '
∑

j

(MijNjk + Mij∆Njk + ∆MijNjk) .

If the original matrices M and N have entries of magnitude 1 (as is the case,
for example, with rotation matrices in O(n)), then the errors in the computed
product are similar to the errors in the factors, and all is well. If, on the other
hand, the original matrices have large entries (as is often the case, for example,
with matrices in SL(2, C) or O(3, 1)), then the errors in the computed product are
larger than the errors in the factor matrices, in proportion to the magnitude of
the factor matrix entries. For example, if the matrices M and N have entries of
order 1000, accurate to within an error ε, then the product MN will have entries
accurate to within 1000 × 2nε. This result isn’t so bad if M and N are chosen
arbitrarily, because the product MN will have entries of order 1000000, and the
fractional error 2000nε/1000000 = 2nε/1000 in the product will be roughly the
same as the fractional error ε/1000 in the factors. In reality, though, we don’t
choose our matrices M and N arbitrarily. To the contrary, many computations in
hyperbolic space require checking whether the product of several matrices is the
identity. In such cases we might, say, multiply two matrices M and N with entries
of order 1000 and get a product MN with entries of order 1, yet still have errors
in the product of order 1000ε! This effect – getting a matrix with small entries but
large errors – is what makes numerical computation in hyperbolic space difficult.

If we multiply not two but three matrices, the effect is even more pronounced.
Say we need to compute the product of three matrices M , N , and P , each of which
has entries of order 1000, with errors of order ε. The entries in the partial product
MN will, as shown above, have errors of order 1000ε, and so the entries in the final
product MNP will have errors of order 1000000ε. More generally, the size of the
errors grows exponentially with the number of matrix multiplications.

THE ACHILLES’ HEEL OF O(3, 1)? 3

Both O(3, 1) and SL(2, C) contain matrices with large entries, and both suffer
the aforementioned problem with error compounding. The question is, does O(3, 1)
suffer worse than SL(2, C)? As an example, consider the O(3, 1) matrix


cosh d sinh d 0 0
sinh d cosh d 0 0

0 0 1 0
0 0 0 1




and the corresponding SL(2, C) matrix(
ed/2 0
0 e−d/2

)
,

each of which describes a translation of distance d along a geodesic through the
origin in hyperbolic 3-space. The entries in the O(3, 1) matrix are of order at most
ed, while those in the SL(2, C) matrix are of order at most ed/2. In the next section
we’ll see that this example is typical: matrices in O(3, 1) with entries of order ed

correspond to matrices in SL(2, C) with entries of order ed/2. The difference between
ed and ed/2 is enormous for all but the smallest values of d, and we conclude that
errors compound much more slowly in SL(2, C) than in O(3, 1). Accumulating error
really is the Achilles’ heel of O(3, 1).

1. The two actions and the estimates

One of the standard models of hyperbolic 3-space is the upper half-space of R3,
considered as the subspace U = {z + tj : z ∈ C, t > 0} of the quaternions, with
metric ds2

t2 . The group SL(2, C) of 2× 2 complex matrices with determinant 1 acts
as isometries on U by(

a b
c d

)
(z + tj) = (a(z + tj) + b)(c(z + tj) + d)−1.

The kernel of this action is {±I}, and the quotient group PSL(2, C) is isomor-
phic to the group of orientation-preserving isometries of H3. See, for example,
[Beardon 1983, Chapter 4].

Another standard model for H3 is the hyperboloid model. Consider the Min-
kowski space E1,3, which as a topological space is just E4 but which is equipped
with the inner product 〈 , 〉 defined by

〈(v0, v1, v2, v3), (w0, w1, w2, w3)〉 = −v0w0 + v1w1 + v2w2 + v3w3.

The group O(3, 1) acts on E1,3 preserving the inner product, and each element of
O(3, 1) preserves the hyperboloid {v ∈ E1,3 : 〈v, v〉 = −1}. The hyperboloid model
for H3 is the top sheet H = {v ∈ E1,3 : 〈v, v〉 = −1 and v0 > 0} of this hyperboloid,
with metric ds2 = −dv2

0+dv2
1+dv2

2+dv2
3 . The set of elements of O(3, 1) that preserve

H is a subgroup O+(3, 1) of O(3, 1) of index 2, and this subgroup is the isometry
group of H (and hence of H3). The group of orientation-preserving isometries of
H3 is the subgroup SO+(3, 1) of O+(3, 1) of elements of O(3, 1) with determinant
1.

