
MATH 5524 · MATRIX THEORY

Problem Set 5

Posted Tuesday 11 April 2017. Due Tuesday 18 April 2017.
[Late work is due on Wednesday 19 April 2017.]

Complete any four problems, 25 points each.

Recall the definitions of the numerical range (field of values) of A ∈ Cn×n,

W (A) =
{x∗Ax

x∗x
: x ∈ Cn

}
,

and the ε-pseudospectrum for ε > 0,

σε(A) = {z ∈ C : ‖(zI−A)−1‖ > 1/ε}

= {z ∈ C : z ∈ σ(A + E) for some E ∈ Cn×n with ‖E‖ < ε}.

1. The derivative of a distinct eigenvalue λk of a generic matrix A(t) = A0 + tE is given by

λ′k(t)
∣∣∣
t=0

=
v̂∗kEvk
v̂∗kvk

,

where vk and v̂k are the corresponding right and left eigenvectors of A0.

(a) Suppose A ∈ Cn×n has singular value decomposition A =
∑n
j=1 sjujv

∗
j , and consider the matrix

H =

[
0 A
A∗ 0

]
∈ C2n×2n.

Show that σ(H) = {±s1, . . . ,±sn}. What are the corresponding right and left eigenvectors of H?

(b) Use the result stated at the beginning of this problem to derive a formula for the derivative of a
distinct nonzero singular value of A + tE.

This result forms the basis of curve tracing algorithms for computing σε(A). Given some z on the
boundary of σε(A), one seeks to follow the contour in C for which sn(zI−A) = 1/‖(zI−A)−1‖ = ε.

2. Let A ∈ Cn×n be a matrix with distinct eigenvalues λ1, . . . , λn and corresponding right eigenvectors
v1, . . . ,vn and left eigenvectors v̂1, . . . , v̂n.

The derivative of the eigenvalue λk(t) of A + tE with respect to t (for ‖E‖ = 1) at t = 0 is bounded
in magnitude by the eigenvalue condition number

κ(λk) =
‖v̂k‖‖vk‖
|v̂∗kvk|

.

Consider the matrix

A =

[
−1 α
0 −2

]
,

where α ≥ 1 is a real constant.

(a) Compute the eigenvalue condition numbers κ(λ1) and κ(λ2) for eigenvalues λ1 = −1 and λ2 = −2.

(b) Compute the matrix exponential etA.



(c) What is limt→∞ ‖etA‖ ?
(You do not need to explicitly compute the norm to answer this question.)

(d) For fixed α > 4, find the value of t ≥ 0 that maximizes the largest entry in etA.

(e) Compute a formula (dependent on α) for d
dt‖e

tA‖ at t = 0.
For what values of α is this quantity positive?

(f) What do your solutions to (c), (d) and (e) suggest about the general behavior of ‖etA‖ for
t ∈ (0,∞) with α > 4? How does maxt≥0 ‖etA‖ depend on α?
(Again, you do not need to explicitly compute any matrix norms; just describe the general behavior
at small t, intermediate t, and large t.)

3. Consider the matrix

A =

[
0 α
β 0

]
for real numbers α, β > 0.

(a) For every z ∈W (A), one can show that there exists a unit vector of the form

x =

[
t

eiθ
√

1− t2

]
with t ∈ [0, 1] and θ ∈ [0, 2π) such that z = x∗Ax. (You do not need to prove this; up to a factor
of a complex sign (eiφ), this form for x is just a generic unit vector in C2.)

Show that
x∗Ax = t

√
1− t2

(
(α+ β) cos θ + i(α− β) sin θ

)
and explain why this implies that W (A) contains all the points on an ellipse in the complex plane.

(b) What is the center of this ellipse? What are the major and minor axes?

(c) For which pairs of α and β does this ellipse degenerate into a point or line segment?
(Describe all such cases.)

(d) Use this result to plot (in MATLAB etc.) the boundary of W (A) and the eigenvalues of A for

(i) α = 1 and β = 0;
(ii) α = 1 and β = 2;

(iii) α = 1 and β = −2.

