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2 ·Hermitian Matrices

Having navigated the complexity of nondiagonalizable matrices, we return
for a closer examination of Hermitian matrices, a class whose mathematical
elegance parallels its undeniable importance in a vast array of applications.

Recall that a square matrix A 2 n⇥n is Hermitian if A = A⇤. (Real
symmetric matrices, A 2 n⇥n with AT

= A, form an important subclass.)
Section 1.5 described basic spectral properties that will prove of central im-
portance here, so we briefly summarize.

• All eigenvalues �1, . . . ,�n of A are real ; here, they shall always be
labeled such that

�1  �2  · · ·  �n. (2.1)

• With the eigenvalues �1, . . . ,�n are associated orthonormal eigenvec-
tors u1, . . . ,un. Thus all Hermitian matrices are diagonalizable.

• The matrix A can be written in the form

A = U⇤U⇤
=

n
X

j=1

�juju
⇤
j ,

where

U = [u1 · · · un ] 2 n⇥n
, ⇤ =

2

4

�1
. . .

�n

3

5 2 n⇥n
.

The matrix U is unitary, U⇤U = I, and each uju
⇤ 2 n⇥n is an

orthogonal projector.

69



i
i

“book” — 2017/4/1 — 11:43 — page 70 — #72 i
i

i
i

i
i

70 Chapter 2. Hermitian Matrices

Much of this chapter concerns the behavior of a particular scalar-valued
function of A and its generalizations.

Rayleigh quotient

The Rayleigh quotient of the matrix A 2 n⇥n at the nonzero vector
v 2 n is the scalar

v⇤Av

v⇤v
2 . (2.2)

Rayleigh quotients are named after the English gentleman-scientist Lord

Rayleigh (a.k.a. John William Strutt, 1842–1919, winner of the 1904

Nobel Prize in Physics), who made fundamental contributions to spectral
theory as applied to problems in vibration [Ray78]. (The quantity v⇤Av is
also called a quadratic form, because it is a combination of terms all having
degree two in the entries of v, i.e., terms such as v

2
j and vjvk.)

If (�,u) is an eigenpair for A, then notice that

u⇤Au

u⇤u
=

u⇤
(�u)

u⇤u
= �,

so Rayleigh quotients generalize eigenvalues. For Hermitian A, these quan-
tities demonstrate a rich pattern of behavior that will occupy our attention
throughout much of this chapter. (Most of these properties disappear when
A is non-Hermitian; indeed, the study of Rayleigh quotients for such matri-
ces remains and active and important area of research; see e.g., Section ??.)

For Hermitian A 2 n⇥n, the Rayleigh quotient for a given v 2 n

can be quickly analyzed when v is expressed in an orthonormal basis of
eigenvectors. Writing

v =

n
X

j=1

cjuj = Uc,

then
v⇤Av

v⇤v
=

c⇤U⇤AUc

c⇤U⇤Uc
=

c⇤⇤c

c⇤c
,

where the last step employs diagonalization A = U⇤U⇤. The diagonal
structure of ⇤ allows for an illuminating refinement,

v⇤Av

v⇤v
=

�1|c1|2 + · · ·+ �n|cn|2

|c1|2 + · · ·+ |cn|2
. (2.3)

As the numerator and denominator are both real, notice that the Rayleigh
quotients for a Hermitian matrix is always real. We can say more: since the
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eigenvalues are ordered, �1  · · ·  �n,

�1|c1|2 + · · ·+ �n|cn|2

|c1|2 + · · ·+ |cn|2
� �1(|c1|2 + · · ·+ |cn|2)

|c1|2 + · · ·+ |cn|2
= �1,

and similarly,

�1|c1|2 + · · ·+ �n|cn|2

|c1|2 + · · ·+ |cn|2
 �n(|c1|2 + · · ·+ |cn|2)

|c1|2 + · · ·+ |cn|2
= �n.

Theorem 2.1. For a Hermitian matrix A 2 n⇥n with eigenvalues
�1, . . . ,�n, the Rayleigh quotient for nonzero v 2 n⇥n satisfies

v⇤Av

v⇤v
2 [�1,�n].

Further insights follow from the simple equation (2.3). Since

u⇤
1Au1

u⇤
1u1

= �1,
u⇤
nAun

u⇤
nun

= �n.

Combined with Theorem 2.1, these calculations characterize the extreme
eigenvalues of A as solutions to optimization problems:

�1 = min

v2 n

v⇤Av

v⇤v
, �n = max

v2 n

v⇤Av

v⇤v
.

