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3 · Singular Value Decomposition

Thus far we have focused on matrix factorizations that reveal the eigenval-
ues of a square matrix A 2 n⇥n, such as the Schur factorization and the
Jordan canonical form. Eigenvalue-based decompositions are ideal for ana-
lyzing the behavior of dynamical systems likes x0

(t) = Ax(t) or xk+1 = Axk.
When it comes to solving linear systems of equations or tackling more general
problems in data science, eigenvalue-based factorizations are often not so il-
luminating. In this chapter we develop another decomposition that provides
deep insight into the rank structure of a matrix, showing the way to solving
all variety of linear equations and exposing optimal low-rank approximations.

3.1 Singular Value Decomposition
The singular value decomposition (SVD) is remarkable factorization that
writes a general rectangular matrix A 2 m⇥n in the form

A = (unitary matrix) ⇥ (diagonal matrix) ⇥ (unitary matrix)⇤.

From the unitary matrices we can extract bases for the four fundamental
subspaces R(A), N(A), R(A⇤

), and N(A⇤
), and the diagonal matrix will

reveal much about the rank structure of A.
We will build up the SVD in a four-step process. For simplicity suppose

that A 2 m⇥n with m � n. (If m < n, apply the arguments below
to A⇤ 2 n⇥m.) Note that A⇤A 2 n⇥n is always Hermitian positive
semidefinite. (Clearly (A⇤A)

⇤
= A⇤

(A⇤
)

⇤
= A⇤A, so A⇤A is Hermitian. For

any x 2 n, note that x⇤A⇤Ax = (Ax)⇤(Ax) = kAxk2 � 0, so A⇤A is
positive semidefinite.)
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92 Chapter 3. Singular Value Decomposition

Step 1. Using the spectral decomposition of a Hermitian matrix discussed
in Section 1.5, A⇤A has n eigenpairs {(�j ,vj)}nj=1 with orthonormal unit
eigenvectors (v⇤

j vj = 1, v⇤
j vk = 0 when j 6= k). We are free to pick any

convenient indexing for these eigenpairs; label the eigenvalues in decreasing
magnitude, �1 � �2 � · · · � �n � 0.

Step 2. Define sj := kAvjk.
Note that s

2
j = kAvjk2 = v⇤jA

⇤Avj = �j . Since the eigenvalues �1, . . . ,�n

are decreasing in magnitude, so are the sj values: s1 � s2 � · · · � sn � 0.

Step 3. Next, we will build a set of related orthonormal vectors in m.
Suppose we have already constructed such vectors u1, . . . , uj�1.
If sj 6= 0, then define uj = s

�1
j Avj , so that kujk = s

�1
j kAvjk = 1.

If sj = 0, then pick uj to be any unit vector such that

uj 2 span{u1, . . . ,uj�1}?;

i.e., ensure u⇤
juk = 0 for all k < j.1

By construction, u⇤
juk = 0 for j 6= k if sj or sk is zero. If both sj and sk

are nonzero, then

u⇤
juk =

1

sjsk
(Avj)

⇤
(Avk) =

1

sjsk
v⇤jA

⇤Avk =

�k

sjsk
v⇤jvk,

where we used the fact that vj is an eigenvector of A⇤A. Now if j 6= k,
then v⇤jvk = 0, and hence u⇤

juk = 0. On the other hand, j = k implies that
v⇤jvk = 1, so u⇤

juk = �j/s
2
j = 1.

In conclusion, we have constructed a set of orthonormal vectors {uj}nj=1
with uj 2 m.
Step 4. For all j = 1, . . . , n,

Avj = sjuj ,

regardless of whether sj = 0 or not. We can stack these n vector equations
as columns of a single matrix equation,

2

4

| | |
Av1 Av2 · · · Avn
| | |

3

5

=

2

4

| | |
s1u1 s2u2 · · · snun

| | |

3

5

.

1If sj = 0, then �j = 0, and so A⇤A has a zero eigenvalue; i.e., this matrix is singular.
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3.1. Singular Value Decomposition 93

Note that both matrices in this equation can be factored into the product of
simpler matrices:

A

2

4

| | |
v1 v2 · · · vn
| | |

3

5

=

2

4

| | |
u1 u2 · · · un

| | |

3

5

2

6

6

6

4

s1

s2
. . .

sn

3

7

7

7

5

.