This problem is the first step in proving that W (A) is convex for any A ∈ Cn×n. One can reduce the
n× n problem down to a 2× 2 problem, then reduce a generic 2× 2 problem to this form using shifts
and unitary transformations. For the complete proof, see Horn and Johnson.

4. The exercise is designed to give you some intuition for transient growth in a dynamical system.

The Leslie matrix arises in models for the (female) population of a given species with fixed birth rates
and survivability levels. The population is divided into n brackets of y-years each, and an average
member of bracket k gives birth to bk ≥ 0 females in the next y years, and has probability sk ∈ [0, 1] of

surviving the next y years. Letting p
(j)
k denote the population in the kth bracket in the jth generation,

we see that the population evolves according to the matrix equation (e.g., for n = 5)
p
(j+1)
1

p
(j+1)
2

p
(j+1)
3

p
(j+1)
4

p
(j+1)
5

 =


b1 b2 b3 b4 b5
s1

s2
s3

s4



p
(j)
1

p
(j)
2

p
(j)
3

p
(j)
4

p
(j)
5

 ,



with unspecified entries equal to zero. (We presume the mortality of the last age bracket.)

Denote the matrix as A, so that p(j+1) = Ap(j), and hence p(j) = Ajp(0).

Earlier on this problem set, we considered how transient growth in matrix powers is linked to the
sensitivity of eigenvalues to perturbations in the matrix entries. This problem is designed to reinforce
this connection in the context of physically meaningful transient behavior.

(a) Design a set of parameters b1, . . . , b5 > 0 and s1, . . . , s4 > 0 (for n = 5) so that the population
will eventually decay in size to zero (Aj → 0 as j → ∞), but this will be preceded by a period
of significant transient growth in the population, where p(j) � p(0). (Think about what kind of
birth and survivability values might suggest this demographic pattern.)

(b) Plot your population for a number of generations to demonstrate the transient growth and eventual
decay. (You may modify pop.m from the class website.)

(c) Show that this transient growth coincides with sensitivity of the eigenvalues of your matrix. You
may choose to do this in several different ways: compute the condition numbers of the eigenvalues;
show that the numerical range of A contains points of significantly larger magnitude than the
spectral radius; or download EigTool for MATLAB (see the link on the class website) and use it
to plot the pseudospectra of A.

5. Johnson’s algorithm for approximating the boundary of W (A) proceeds as follows.

1. Pick m angles 0 = θ1 < θ2 < · · · < θm = π.

2. For k = 1, . . . ,m

2a. Define Hk := (eiθkA + e−iθkA∗)/2

2b. Compute the extreme eigenvalues λ
(k)
min and λ

(k)
max of Hk

2c. Plot the lines {e−iθk(λ
(k)
min + iγ) : γ ∈ R} and {e−iθk(λ

(k)
max + iγ) : γ ∈ R}, which bound W (A)

For example, the figure below shows these lines in C for 20 values of θ for the matrix

A =

[
0 3i
1 2i

]
.

The numerical range is contained between each pair of these lines (i.e., in the empty region in the
center of the plot).
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(a) Implement Johnson’s algorithm.

(b) Demonstrate Johnson’s algorithm (with m = 20, say) by producing plots for the following:

(i) The 2× 2 matrix A shown above;

(ii) A = diag(ones(15, 1), 1) (a 16× 16 Jordan block);

(iii) A = diag(ones(15, 1), 1) + diag(1,−15) (a circulant shift);

(iv) A = randn(64)/8 (a random 64× 64 matrix.

(c) Confirm the accuracy of your bounds by including in each of your plots 100 random points in
W (A). For example, let x = orth(randn(n, 1) + 1i ∗ randn(n, 1)) (to get a random complex unit
vector) and plot z = x∗Ax; repeat this for 99 more random complex unit vectors.