Can interior eigenvalues also be characterized via optimization problems? If
v is orthogonal to u1, then c1 = 0, and one can write

v = c2u2 + · · ·+ cnun.

In this case (2.3) becomes

v⇤Av

v⇤v
=

�2|c2|2 + · · ·+ �n|cn|2

|c1|2 + · · ·+ |cn|2
� �2,

with equality when v = u2. This implies that �2 also solves a minimization
problem, one posed over a restricted subspace:

�2 = min

v2 n

v?u1

v⇤Av

v⇤v
.
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72 Chapter 2. Hermitian Matrices

Similarly,

�n�1 = max

v2 n

v?un

v⇤Av

v⇤v

All eigenvalues can be characterized in this manner.

Theorem 2.2. For a Hermitian matrix A 2 n⇥n,

�k = min

v?span{u1,...,uk�1}

v⇤Av

v⇤v
= min

v2span{uk,...,un}

v⇤Av

v⇤v

= max

v?span{uk+1,...,un}

v⇤Av

v⇤v
= max

v2span{u1,...,uk}

v⇤Av

v⇤v
.

This result is quite appealing, except for one aspect: to characterize the
kth eigenvalue, one must know all the preceding eigenvectors (for the mini-
mization) or all the following eigenvectors (for the maximization). Section 2.2
will describe a more flexible approach, one that hinges on the eigenvalue ap-
proximation result we shall next describe.

2.1 Cauchy Interlacing Theorem
We have already made the elementary observation that when v is an eigen-
vector of A 2 n⇥n corresponding to the eigenvalue �, then

v⇤Av

v⇤v
= �.

How well does this Rayleigh quotient approximate � when v is only an
approximation of the corresponding eigenvector? This question, investigated
in detail in Problem ??, motivates a refinement. What if one has a series
of orthonormal vectors q1, . . . ,qm, whose collective span approximates some
m-dimensional eigenspace of A (possibly associated with several different
eigenvalues), even though the individual vectors qk might not approximate
any individual eigenvector?

This set-up suggests a matrix-version of the Rayleigh quotient. Build the
matrix

Qm = [q1 · · · qm ] 2 n⇥m
,

which is subunitary due to the orthonormality of the columns, Q⇤
mQm = I.

How well do the m eigenvalues of the compression of A to span{q1, . . . ,qm},

Q⇤
mAQm,
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2.1. Cauchy Interlacing Theorem 73

approximate (some of) the n eigenvalues of A? A basic answer to this ques-
tion comes from a famous theorem attributed to Augustin-Louis Cauchy

(1789–1857), though he was apparently studying the relationship of the roots
of several polynomials; see Note III toward the end of his Cours d’analyse
(1821) [Cau21, BS09].

First build out the matrix Qm into a full unitary matrix,

Q = [Qm
bQm ] 2 n⇥n

,

then form

Q⇤AQ =

"

Q⇤
mAQm Q⇤

mAbQm

bQ⇤
mAQm

bQ⇤
mAbQm

#

.

This matrix has the same eigenvalues as A, since if Au = �u, then

Q⇤AQ(Q⇤u) = �(Q⇤u).

Thus the question of how well the eigenvalues of Q⇤
mAQm 2 m⇥m ap-

proximate those of A 2 n⇥n can be reduced to the question of how well
the eigenvalues of the leading m ⇥m upper left block (or leading principal
submatrix) approximate those of the entire matrix.

Cauchy’s Interlacing Theorem

Theorem 2.3. Let the Hermitian matrix A 2 n⇥n with eigenvalues
�1  · · ·  �n be partitioned as

A =



H B⇤

B R

�

,

where H 2 m⇥m, B 2 (n�m)⇥m, and R 2 (n�m)⇥(n�m). Then the
eigenvalues ✓1  · · ·  ✓m of H satisfy

�k  ✓k  �k+n�m. (2.4)

Before proving the Interlacing Theorem, we offer a graphical illustration.
Consider the matrix

A =

2

6

6

6

4

2 �1

�1 2

. . .
. . . . . . �1

�1 2

3

7

7

7

5

2 n⇥n
, (2.5)
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74 Chapter 2. Hermitian Matrices
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eigenvalues of H 2 m⇥m

m

Figure 2.1. Illustration of Cauchy’s Interlacing Theorem: the vertical gray lines

mark the eigenvalues �1  · · ·  �n of A in (2.5), while the black dots show the

eigenvalues ✓1  · · ·  ✓m of H for m = 1, . . . , n = 21.

which famously arises as a discretization of a second derivative operator.
Figure 2.1 illustrates the eigenvalues of the upper-left m ⇥ m block of this
matrix for m = 1, . . . , n for n = 16. As m increases, the eigenvalues ✓1 and
✓m of H tend toward the extreme eigenvalues �1 and �n of A. Notice that
for any fixed m, at most one eigenvalue of H falls in the interval [�1,�2), as
guaranteed by the Interlacing Theorem: �2  ✓2.

