
MATH 5524 · MATRIX THEORY

Pledged Problem Set 1

Posted Friday 17 February 2017. Due by 5pm on Friday 24 February 2017.

Complete any four problems, 25 points each. You are welcome to complete more problems if you like, but
specify which four you want to be graded.

Rules: On this pledged problem set, you are welcome to use course notes (those you have taken, and those
posted to the web), books (hard copies or electronic), MATLAB, Mathematica, etc. You may post questions
to Piazza, and ask questions of the instructor during office hours. You are not allowed to more generally
search the web for answers, or discuss the problems with anyone aside from the instructor. Please write out
and sign the pledge (“As a Hokie, I will conduct myself with honor and integrity at all times. I will not lie,
cheat or steal, nor will I acccept the actions of those who do.”) on your assignment. Pledged problem sets
will not be accepted late unless you have made a previous arrangement with the instructor.

1. Recall that the norm of a matrix is defined as

‖A‖ = max
x6=0

‖Ax‖
‖x‖

,

where ‖x‖2 = x∗x.

(a) Given any A ∈ Cm×n, show that A∗A is Hermitian and has nonnegative eigenvalues.

(b) Given any A ∈ Cm×n, show that ‖A‖ equals the square root of the largest eigenvalue of A∗A.

(c) Show that if A is Hermitian, then ‖A‖ equals the maximum magnitude of the eigenvalues of A,
‖A‖ = maxλ∈σ(A) |λ|.

(d) Show by a 2× 2 example that the conclusion of part (c) need not hold when A is non-Hermitian.

2. Suppose A,E ∈ Cn×n are Hermitian matrices, and let λk(·) denote the kth eigenvalue of a Hermitian
matrix (λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)). Use the Courant–Fischer minimax characterization of
eigenvalues to show that

λk(A) + λ1(E) ≤ λk(A + E) ≤ λk(A) + λn(E).

[Wilkinson; Parlett]

3. Let A ∈ Cn×n be a Hermitian matrix with eigenvalues λ1, . . . , λn and corresponding orthonormal
eigenvectors u1, . . . ,un.

(a) Suppose that x ∈ Cn approximates an eigenvector up to some accuracy, ε � 1, i.e., x = uj + r
for ε := ‖r‖ � 1. Show that the Rayleigh quotient gives an approximation to the eigenvalue that
is accurate to O(ε2) as ε→ 0:

x∗Ax

x∗x
= λj + O(ε2).

(b) Illustrate this result with some numerical experiments involving the middle eigenvalue of

A =

 2 −1 0
−1 2 −1
0 −1 2

 .
(Use MATLAB etc. to compute the eigenvalues and eigenvectors of A, then form x = u2 + r for
a several different r, e.g., ε = ‖r‖ = 10−2, 10−4, 10−6, 10−8.)



4. For real symmetric (hence Hermitian) A ∈ Rn×n, define the function r : Rn \ {0} → R by

r(x) =
xTAx

xTx
.

(a) For nonzero x ∈ Rn, compute the gradient ∇r(x).

(b) When is the gradient zero?

(This suggests a way to computing eigenvalues: use Newton’s method to compute stationary points
of the Rayleigh quotient; one typically optimizes x∗Ax subject to a normalization constraint, like
‖x‖ = 1. For a survey of the long history of such methods, see the forthcoming SIAM Review paper
by Tapia, Dennis, and Schäfermeyer.)

5. (a) Derive a formula for the (j, k) entry of the pth power of the Jordan block

J =


λ 1

λ
. . .
. . . 1

λ

 ∈ Cn×n.
(b) Use the Jordan form to prove that for any A ∈ Cn×n,

lim
k→∞

‖Ak‖1/k = max
λ∈σ(A)

|λ|.

The quantity on the right, often denoted ρ(A), is called the spectral radius of A. In particular,
you have just proved that Ak → 0 if and only if ρ(A) < 1.

Hint: You might find it helpful to first prove that, for any matrix B ∈ Cn×n,

‖B‖ ≤ C(n) max
j,k
|bj,k|,

from some scalar value C(n) that depends on n but not on B.

6. Show that the Cauchy Interlacing Theorem is sharp when m = n− 1, in the sense that for any distinct
real numbers

λ1 < λ2 < · · · < λn

and
θ1 < θ2 < · · · < θn−1

that satisfy the (sharp) interlacing conditions

λk < θk < λk+1

for k = 1, . . . , n− 1, one can construct a Hermitian matrix A ∈ Cn×n of the form

A =

[
H b
b∗ δ

]
b ∈ Cn−1, δ ∈ C such that

σ(A) = {λ1, . . . , λn}
and

σ(H) = {θ1, . . . , θn−1}.
(Specify how to construct H, b, and δ.)

[Parlett]



7. The Courant–Fischer minimax characterization describes the mth eigenvalue of the Hermitian matrix
A ∈ Cn×n as

λm = min
dim(S)=m

max
x∈S

x∗Ax

x∗x
.

It follows that for any m dimensional subspace S we choose,

λm ≤ max
x∈S

x∗Ax

x∗x
.

This provides a natural upper bound on λm. Let q1, . . . ,qm be an orthonormal basis for S, and write

Q = [q1 · · · qm ] ∈ Cn×m.