Denote these matrices as AV =

bUb⌃, where A 2 m⇥n, V 2 n⇥n, bU 2
m⇥n, and b⌃ 2 n⇥n.

The (j, k) entry of V⇤V is simply v⇤jvk, and so V⇤V = I. Since V is a
square matrix, we have just proved that it is unitary, and hence, VV⇤

= I
as well. We conclude that

A =

bUb⌃V⇤
.

This matrix factorization is known as the reduced singular value decomposi-
tion or the economy-sized singular value decomposition (or, informally, the
skinny SVD). It can be obtained via the MATLAB command

[Uhat, Sighat, V] = svd(A,’econ’);

The Reduced Singular Value Decomposition

Theorem 3.1. Any matrix A 2 m⇥n with m � n can be written as

A =

bUb⌃V⇤
,

where bU 2 m⇥n has orthonormal columns, V 2 n⇥n is unitary, and
b⌃ = diag(s1, . . . , sn) 2 n⇥n has real nonnegative decreasing entries.
The columns of U are left singular vectors, the columns of V are right
singular vectors, and the values s1, . . . , sn are the singular values.

While the matrix bU has orthonormal columns, it is not a unitary matrix
when m > n. In particular, we have bU⇤

bU = I 2 n⇥n, but

bUbU⇤ 2 m⇥m

cannot be the identity unless m = n. (To see this, note that bUbU⇤ is an
orthogonal projection onto R(bU) = span{u1, . . . ,un}. Since dim(R(bU)) =

n, this projection cannot equal the m-by-m identity matrix when m > n.)
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94 Chapter 3. Singular Value Decomposition

Though bU is not unitary, it is subunitary. We can construct m � n

additional column vectors to append to bU to make it unitary. Here is the
recipe: For j = n+ 1, . . . ,m, pick

uj 2 span{u1, . . . ,uj�1}?

with u⇤
juj = 1. Then define

U =

2

4

| | |
u1 u2 · · · um

| | |

3

5

.

Confirm that U⇤U = UU⇤
= I 2 m⇥m, showing that U is unitary.

We wish to replace the bU in the reduced SVD with the unitary matrix
U. To do so, we also need to replace b⌃ by some ⌃ in such a way that
bUb⌃ = U⌃. The simplest approach constructs ⌃ by appending zeros to the
end of b⌃, thus ensuring there is no contribution when the new entries of U
multiply against the new entries of ⌃:

⌃ =



b⌃
0

�

2 m⇥n
.

The factorization A = U⌃V⇤ is called the full singular value decomposition.

The Full Singular Value Decomposition

Theorem 3.2. Any matrix A 2 m⇥n can be written in the form

A = U⌃V⇤
,

where U 2 m⇥m and V 2 n⇥n are unitary matrices and ⌃ 2 m⇥n

is zero except for the main diagonal;
The columns of U are left singular vectors, the columns of V are right
singular vectors, and the values s1, . . . , smin{m,n} are the singular values.

A third version of the singular value decomposition is often very helpful.
Start with the reduced SVD A =

bUb⌃V⇤ in Theorem 3.1 Multiply bUb⌃
together to get

A =

bUb⌃V⇤
=

2

4

| |
s1u1 · · · snun

| |

3

5

2

6

4

v⇤
1
...
v⇤
n

3

7

5

=

n
X

j=1

sjujv
⇤
j ,
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3.1. Singular Value Decomposition 95

which renders A as the sum of outer products ujv
⇤
j 2 m⇥n, weighted by

nonnegative numbers sj . Let r denote the number of nonzero singular values,
so that if r < n, then

sr+1 = · · · = sn = 0.

Thus A can be written as

A =

r
X

j=1

sjujv
⇤
j , (3.1)

known as the dyadic form of the SVD.

The Dyadic Form of the Singular Value Decomposition

Theorem 3.3. For any matrix A 2 m⇥n, there exists some r 2
{1, . . . , n} such that

A =

r
X

j=1

sjujv
⇤
j ,

where s1 � s2 � · · · � sr > 0 and u1, . . . ,ur 2 m are orthonormal, and
v1, . . . ,vr 2 n are orthonormal.