The proof of the Cauchy Interlacing Theorem will utilize a fundamental
result whose proof is a basic exercise in dimension counting.

Lemma 2.4. Let U and V be subspaces of n such that

dim(U) + dim(V) > n.

Then the intersection U \ V is nontrivial, i.e., there exists a nonzero
vector x 2 U \ V.

Proof of Cauchy’s Interlacing Theorem. Let u1, . . . ,un and z1, . . . , zm
denote the eigenvectors of A and H associated with eigenvalues �1  · · · 
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2.1. Cauchy Interlacing Theorem 75

�n and ✓1  · · ·  ✓m. Define the spaces

bUk = span{uk, . . . ,un}, Zk = span{z1, . . . , zk}.

To compare length-m vectors associated with H to length-n vectors associ-
ated with A, consider

Yk =

⇢

z
0

�

2 n
: z 2 Zk

�

.

Since dim(

bU) = n�k+1 and dim(Yk) = dim(Zk) = k, the preceding lemma
ensures the existence of some nonzero

w 2 bUk \ Yk.

Since the nonzero vector w 2 Yk, it must be of the form

w =



z
0

�

for nonzero z 2 Zk. Thus

w⇤Aw = [ z⇤ 0 ]



H B⇤

B R

� 

z
0

�

= z⇤Hz, z 2 Zk.

The proof now readily follows from the optimization characterizations de-
scribed in Theorem 2.2:

�k = min

v2bUk

v⇤Av

v⇤v
 w⇤Aw

w⇤w
=

z⇤Hz

z⇤z
 max

x2Zk

x⇤Hx

x⇤x
= ✓k.

The proof of the second inequality in (2.4) follows by applying the first
inequality to �A. (Proof from [Par98].)

For convenience we state a version of the interlacing theorem when H is
the compression of A to some general subspace R(Qm) = span{q1, . . . ,qm},
as motivated earlier in this section.

Cauchy’s Interlacing Theorem for Compressions

Corollary 2.5. Given any Hermitian matrix A 2 n⇥n and subunitary
Qm 2 n⇥m, label the eigenvalues of A as �1  �2  · · ·  �n and the
eigenvalues of Q⇤

mAQm as ✓1  ✓2  · · · ✓m. Then

�k  ✓k  �k+n�m. (2.6)
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76 Chapter 2. Hermitian Matrices

We conclude this section with an observation that has important impli-
cations for algorithms that approximate eigenvalues of very large Hermitian
matrix A with those of the small matrix H = Q⇤AQ for some subunitary
matrix Q 2 n⇥m for m ⌧ n. (In engineering applications n = 10

6 is com-
mon, and n = 10

9 is not unreasonable.) The matrix Q is designed so that
its range approximates the span of the m eigenvectors associated with the
smallest m eigenvalues of A.

Where do the eigenvalues of H fall, relative to the eigenvalues of A? The
Cauchy Interlacing Theorem ensures that eigenvalues cannot ‘clump up’ at
the ends of the spectrum of A. For example, ✓1 is the only eigenvalue of H
that can possibly fall in the interval [�1,�2), while both ✓1 and ✓2 can both
possibly fall in the interval [�2,�3).

interval [�1,�2) [�2,�3) [�3,�4) · · · (�n�2,�n�1] (�n�1,�n]

max # eigs of

H possibly in 1 2 3 · · · 2 1

the interval

That fact that an analogous result limiting the number of eigenvalues of
H near the extreme eigenvalues of A does not hold for general non-Hermitian
matrices adds substantial complexity to the analysis of algorithms that com-
pute eigenvalues.

2.2 Variational Characterization of Eigenvalues
The optimization characterization of eigenvalues given in Theorem 2.2 relied
on knowledge of all the preceding (or succeeding) eigenvectors, a significant
drawback when we wish to discover information about the interior eigenval-
ues of A. Using the Cauchy Interlacing Theorem, we can develop a more
general characterization that avoids this shortcoming.