Then any x ∈ S can be written as Qs for some s ∈ Cm, and so

λm ≤ max
x∈S

x∗Ax

x∗x
= max

s∈Cm

s∗Q∗AQs

s∗Q∗Qs
= max

s∈Cm

s∗(Q∗AQ)s

s∗s
= θm,

where θm is the largest eigenvalue of H := Q∗AQ ∈ Cm×m. (Here we have used the orthonormality
of q1, . . . ,qm to conclude that Q∗Q = I.) Notice that the (j, k) entry of H is given by

hj,k = q∗jAqk.

(a) Let A ∈ Cn×n have the form

A =


1 0.1

0.1 2
. . .

. . .
. . . 0.1
0.1 n

 .
Let q1, . . . ,qm denote the first m columns of the n×n identity matrix. Take n = 32, and use the
above procedure to produce (in MATLAB) estimates θm to λm for various values of m. (That is,
for a range of m values, build H ∈ Cm×m, find its largest eigenvalue θm, and compare that to the
eigenvalue λm of A.)

(b) Repeat part (a) (using the same vectors q1, . . . ,qm) for the matrix

A =


2 −1

−1 2
. . .

. . .
. . . −1
−1 2

 ∈ C32×32.

(c) Why do you think this procedure gave good estimates in part (a) but not in part (b)?
(Full credit will be given for any plausible explanation.)

(d) Parts (a) and (b) of this problem were rather artificial. This part gives a better indication of how
one could use this bounding technique in practice – but this requires a little background.

To solve the differential equation −u′′(x) = f(x) for x ∈ [0, π] with u(0) = u(π) = 0, one can
write the solution as a linear combination of eigenfunctions qk that satisfy −q′′k (x) = λkqk(x) for
x ∈ [0, π] and qk(0) = qk(π) = 0. As one learns in a basic PDE class, these eigenfunctions are
simply

qk(x) =
2

π
sin(kx).

One can use the same approach to solve more complicated equations. For example, consider

−u′′(x) + (x sin(x)− 1)u(x) = f(x)



again with u(0) = u(π) = 0. To solve this equation, one could use the eigenvalues λk and
eigenfunctions uk(x) that satisfy

−u′′k(x) + (x sin(x)− 1)uk(x) = λkuk(x)

for x ∈ [0, π] and uk(0) = uk(π) = 0. In general, the variable coefficient (x sin(x)−1) makes these
eigenvalues and eigenfunctions difficult to compute. We will use the Courant–Fischer minimax
characterization to estimate λk.

We are working with infinite dimensional problems (in the space L2(0, π), rather than Cn), so
we need a different definition of inner product. The inner product of functions f, g ∈ L2(0, π) is
defined as

(f, g) =

∫ π

0

f(x)g(x) dx.

We wish to approximate the eigenvalues of the linear operator T defined (for u sufficiently differ-
entiable) by

Tu := −u′′ + (x sin(x)− 1)u.

In this setting, the Courant–Fischer characterization gives

λm = min
S⊂Dom(T )
dim(S)=m

max
u∈S

(Tu, u)

(u, u)
.

(Here Dom(T ) is the domain of T , a subset of L2(0, π).) For a particular subspace, say S =
span{q1, . . . , qm} for orthonormal q1, . . . , qm (that is, (qj , qk) = 0 if j 6= k, and (qj , qj) = 1),

λm ≤ max
u∈S

(Tu, u)

(u, u)
= θm,

where θm is the largest eigenvalue of the m×m matrix H with

hj,k = (Tuj , uk) =

∫ π

0

(
− u′′j (x) + (x sin(x)− 1)uj(x)

)
uk(x) dx.

One particularly interesting choice for the functions q1, . . . , qm is the set of orthonormal eigenfunc-
tions associated with the easier problem −u′′ = f (which doesn’t have the complicating variable
coefficient term),

qk(x) =
2

π
sin(kx), k = 1, . . . ,m.

With this choice, one has

hj,k =



(1− k2 + 4k4)

4k2 − 1
, j = k;

−(1 + k + k2)

4k2 + 4k
, j = k + 1;

−(1− k + k2)

4k2 − 4k
, j = k − 1;

4(−1)j+k+1jk

(j2 − 1)2 − 2(j2 + 1)k2 + k4
, otherwise.

For m = 1, . . . , 20, construct H ∈ Cm×m and compare its largest eigenvalue θm to the true
eigenvalue λm of T given in the table below. (The “true” eigenvalues were computed using a
different high-precision strategy.)



k λk
1 1.2708040093. . .
2 4.0947832505. . .
3 9.0367214840. . .
4 16.0211554874. . .
5 25.0136704727. . .
6 36.0095471867. . .
7 49.0070396015. . .
8 64.0054028151. . .
9 81.0042762020. . .

10 100.0034680458. . .
11 121.0028688359. . .
12 144.0024123528. . .
13 169.0020566555. . .
14 196.0017741396. . .
15 225.0015460372. . .
16 256.0013592296. . .
17 289.0012043240. . .
18 324.0010744527. . .
19 361.0009645003. . .
20 400.0008705941. . .

(e) Did you notice that in all of these problems, as m got bigger the smallest eigenvalue, θ1, of
H ∈ Cm×m became a better and better upper bound for the eigenvalue λ1 of A? Use the
Courant–Fischer minimax characterization to explain why this is the case.