Corollary 3.4. The rank of a matrix equals its number of nonzero
singular values.

The singular value decomposition also gives an immediate formula for
the 2-norm of a matrix.

Theorem 3.5. Let A 2 m⇥n have singular value decomposition (3.1).
Then

kAk = max

x 6=0

kAxk
kxk = s1.

Proof. The proof follows from the construction of the SVD at the start of
this chapter. Note that

kAk2 = max

x 6=0

kAxk2

kxk2 = max

x 6=0

x⇤A⇤Ax

x⇤x
,

and so kAk2 is the maximum Rayleigh quotient of the Hermitian matrix
A⇤A. By Theorem 2.2, this maximum value is the largest eigenvalue of
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96 Chapter 3. Singular Value Decomposition

A⇤A, i.e., �1 = s

2
1 in “Step 2” of the construction on page 92. Thus kAk =p

�1 = s1.

3.1.1 Inductive Proof of the SVD

3.1.2 The SVD and the Four Fundamental Subspaces

3.2 The SVD: Undoer of Many Knots
In the introduction to this chapter, we claimed that eigenvalue-based decom-
positions were the right tool for handling systems that involved dynamics.
The SVD, in turn, is the perfect tool for handling static systems, i.e., systems
that do not change with time. We identify three canonical static problems:

1. Find the unique solution x to Ax = b, where A is an invertible square
matrix.

2. Find the solution x of minimum norm that solves the underdetermined
system Ax = b, where A is a matrix with a nontrivial null space and
b 2 R(A).

3. Find the minimum-norm vector x that minimizes kAx � bk, for any
given b.

Notice that this last problem subsumes the first two. (If Ax = b has a
solution x, then kAx � bk = 0 is minimal; if there are multiple solutions,
one then finds the one having smallest norm.) Thus, our discussion will focus
on problem 3.

Let A 2 m⇥n have rank r and let u1, . . . ,um 2 m be a full set of left
singular vectors, giving an orthonormal basis for m with

R(A) = span{u1, . . . ,ur}

N(A⇤
) = span{ur+1, . . . ,um}.

Expand b 2 m as a linear combination of the left singular vectors:

b = �1u1 + · · ·+ �mum.

We can find the coefficients �j very easily, since the orthonormality of the
singular vectors gives

u⇤
jb = �1u

⇤
ju1 + · · ·+ �mu⇤

jum

= �j .
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3.2. The SVD: Undoer of Many Knots 97

Now for any x 2 n, notice that Ax 2 R(A), and so

Ax� b =

⇣

Ax� (�1u1 + · · ·+ �rur)

⌘

�
⇣

�r+1ur+1 + · · ·�mum

⌘

= (Ax� bR)� bN ,

where

bR := (�1u1 + · · ·+ �rur) 2 R(A)

bN := (�r+1ur+1 + · · ·�mum) 2 N(A⇤
).

Since the R(A) ? N(A⇤
) (by the Fundamental Theorem of Linear Algebra),

(Ax� bR) ? bN , and hence, by the Pythagorean Theorem,

kAx� bk2 = k(Ax� bR)� bNk2 = kAx� bRk2 + kbNk2. (3.2)

Inspect this expression. The choice of x does not affect kbNk2: bN is the
piece of b that is beyond the reach of Ax. (If Ax = b has a solution,
then bN = 0.) To minimize (3.2), the best we can do is find x such that
kAx� bRk = 0. The dyadic form of the SVD,

A =

r
X

j=1

sjujv
⇤
j , (3.3)

makes quick work of this problem. Expand any x 2 n in the right singular
vectors,

x = ⇠1v1 + · · ·+ ⇠nvn,

so that (via orthonormality of the singular vectors),

Ax =

r
X

j=1

sjujv
⇤
jx =

r
X

j=1

sj⇠juj .

We can equate this expression with

bR = �1u1 + · · ·+ �rur

= (u⇤
1b)u1 + · · ·+ (u⇤

rb)ur (3.4)

by simply matching the coefficients in the u1, . . . ,ur directions:

sk⇠k = u⇤
kb, k = 1, . . . , r
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98 Chapter 3. Singular Value Decomposition

giving

⇠k =

u⇤
kb

sk
, k = 1, . . . , r.

