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1 ·Basic Spectral Theory

Matrices prove so useful in applications because of the insight one gains from
eigenvalues and eigenvectors. A first course in matrix theory should thus be
devoted to basic spectral theory : the development of eigenvalues, eigenvec-
tors, diagonalization, and allied concepts. This material – buttressed by the
foundational ideas of subspaces, bases, ranges and null spaces – typically fills
the entire course, and a semester ends before students have much opportu-
nity to reap the rich harvest that mathematicians, scientists, and engineers
grow from the seeds of spectral theory.

Our purpose here is to concisely recapitulate the highlights of a first
course, then build up the theory in a variety of directions, each of which is
illustrated by a practical application from physical science, engineering, or
social science.

One can build up the spectral decomposition of a matrix through two
quite distinct – though ultimately equivalent – routes, one “analytic” (for
it develops fundamental quantities in terms of contour integration in the
complex plane), the other “algebraic” (for it is grounded in algebraic notions
of nested invariant subspaces). We shall tackle both approaches here, for
each provides distinct insights in a variety of situations (as will be evidenced
throughout the present course), and we firmly believe that the synthesis
that comes from reconciling the two perspectives deeply enriches one’s un-
derstanding.

Before embarking on this our discussion of spectral theory, we first must
pause to establish notational conventions and recapitulate basic concepts
from elementary linear algebra.

1
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2 Chapter 1. Basic Spectral Theory

1.1 Notation and Preliminaries
Our basic building blocks are complex numbers (scalars), which we write as
italicized Latin or Greek letters, e.g., z, ζ ∈ C.

From these scalar numbers we build column vectors of length n, denoted
by lower-case bold-faced letters, e.g., v ∈ Cn. The jth entry of v is denoted
by vj ∈ C. (Sometimes we will emphasize that a scalar or vector has real-
valued entries: v ∈ Rn, vj ∈ R.)

A set of vectors S is a subspace provided it is closed under vector addition
and scalar multiplication: (i) if x,y ∈ S, then x + y ∈ S and (ii) if x ∈ S

and α ∈ C, then αx ∈ S.
A set of vectors is linearly independent provided no one vector in that

set can be written as a nontrivial linear combination of the other vectors in
the set; equivalently, the zero vector cannot be written as a nontrivial linear
combination of vectors in the set.

The span of a set of vectors is the set of all linear combinations:

span{v1, . . . ,vd} = {γ1v1 + · · ·+ γdvd : γ1, . . . , γd ∈ C}.

The span is always a subspace.
A basis for a subspace S is a smallest collection of vectors {v1, . . . ,vd} ⊆

S whose span equals all of S; bases are not unique, but every basis for S

contains the same number of vectors; we call this number the dimension of
the subspace S, written dim(S). If S ⊆ Cn, then dim(S) ≤ n.

We shall often approach matrix problems analytically, which implies we
have some way to measure distance. One can advance this study to a high
art, but for the moment we will take a familiar approach. (A more general
discussion follows in Chapter 4.) We shall impose some geometry, a system
for measuring lengths and angles. To extend Euclidean geometry naturally
to Cn, we define the inner product between two vectors u,v ∈ Cn to be

u∗v :=
n∑
j=1

ujvj ,

where u∗ denotes the conjugate-transpose of u:

u∗ = [u1, u2, . . . , un ] ∈ C1×n,

a row vector made up of the complex-conjugates of the individual entries
of u. (Occasionally it is convenient to turn a column vector into a row
vector without conjugating the entries; we write this using the transpose:
uT = [u1, u2, . . . , un ]. Note that u∗ = uT, and if u ∈ Rn, then u∗ = uT.)

Embree – draft – 29 March 2017
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1.1. Notation and Preliminaries 3

Euclidean vector geometry: norms and angles between vectors

The inner product provides a notion of magnitude, or norm, of v ∈ Cn:

‖v‖ =
( n∑
j=1

|vj |2
)1/2

=
√

v∗v.

A vector of norm 1 is called a unit vector.
From the definition of the norm immediately follows the positivity prop-

erty,

• ‖v‖ ≥ 0, with ‖v‖ = 0 only when v = 0

and the scaling property,

• ‖αv‖ = |α|‖v‖ for all α ∈ C.

The norm also obeys the triangle inequality,

• ‖u + v‖ ≤ ‖u‖+ ‖v‖ (‘triangle inequality’).

The proof of the triangle inequality is not immediately obvious. The stan-
dard approach relies on another critical relationship between the inner prod-
uct and norm, the Cauchy–Schwarz inequality.

Lemma 1.1 (Cauchy–Schwarz inequality). For any u,v ∈ Cn,

|u∗v| ≤ ‖u‖‖v‖. (1.1)

Proof. Enough proofs of this inequality exist to fill a book [Ste04]. We
shall follow a standard proof for general inner products [You88, Ch. 1].

