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This story begins with an absorbing recent book that contained an ancient puz-
zle …whose answer startled the first author who noticed something combinatorial
about the problem …and who then conjectured a theorem to the second author …who
went off and proved the theorem. The two of them studied the literature and concluded
that this piece of combinatorics, contained in one of the legendary mathematics books
from ancient China, had gone unnoticed until now.

The well problem
Tim Chartier’sMath Bytes [2] contains many topics of great interest to those intrigued
by the interplay between mathematics and computing. In particular, it contains the so-
called well problem from the two-thousand-year-old Nine Chapters of the Mathemati-
cal Art [5, ch. 8, prob. 13]:

Given are five families who share a well. The deficit of two of A’s well-ropes is
the same as one of B’s well-ropes [that is, two of A’s well-ropes plus one of B’s
well-ropes equals the depth of the well]. The deficit of three of B’s well-ropes
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is the same as one of C’s well-ropes. The deficit of four of C’s well-ropes is the
same as one of D’s well-ropes. The deficit of five of D’s well-ropes is the same
as one of E’s well-ropes. The deficit of six of E’s well-ropes is the same as one
of A’s well-ropes. Each then obtains the well-rope that makes up the deficit, and
all reach the water. Problem: How deep is the well, and how long is each of the
well-ropes?

To solve this, let A, … , E represent the lengths of the given family’s well-ropes and
let w be the depth of the well. It is straightforward to obtain the following system of
five linear equations in six unknowns.

2A+ B = w

3B+C = w

4C + D = w

5D+ E = w

6E + A = w

Two thousand years ago, the writer (or writers) of the Nine Chapters anticipated our
modern methods of solving systems of linear equations, so we follow their lead and
recast the well problem in terms of matrix algebra. It is convenient to view this set of
equations as a nonhomogeneous system of five linear equations in the five unknowns
A,B,C,D,E and the parameter w, written as the augmented matrix of a 5 × 6 linear
system.

⎡
⎢⎢⎢⎣

2 1 0 0 0 w
0 3 1 0 0 w
0 0 4 1 0 w
0 0 0 5 1 w
1 0 0 0 6 w

⎤
⎥⎥⎥⎦

Elementary row operations reduce the above matrix to the following matrix in upper-
triangular form.

⎡
⎢⎢⎢⎣

1 0 0 0 6 −w
0 1 0 0 −12 w
0 0 1 0 36 −4w
0 0 0 1 −144 15w
0 0 0 0 721 −76w

⎤
⎥⎥⎥⎦

With more unknowns than equations, this is an underdetermined system with infinitely
many real solutions. However, the solution of the original problem gives positive inte-
gers for all the unknowns. With this in mind, we see thatw = 721 and E = 76 are solu-
tions in positive integers. Back-solving this system gives D = 129,C = 148, B = 191,
and A = 265. Moreover, because w = 721 is relatively prime to each of A, B,C, D, E,
the stated values are the least positive integer solutions of the system.

For a careful choice of units, this is a reasonable problem: Measured in inches, the
well is a bit more than sixty feet deep, the longest rope is about 22 feet long, and the
shortest rope is a little more than six feet in length.

Now, if you are a combinatorialist or if you have taught combinatorics, and you see
that value for A, then you will likely think,
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“Wait a minute …what’s 265 doing in a problem from ancient China?”
Otherwise, you may be thinking
“Wait a minute …what’s so special about 265?”
An excellent question and, in isolation, the well problem is silent regarding the pres-

ence of 265 in its solution. But what if there were an arbitrary number of families?
Generalizing the problem from five families to n families is a mathematician’s way of
thinking, so here we go.

The generalized well problem
Here is the restatement of the well problem for n families.

Given are n families who share a well. The deficit of two of the first family’s well-
ropes is the same as one of the second family’s well-ropes. The deficit of three
of the second family’s well-ropes is the same as one of the third family’s well-
ropes …Finally, the deficit of n+ 1 of the nth family’s well-ropes is the same as
one of the first family’s well-ropes. Each family then obtains the well-rope that
makes up the deficit, and all reach the water. Problem: How deep is the well, and
how long are the families’ well-ropes?

As before, this is an underdetermined system, so we look for the smallest positive
integers that solve the problem. Call the first family family A. The case n = 1 is special:
It says that the deficit of 2 of A’s ropes is the same as 1 of A’s ropes. That is, 2A+ A = w
giving minimal positive integer solutions w = 3 and A = 1. For n = 2, we find A = 2,
B = 1, andw = 5. For n families, writeAn for the longest rope length, sn for the shortest
rope length (belonging to the nth family), andwn for the well depth. Values up to n = 8
are shown in Table 1.

Eventually we see some patterns: The well depthswn seem close to certain factorials
and the longest rope lengthsAn seem to depend of lengths for fewer families, suggesting
recurrence relations. In more detail,
� note that w3 = 25 = 4! + 1 and w4 = 119 = 5! − 1, suggesting

wn = (n+ 1)! + (−1)n+1;
� relating An to An−1, we see A4 = 44 = 5 · 9 − 1 and A5 = 265 = 6 · 44 + 1, so
perhaps

An = (n+ 1)An−1 + (−1)n−1;
� relating An to An−1 and An−2, notice that A3 = 9 = 3 · 2 + 3 · 1 and also A4 =
44 = 4 · 9 + 4 · 2, so one can hope that

An = (n− 1)An−1 + (n− 1)An−2.