6. Prove the following two results that bound the ε-pseudospectrum of A. Roughly speaking, they can
be interpreted to mean, “the ε-pseudospectrum cannot be significantly larger than the field of values
or the Gerschgorin disks, beyond a factor of order ε.”

(a) Prove that for all A ∈ Cn×n,
σε(A) ⊆W (A) +D(ε),

where D(ε) = {z ∈ C : |z| < ε} is the open disk of radius ε.

(Addition of sets is defined in the usual way: Given sets S1 and S2, the sum S1 + S2 = {s1 + s2 :
s1 ∈ S1, s2 ∈ S2} is the set of all pairwise sums between elements in S1 and S2.)

(b) Use Gerschgorin’s theorem to show that for all A ∈ Cn×n

σε(A) ⊆
n⋃
j=1

D(aj,j , rj + εn)

where aj,k denotes the (j, k) entry of A, rj denotes the absolute sum of the off-diagonal entries
in the jth row of A,

rj :=

n∑
k=1,k 6=j

|aj,k|,

and D(c, r) = {z ∈ C : |z − c| < r} is the open disk in C centered at c ∈ C with radius r > 0.

(In fact, one can prove a stronger bound with D(aj,j , rj + εn) replaced by D(aj,j , rj + ε
√
n), but

you are not required to obtain this sharper result.)

7. We have often discussed the linear, constant-coefficient dynamical system x′(t) = Ax(t), whose solu-
tions x(t) decay to zero as t→∞, provided all eigenvalues of A have negative real part.

Is the same true for variable-coefficient problems? Suppose x′(t) = A(t)x(t), and that all eigenvalues
of the matrix A(t) ∈ Cn×n have negative real part for all t ≥ 0. Is this enough to guarantee that
x(t)→ 0 as t→∞? This problem asks you to explore this possibility.

(a) Consider the matrix

U(t) =

[
cos(γt) sin(γt)
− sin(γt) cos(γt)

]
.

Show that U(t) is unitary for any fixed real values of γ and t.



(b) Now consider the matrix A(t) ∈ Cn×n defined by

A(t) = U(t)A0U(t)∗, A0 =

[
−1 α
0 −2

]
.

(Notice that A0 is the matrix that featured in Problem 2.)

Explain why σ(A(t)) = σ(A0), W (A(t)) = W (A0), and σε(A(t)) = σε(A0) for all real t.

(In other words, show the spectrum, numerical range, and ε-pseudospectra are identical for all t.)

(c) Now we wish to investigate the behavior of the dynamical system

x′(t) = A(t)x(t). (∗)

Define y(t) = U(t)∗x(t). Explain why equation (∗) implies that

y′(t) =
(
A0 + (U(t)∗)′U(t)

)
y(t). (∗∗)

(Here (U(t)∗)′ ∈ Cn×n denotes the t-derivative of the conjugate-transpose of U(t).)

(d) Compute (U(t)∗)′U(t). Does this matrix vary with t?

(e) Define the matrix

Â = A0 + (U(t)∗)′U(t).

Fix α = 7. Plot the (real) eigenvalues of Â (e.g., in MATLAB) as a function of γ ∈ [0, 7]. Do the

eigenvalues of Â fall in the left half of the complex plane for all γ?

(f) Calculate the eigenvalues of Â for γ = 1 and α = 7.
What can be said of solutions y(t) to the system (∗∗) as t→∞ for these α, γ values?

What then can be said of ‖x(t)‖ = ‖U(t)y(t)‖, where x(t) solves (∗), as t→∞?

How does this compare to the similar constant coefficient problem x′(t) = A0x(t) (where we have
seen that A0 has the same spectrum, numerical range, and pseudospectra as A(t) for all t)?

[Examples of this sort were perhaps first constructed by Vinograd; see Dekker and Verwer, or Lambert.]

8. Prove or disprove Crouzeix’s conjecture: For any matrix A ∈ Cn×n and any function f analytic on
W (A),

‖f(A)‖ ≤ 2 max
z∈W (A)

|f(z)|.

[ This is a challenge problem: a solution has not yet been discovered! ]