If u∗v = 0, the result is trivial. Otherwise, express the (complex) scalar
u∗v in the polar form u∗v = eiθ|u∗v| for some θ ∈ [0, 2π). Now, for any
t ∈ C, note that

0 ≤ ‖u + tv‖2 = u∗u + u∗(tv) + (tv)∗u + (tv)∗(tv)

= u∗u + tu∗v + tu∗v + (tv)∗(tv)

= ‖u‖2 + 2Re(tu∗v) + |t|2‖v‖2,

where we have used the fact that z+z = 2Re(z) for any z ∈ C. Now set t to
have the form t = e−iθr for some r ∈ R. Now recalling that u∗v = eiθ|u∗v|,
we have

Re(tu∗v) = Re(e−iθreiθ|u∗v|) = r|u∗v| ∈ R,

Embree – draft – 29 March 2017
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4 Chapter 1. Basic Spectral Theory

and |t|2 = r2, so
0 ≤ ‖u‖2 + 2r|u∗v|+ r2‖v‖2.

Notice that the right-hand side is a quadratic equation in the variable r with
real coefficients. In particular, as r ∈ R is varied, the right-hand side traces
out a parabola, opening up. Since this parabola is bounded below by 0, it
must have either (a) a double root, or (b) a complex-conjugate pair of roots.
In particular, this means that the discriminant (the “b2 − 4ac” term in the
quadratic formula) must be less than or equal to zero:

0 ≥ (2|u∗v|)2 − 4‖u‖2‖v‖2,

which can be rearranged to yield the inequality |u∗v| ≤ ‖u‖‖v‖.

With the Cauchy–Schwarz inequality at our disposal, it is simple to
prove the triangle inequality. The standard proof (see [You88, Ch. ]) goes
as follows. Given u,v ∈ Cn, expand ‖u + v‖2 to obtain

‖u + v‖2 = ‖u‖2 + 2Re(u∗v) + ‖v‖2.

Using the fact that Re(z) ≤ |z| for any z ∈ C, along with the Cauchy–
Schwarz inequality,

‖u + v‖2 ≤ ‖u‖2 + 2|u∗v|+ ‖v‖2

≤ |u‖2 + 2‖u‖‖v‖+ ‖v‖2 = (‖u‖+ ‖v‖)2.

Then take square roots to get the triangle inequality: ‖u + v‖ ≤ ‖u‖+ ‖v‖.

The Cauchy–Schwarz inequality gives us a way to establish a geometry
for Cn. One can show that equality holds in (1.1) if and only if u and v
are collinear (one can be written as a scaling of the other). Otherwise, the
quantity

|u∗v|
‖u‖ ‖v‖

∈ [0, 1]

can be regarded as a measure of the alignment of the vectors u and v. More
specifically, the acute angle between u,v ∈ Cn is defined to be

∠(u,v) := cos−1
( |u∗v|
‖u‖‖v‖

)
∈ [0, π/2].

(If u = 0 or v = 0, ∠(u,v) is undefined.)
A notable special case occurs when ∠(u,v) = π/2, meaning u∗v = 0.

Any u and v for which u∗v = 0 are said to be orthogonal, written u ⊥ v.

Embree – draft – 29 March 2017
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1.1. Notation and Preliminaries 5

Orthogonal vectors obey a special relationship that is useful in many
settings, the Pythagorean Theorem: If u and v are orthogonal, u∗v = 0,
then

‖u + v‖2 = ‖u‖2 + ‖v‖2.

The proof follows immediately from expanding ‖u + v‖2.

A set comprising mutually orthogonal unit vectors is called an orthonor-
mal set. Two sets U,V ⊆ Cn are orthogonal provided u ⊥ v for all u ∈ U

and v ∈ V. The orthogonal complement of a set V ⊆ Cn is the set of vectors
orthogonal to all v ∈ V, denoted

V⊥ := {u ∈ Cn : u∗v = 0 for all v ∈ V}.

The sum of two subspaces U,V ⊆ Cn is given by

U + V = {u + v : u ∈ U,v ∈ V}.

A special notation is used for this sum when the two subspaces intersect
trivially, U ∩ V = {0}; we call this a direct sum, and write

U⊕ V = {u + v : u ∈ U,v ∈ V}.

This extra notation is justified by an important consequence: each x ∈ U⊕V
can be written uniquely as x = u + v for u ∈ U and v ∈ V.

Matrix notation, submatrix multiplication, the fundamental subspaces

Matrices with m rows and n columns of scalars are denoted by a bold capital
letter, e.g., A ∈ Cm×n. The (j, k) entry of A ∈ Cm×n is written as aj,k; It is
often more useful to access A by its n columns, a1, . . . ,an. Thus, we write
A ∈ C3×2 as

A =

 a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

 = [ a1 a2 ] .

We have the conjugate-transpose and transpose of matrices: the (j, k) entry
of A∗ is ak,j , while the (j, k) entry of AT is ak,j . For our 3× 2 matrix A,

A∗ =

[
a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

]
=

[
a∗1
a∗2

]
, AT =

[
a1,1 a2,1 a3,1

a1,2 a2,2 a3,2

]
=

[
aT

1

aT
2

]
.