Table 1. Longest and shortest rope lengths and well depths for up to eight families.

n 1 2 3 4 5 6 7 8

An 1 2 9 44 265 1854 14,833 133,496

sn 1 1 4 15 76 455 3186 25,487

wn 3 5 25 119 721 5039 40,321 362,879
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Derangements
Derangements are permutations with no fixed points; we give more details below. The
problem of counting derangements first dates from Pierre Rémond de Montmort in
1708 [4]. He and Nicholas Bernoulli independently solved the problem around 1713
([4] includes their correspondence). If you are familiar with these special permutations,
you may recognize 265 as the number of derangements on six letters. If not, putting
the An values from Table 1 into theOnline Encyclopedia of Integer Sequences gives [6,
A000166] with derangements as the title interpretation. Either way, you can now join
the first author in the startled question about a derangement number being connected
to an ancient Chinese problem about well-rope lengths.

More formally, let an n-permutation be an ordered arrangement of {1, . . . , n}. An
n-derangement is an n-permutation with no number appearing in its original position.
For example, the permutation 24315 is not a derangement because it fixes 3 and 5,
while 41523 is a derangement because all five numbers have been moved from where
they started.

Let Dn be the number of n-derangements. There are no 1-derangements, there is
only one 2-derangement, namely 21, and there are two 3-derangements, 231 and 312,
so D1 = 0, D2 = 1, and D3 = 2. Here are some general results about Dn.

Theorem 1. Let Dn be the number of derangements of an n-element set. Then

(a) D1 = 0, D2 = 1, and Dn = (n− 1)Dn−1 + (n− 1)Dn−2 for n > 2,
(b) Dn = nDn−1 + (−1)n for n ≥ 2, and

(c) Dn = n!
n∑

k=0

(−1)k

k!
for n ≥ 1.

These are proved in many combinatorics books, such as [1, pp. 128–129].

Connections
We can now establish the connection between combinatorics and the generalized well
problem.

Theorem 2. Given a positive integer n, consider the well problem for n families, so
that An is the length of the longest rope and wn is the depth of the well.

(a)
An
wn

= Dn+1

(n+ 1)! + (−1)n+1
.

(b) If gcd(Dn+1, (n+ 1)! + (−1)n+1) = 1, then the smallest positive integer values
for An and wn are An = Dn+1 and wn = (n+ 1)! + (−1)n+1, respectively.

Proof. Table 1 establishes (a) for small values of n. We proceed by induction. Define
the n× n matrices

Mn =

⎛
⎜⎜⎜⎜⎝

2 1
3 1

. . .
. . .
n 1

1 n+ 1

⎞
⎟⎟⎟⎟⎠

, M′
n =

⎛
⎜⎜⎜⎜⎝

1 1
1 3 1
...

. . .
. . .

1 n 1
1 n+ 1

⎞
⎟⎟⎟⎟⎠
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where only nonzero values are indicated. In words, Mn has diagonal entries 2 through
n+ 1 and mi,i+1 = 1 for 1 ≤ i ≤ n− 1 with mn,1 = 1 also, whileM′

n is the same asMn

except that the first column is replaced by all 1s. As we saw above for n = 5, the first
column of Mn contains the coefficients of An for each of the n equations. We obtain a
formula for |Mn|, the determinant ofMn, then a recurrence satisfied by |M′

n|, one which
is also satisfied by the derangement numbers.

First, we prove that |Mn| = (n+ 1)! + (−1)n+1. Using cofactor expansion along the
bottom row,

|Mn| = (−1)n+1 · 1 ·

∣∣∣∣∣∣∣∣

1
3 1

. . .
. . .
n 1

∣∣∣∣∣∣∣∣
+ (−1)2n−2 · (n+ 1) ·

∣∣∣∣∣∣∣∣∣

2 1

3
. . .
. . . 1

n

∣∣∣∣∣∣∣∣∣
.

Both of these (n− 1) × (n− 1) matrices are triangular, so their determinants equal the
product of their respective diagonal elements, 1 and n!, respectively. Therefore,

|Mn| = (−1)n+1 + (n+ 1)n! = (n+ 1)! + (−1)n+1.

Now, we find a recurrence for |M′
n|, also by means of cofactor expansion along the

bottom row:

|M′
n| = (−1)n+1 · 1 ·

∣∣∣∣∣∣∣∣

1
3 1

. . .
. . .
n 1

∣∣∣∣∣∣∣∣
+ (−1)2n−2 · (n+ 1) ·

∣∣∣∣∣∣∣∣∣

1 1

1 3
. . .

...
. . . 1

1 n

∣∣∣∣∣∣∣∣∣
= (−1)n+1 + (n+ 1)|M′

n−1|.