What about ⇠r+1, . . . , ⇠n? They can take any value! To confirm this fact,
define

x =

r
X

k=1

u⇤
kb

sk
vk +

n
X

k=r+1

⇠kvk (3.5)

for any ⇠r+1, . . . , ⇠n, and verify that Ax = bR:

Ax =

✓ r
X

j=1

sjujv
⇤
j

◆✓ r
X

k=1

u⇤
kb

sk
vk +

n
X

k=r+1

⇠kvk

◆

=

r
X

j=1

r
X

k=1

sj
u⇤
kb

sk
ujv

⇤
jvk +

r
X

j=1

n
X

k=r+1

sj⇠kujv
⇤
jvk

=

r
X

j=1

(u⇤
jb)uj + 0

= bR,

according to the expansion (3.4) for bR. Thus when r < n, equation (3.5)
thus expresses the infinitely many solutions that minimize kAb� xk. From
all these solutions, we might naturally select the one that minimizes kxk,
the one that contains nothing extra. You might well suspect that this is the
x we get from setting

⇠r+1 = · · · = ⇠n = 0.

To confirm this fact, apply the Pythagorean theorem to (3.5) to get

kxk2 =
r

X

k=1

|u⇤
kb|2

s

2
k

+

n
X

k=r+1

|⇠k|2,

making it obvious that the unique norm-minimizing solution is

x =

r
X

j=1

u⇤
jb

sj
vj =

✓ r
X

j=1

1

sj
vju

⇤
j

◆

b. (3.6)

Take a moment to savor this beautiful formula, arguably one of the most
important in matrix theory! In fact, the formula is so useful that the matrix
on the right-hand side deserves some special nomenclature.
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Pseudoinverse

Definition 3.6. Let A 2 m⇥n be a matrix of rank r with singu-
lar value decomposition (3.3). Then the pseudoinverse (or Moore–

Penrose pseudoinverse) of A is given by

A+
=

r
X

j=1

1

sj
vju

⇤
j . (3.7)

We emphasize that x = A+b in (3.6) solves all three of the problems formu-
lated at the beginning of this section.

1. If A is invertible, then m = n = r and

x = A�1b =

✓ n
X

j=1

1

sj
vju

⇤
j

◆

b.

In particular, whenever A is invertible, A+
= A�1.

2. If b 2 R(A), then bR = b, and

x = A+b =

✓ r
X

j=1

1

sj
vju

⇤
j

◆

b

solves Ax = b. If r < n, then there exist infinitely many solutions
to Ax = b that all have the form x = A+b + n for n 2 N(A) =

span{vr+1, . . . ,vn}. Among all these solutions, x = A+b is the unique
solution of smallest norm.

3. When b 62 R(A), no x will solve Ax = b, but x = A+b will minimize
kAx � bk. If r < n, there will be infinitely many x that minimize
kAx� bk, each having the form x = A+b+ n for n 2 N(A). Among
all these solutions x = A+b is the unique minimizer of kAx � bk
having smallest norm.

3.3 Optimal Low-Rank Approximations
Many applications call for use to approximate A with some low-rank matrix.
Suppose we have the SVD

A =

r
X

j=1

sjujv
⇤
j , (3.8)
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100 Chapter 3. Singular Value Decomposition

and we seek some rank-k approximation to A, for some 1  k < r. Since
the singular values decay monotonically, s1 � s2 � · · · � sr > 0, one might
naturally grab the leading k terms from the decomposition (3.8):

Ak =

k
X

j=1

sjujv
⇤
j .

How good an approximation is Ak to A? Notice that

A�Ak =

r
X

j=k+1

sjujv
⇤
j

is a singular value decomposition for the error A�Ak, and hence by Theo-
rem ?? its norm equals the largest singular value in the decomposition:

kA�Akk = sk+1. (3.9)

Can we construct a better rank-k approximation? The following theorem,
one of the most important in matrix theory, says that this is not the case.
(This is known as the Schmidt–Eckart–Young–Mirsky Theorem, after
its various discovers.)

