
MATH 5524 · MATRIX THEORY

Problem Set 4

Posted Tuesday 28 March 2017. Due Tuesday 4 April 2017. [Corrected 3 April 2017.]
[Late work is due on Wednesday 5 April.]

Complete any four problems, 25 points each.

1. Let A ∈ Cm×n be a full rank matrix, with m > n. In general, Ax 6= b for all x ∈ Cn. The least
squares problem amounts to finding the optimal approximation to b ∈ Cm from R(A):

min
x∈Cn

‖b−Ax‖2 = min
b̂∈R(A)

‖b− b̂‖2.

In other words, the standard least squares problem seeks the smallest perturbation δb such that there
exists some x for which Ax = b + δb. Implicitly, we are thus assuming that the matrix A is exact,
but the data b has some errors.

An alternative approach, called total least squares, allows for errors in both A and b. Now we look for
the smallest δA and δb such that there exists some x for which (A + δA)x = b + δb, i.e.,

[A + δA b + δb]
[

x
−1

]
= 0. (∗)

This equation implies that the matrix [A + δA b + δb] ∈ Cm×(n+1) has rank less than n+ 1. (Recall
that m > n.)

(a) Use the singular value decomposition of the matrix [A b] to describe how to compute the matrix
[δA δb] that makes [A + δA b + δb] rank-deficient and minimizes ‖[δA δb]‖2.

(b) Use the optimal [δA δb] in (b) to write a simple formula for the solution x in (∗) in terms of
appropriate singular values and/or vectors of [A b]. (You might note when this construction
breaks down, as a unique solution need not always exist.)

(c) Explain why min
x∈Cn

‖Ax− b‖2 cannot be smaller than the smallest singular value of [A b].

(d) Compute (in MATLAB) the solution x produced by (i) standard least squares and (ii) total least
squares for

A =

 1 2
2 1
1 2

 , b =

 1
0
−2

 .
For (i), also report δb = Ax− b and ‖δb‖; for (ii), report δA, δb, and ‖[δA δb]‖ as in part (b).

2. (a) Let A ∈ Cm×n be a rank-r matrix whose singular value decomposition can be expressed as

A =

r∑
j=1

sjujv
∗
j .

We defined the pseudoinverse of A to be

A+ =

r∑
j=1

1

sj
vju

∗
j .



Show that X = A+ satisfies the four Penrose conditions:

(i) AXA = A; (ii) XAX = X; (iii) (AX)∗ = AX; (iv) (XA)∗ = XA.

(b) Conditions (iii) and (iv) in part (a) might seem trivial, but they are important. Suppose we write
the full singular value decomposition of the rank-r matrix A as

A = U

[
Σr 0
0 0

]
V∗,

where Σr = diag(s1, . . . , sr) ∈ Cr×r, the zero blocks have appropriate dimension (e.g., in the
(1,2) entry, 0 ∈ Cr×(n−r)), and U ∈ Cm×m and V ∈ Cn×n are unitary. Show that

X = V

[
Σ−1
r K
L LΣrK

]
U∗

satisfies Penrose conditions (i) and (ii) for any K ∈ Cr×(m−r) and L ∈ C(n−r)×r. Does X
satisfy (iii) and (iv) when L and K are nonzero?

(c) For arbitrary A ∈ Cm×n, show A+ = lim
t→0

(A∗A + tI)−1A∗.

(d) For arbitrary A ∈ Cm×n, show A+ =

∫ ∞
0

e−A
∗AtA∗ dt.

(e) [optional] For arbitrary A ∈ Cm×n, show Let Γ be a closed contour in the complex plane that
encloses all nonzero eigenvalues of A∗A but does not enclose the origin. Then

A+ =
1

2πi

∫
Γ

1

z
(zI−A∗A)−1A∗ dz.

[Stewart; Campbell & Meyer]

3. (a) Given the matrix

A =


0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 − 1

2

 ,
construct a cubic polynomial p such that p(A) = (I + A)−1.

(b) Given the matrix

A =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,
construct a cubic polynomial p such that p(A) = eA.

(c) The Drazin inverse is an alternative to the pseudoinverse for square matrices; it is defined as
follows. Suppose the Jordan canonical form of A ∈ Cn×n can be written as

A = [ Vλ V0 ]

[
Jλ 0
0 J0

]
[ Vλ V0 ]

−1
,

where 0 6∈ σ(Jλ) and {0} = σ(J0). Then the Drazin inverse can be written as

AD = [ Vλ V0 ]

[
J−1
λ 0
0 0

]
[ Vλ V0 ]

−1
.

Construct a degree n− 1 polynomial p such that AD = p(A).

(The Drazin inverse plays an important role in the solution of differential–algebraic equations.
Stewart and Sun write, “The clear winner in the generalized inverse sweepstakes is the pseudo-
inverse applied to full rank problems. . . . A distant second is the Drazin generalized-inverse.”)



4. In class we will claim that eAeB 6= eA+B in general. This question investigates some of the subtleties
involved in this statement.

(a) Prove that if A and B commute (AB = BA), then eAeB = eA+B.

(b) Consider the matrices

A =

[
0 0
0 2π i

]
, B =

[
0 1
0 2π i

]
.

Show (by hand) that A and B do not commute, yet eA = eB = eA+B = I. (Hence eAeB = eA+B.)

[Horn and Johnson]

(c) Consider the matrices

A =

[
π i 0
0 −π i

]
, B =

[
0 1
0 0

]
.

Show (by hand) that A and B do not commute, but eAeB = eBeA 6= eA+B.