Before giving the estimates, we first compute the stabilizers of the natural base-
points j and (1, 0, 0, 0) of the two actions. Consider an element

A =
(

a b
c d

)

4 WILLIAM FLOYD, BRIAN WEBER, AND JEFFREY WEEKS

of SL(2, C). Then A(j) = j if and only if (aj + b)(cj + d)−1 = j, which is true
if aj + b = j(cj + d) = −c̄ + d̄j. Hence the stabilizer of j is the special unitary
group SU(2). It is easy to check that the stabilizer of (1, 0, 0, 0) in O(3, 1) is the
image of the monomorphism ι : O(3) → O(3, 1) defined (with abuse of notation)
by ι(A)(v0, v1, v2, v3) = (v0, A(v1, v2, v3)).

Lemma 1. The maximum modulus of an entry in a matrix A ∈ SL(2, C) lies in
the interval [12ed/2 − 1, ed/2 + 1], where d is the hyperbolic distance that A moves
the natural basepoint j in U .

Proof. If d = 0, then A ∈ SU(2) and the lemma is clear. Suppose d > 0. The
matrix

τ(d) =
(

ed/2 0
0 e−d/2

)

translates the basepoint j in U hyperbolic distance d. By composing τ(d) with a
rotation ρ1, we can use the product ρ1τ(d) to translate the basepoint j to any point
that is hyperbolic distance d from j. By pre-composing with another rotation ρ2,
we can express any element A of SL(2, C) as a product ρ1τ(d)ρ2. Algebraically, the
rotations ρ1 and ρ2 are given by matrices in SU(2), as explained above. Hence

A =
(

a −b̄
b ā

) (
ed/2 0
0 e−d/2

) (
u −v̄
v ū

)

=
(

aued/2 − b̄ve−d/2 −av̄ed/2 − b̄ūe−d/2

bued/2 + āve−d/2 −bv̄ed/2 + āūe−d/2

)
,

where |a|2 + |b|2 = 1 and |u|2 + |v|2 = 1. It is now straightforward to check that
every entry of A has modulus less than ed/2 +1, and at least one entry has modulus
greater than 1

2ed/2 − 1, thus proving the lemma.

Lemma 2. The maximum absolute value of an entry in a matrix A ∈ SO+(3, 1)
is cosh d, where d is the hyperbolic distance that A moves the natural basepoint
(1, 0, 0, 0) in H.

Proof. Again we can assume that d > 0, since if d = 0 then A ∈ ι(O(3)) and the
lemma is clear. The matrix

T (d) =




cosh d sinh d 0 0
sinh d cosh d 0 0

0 0 1 0
0 0 0 1




translates the basepoint (1, 0, 0, 0) in H hyperbolic distance d. By composing T (d)
with an element of ι(O(3)), we can translate (1, 0, 0, 0) to any point that is hyper-
bolic distance d from (1, 0, 0, 0). By pre-composing with another element of ι(O(3)),
we can express any element A of SO+(3, 1) as a product ρ1T (d)ρ2, where ρ1 and
ρ2 are in ι(O(3)). It is now straightforward to check that the maximum absolute
value of each entry of such a matrix ρ1T (d)ρ2 is at most cosh d and the 1, 1 entry
is exactly cosh d.

To use the lemmas, we need to know how we’ll compare matrices in the two
groups. Since we’ve only seen one isomorphism between PSL(2, C) and SO+(3, 1)
given in print, we will make our comparisons with that one and will call it the stan-
dard isomorphism. The construction of the isomorphism, which is via an action of

THE ACHILLES’ HEEL OF O(3, 1)? 5

SL(2, C) on the space of 2 × 2 Hermitian matrices, can be found, for example, in
[Shafarevich 1990, Section 15] and in [Thurston 1997, Section 2.6]. An implemen-
tation of this isomorphism can be found in the source file matrix conversion.c of
SnapPea [Weeks 2001a]. We will not construct the standard isomorphism here, but
note that it is easy to see from the construction that it preserves the distance that
an element moves the natural basepoint. Hence matrices in SL(2, C) with entries of
order ed/2 correspond under the standard isomorphism to matrices in O(3, 1) with
entries of order ed.

2. Examples

Our expectation from the estimates is that as the translation distances increase
the computational errors in taking products in O(3, 1) will be drastically worse
than the computational errors in taking the products of the corresponding matrices
in PSL(2, C). But above we just gave upper bounds, and it is conceivable that in
actual practice the numerical errors could be much less. We give some examples to
illustrate what actually happens. All examples were done in Mathematica1 Version
4.0.2.0 on a IBM-compatible PC with a Pentium P3 processor and Windows 2000.
All but the last example were computed with floating point arithmetic with 16
decimal digits of precision.