Through direct computation, one can verify that

(AB)∗ = B∗A∗, (AB)T = BTAT.

Embree – draft – 29 March 2017
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6 Chapter 1. Basic Spectral Theory

We often will build matrices out of vectors and submatrices, and to multiply
such matrices together, block-by-block, in the same manner we multiply
matrices entry-by-entry. For example, if A,B ∈ Cm×n and v ∈ Cn, then

[ A B ] v = [ Av Bv ] ∈ Cm×2.

Another pair of examples might be helpful. For example, if

A ∈ Cm×k, B ∈ Cm×`, C ∈ Ck×n, D ∈ C`×n,

then we have
[ A B ]

[
C
D

]
= [ AC + BD ] ∈ Cm×n,

while if
A ∈ Cm×k, B ∈ Cn×k, C ∈ Ck×p, D ∈ Ck×q,

then [
A
B

]
[ C D ] =

[
AC AD
BC BD

]
∈ C(m+n)×(p+q).

The range (or column space) of A ∈ Cm×n is denoted by R(A):

R(A) := {Ax : x ∈ Cn} ⊆ Cm.

The null space (or kernel) of A ∈ Cm×n is denoted by N(A):

N(A) := {x ∈ Cn : Ax = 0} ⊆ Cn.

The range and null space of A are always subspaces. The span of a set of
vectors {v1, . . . ,vn} ⊂ Cm equals the range of the matrix whose columns
are v1, . . . ,vn:

span{v1, . . . ,vn} = R(V), V = [ v1, . . . ,vn ] ∈ Cm×n.

The vectors v1, . . . ,vn are linearly independent provided N(V) = {0}.
With any matrix A ∈ Cm×n we associate ‘four fundamental subspaces’:

R(A), N(A), R(A∗), and N(A∗). These spaces are related in a beauti-
ful manner that Strang calls the Fundamental Theorem of Linear Alge-
bra [Str93]: For any A ∈ Cm×n,

R(A)⊕N(A∗) = C
m, R(A) ⊥ N(A∗)

R(A∗)⊕N(A) = C
n, R(A∗) ⊥ N(A).

Embree – draft – 29 March 2017
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1.1. Notation and Preliminaries 7

Hence, for example, each v ∈ Cm can be written uniquely as v = vR + vN ,
for orthogonal vectors vR ∈ R(A) and vN ∈ N(A∗).

A matrix A ∈ Cn×n is invertible provided that given any b ∈ Cn, the
equation Ax = b has a unique solution x, which we write as x = A−1b;
A is invertible provided its range coincides with the entire ambient space,
R(A) = Cn, or equivalently, its null space is trivial, N(A) = {0}. A square
matrix that is not invertible is said to be singular. Strictly rectangular
matrices A ∈ Cm×n with m 6= n are never invertible. When the inverse
exists, it is unique. Thus for invertible A ∈ Cn×n, we have (A∗)−1 = (A−1)∗,
and if both A,B ∈ Cn×n are invertible, then so too is their product:

(AB)−1 = B−1A−1.

The induced matrix norm

Given the ability to measure the lengths of vectors, we can immediately
gauge the magnitude of a matrix by the maximum amount it stretches a
vector. For any A ∈ Cm×n, the matrix norm is defined (for now) as

‖A‖ := max
v∈Cn

v 6=0

‖Av‖
‖v‖

= max
v∈Cn

‖v‖=1

‖Av‖. (1.2)

The matrix norm enjoys properties similar to the vector norm:

• ‖A‖ ≥ 0, and ‖A‖ = 0 if and only if A = 0 (positivity);

• ‖αA‖ = |α|‖A‖ for all α ∈ C (scaling);

• ‖A + B‖ ≤ ‖A‖+ ‖B‖ (triangular inequality).

As in the vector case, the proof of the triangle inequality merits a closer look.
Start with the definition of the matrix norm and apply the vector triangle
inequality:

‖A + B‖ = max
v∈Cn

‖v‖=1

‖(A + B)v‖ ≤ max
v∈Cn

‖v‖=1

‖Av‖+ ‖Bv‖.

Suppose this maximization is attained by some vector, call it x:

‖A + B‖ ≤ max
v∈Cn

‖v‖=1

‖Av‖+ ‖Bv‖ = ‖Ax‖+ ‖Bx‖. (1.3)

Embree – draft – 29 March 2017
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8 Chapter 1. Basic Spectral Theory

Now this x need not be the vector that maximizes ‖Av‖ over all choices for
the unit vector v, so

‖Ax‖ ≤ max
v∈Cn

‖v‖=1

‖Av‖, ‖Bx‖ ≤ max
v∈Cn

‖v‖=1

‖Bv‖.