As usual, label the eigenvalues of A as �1  �2  · · ·  �n, with associ-
ated orthonormal eigenvectors u1,u2, . . . ,un. Given any subunitary matrix
Qk 2 n⇥k with orthonormal columns q1, . . . ,qk, the Cauchy Interlacing
Theorem (Corollary 2.5) implies

�k  ✓k = max

v2 k

v⇤
(Q⇤

kAQk)v

v⇤v

where the maximization follows from applying Theorem 2.2 to Q⇤
kAQk. We

can write this maximization as

✓k = max

v2 k

v⇤
(Q⇤

kAQk)v

v⇤v
= max

v2 k

(Qkv)
⇤A(Qkv)

(Qkv)⇤(Qkv)
= max

x2span{q1,...,qk}

x⇤Ax

x⇤x
.
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2.3. Sylvester’s Law of Inertia 77

Thus, ✓k is the maximum Rayleigh quotient for A, restricted to the k-
dimensional subspace span{q, . . . ,qk}. We can summarize: if we maximize
the Rayleigh quotient over a k-dimensional subspace, the result ✓k must be
at least as large as �k.

However, by Theorem 2.2, we know that

�k = max

v2span{u1,...,uk}

v⇤Av

v⇤v
. (2.7)

Thus, there exists a distinguished k-dimensional subspace such that the max-
imum Rayleigh quotient over that subspace is ✓k = �k. From this it follows
that

�k = min

dim(U)=k
max

v2U

v⇤Av

v⇤v
,

with the minimum attained when U = span{u1, . . . ,uk}. Likewise, we can
make an analogous statement involving maximizing a minimum Rayleigh
quotient over n � k + 1-dimensional subspaces. These are known as the
Courant–Fischer minimax characterizations of eigenvalues.

Courant–Fischer Characterization of Eigenvalues

Theorem 2.6. For a Hermitian matrix A 2 n⇥n,

�k = min

dim(U)=k
max

v2U

v⇤Av

v⇤v
= max

dim(U)=n�k+1
min

v2U

v⇤Av

v⇤v
. (2.8)

2.3 Sylvester’s Law of Inertia
The proof of the Jordan form in Section 1.8 used a series of similarity trans-
formations (A 7! S�1AS) to reduce A first to a triangular matrix, then a
block diagonal matrix, and then ultimately the Jordan form. This process
relied on the crucial fact that similarity transformations preserve eigenval-
ues. In this section, we consider congruence transformations (A 7! S⇤AS),
which are simpler, in the sense that S⇤ is easier to compute than S�1.
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78 Chapter 2. Hermitian Matrices

Conguence and Similarity Transformations

Definition 2.7. Let A 2 n⇥n and suppose S 2 n⇥n is invertible.
Then

S�1AS

is called a similarity transformation of A, while

S⇤AS

is called a congruence transformation of A.

The matrices A and B are similar (congruent to one another if there
exists an invertible S such that B = S�1AS (B = S⇤AS).

Note that when S in Definition 2.7 is unitary (S⇤S = I, so S⇤
= S�1,

then S⇤AS = S�1SS is both a similarity transformation and a congruence
transformation.

Unfortunately, these simple congruence transformations do not typically
preserve eigenvalues. However all is not lost; remarkably, then preserve the
inertia of A.

Inertia

Definition 2.8. Let A 2 n⇥n be a Hermitian matrix, with eigenvalues
�1  �2  · · ·  �n. Suppose A has m negative eigenvalues, z zero
eigenvalues, and p positive eigenvalues:

�1  · · ·  �m < 0

�m+1  · · ·  �m+z = 0

0 < �m+z+1  · · ·  �n.

Then the inertia of A is the ordered triplet

i(A) = (p,m, z).

The main result of this section, Sylvester’s Law of Inertia, states that the
inertia of two matrices is the same if and only if they are congruent to one
another. As a warm-up to the proof, we first show that a Hermitian matrix
is congruent to a diagonal matrix that reveals its inertia. Suppose A has the
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2.3. Sylvester’s Law of Inertia 79

inertia i(A) = (p,m, z). First, unitarily diagonalize A to get A = Q⇤Q⇤

(Section 1.5), i.e.,
Q⇤AQ = ⇤ = diag(�1, . . . ,�n)

with �1  · · ·  �n. Now build the matrices

S� := diag(1/

p

�1, . . . , 1/
p

�m) 2 m⇥m
,

S0 := I 2 z⇥z
,

S+ := diag(1/

p

�m+z+1, . . . , 1/
p

�n) 2 p⇥p
,

and assemble them into the block diagonal matrix S := diag(S�,S0,S+). A
simple computation then gives

(QS)⇤A(QS) = S⇤⇤S =

2

4

�Im 0 0
0 0z 0
0 0 Ip

3

5

, (2.9)

where the matrices Im, 0z, and Ip have dimension m, z, and p.