Optimal Low-Rank Approximation

Theorem 3.7. Let A 2 m⇥n be a rank-r matrix with singular value
decomposition

A =

r
X

j=1

sjujv
⇤
j ,

and let k < r. Then

min

rank(X)
kA�Xk = sk+1

and this minimization is attained by

Ak =

k
X

j=1

sjujv
⇤
j . (3.10)

Proof. We know from (3.9) that kA�Akk = sk+1, and so this proof must
show that for any rank-k matrix X, we have kA�Xk � sk+1.
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Let X 2 m⇥n be an arbitrary rank-k matrix. To show kA�Xk � sk+1,
it suffices to identify some unit vector z 2 n for which k(A�X)zk � sk+1,
since

kA�Xk = max

kvk=1
k(A�X)vk � k(A�X)zk.

Since X 2 m⇥n has rank-k, we must have

dim(N(X)) = n� k.

By the orthogonality of the right singular vectors of A, we have

dim(span{v1, . . . ,vk+1} = k + 1.

The sum of the dimensions of these two spaces exceeds n, since (n�k)+(k+

1) = n+1, and hence the intersection of these spaces must have dimension 1
or greater.

dim

⇣

N(X) \ span{v1, . . . ,vk+1}
⌘

� 1.

Thus we can find some unit vector in this intersection,

z 2 N(X) \ span{v1, . . . ,vk+1}

with kzk = 1. We will use the fact that z is in each of these spaces in turn.
First, z 2 N(X) we must have Xz = 0, so

kA�Xk � k(A�X)zk = kAzk.

Now since z 2 span{v1, . . . ,vk+1} we can expand

z = c1v1 + · · ·+ ck+1vk+1.

By the Pythagorean Theorem (and the orthonormality of the {vj})

1 = kzk2 = |c1|2 + · · ·+ |ck+1|2. (3.11)

The orthonormality of the {vj} also implies that

Az =

✓ r
X

j=1

sjujv
⇤
j

◆✓ k+1
X

`=1

c`v`

◆

=

r
X

j=1

k+1
X

`=1

sjc`ujv
⇤
jv` =

k+1
X

j=1

sjcjuj .

Again by the Pythagorean Theorem (now with orthonormality of the {uj})
we have

kAzk2 =

k+1
X

j=1

s

2
j |cj |2 � s

2
k+1

k+1
X

j=1

|cj |2 = s

2
k+1,
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102 Chapter 3. Singular Value Decomposition

where the inequality follows from the decaying magnitudes of the singular
values, s1 � · · · � sk � sk+1, and the last step uses the formula (3.11). We
conclude that

kA�Xk = max

kvk=1
k(A�X)vk � k(A�X)zk = kAzk � sk+1,

thus establishing the theorem.

One must wonder if the partial sum

Ak =

k
X

j=1

sjujv
⇤
j

delivers a unique best rank-k approximation. That is not generally the case:
if k < r there are infinitely many. To see this, define

bAk =

k
X

j=1

bsjujv
⇤
j ,

for some bs1, . . . , bsk, so that

A� bAk =

k
X

j=1

(sj � bsj)ujv
⇤
j +

r
X

j=k+1

sjujv
⇤
j .

This is a like a singular value decomposition for A� bA, except the “singular
values” sj � bsj could potentially be negative. One can show that the norm
of the misfit A � bAk is the largest magnitude of these quantities and the
untouched sj for j = k + 1, . . . , r:

kA� bAkk = max

n

|s1 � bs1|, . . . , |sk � bsk|, sk+1

o

.

So long as we pick bs1, . . . , bsk so that

max

1jk
|sj � bsj |  sk+1,

then kA� bAkk = sk+1, and bAk is another best rank-k approximation to A.
(However, Ak is the only one of these that leaves a rank r�k misfit A�Ak.)

Embree – draft – 1 April 2017



i
i

“book” — 2017/4/1 — 12:47 — page 103 — #105 i
i

i
i

i
i

3.4. The Polar Decomposition 103

3.4 The Polar Decomposition
Throughout our studies we have fluently translated basic properties of scalars
into their matrix analogues: a± b effortlessly becomes A±B, the multipli-
cation ab becomes AB, but with the caveat that the product does not in
general commute; the inversion 1/b becomes B�1, and division by b = 0

corresponds to singular B. Even magnitude generalizes: |a| becomes kAk.
The singular value decomposition allows one more construction in the

same vein. Any a 2 can be written in the polar form a = re

i✓ for r � 0

and ✓ 2 [0, 2⇡): that is, a is the product of a nonnegative number r and a
number with magnitude 1, since |ei✓| = 1.