[Horn and Johnson]

5. This problem concerns the matrix sign function. For scalar z, define

sign(z) =

{
−1, Re z < 0;

1, Re z > 0;

(sign(z) is not defined for z on the imaginary axis). The matrix sign function sign(A) is useful tool in
control theory and quantum chromodynamics.

(a) Let A = VJV−1 denote the Jordan canonical form of a matrix A with no purely imaginary
eigenvalues. Suppose that V and J are partitioned in the form

V = [ V1 V2 ] , J =

[
J1 0
0 J2

]
,

where all eigenvalues associated with the Jordan blocks in J1 are in the left half of the complex
plane, while those associated with the blocks in J2 are in the right half plane.

Use one of our usual approaches for defining f(A) to write down a concise expression for sign(A)
in terms of the Jordan form, and confirm that sign(A)2 = I.

(b) Consider a generic matrix-valued function F(X) : Cn×n → Cn×n. Newton’s method attempts to
compute a solution of the equation F(X) = 0 via the iteration

Xk+1 = Xk −G(Xk

)−1
F(Xk),

where G(Xk) : Cn×n → Cn×n denotes the Fréchet derivative of F evaluated at Xk; often this is
easier to view as solving

G(Xk)(Xk −Xk+1) = F(Xk).

To compute the matrix sign function, we will show how this method works for F(X) = X2 − I.
We can compute G(X)E, the Fréchet derivative of F applied to the matrix E, as the linear term
(in E) in the expansion

F(X + E) = (X + E)2 − I = (X2 − I) + (XE + EX) + E2,

i.e., G(X)E = XE + EX. Newton’s method seeks the E that makes F(X + E) = 0, neglecting
the quadratic E term, i.e.,

XE + EX = I−X2.



Since we neglected E2, we do not exactly have F(X + E) = 0, so instead we iterate. Given Xk,
solve

XkEk + EkXk = I−X2
k (∗∗)

for Ek, and then set Xk+1 = Xk + Ek, and repeat.

All you need to do for part (b) of this problem is to show that

Ek =
1

2
(X−1

k −Xk)

satisfies (∗∗) and hence Newton’s method yields the iteration

Xk+1 =
1

2
(Xk + X−1

k ).

(c) Write a MATLAB code to implement the iteration in part (b), using X0 = A.
Test your code out on the matrix in part (e) below.
(Higham observes that “this is one of the rare circumstances in numerical analysis where explicit
computation of a matrix inverse is required.” So, use inv with abandon!)

(d) Suppose A is Hermitian, and that you have a black box for computing sign(A).
Describe a (not necessarily efficient!) numerical algorithm for computing all the eigenvalues of A.

(e) Implement the eigenvalue algorithm in part (d), and test it on the matrix

A =


0 1

1 0
. . .

. . .
. . . 1
1 0

 ∈ C16×16.

(Within your algorithm, use your Newton-based algorithm from part (c) to compute sign(A).)

[adapted from Higham]

6. Recall that our earlier block diagonalization of a square matrix required the solution of a Sylvester
equation of the form AX + XB = C. The same equation arises in control theory, where it is common
for A ∈ Cn×n and B ∈ Cm×m to both be stable, meaning that all of their eigenvalues have negative
real part. Make that assumption about A and B throughout this problem.

(a) Show that

X = −
∫ ∞

0

etACetB dt

solves the equation AX + XB = C.

(b) Let µ ∈ R be positive. Manipulate AX + XB = C to show that

X = −(A− µI)−1X(B + µI) + (A− µI)−1C

and
X = −(A + µI)X(B− µI)−1 + C(B− µI)−1

and hence conclude that X satisfies the Stein equation

X = AµXBµ + Cµ,

for Aµ := (A + µI)(A− µI)−1, Bµ := (B + µI)(B− µI)−1, Cµ := −2µ(A− µI)−1C(B− µI)−1.



(c) Explain why the series

X =

∞∑
j=0

Aj
µCµBj

µ

converges, and show that it solves the Stein equation X = AµXBµ + Cµ.

(d) In many control theory applications, C has low rank. Suppose that C has rank-1 and that A and
B are diagonalizable: A = VΛV−1 and B = YΦY−1. Using the partial sum

Xk =

k−1∑
j=0

Aj
µCµBj

µ

to develop an upper bound on the singular values of X:

sk+1(X) ≤ γρk

for constants γ ≥ 1 and ρ ∈ (0, 1) that you should specify.

By constructing the partial sum Xk, you have an algorithm for constructing the solution X, called
Smith’s method or the Alternating Direction Implicit (ADI) method. The bound on sk+1(X)
proves the singular values of X decay exponentially at the rate ρ, a fact with deep implications.

7. Suppose the columns of A ∈ Cm×n for m ≥ n are approximately orthonormal. In many situations we
must assess the departure of these columns from orthonormality. The quantity ‖A∗A − I‖ provides
one natural way to measure this departure. Another approach comes from the polar decomposition
A = ZR, where Z ∈ Cm×n is a subunitary matrix (i.e., Z∗Z = I) with R(A) = R(Z). Then one could
use ‖A− Z‖ to gauge the departure of A from orthonormality.

Show that
‖A∗A− I‖
1 + s1(A)

≤ ‖A− Z‖ ≤ ‖A
∗A− I‖

1 + sn(A)
,

where s1(A) and sn(A) denote the largest and smallest singular values of A. (This bound implies that
these two measures of the departure from orthonormality are essentially equivalent.)

[Higham]