We are ready to prove our main result, whose main implication is often
summarized as: congruence transformations preserve inertia.

Sylvester’s Law of Inertia

Theorem 2.9. The Hermitian matrices A,B 2 n⇥n are congruent if
and only if they have the same inertia.

Proof. Let A and B 2 n⇥n be Hermitian matrices.
First, suppose they have the same inertia. In that case, there exist in-

vertible matrices QA,SA and QB,SB that reduce A and B to the same
form (2.9:

(QASA)
⇤A(QASA) =

2

4

�Im 0 0
0 0z 0
0 0 Ip

3

5

= (QBSB)
⇤B(QBSB).

Thus

A = (QASA)
�⇤

(QBSB)
⇤B(QBSB)(QBSB)

�1

= (QBSBS
�1
A Q�1

A )

⇤B(QBSBS
�1
A Q�1

A ),

so A is congruent to B.
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80 Chapter 2. Hermitian Matrices

Now suppose that A and B are congruent, i.e., there exists some invert-
ible Z such that A = Z⇤BZ. We need to show that A and B have the same
inertia. Reduce both A and B to the form (2.9), say

(QASA)
⇤A(QASA) =

2

4

�Im 0 0
0 0z 0
0 0 Ip

3

5 (2.10)

and

(QBSB)
⇤B(QBSB) =

2

4

�Ibm 0 0
0 0bz 0
0 0 Ibp

3

5

. (2.11)

Here we have been careful to use m, z, p and bm, bz, bp to denote the block sizes
of the transformations of A and B. Note that by the method of construc-
tion that led to (2.9), we know that B has bm negative eigenvalues, bz zero
eigenvalues, and bp positive eigenvalues. To show A and B have the same
inertia, we must show that m = bm, z = bz, and p = bp.

Since A = Z⇤BZ by assumption, from (2.10) we see that

(ZQASA)
⇤B(ZQASA) =

2

4

�Im 0 0
0 0z 0
0 0 Ip

3

5 (2.12)

Thus we have two congruence transformations of B in (2.11) and (2.12).
Write these as

Y⇤BY =

2

4

�Im 0 0
0 0z 0
0 0 Ip

3

5

,

bY⇤B bY =

2

4

�Ibm 0 0
0 0bz 0
0 0 Ibp

3

5

,

with both Y and bY invertible. First we show that z = bz. Let W =

N(Y⇤BY), with dim(W) = z. If w 2 W, then Y⇤BYw = 0, and since
Y is invertible, BYw = 0. Notice that if x =

bY�1Yw 2 bY�1YW, then

bY⇤B bYx =

bY⇤BYw = 0.

Hence bY�1YW ⇢ N(

bY⇤BY) and, by invertibility of Y and bY,

bz = dim(N(

bY⇤B bY)) � dim(

bY�1YW) = dim(W) = dim(N(Y⇤BY) = z.

Switching the roles of Y⇤BY and bY⇤B bY gives z � bz, so z = bz.
Since z = bz, we must have m + p = bm + bp. We will now show that

m = bm and p = bp. By construction, we know that B has exactly bm neg-
ative eigenvalues (counting multiplicity). Define U := span{e1, . . . , em},
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and let the columns of Q 2 n⇥m for an orthonormal basis for YU. If
✓ 2 �(Q⇤BQ), there exists some unit vector v 2 m such that ✓ =

v⇤Q⇤BQv = (Qv)⇤B(Qv). Since Qv 2 YU, there exists some e 2 U

such that Qv = Yu. It follows that

✓ = (Qv)⇤B(Qv) = u⇤Y⇤BYu < 0,

since u 2 U = span{e1, . . . , em}: thus all m eigenvalues of Q⇤BQ are neg-
ative. By the Cauchy Interlacing Theorem (Corollary 2.5), B must have at
least m negative eigenvalues:

bm = (# of negative eigenvalues of B) � m. (2.13)

Repeating the same argument with U := span{em+z+1, . . . , en} shows

bp = (# of positive eigenvalues of B) � p. (2.14)

Since m + p = bm + bp, together (2.13) and (2.14) imply that m = bm and
p = bp. Thus the two matrices in (2.10) and (2.11) agree, and hence the
congruent matrices A and B have the same inertia.