Inserting these inequalities on the right-hand side of (1.3) gives

‖A + B‖ ≤
(

max
v∈Cn

‖v‖=1

‖Av‖
)

+
(

max
v∈Cn

‖v‖=1

‖Av‖
)

= ‖A‖+ ‖B‖. (1.4)

We would not usually be so deliberate about this proof, but students some-
times get tripped up over the move from a single maximization in (1.3) and
the two maximizations in (1.4). Explicitly introducing the vector x makes
this transition more transparent.

Matrix norms obey several other essential inequalities. Given the maxi-
mization in (1.2), it immediately follows that for any v ∈ Cn,

‖Av‖ ≤ ‖A‖‖v‖.

This result even holds when v ∈ Cn is replaced by any matrix B ∈ Cn×k,

‖AB‖ ≤ ‖A‖‖B‖. (1.5)

This is the submultiplicative property of the matrix norm. (Prove it!)

Important matrices

Several special classes of matrices play a particularly distinguished role.

• A matrix A ∈ Cm×n is diagonal provided all off-diagonal elements are
zero: aj,k = 0 if j 6= k. We say A ∈ Cm×n is upper triangular provided
all entries below the main diagonal are zero, aj,k = 0 if j > k; lower
triangular matrices are defined similarly.

• A square matrix A ∈ Cn×n is Hermitian provided A∗ = A, and sym-
metric provided AT = A. (For real matrices, these notions are identi-
cal, and such matrices are usually called ‘symmetric’ in the literature.
In the complex case, Hermitian matrices are both far more common
and far more convenient than symmetric matrices – though the latter
do arise in certain applications, like scattering problems.) One often
also encounters skew-Hermitian and skew-symmetric matrices, where
A∗ = −A and AT = −A.

Embree – draft – 29 March 2017
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1.1. Notation and Preliminaries 9

• A square matrix U ∈ Cn×n is unitary provided that U∗U = I, which is
simply a concise way of stating that the columns of U are orthonormal.
Since U is square (it has n columns, each in Cn), the columns of U
form an orthonormal basis for Cn: this fact makes unitary matrices so
important. Because the inverse of a matrix is unique, U∗U = I implies
that UU∗ = I.

• Often we encounter k < n orthonormal vectors u1, . . . ,uk ∈ Cn. Defin-
ing U = [u1, . . . ,uk] ∈ Cn×k, we see that U∗U = I ∈ Ck×k. Since U is
not square, it has no inverse; in fact, we must have UU∗ 6= I ∈ Cn×n.
Though they arise quite often, there is no settled name for matrices
with k < n orthonormal columns; we like the term subunitary best.

Premultiplication of a vector by a unitary or subunitary matrix leaves
the 2-norm unchanged, for if U∗U = I, then

‖Ux‖2 = (Ux)∗(Ux) = x∗U∗Ux = x∗x = ‖x‖2.

The intuition behind the algebra is that Ux is just a representation of x
in a different orthonormal basis, and that change of basis should not affect
the magnitude of x. Moreover, if U ∈ Ck×m is unitary or subunitary, and
V ∈ Cn×n is unitary, then for any A ∈ Cm×n,

‖UAV‖ = max
‖x‖=1

‖UAVx‖ = max
‖x‖=1

‖AVx‖ = max
‖y‖=1
y=Vx

‖Ay‖ = ‖A‖.

These properties, ‖Ux‖ = ‖x‖ and ‖UAV‖ = ‖A‖, are collectively known
as the unitary invariance of the norm.

• A square matrix P ∈ Cn×n is a projector provided P2 = P (note that
powers mean repeated multiplication: P2 := PP). Projectors play
a fundamental role in the spectral theory to follow. We say that P
projects onto R(P) and along N(P). Notice that if u ∈ R(P), then
Pu = u; it follows that ‖P‖ ≥ 1. When the projector is Hermitian,
P = P∗, the Fundamental Theorem of Linear Algebra implies that
R(P) ⊥ N(P∗) = N(P), and so P is said to be an orthogonal projector:
the space it projects onto is orthogonal to the space it projects along.
In this case, ‖P‖ = 1. The orthogonal projector provides an ideal
framework for characterizing best approximations from a subspace: for
any x ∈ Cn×n and orthogonal projector P,

min
u∈R(P)

‖x− u‖ = ‖x−Px‖.

Embree – draft – 29 March 2017
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10 Chapter 1. Basic Spectral Theory

A projector that is not orthogonal (i.e., P 6= P∗) is called oblique.

Various projectors will arise throughout this course. The simplest ex-
amples project onto a single dimension.

– If u ∈ Cn is nonzero, then

P :=
uu∗

u∗u
=
( u

‖u‖

)( u

‖u‖

)∗
is the orthogonal projector with R(P) = span{u}.

– If u,v ∈ Cn are not orthogonal (v∗u 6= 0), then

P :=
uv∗

v∗u

is the (generally oblique) projector onto R(P) = span{u} and
along N(P) = span{v}⊥.

Both of these projectors onto one-dimensional subspaces have natural
generalizations to higher dimensions. (In fact, all projectors can be
written in one of these two following ways.)