Suppose that A 2 m⇥n with m � n. Into the skinny SVD

A =

bUb⌃V⇤

splice the identity matrix in the form V⇤V = I,

A =

bU(V⇤V)

b⌃V⇤
= (

bUV⇤
)(Vb⌃V⇤

) =: ZR,

where Z :=

bUV⇤ 2 m⇥n is subunitary and R := Vb⌃V⇤ 2 n⇥n is
Hermitian positive semidefinite. (Note that R is constructed via a unitary
diagonalization whose central matrix b⌃ has nonnegative diagonal entries:
hence R must be Hermitian positive semidefinite.) In the polar form a =

re

i✓, the unit-length scalar e

i✓ generalizes to the subunitary Z, while the
nonnegative scalar r > 0 generalizes to the Hermitian semidefinite R.

Polar Decomposition

Theorem 3.8. Any matrix A 2 m⇥n, m � n, can be written as

A = ZR

for subunitary Z 2 m⇥nand Hermitian positive semidefinite R 2 n⇥n.

Notice that m � n was necessary for Z to be subunitary, since

Z⇤Z = V bU⇤
bUV⇤

= VV⇤

can only equal the identity if V is a square unitary matrix. (Also note that
Z 2 m⇥n, and one cannot have a matrix with n orthonormal columns of
length m if n > m.) If m  n, we can alternatively write

A = Ub⌃bV⇤
= Ub⌃(U⇤U)

bV⇤
= (Ub⌃U⇤

)(UbV⇤
) =: RZ⇤

,

now with R := Ub⌃U⇤ 2 m⇥m Hermitian positive semidefinite and Z :=

bVU⇤ 2 n⇥m subunitary.
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104 Chapter 3. Singular Value Decomposition

3.5 Variational Characterization of Singular Values
Since the singular values are square roots of the eigenvalues of the Hermitian
matrices A⇤A and AA⇤, the singular values inherit the variational charac-
terizations that were explored in Section 2.2. For example,

�1 = max

v2 n

⇣v⇤A⇤Av

v⇤v

⌘1/2
= max

u2 m

⇣u⇤AA⇤u

u⇤u

⌘1/2
,

with the leading right and left singular vectors v1 and u1 being unit vectors
that attain these maxima.

However, the singular values also satisfy a subtler variational property
that incorporates both left and right singular vectors at the same time. Con-
sider, for unit vectors u 2 m and v 2 n, the quantity

|u⇤Av|  kukkAkkvk = �1,

using the Cauchy–Schwarz inequality and the definition of the induced ma-
trix 2-norm. On the other hand, if u1 and v1 unit vectors that give

|u⇤
1Av1| = |u⇤

1(�1u1)| = �1.

Thus
�1 = max

u2 m,v2 n

|u⇤Av|
kukkvk .

We can characterize subsequent singular values the same way. Recall the
dyadic version of the singular value decomposition,

A =

r
X

j=1

�jujv
⇤
j

for A of rank r. If we restrict unit vectors u and v such to be orthogonal to
u1 and v1, then

u⇤Av =

r
X

j=1

�ju
⇤ujv

⇤
jv =

r
X

j=2

�ju
⇤ujv

⇤
jv = u⇤

✓ r
X

j=2

�jujv
⇤
j

◆

v.

Hence
|u⇤Av|  �2,

with the inequality attained when u = u1 and v = v1. Continuing this
process gives the following analogue of Theorem 2.2.
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Theorem 3.9. For any A 2 m⇥n,

�k = max

u?span{u1,...,uk�1}
v?span{v1,...,vk�1}

|u⇤Av|
kukkvk .

3.6 Principal Component Analysis
Matrix theory enables the analysis of the volumes of data that now so com-
monly arise from applications ranging from basic science to public policy.
Such measured data often depends on many factors, and we seek to identify
those that are most critical. Within this realm of multivariate statistics,
principal component analysis (PCA) is a fundamental tool.

Linear algebraists often say, “PCA is the SVD” – in this section, we will
explain what this means, and some of the subtleties involved.

3.6.1 Variance and covariance

To understand principal component analysis, we need some basic notions
from statistics, described in any basic textbook. For a general description
of PCA along with numerous applications, see the text by Jolliffe [Jol02],
whose presentation shaped parts of our discussion here.