2.4 Positive Definite Matrices
A distinguished class of Hermitian matrices have Rayleigh quotients that
are always positive. Matrices of this sort are so useful in both theory and
applications that they have their own nomenclature.

Positive Definite Matrices and Kin

Let A be Hermitian. Then
if v⇤Av > 0 for all nonzero v, then A is positive definite;
if v⇤Av � 0 for all v, then A is positive semidefinite;
if v⇤Av < 0 for all nonzero v, then A is negative definite;
if v⇤Av  0 for all v, then A is negative semidefinite;
if v⇤Av takes positive and negative values, then A is indefinite.

While most of the following results are only stated for positive definite
matrices, obvious modifications extend them to the negative definite and
semi-definite cases.

Suppose that u 2 n is a unit-length eigenvector of the Hermitian matrix
U 2 n⇥n corresponding to the eigenvalue �. Then u⇤Au = �u⇤u = �. If
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82 Chapter 2. Hermitian Matrices

A is positive definite, then � = u⇤Au > 0. Hence, all eigenvalues of a
Hermitian positive definite matrix must be positive. On the other hand,
suppose A is a Hermitian matrix whose eigenvalues �1  · · ·  �n are all
positive. Then let u1, . . . ,un denote an orthonormal basis of eigenvectors,
so that any v 2 n can be written as

v =

n
X

j=1

�juj .

As seen throughout this chapter,

v⇤Av =

n
X

j=1

�j |�j |2 � �1

n
X

j=1

|�j |2.

If v 6= 0, then 0 6= kvk2 =

Pn
j=1 |�j |2, and since all the eigenvalues are

positive, we must have
v⇤Av > 0.

We have just proved a simple but fundamental fact.

Theorem 2.10. A Hermitian matrix is positive definite if and only if
all its eigenvalues are positive.

This result, an immediate consequence of the definition of positive defi-
niteness, provides one convenient way to characterize positive definite matri-
ces; it also implies that all positive definite matrices are invertible. (Positive
semidefinite matrices only have nonnegative eigenvalues, and hence they can
be singular.)

Taking v to be the kth column of the identity matrix, v = ek, we also
see that positive definite matrices must have positive entries on their main
diagonal:

0 < v⇤Av = e⇤kAek = ak,k.

Similarly, Q⇤AQ is positive definite for any subunitary Q, by the Cauchy
Interlacing Theorem.

2.4.1 A partial order of Hermitian matrices

In general, we don’t have inequalities between matrices, in the same way
that we do between real scalars. It makes no sense to have an inequality
between, say,

A =



1 2

�1 2

�

and B =



2 1

1 1

�

,
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2.4. Positive Definite Matrices 83

let alone matrices with complex entries. (Indeed, we cannot even compare
complex scalars.) However, positive definiteness leads to an easy partial
order of Hermitian matrices.

Inequalities between Hermitian matrices

Definition 2.11. Suppose A,B 2 n⇥n are Hermitian matrices.

• If v⇤Av � v⇤Bv, for all v 2 n⇥n, we say that A � B.

• If v⇤Av > v⇤Bv for all nonzero v 2 n⇥n, we say that A > B.

• If v⇤Av  v⇤Bv, for all v 2 n⇥n, we say that A  B.

• If v⇤Av < v⇤Bv for all nonzero v 2 n⇥n, we say that A < B.

This definition immediately implies that A > 0 if and only if A is positive
definite. Otherwise, the definition seems like it could be tedious to check for
general Hermitian matrices A and B. A moment’s thought reveals a simple
way characterization of these inequalities in terms of positive definiteness.

Theorem 2.12. Let A,B 2 n⇥n be Hermitian matrices. Then A > B
(A � B) if and only if A�B is positive definite (positive semidefinite).

Of course, similar characterizations hold for < and  in terms of negative
(semi-)definiteness.

Combining Theorem 2.12 with Theorem 2.10 about eigenvalues of posi-
tive definite matrices then gives an easy way to check the inequality between
two matrices.

Theorem 2.13. Let A,B 2 n⇥n be Hermitian matrices. Then A > B
(A � B) if and only if all eigenvalues of A�B are positive (nonnegative).