– If U ∈ Cn×k is a subunitary matrix (U∗U = I), then

P := UU∗

is the orthogonal projector onto R(P) = R(U).

– If U,V ∈ Cn×k with V∗U = I (we say the columns of U and V
are biorthogonal), then

P := UV∗

is the (generally oblique) projector onto R(P) = R(U) and along
N(P) = N(V∗) = R(V)⊥.

Basic metric space properties

In this concise introduction we shall not go into lengthy detail about metric
space properties of Cn and Cn×n endowed with the norms described earlier
in this chapter. However, a few properties are important to mention and
used in proofs later.

Embree – draft – 29 March 2017
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1.2. Eigenvalues and Eigenvectors 11

Definition 1.2. The sequence {xk}∞k=1 ⊂ Cn converges to x ∈ Cn provided
that, for any ε > 0, there exists some positive integer Nε such that for all
k > Nε, ‖xk − x‖ < ε. We write xk → x as k →∞.

To show that {xk}∞k=1 is convergent directly via this definition, one must
identify the target x to which the sequence converges. Often it is much
easier to simply show that all the vectors in the sequence are getting closer
together, in the formal precise sense.

Definition 1.3. The vectors {xk}∞k=1 ⊂ Cn form a Cauchy sequence
provided that, for any ε > 0, there exists a positive integer Nε for which
‖xj − xk‖ < ε for all j, k > Nε.

Suppose you can show that {xk}∞k=1 is a Cauchy sequence. Must there
exist some x ∈ Cn to which in converges? In finite dimensions (like Cn) the
answer is alway yes. (In infinite dimensions the question is more subtle, as
you learn in a functional analysis class.) Normed vector spaces in which all
Cauchy sequences converge are called complete.

Fact 1.4. Suppose {xk}∞k=1 ⊂ Cn is a Cauchy sequence. Then there exists
some x ∈ Cn such that xk → x as k →∞.

These definitions can be naturally extended to sequences {Ak}∞k=1 of
matrices in Cm×n, using the matrix norm defined in (1.2).

Definition 1.5. The sequence {Ak}∞k=1 ⊂ Cm×n converges to A ∈ Cm×n
provided that, for any ε > 0, there exists some positive integer Nε such that
for all k > Nε, ‖Ak −A‖ < ε. We write Ak → A as k →∞.

Definition 1.6. The matrices {Ak}∞k=1 ⊂ Cm×n form a Cauchy sequence
provided that, for any ε > 0, there exists a positive integer Nε such that
‖Aj −Ak‖ < ε for all j, k > Nε.

Fact 1.7. Suppose {Ak}∞k=1 ⊂ Cm×n is a Cauchy sequence. Then there
exists some A ∈ Cm×n such that Ak → A as k →∞.

1.2 Eigenvalues and Eigenvectors
In the early s Daniel Bernoulli was curious about vibrations. In
the decades since the publication of Newton’s Principia in , natu-
ral philosophers across Europe fundamentally advanced their understand-

Embree – draft – 29 March 2017
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12 Chapter 1. Basic Spectral Theory

ing of basic mechanical systems. Bernoulli was studying the motion of
a compound pendulum – a massless string suspended with a few massive
beads. Given the initial location of those beads, could you predict how the

mass 3

mass 2

mass 1

?

6

`

?

6

`

?

6

`

Figure 1.1. A pendulum
with three equally-spaced
masses.

pendulum would swing? To keep matters simple
he considered only small motions, in which case the
beads only move, to first approximation, in the hor-
izontal direction. Though Bernoulli addressed a
variety of configurations (including the limit of in-
finitely many masses) [Ber33, Ber34], for our pur-
poses it suffices to consider three equal masses, m,
separated by equal lengths of thread, `; see Fig. 1.1.
If we denote by x1, x2, x3 the displacement of the
three masses and by g the force of gravity, the sys-
tem oscillates according to the second order differ-
ential equationx′′1(t)

x′′2(t)
x′′3(t)

 =
g

m`

 −1 1 0
1 −3 2
0 2 −5

x1(t)
x2(t)
x3(t)

 ,
which we abbreviate

x′′(t) = −Ax(t), (1.6)

though this convenient matrix notation did not come along until Arthur
Cayley introduced it some 120 years later.

Given these equations of motion, Bernoulli asked: what nontrivial
displacements x1(0), x2(0), and x3(0) produce motion where both masses
pass through the vertical at the same time, as in the rest configuration? In
other words, which values of x(0) = u 6= 0 produce, at some t > 0, the
solution x(t) = 0?

Bernoulli approached this question via basic mechanical principles
(see [Tru60, 160ff]); we shall summarize the result in our modern matrix
setting. For a system with n masses, there exist nonzero vectors u1, . . . ,un
and corresponding scalars λ1, . . . , λn for which Auj = λjuj . When the
initial displacement corresponds to one of these directions, x(0) = uj , the
differential equation (1.6) reduces to

x′′(t) = −λjx(t),

which (provided the system begins at rest, x′(0) = 0) has the solution

x(t) = cos(
√
λjt)uj .
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Cortxment:Acad:Sc:Tom:riTai : VII /^. /0^^.