The expected value, or mean, of a random variable X is denoted E[X].
The expected value is a linear function, so for any constants ↵,� 2 ,
E[↵X + �] = ↵E[X] + �.

The variance of X describes how much X is expected to deviate from its
mean,

Var(X) = E[(X � E[X])

2
],

which, using linearity of the expected value, takes the equivalent form

Var(X) = E[X

2
]� E[X]

2
.

The covariance between two (potentially correlated) random variables X and
Y is

Cov(X,Y ) = E[(X � E[X])(Y � E[Y ])]

= E[XY ]� E[X]E[Y ].

with Cov(X,X) = Var(X). These definitions of variance and covariance are
the bedrock concepts underneath PCA, for with them we can understand
the variance present in a linear combination of several random variables.
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Suppose we have a set of real-valued random variables X1, . . . , Xn in
which we suspect there may be some redundancy. Perhaps some of these
variables can be expressed as linear combinations of the others – either ex-
actly, or nearly so. At the other extreme, there may be some way to combine
X1, . . . , Xn that captures much of the variance in one (or a few) aggregate
random variables. In particular, we shall seek scalars �1, . . . , �n such that

n
X

j=1

�jXj

has the largest possible variance. The definitions of variance and covariance,
along with the linearity of the expected value, lead to a formula for the
variance of a linear combination of random variables:

Var

⇣

n
X

j=1

�jXj

⌘

=

n
X

j=1

n
X

k=1

�j�k Cov(Xj , Xk). (3.12)

You have seen double sums like this before. If we define the covariance
matrix C 2 n⇥n having (j, k) entry

cj,k = Cov(Xj , Xk),

and let v = [�1, . . . , �n]
T, then the variance of the combined variable is just

a Rayleigh quotient:

Var

⇣

n
X

j=1

�jXj

⌘

= v⇤Cv.

Since the covariance function is symmetric: Cov(X,Y ) = Cov(Y,X), the ma-
trix C is Hermitian; it is also positive semidefinite. Why? Variance, by its
definition as the expected value of the square of a real random variable, is al-
ways nonnegative. Thus the formula (3.12), which derives from the linearity
of the expected value, ensures that v⇤Cv � 0. (Under what circumstances
can this quantity be zero?)

We can write C in another convenient way. Collect the random variables
into the vector

X =

2

4

X1
...

Xn

3

5

.

Then the (j, k) entry of E[XX⇤
]� E[X]E[X⇤

] is

E[XjXk]� E[Xj ]E[Xk] = Cov(Xj , Xk) = cj,k,

and so
C = E[XX⇤

]� E[X]E[X⇤
].
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3.6.2 Derived variables that maximize variance

Return now to the problem of maximizing the variance of v⇤Cv. With-
out constraint on v, this quantity can be arbitrarily large (assuming C is
nonzero); thus we shall require that

Pk
j=1 �

2
j = kvk2 = 1. With this normal-

ization, you immediately see how to maximize the variance v⇤Cv: v should
be a unit eigenvector associated with the largest magnitude eigenvalue of
C; call this vector v1. The associated variance, of course, is the largest
eigenvalue of C; call it

�1 = v⇤
1Cv1 = max

v2 n

v⇤Cv

v⇤v
.

The eigenvector v1 encodes the way to combine X1, . . . , Xn to maximize
variance. The new variable – the leading principal component – is

v⇤
1X =

n
X

j=1

�jXj .

You are already suspecting that a unit eigenvector associated with the second
largest eigenvalue, v2 with �2 = v⇤

2Cv2, must encode the second-largest way
to maximize variance.

Let us explore this intuition. To find the second-best way to combine the
variables, we should insist that the next new variable, for now call it w⇤X,
should be independent of the first, i.e.,

Cov(v⇤
1X,w⇤X) = 0.

However, using linearity of expectation and the fact that, e.g., w⇤X = X⇤w
for real vectors,

Cov(v⇤
1X,w⇤X) = E[(v⇤

1X)(w⇤X)]� E[v⇤
1X]E[w⇤X]

= E[(v⇤
1XX⇤w]� E[v⇤

1X]E[X⇤w]

= v⇤
1E[XX⇤

]w � v⇤
1E[X]E[X⇤

]w

= v⇤
1(E[XX⇤

]� E[X]E[X⇤
])w

= v⇤
1Cw = �1v

⇤
1w.