Analogous conditions hold for < and . Notice this one vital fact: If
A � B is indefinite (having both positive and negative eigenvalues), then
we cannot draw any inequality between A and B, even though both are
Hermitian matrices. This fact explains why we speak of a partial order of
the Hermitian matrices. (A partial order on the Hermitian matrices requires
three properties: (1) A � A for all Hermitian A; (2) if A � B and B � A,
then A = B; (3) if A � B and B � C, then A � B. Verify that these three
properties hold.)
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84 Chapter 2. Hermitian Matrices

A couple of examples might illuminate. If

A =



4 �4

�4 4

�

and B =



�3 1

1 �3

�

then A > B, since

�(A�B) = �

✓

7 �5

�5 7

�◆

= {2, 12}.

Notice that a1,2 < b1,2 even though A > B: do not mistake the matrix
inequality for an entrywise inequality. Conversely, if

A =



2 4

4 2

�

and B =



1 2

2 1

�

then aj,k > bj,k for all j, k = 1, 2, but

�(A�B) = �

✓

1 2

2 1

�◆

= {�3, 3}.

so A 6� B and A 6 B.
We close with one last example based on the complex Hermitian matrices

A =



8 4 + 5i

4� 5i 2

�

and B =



2 1 + i

1� i �4

�

,

which give

�(A�B) = �

✓

6 3 + 4i

3� 4i 6

�◆

= {1, 11},

and hence A > B, even though we cannot draw an inequality between the
complex entries in a1,2 and b1,2.

2.4.2 Roots of positive semidefinite matrices

Some applications and theoretical situations warrant taking a root of a ma-
trix: given some A, can we find B such that Bk

= A? This topic, which is
more intricate than it might first appear, shall be covered in more detail in
Chapter ??, but here can we can thoroughly dispose of one very important
special case: positive semidefinite matrices.
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Consider first the case of k = 2. Even a matrix as simple as the identity
has numerous square roots: square any of the following matrices and you
obtain I:



1 0

0 1

�

,



1 0

0 �1

�

,



�1 0

0 1

�

,



�1 0

0 �1

�

.

Even the zero matrix has a few square roots, some not even Hermitian:


0 0

0 0

�

,



0 1

0 0

�

,



0 0

1 0

�

.

Yet in each of these cases, you know there is one “right” square root: the first
ones listed – that is, the positive semidefinite square root of these positive
semidefinite matrices I and 0. The others are just “monsters” [Lak76].

kth Root of a Positive Definite Matrix

Theorem 2.14. Let k > 1 be an integer. For each Hermitian positive
semidefinite matrix A 2 n⇥n, there exists a unique Hermitian positive
semidefinite matrix B 2 n⇥n such that Bk

= A.

Proof. (See, e.g., [HJ13].) The existence of the kth root is straightforward.
Unitarily diagonalize A to obtain A = U⇤U⇤, where

⇤ =

2

4

�1
. . .

�n

3

5

.

Now define

D :=

2

6

4

�

1/k
1

. . .
�

1/k
n

3

7

5

,

where here we are taking the nonnegative kth root of each eigenvalue. Then
define the Hermitian positive semidefinite matrix B = UDU⇤, so that

Bk
= UDkU⇤

= U⇤U⇤
= A.

The proof of uniqueness needs a bit more care. The B just constructed
is one Hermitian positive semidefinite kth root of A; now suppose C is some
Hermitian positive semidefinite matrix with Ck

= A. We shall confirm that
C = B. Our strategy will first show that B and C commute: this implies
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simultaneous diagonalization by way of Theorem 1.28, which leads to the
desired conclusion.

One can always construct a polynomial � of degree n � 1 (or less) that
satisfies

�(�j) = �

1/k
j .

For example, if �1, . . . ,�p are the distinct eigenvalues of A, this polynomial
can be written in the Lagrange form

�(z) =

p
X

j=1

�

1/k
j

⇣

p
Y

`=1
6̀=j

z � �`

�j � �`

⌘

;

see, e.g., [SM03, §6.2]. Now evaluate � at A to obtain

�(A) = �(U⇤U⇤
) = U�(⇤)U⇤

= U

2

4

�(�1)

. . .
�(�n)

3

5U⇤

= U

2

6

4

�

1/k
1

. . .
�

1/k
n

3

7

5

U⇤
= B,

i.e., �(A) = B. We shall use this fact to show that B and C commute:

BC = �(A)C = �(Ck
)C = C�(Ck

) = C�(A) = CB,

where we have used the fact that C commutes with �(Ck
), since �(Ck

) is
comprised of powers of C.