M':^ -^

-l^hG

Cortxment:Acad:Sc:Tom:riTai : VII /^. /0^^.

M':^ -^

-l^hG
Figure 1.2. The three eigenvectors for a uniform 3-mass system: Bernoulli’s 
illustration [Ber33], from a scan of the journal at archive.org (left); plotted in
MATLAB (right).

Hence whenever
√
λjt is a half-integer multiple of π, i.e.,

t =
(2k + 1)π√

λj
, k = 0, 1, 2, . . . ,

we have x(t) = 0: the masses will simultaneously have zero horizontal dis-
placement, as Bernoulli desired. He computed these special directions for
cases, and also studied the limit of infinitely many beads. His illustration of
the three distinguished vectors for three equally-separated uniform masses is
compared to a modern plot in Figure 1.2.

While Bernoulli’s specific question may seem arcane, the ideas sur-
rounding its resolution have had, over the course of three centuries, a fun-
damental influence in subjects as diverse as quantum mechanics, popula-
tion ecology, and economics. As Truesdell observes [Tru60, p. 154ff],
Bernoulli did not yet realize that his special solutions u1, . . . ,un were the
key to understanding all vibrations, for if

x(0) =

n∑
j=1

γjuj ,

then the true solution is a superposition of the special solutions oscillating
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14 Chapter 1. Basic Spectral Theory

at their various frequencies:

x(t) =

n∑
j=1

γj cos(
√
λjt)uj . (1.7)

With these distinguished directions u – for which multiplication by the ma-
trix A has the same effect as multiplication by the scalar λ – we thus unlock
the mysteries of linear dynamical systems. Probably you have encountered
these quantities already: we call u an eigenvector associated with the eigen-
value λ. (Use of the latter name, a half-translation of the German eigenwert,
was not settled until recent decades. Older English-language books favor al-
ternatives like latent root, characteristic value, or proper value.)

Subtracting the left side of the equation Au = λu from the right yields

(A− λI)u = 0,

which implies u ∈ N(A− λI). In the analysis to follow, this proves to be a
particularly useful way to think about eigenvalues and eigenvectors.

Eigenvalues, Eigenvectors, Spectrum, Resolvent

A point λ ∈ C is an eigenvalue of A ∈ Cn×n if that λI − A is not
invertible. Any nonzero u ∈ N(λI − A) is called an eigenvector of A
associated with λ, and

Au = λu.

The spectrum of A is the set of all eigenvalues of A:

σ(A) := {λ ∈ C : λI−A is not invertible}.

For any complex number z 6∈ σ(A), the resolvent is the matrix

R(z) = (zI−A)−1, (1.8)

which can be viewed as a function, R(z) : C \ σ(A)→ Cn×n.

1.3 Properties of the Resolvent
The resolvent is a central object in spectral theory – it reveals the exis-
tence of eigenvalues, indicates where eigenvalues can fall, and shows how
sensitive these eigenvalues are to perturbations. To form the resolvent, you
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1.3. Properties of the Resolvent 15

could follow the usual Gauss–Jordan elimination procedure that you learned
for computing the inverse of a standard matrix. Now the matrix you are
inverting involves the variable z, but the same procedure applies.

Transform the augmented matrix [zI−A | I] into the form [I | (zI−A)−1]

using elementary row operations: row swaps, scaling rows (by a term the
possibly includes z), and adding rows. These elementary row operations
might involve multiplying or dividing by terms involving z, but they do not
involve any other nonlinear functions (e.g., no sin(z) or

√
z or ez). Thus as

the inverse of the matrix zI−A, the resolvent will have as its entries rational
functions of z.

It is hard to appreciate the resolvent without looking at a few examples:

A =

[
0 0
0 1

]
, R(z) =

 1

z
0

0
1

z − 1

 ;

A =

[
0 1
0 1

]
, R(z) =


1

z

1

z(z − 1)

0
1

z − 1

 ;

A =

[
2 −2
1 −1

]
, R(z) =


1 + z

z(z − 1)

−2

z(z − 1)
1

z(z − 1)

z − 2

z(z − 1)

 ;

A =

 0 1 1
0 1 0
0 0 0

 , R(z) =


1

z

1

z(z − 1)

1

z2

0
1

(z − 1)
0

0 0
1

z

 .

The resolvent will fail to exist at any z ∈ C where one (or more) of its rational
entries has a pole (division by zero) – and these points are the eigenvalues
of A. Indeed, we could have defined σ(A) to be ‘the set of all z ∈ C where
R(z) does not exist’. Can you identify these points in the examples above?