Hence (assuming �1 6= 0), for the combined variables v⇤
1X and w⇤X to be

independent, the vectors v1 and w must be orthogonal, perfectly confirming
your intuition: the second-best way to combine the variables is to pick w
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to be a unit eigenvector v2 of C corresponding to the second largest eigen-
value – a direct result of the variational characterization of eigenvalues in
Theorem 2.2. The associated variance of v⇤

2X is

�2 = max

w?span{u1}

w⇤Cw

w⇤w
.

Of course, in general, the kth best way to combine the variables is given by
the eigenvector vk of C associated with the kth largest eigenvalue.

We learn much about our variables from the relative size of the variances
(eigenvalues)

�1 � �2 � · · · � �n � 0.

If some of the latter eigenvalues are very small, that indicates that the set
of n random variables can be well approximated by a fewer number of ag-
gregate variables. These aggregate variables are the principal components of
X1, . . . , Xn.

3.6.3 Approximate PCA from empirical data

In practical situations, one often seeks to analyze empirical data drawn from
some unknown distribution: the expected values and covariances are not
available. Instead, we will estimate these from the measured data.

Suppose, as before, that we are considering n random variables, X1, . . . , Xn,
with m samples of each:

xj,k, k = 1, . . . ,m,

i.e., xj,k is the kth sample of the random variable Xj . The expected value
has a the familiar unbiased estimate

µj =
1

m

m
X

j=1

xj,k.

Similarly, we can approximate the covariance

Cov(Xj , Xk) = E[(Xj � E[Xj ])(Xk � E[Xk)].

One might naturally estimate this as

1

m

m
X

`=1

(xj,` � µj)(xk,` � µk).
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However, replacing the true expected values E[Xj ] and E[Xk] with the em-
pirical estimates µj and µk introduces some slight bias into this estimate.
This bias can be removed by scaling [Cra46, Sect. 27.6], replacing 1/m by
1/(m� 1) to get the unbiased estimate

sj,k =

1

m� 1

m
X

`=1

(xj,` � µj)(xk,` � µk), j, k = 1, . . . , n.

If we let

xj =

2

6

4

xj,1
...

xj,m

3

7

5

, j = 1, . . . , n,

then each covariance estimate is just an inner product

sj,k =

1

m� 1

(xj � µj)
⇤
(xk � µk).

Thus, if we center the samples of each variable about its empirical mean,
we can write the empirical covariance matrix S = [sj,k] as a matrix product.
Let

X := [ (x1 � µ1) (x2 � µ2) · · · (xn � µn) ] 2 m⇥n
,

so that
S =

1

m� 1

X⇤X.

Now conduct principal component analysis just as before, but with the
empirical covariance matrix S replacing the true covariance matrix C. The
eigenvectors of S now lead to sample principal components. Note that there
is no need to explicitly form the matrix S: instead, we can simply perform
the singular value decomposition of the data matrix X. This is why some
say, “PCA is just the SVD.” We summarize the details step-by-step.

1. Collect m samples of each of n random variables, xj,k for j = 1, . . . ,m

and k = 1, . . . , n. (We need m > 1, and, generally expect m � n.)

2. Compute the empirical means of each column, µk = (

Pm
j=1 xj,k)/m.

3. Stacking the samples of the kth variable in the vector xk 2 m, con-
struct the mean-centered data matrix

X = [ (x1 � µ1) (x2 � µ2) · · · (xn � µn) ] 2 m⇥n
.
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4. Compute the (skinny) singular value decomposition X = U⌃V⇤, with
U 2 m⇥n, ⌃ = diag(�1, . . . ,�n) 2 n⇥n, and V = [v1 · · · vn] 2

n⇥n.

5. The kth sample principal component is given by v⇤
kX, where X =

[X1, . . . , Xn]
⇤ is the vector of random variables.

A word of caution: when conducting principal component analysis, the
scale of each column matters. For example, if the random variables sam-
pled in each column of X are measurements of physical quantities, they can
differ considerably in magnitude depending on the units of measurement.
By changing units of measurement, you can significantly alter the principal
components.
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