One sees dramatic errors just in comparing the product τ(d1)τ(d2) and the
product T (d1)T (d2), its image under the standard isomorphism. In particular,
consider the product τ(d)τ(−d) and the product T (d)T (−d). If d is large, then a
computer using floating point arithmetic can no longer distinguish between coshd
and sinh d, and so the latter product will not be close to the identity. But in
some sense this is an unfair comparison, because τ(d) is diagonal and there is no
appreciable error in PSL(2, C) in taking the product of the diagonal matrices τ(d)
and τ(−d). So let us consider the product AA−1 for a generic matrix A in PSL(2, C)
or SO+(3, 1).

In order to construct a generic element of Isom(H3), it is convenient to choose
generators for the rotation group Isom(S2) = SU(2) and for its image under the
standard isomorphism f : PSL(2, C) → SO+(3, 1). Given t ∈ R, let

r1(t) =
(

cos t sin t
− sin t cos t

)
, R1(t) =




1 0 0 0
0 cos 2t − sin 2t 0
0 sin 2t cos 2t 0
0 0 0 1


 ,

r2(t) =
(

cos t i sin t
i sin t cos t

)
, R2(t) =




1 0 0 0
0 cos 2t 0 sin 2t
0 0 1 0
0 − sin 2t 0 cos 2t


 ,

r3(t) =
(

eti 0
0 e−ti

)
, and R3(t) =




1 0 0 0
0 1 0 0
0 0 cos 2t sin 2t
0 0 − sin 2t cos 2t


 .

These matrices describe rotations of S2 about the x, y, and z axes. To see that they
generate all of Isom(S2), note that they suffice to take the north pole to any point

1A computer software system available from Wolfram Research, Inc., 100 Trade Center Drive,
Champaign, IL 61820, USA.

6 WILLIAM FLOYD, BRIAN WEBER, AND JEFFREY WEEKS

of S2, with any desired rotation angle. It is also easy to check that Ri(t) = f(ri(t))
for i = 1, 2, 3.

For concreteness we choose a particular family of matrices, parameterized by the
distance d that they move the origin. Let

AP (d) = r1(π/3)τ(d)r2(4π/3),

BP (d) = A(d)−1 = r2(−4π/3)τ(−d)r1(π/3),
AO(d) = f(AP (d)) = R1(π/3)T (d)R2(4π/3),

BO(d) = AO(d)−1 = f(BP (d)) = R2(−4π/3)T (d)R2(π/3).
Note that neither

AP (8) =


 − e4

4 − 3
4e4 i −

√
3

4e4 −
√

3e4

4 i
√

3e4

4 −
√

3
4e4 i − 1

4e4 + 3e4

4 i




≈
(−13.6495− 0.0137367i −0.0079309− 23.6417i

23.6417− 0.0079309i −0.00457891 + 40.9486i

)

nor

AO(8) =




cosh(8) −1
2 sinh(8) 0

√
3

2 sinh(8)

− 1
2 sinh(8) 1

4 cosh(8) −
√

3
2 −

√
3

4 cosh(8)
√

3
2 sinh(8) −

√
3

4 cosh(8) − 1
2

3
4 cosh(8)

0 −
√

3
2 0 − 1

2




≈




1490.48 −745.239 0 1290.79
−745.239 372.62 −0.866025 −645.396
1290.79 −645.396 −0.5 1117.86

0 −0.866025 0 −0.5




is close to a diagonal matrix. For a fixed integer d, AP (d), AO(d), BP (d), and
BO(d) are first computed symbolically, and then are converted to floating point
matrices before computing AP (d)BP (d) and AO(d)BO(d).

Consider taking the product of two n × n matrices M and N . Recall that the
ikth entry in the product MN is given by the sum∑

j

(Mij + ∆Mij)(Njk + ∆Njk) '
∑

j

(MijNjk + Mij∆Njk + ∆MijNjk)

=
∑

j

(
MijNjk + MijNjk

∆Njk

Njk
+ MijNjk

∆Mij

Mij

)
.

Hence the absolute error in each entry of the product MN cannot exceed an upper
bound on the order of

Max(Mij)Max(Nij) εmax,

where εmax is the greatest fractional error occurring in the entries of M and N . For
optimal data, εmax roughly equals the machine precision 5× 10−16, but in practice
it can be much greater, because errors accumulate as we pass data from one step
to the next of a multi-step computation.