In all four examples, the A matrices have the same eigenvalues, σ(A) =
{0, 1}. In each case, notice that R(z) exists for all z ∈ C except z = 0 and
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16 Chapter 1. Basic Spectral Theory

z = 1, where at least one entry in the matrix R(z) encounters division by
zero. As z approaches an eigenvalue, since at least one entry blows up, we
must have ‖R(z)‖ → ∞, but the rate at which this limit is approached can
vary with the matrix (e.g., 1/z versus 1/z2). Being comprised of rational
functions, the resolvent has a complex derivative at any point z ∈ C that is
not in the spectrum of A, and hence on any open set in the complex plane
not containing an eigenvalue, the resolvent is an analytic function.

How large can the eigenvalues be? Is there a threshold on |z| beyond
which R(z) must exist? A classic approach to this question provides our
first example of a matrix-valued series.

Neumann Series

Theorem 1.8. For any matrix E ∈ Cn×n with ‖E‖ < 1, the matrix
I−E is invertible with

(I−E)−1 = lim
k→∞

I + E + E2 + E3 + · · ·+ Ek

and
‖(I−E)−1‖ ≤ 1

1− ‖E‖
.

Proof. The essence of the proof is to establish a matrix generalization of
the scalar Taylor series, (1 − ε)−1 = 1 + ε + ε2 + ε3 + · · ·, which converges
provided |ε| < 1. Formally, we wish to write

(I−E)−1 = I + E + E2 + E3 + · · · , (1.9)

provided ‖E‖ < 1. One can see this simply by multiplying

(I−E) (I + E + E2 + E3 + · · · )

= (I + E + E2 + E3 + · · · )− (E + E2 + E3 + E4 + · · · )

= I.

To make this intuition rigorous, define for k = 1, 2, . . .

Xk := I + E + · · ·+ Ek−1.

We will show that {Xk} is a Cauchy sequence (Definition 1.6), and hence
converges to some matrix X ∈ Cn×n (Fact 1.7). To show {Xk} is Cauchy,
assume without loss of generality that k ≥ j, so that

Xk −Xj = Ej + Ej+1 + · · ·+ Ek−1 = Ej(I + E + E2 + · · ·+ Ek−j−1).
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1.3. Properties of the Resolvent 17

Thus, using the submultiplicativity of the matrix norm (1.5),

‖Xk −Xj‖ ≤ ‖E‖j(‖I‖+ ‖E‖+ ‖E‖2 + · · · ‖E‖k−j−1)

≤ ‖E‖j(‖I‖+ ‖E‖+ ‖E‖2 + |E‖3 + · · · )

≤ ‖E‖j 1

1− ‖E‖
, (1.10)

summing the geometric series and assuming ‖E‖ < 1. Thus given any ε > 0,
we can pick Nε in Definition 1.6 such that

ε < ‖E‖Nε
1

1− ‖E‖
,

and then for any j, k > Nε, by (1.10) we conclude that ‖Xk −Xj‖ ≤ ε and
hence {Xk} is a Cauchy sequence. Fact 1.7 ensures that there exists some
X ∈ Cn×n such that Xk → X.

It remains to show that this X is actually the inverse of I − E. This
means that we need to show that X does what an inverse is supposed to do,
i.e., that X(I−E) = I. We compute:

‖X(I−E)− I)‖ = lim
k→∞

‖Xk(I−E)− I‖

= lim
k→∞

∥∥∥∥ k∑
j=0

Ej −
k∑
j=0

Ej+1 − I

∥∥∥∥
= lim

k→∞
‖Ek+1‖ = ‖0‖ = 0.

Thus, X = (I−E)−1. It is natural to write

X = (I−E)−1 = I + E + E2 + · · · .

Again using submultiplicativity of the matrix norm, we can bound the norm
of the inverse:

‖(I−E)−1‖ = lim
k→∞

‖I + E + E2 + · · ·+ Ek‖

≤ ‖I‖+ ‖E‖+ ‖E‖2 + · · · =
1

1− ‖E‖
.
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18 Chapter 1. Basic Spectral Theory

Neumann Series for Resolvent

Theorem 1.9. For any A ∈ Cn×n and |z| > ‖A‖, the resolvent R(z)
exists and

‖R(z)‖ ≤ 1

|z| − ‖A‖
.

Proof. The statement about the resolvent R(z) := (zI − A)−1 follows
directly from Theorem 1.8. If |z| > ‖A‖, then ‖A/z‖ < 1, so

(zI−A)−1 = z−1(I−A/z)−1 = z−1(I + A/z + A2/z2 + · · ·)

and
‖(zI−A)−1‖ ≤ 1

|z|
1

1− ‖A/z‖
=

1

|z| − ‖A‖
.

Theorems 1.8 and 1.9 prove very handy in a variety of circumstances.
For example, it provides a mechanism for inverting small perturbations of
arbitrary invertible matrices; see Problem 1.1. Of more immediate interest
to us now, notice that since ‖R(z)‖ < 1/(|z| − ‖A‖) when |z| > ‖A‖, there
can be no eigenvalues that exceed ‖A‖ in magnitude:

σ(A) ⊆ {z ∈ C : |z| ≤ ‖A‖}.