Invoking Theorem 1.28 for the Hermitian (hence diagonalizable) matrices
B and C, we can find some V for which VBV�1 and VCV�1 are both
diagonal. The entries on these diagonals must be the eigenvalues of B and
C. Without loss of generality, assume that V produces the eigenvalues of B
in the order

VBV�1
=

2

6

4

�

1/k
1

. . .
�

1/k
n

3

7

5

.

(If this is not the case, simply permute the columns of V to order the eigen-
values in this way.) Label the eigenvalues of C as �1, . . . , �n:

VCV�1
=

2

4

�1
. . .

�n

3

5

.
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Since A = Bk
= Ck, we have VBkV�1

= VCkV�1, so

VBkV�1
=

2

4

�1
. . .

�n

3

5

=

2

4

�

k
1

. . .
�

k
n

3

5

= VCkV�1
.

Since C is positive semidefinite, the eigenvalues of C are nonnegative, hence
we must conclude that �j = �

1/k
j for j = 1, . . . , n. Since B and C have the

same eigenvalues and eigenvectors, they are the same matrix: B = C. It
follows that the Hermitian positive definite kth root of A is unique.

2.4.3 Positive definiteness in optimization

Positive definite matrices arise in many applications. For example, Taylor’s
expansion of a sufficiently smooth function f :

n ! about a point
x0 2 n takes the form

f(x0 + c) = f(x0) + c⇤rf(x0) +
1

2

c⇤H(x0)c+ O(kck3), (2.15)

rf(x0) 2 n is the gradient of f evaluated at x0, and H(x0) 2 n⇥n is the
Hessian of f ,

[H ] =

2

6

6

6

6

4

@

2
f

@x

2
1

· · · @

2
f

@xn@x1
... . . . ...

@

2
f

@x1@xn
· · · @

2
f

@x

2
n

3

7

7

7

7

5

.

Note that H(x0) is Hermitian provided the mixed partial derivatives are
equal. We say x0 is a stationary point when rf(x0) = 0. In the immediate
vicinity of such a point equation (2.15) shows that f behaves like

f(x0 + c) = f(x0) +
1

2

c⇤H(x0)c+ O(kck3),

and so x0 is a local minimum if all local changes c cause f to increase,
i.e., c⇤H(x0)c > 0 for all c 6= 0. Hence x0 is a local minimum provided
the Hessian is positive definite, and a local maximum when the Hessian is
negative definite. Indefinite Hessians correspond to saddle points, with the
eigenvectors of the Hessian pointing in the directions of increase (positive
eigenvalues) and decrease (negative eigenvalues). For this and other exam-
ples, see [HJ85].
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2.5 Tridiagonal (Jacobi) Matrices
A matrix A 2 n⇥n is tridiagonal all of its nonzero entries are contained
on the main diagonal, the first superdiagonal, and the first subdiagonal. We
write such a matrix in the form

J =

2

6

6

6

6

6

6

6

4

b1 c1

a1 b2 c2

a2
. . . . . .
. . .

bn�1 cn�1

an�1 bn

3

7

7

7

7

7

7

7

5

.

Such matrices arise throughout diverse corners of mathematics, since they
model systems in which a given object interacts only with its neighbors to
the left and right: for example, the kth entry of the differential equation
x0
(t) = Jx(t)

x

0
k(t) = ak�1xk�1(t) + bkxk(t) + ckxk+1(t),

meaning that xk changes at a rate dictated only by its nearest neighbors. The
term tridiagonal matrix is common in the numerical linear algebra literature;
mathematical physicists more often call these Jacobi matrices (hence the
label J). Among such matrices, those that are Hermitian (ak = ck) are of
particular importance. We shall only sample one important result among
many.

Theorem 2.15. Let A n⇥n be a Hermitian tridiagonal matrix with nonzero
off-diagonal: aj 6= 0 for j = 1, . . . , n�1. Then A has n distinct eigenvalues.

2.6 Eigenvalue Avoidance
Many applications give rise to families of Hermitian matrices that depend
on some parameter, so instead of simply having A 2 n⇥n, we have

{A(p) : p 2 [p`, pr]} ⇢ n⇥n

where [p`, pr] ⇢ denotes some real interval over which the parameter p

ranges, and for each such value of p, A(p) = A(p)

⇤.
Often one must address a crucial question: How does the spectrum of

A(p) vary with p?
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Figure 2.2. Illustration from von Neumann and Wigner [vNW29].
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