Since |M′
2| = 2 = D3 and |M′

3| = 4|M′
2| + 1 = 9 = D4, the sequence |M′

n| satisfies the
recurrence relation (b) of Theorem 1 for Dn+1 (notice that the indices are offset by one
because of the initial values). Therefore, |M′

n| = Dn+1.
Now, define matrices Ln to be the sameM′

n except that the first column is multiplied
by wn. Using Cramer’s rule and the previous results,

An = |Ln|
|Mn| = wn|M′

n|
|Mn| = wnDn+1

(n+ 1)! + (−1)n+1

which establishes (a).
As a consequence of (a), we see that An((n+ 1)! + (−1)n+1) = wnDn+1 and, sup-

posing gcd(Dn+1, (n+ 1)! + (−1)n+1) = 1, no common factor greater than one can be
cancelled from both sides of this equation. Hence, An divides Dn+1 and vice versa, so
that An = Dn+1 and wn = (n+ 1)! + (−1)n+1, as claimed in (b). �

It turns out that gcd(Dn+1, (n+ 1)! + (−1)n+1) = 1 for all n < 105 with one ex-
ception, n = 8. In fact,D9 = 133,496 = 11 · 12,136 and 9! − 1 = 11 · 32,989. So, for
eight families around a well, the smallest integer value for the longest rope length is
12,136, shorter than 14,833, the smallest integer value for the longest rope length for
seven families!

Is n = 8 the only value of n for which the relevant greatest common divisor is greater
than 1? No one knows.
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Table 2. The longest rope lengths and two ratios.

n Dn+1 = An (n+ 1)!/Dn+1 Dn+1/(n+ 1)!

1 1 2.00000. . . 0.500000. . .

2 2 3.00000. . . 0.333333. . .

3 9 2.66666. . . 0.275000. . .

4 44 2.72727. . . 0.366666. . .

5 265 2.71698. . . 0.368056. . .

6 1854 2.71845. . . 0.367857. . .

7 14,833 2.71826. . . 0.367882. . .

8 133,496 2.71828. . . 0.367879. . .

The longest rope lengths contain some more surprises. Table 2 shows Dn+1 = An
along with the ratio (n+ 1)!/Dn+1 and its reciprocal Dn+1/(n+ 1)!. The third column
of Table 2 tells us that the ratios of the depths of the well to the longest rope lengths
converge rapidly to e (the (−1)n+1 term in wn quickly becomes negligible, so wn is
essentially (n+ 1)!). The fourth column tells us that for large n, the probability that
a given permutation on n elements is a derangement is approximately 1/e. This is the
basis for a famous problem from recreational mathematics dating back to Montmort:

A hat checker at a restaurant has checked n hats and gets the hat-check tickets
totally mixed-up. What is the probability that none of the hats ends up with the
right customer?

The number of such occurrences is the derangement number Dn and the relevant prob-
ability is Dn/n!, a four-decimal digit approximation to 1/e if there are at least seven
customers wearing hats (corresponding to the n = 6 row of Table 2).

We have not explored the sn row of Table 1, which corresponds to [6, A002467]. By
the description of the generalized well problem, sn = (wn − An)/(n+ 1).

Several sequences we have considered share the same recurrence relation. Specif-
ically, let x1, x2, . . . be a sequence satisfying the recurrence xn+1 = n(xn + xn−1) and
vary the initial conditions:

� x1 = 1 and x2 = 2 give the factorials, xn = n!.
� x1 = 0 and x2 = 1 give the derangement numbers / the lengths of the longest well
ropes, xn = Dn = An−1.

� x1 = x2 = 1 give the sequence of shortest well ropes, xn = sn.

It follows that sn = n! − Dn. That is, the length of the shortest well-ropes sn is the
number of n-permutations with at least one fixed point. Isn’t that interesting?

Conclusions
The most recent version of Nine Chapters of the Mathematical Art [5], originally com-
piled in the first millennium BCE, predates Montmort’s work by 16 centuries. And,
apparently, no one noticed the connection to derangements until now.
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But there is more to the story, because after being lost for many centuries, parts of
theNine Chapterswere finally brought to light in the nineteenth century. Florian Cajori
made partial translations into English in 1893. After additional work by David Smith
(1925) and Dirk Struik (1948), the first complete English translation [5] dates from
1999.

More recently, in his 2011 The Chinese Roots of Linear Algebra [3], Roger Hart
devotes a 40-page chapter plus part of an appendix to the well problem alone. But he
does not connect the 265 in the solution of problem 9 of chapter 8 of The Nine Chapters
on the Mathematical Arts to the number of derangements of six items and provides no
combinatorial perspective on the well problem.

Why, then, did we notice this result? The reason is that for many years, the first
author has taught recurrence relations in elementary combinatorics courses (and the
derangement numbers are always present), saw the well problem, and was able to hook
the second author on it.

Looking at a problem with combinatorial eyes is all it took.

Summary. The Nine Chapter on the Mathematical Arts from ancient China includes a prob-
lem concerning five families who share a well. We generalize the problem and offer a combi-
natorial perspective that appears to be new.
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