Applying the results of the preceding paragraph to the special case that M =
AP (d) and N = BP (d), we get an error bound on the order of

βP (d) = ed/2ed/210−16 = ed10−16,

THE ACHILLES’ HEEL OF O(3, 1)? 7

while for M = AO(d) and N = BO(d), we get an error bound on the order of

βO(d) = eded10−16 = e2d10−16.

Figure 1 plots the error estimates βP (d) and βO(d) and compares them to the actual
errors

errP (d) = Max(|AP (d)BP (d)− I2|)
and

errO(d) = Max(|AO(d)BO(d)− I4|)
for d = 1, . . . , 50. The actual errors track the theoretical estimates fairly closely,
and it is clear from the data that the numerical error is much greater for the product
in SO+(3, 1).

10 20 30 40 50

-20

20

40

60

d

log(err(d))

Figure 1. The logs of the actual errors log(errP (d)) and
log(errO(d)) for the product AA−1 closely track the theoretical
estimates log(βP (d)) and log(βO(d)).

Now consider the error in evaluating the product of matrices corresponding to
a relator R in a discrete subgroup of Isom(H3). We take a very special case of a
relator and consider the products

RP (d) = ((AP (d)AP (d))BP (d))((BP (d)BP (d))AP (d))

and
RO(d) = ((AO(d)AO(d))BO(d))((BO(d)BO(d))AO(d)),

where BP (d) = AP (d)−1 and BO(d) = AO(d)−1 are the same as in the previous
example. For a fixed integer d we first compute AP , AO, BP , and BO symbolically,
then convert them to floating point matrices before evaluating the relations RP (d)
and RO(d). Since RP (d) and RO(d) should be the identity, we get estimates of
error from

errP (d) = Max(|RP (d)− I2|) and errO(d) = Max(|RO(d)− I4|).
Table 1 shows some computations of errP (d) and errO(d) for d = 1, . . . , 14.

As predicted by the theoretical upper bounds, the errors in the O(3, 1) products
are much greater than the errors in the PSL(2, C) products. Even though the
hyperbolic translation distance d is relatively small, in O(3, 1) the error quickly
becomes unmanageable while the corresponding errors in PSL(2, C) stay small.

8 WILLIAM FLOYD, BRIAN WEBER, AND JEFFREY WEEKS

d errP (d) errO(d)
1 3.7× 10−16 4.6× 10−16

2 1.3× 10−15 3.8× 10−14

3 4.8× 10−15 1.2× 10−12

4 4.3× 10−14 9.2× 10−11

5 1.4× 10−13 1.6× 10−8

6 5.2× 10−13 3.8× 10−7

7 2.1× 10−11 6.7× 10−5

8 1.4× 10−10 9.5× 10−4

9 2.5× 10−9 8.6× 10−2

10 1.2× 10−8 2.1× 100

11 3.3× 10−8 1.6× 102

12 6.8× 10−7 1.2× 104

13 1.1× 10−6 1.3× 105

14 1.4× 10−5 5.1× 107

Table 1. Computations of errP (d) and errO(d).

d errO(d/2)/errP (d)
2 0.36
4 0.90
6 2.4
8 0.64
10 1.4
12 0.56
14 4.8

Table 2. The ratio errO(d/2)/errP (d)

Lemma 1, Lemma 2, and the first example suggest that errP (d) might be compa-
rable to errO(d/2). Table 2 gives the ratio errO(d/2)/errP (d) for d = 2, 4, 6, 8, 12, 14.

Recall from the proof of Lemma 1 that a matrix A ∈ SL(2, C) that translates the
natural basepoint j in U hyperbolic distance d can be written as a product ρ1τ(d)ρ2

for some matrices ρ1 and ρ2 in SU(2). We next consider the effect of changing the
matrices ρ1 and ρ2. We fix the translation distance d to be 8. Given integers i1,
i2, i3, i4, i5, and i6 in {1, 2, 3, 4, 5}, we let ρ1 = r1(2πi1/5)r2(2πi2/5)r3(2πi3/5),
ρ2 = r1(2πi4/5)r2(2πi5/5)r3(2πi6/5), AP = ρ1τ(8)ρ2, AO = f(AP), BP = A−1

P ,
and BO = A−1

O , where AO, BP , and BO are each computed as the product of seven
appropriate matrices corresponding to the decomposition of AP as a sevenfold prod-
uct. Each of AP , AO, BP , and BO are first computed symbolically and are then con-
verted to floating point matrices. The products RP = ((AP AP)BP)((BP BP)AP)
and RO = ((AOAO)BO)((BOBO)AO) would be identity matrices if we worked with
infinite precision. Let errP = Max(|RP − I2|) and errO = Max(|RO− I4|). Figure 2
shows the scatter plot of points (log(errP), log(errO)) for the 56 choices of the ij ’s.
Note that the largest value of errP is eight orders of magnitude smaller than the
smallest value of errO.

We have (log(errP (8)), log(errO(8))) ≈ (−22.3392,−6.74756) for our example
with ρ1 = r1(π/3) and ρ2 = r2(4π/3). This is in the dense central portion of the

THE ACHILLES’ HEEL OF O(3, 1)? 9

-24 -23 -22 -21 -20

-12

-11

-10

-8

-7

-6

-5

log(errO)

log(errP)

Figure 2. A scatter plot of the points (errP , errO) for the products
((AA)A−1)((A−1A−1)A).

scatter plot of Figure 2. The scatter plot is clustered tightly enough that we continue
to restrict our attention to that one example, i.e. AP (d) = r1(π/3)τ(d)r2(4π/3)
and AO(d) = f(AP) = R1(π/3)T (d)R2(4π/3). This time we consider the effect on
RP (d) and RO(d) of changing d. For d ∈ {1, 2, . . . , 50}, we compute the points
(d, log(errP (d))) and find that the best linear fit for them is g1(d) = −41.1529 +
2.15727d. We then compute the points (d, log(errO(d))) and find that the best
linear fit for them is g2(d) = −54.2391 + 5.37681d. For each n, log(errO(d)) >
log(errP (d)). The two collections of data points and the graphs of g1 g2 are shown
in Figure 3. Note that log(errO(d)) is growing significantly faster than log(errP (d)).
Furthermore, the slopes are much greater than 1 for g1 and 2 for g2. This is because
each example is a sixfold product of floating point matrices, and so there is much
greater error accumulation than would occur for a single product.

10 20 30 40 50

-50

50

100

150

200

d

log(err(d))

Figure 3. The best linear fits for log(errP (d)) and log(errO(d)).

In order to investigate the effect of increasing the numerical precision, in the
next example we no longer work with Mathematica’s floating point arithmetic.
We first compute AP (8), AO(8), BP (8), and BO(8) symbolically, and then use

10 WILLIAM FLOYD, BRIAN WEBER, AND JEFFREY WEEKS

the SetPrecision command in Mathematica to set their precision at 100 decimal
digits. Then, given an integer n with 8 ≤ n ≤ 60, we multiply each of their
elements by a uniformly distributed pseudorandom number, with 100 decimals of
precision, in the interval [1− 1

210−n+1, 1+ 1
210−n+1]. We then compute log(errP (8))

and log(errO(8)), plot each one as a function of n, and find the best linear fit for
each plot. The best linear fits are h1(n) = 15.6801 − 2.29848n for log(errP (8))
and h2(n) = 30.5171 − 2.30692n for log(errO(8)). Figure 4 shows the plots and
the graphs of the linear fits for both examples. Since the slopes of the two lines
are close to each other, for n ∈ [8, 60] we expect the ratio errO(8)/errP (8) to have
roughly the same order as e30.5171−15.6801 ≈ 2.77733× 106. In fact, for each integer
n with 8 ≤ n ≤ 60 the ratio errO(8)/errP (8) is in the interval [1.1× 105, 1.5× 107].
So while increasing the numerical precision predictably improves the accuracy, it
does not change the relative degree to which the computations are more accurate
in PSL(2, C) than they are in SO+(3, 1).

10 20 30 40 50 60

-120

-100

-80

-60

-40

-20

n

log(err)

Figure 4. The effects of increasing the numerical precision on the
logarithm of the error.

References

[Beardon 1983] A. F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York
Heidelberg Berlin, 1983.

[Shafarevich 1990] I. R. Shafarevich, Algebra I. Encyclopaedia of Mathematical Sciences, v. 11.,
Springer-Verlag, Berlin Heidelberg New York, 1990.

[Thurston 1997] W. P. Thurston, Three-Dimensional Geometry and Topology, Vol. 1, Princeton
University Press, Princeton, 1997.

[Weeks 2001a] J. R. Weeks, SnapPea: A computer program for creating and studying hyperbolic
3-manifolds, available from http://www.northnet.org/weeks/, 2001.

[Weeks 2001b] J. R. Weeks, Computer graphics in curved spaces, preprint, 2001.

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, U.S.A.

E-mail address: floyd@math.vt.edu

3700 Richmond Lane NW, Apt. B, Blacksburg, VA 24060, U.S.A.

E-mail address: brweber@vt.edu

15 Farmer Street, Canton, NY 13617, U.S.A.

E-mail address: weeks@northnet.org