In fact, we could have reached this conclusion more directly, since the eigenvalue-
eigenvector equation Av = λv gives

|λ|‖v‖ = ‖Av‖ ≤ ‖A‖‖v‖.

At this point, we know that a matrix cannot have arbitrarily large eigen-
values. But a more fundamental question remains: does a matrix need to
have any eigenvalues at all? Is it possible that the spectrum is empty? As a
consequence of Theorem 1.9, we see this cannot be the case.

Theorem 1.10. Every matrix A ∈ Cn×n has at least one eigenvalue.

Proof. Liouville’s Theorem (from complex analysis) states that any entire
function (a function that is analytic throughout the entire complex plane)
that is bounded throughout C must be constant. If A has no eigenvalues,
then R(z) is entire and ‖R(z)‖ is bounded throughout the disk {z ∈ C : |z| ≤
‖A‖}. By Theorem 1.9, ‖R(z)‖ is also bounded outside this disk. Hence by
Liouville’s Theorem, R(z) must be constant. However, Theorem 1.9 implies
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1.3. Properties of the Resolvent 19

Re z

Im z

lo
g
1
0
‖R

(z
)‖

Figure 1.3. Norm of the resolvent for the 3× 3 matrix on page 15.

that ‖R(z)‖ → 0 as |z| → ∞. Thus, we must have R(z) = 0, but this
contradicts the identity R(z)(zI−A) = I. Hence A has an eigenvalue.

(One might favor an apparently less sophisticated approach. All entries
in R(z) are rational functions, meaning that the (j, k) entry of R(z) can
be written as pj,k(z)/qj,k(z) for some polynomials pj,k and qj,k. Suppose A
does not have any eigenvalues. This means that qj,k(z) 6= 0 for all j, k ∈
{1, . . . , n}. Since each of these qj,k polynomials has no roots, it must be a
(nonzero) constant. Without loss of generality, assume qj,k(z) = 1 for all
z. Thus rj,k(z) = pj,k(z) is a polynomial for all j and k. However, any
non-constant polynomial must satisfy |p(z)| → ∞ as |z| → ∞

One appeal of the proofs of Theorems 1.9 and 1.10 (e.g., [Kat80, p. 37],
[You88, Ch. 7]) is that they generalize readily to bounded linear operators
on infinite dimensional spaces; see, e.g., [RS80, p. 191].

We hope the explicit resolvents of those small matrices shown at the be-
ginning of this section helped build your intuition for the important concepts
that followed. It might also help to supplement this analytical perspective
with a picture of the resolvent norm in the complex plane. Figure 1.3 plots
‖R(z)‖ as a function of z ∈ C: eigenvalues correspond to the spikes in the
plot, which go off to infinity – these are the poles of entries in the resolvent.
Notice that the peak around the eigenvalue λ = 0 is a bit broader than the
one around λ = 1, reflecting the quadratic growth in 1/z2 term, compared
to linear growth in 1/(z − 1).
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20 Chapter 1. Basic Spectral Theory

1.4 Reduction to Schur Triangular Form
We saw in Theorem 1.10 that every matrix must have at least one eigenvalue.
Now we leverage this basic result to factor any square A into a distinguished
form, the combination of a unitary matrix and an upper triangular matrix.

Schur Triangularization

Theorem 1.11. For any matrix A ∈ Cn×n there exists a unitary matrix
U ∈ Cn×n and an upper triangular matrix T ∈ Cn×n such that

A = UTU∗. (1.11)

The eigenvalues of A are the diagonal elements of T:

σ(A) = {t1,1, . . . , tn,n}.

Hence A has exactly n eigenvalues (counting multiplicity).

Proof. We will prove this result by mathematical induction. If A is a scalar,
A ∈ C1×1, the result is trivial: take U = 1 and T = A. Now make the
inductive assumption that the result holds for (n − 1) × (n − 1) matrices.
By Theorem 1.10, any matrix A ∈ Cn×n must have at least one eigenvalue
λ ∈ C, and consequently a corresponding unit eigenvector u, so that

Au = λu, ‖u‖ = 1.

Now construct a matrix Q ∈ Cn×(n−1) whose columns form an orthonormal
basis for the space span{u}⊥, so that [ u Q ] ∈ Cn×n is a unitary matrix.
Then (following the template for block-matrix multiplication described on
page 6), we have

[ u Q ]∗A [ u Q ] =

[
u∗Au u∗AQ
Q∗Au Q∗AQ

]
. (1.12)

The (1, 1) entry is simply

u∗Au = u∗(λu) = λ‖u‖2 = λ,

while the orthogonality of u and R(Q) gives the (2, 1) entry

Q∗Au = λQ∗u = 0 ∈ C(n−1)×1.
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1.4. Reduction to Schur Triangular Form 21

We can say nothing specific about the (1, 2) and (2, 2) entries, but give them
the abbreviated names

t̂∗ := u∗AQ ∈ C1×(n−1), Â := Q∗AQ ∈ C(n−1)×(n−1).

Now rearrange (1.12) into the form

A = [ u Q ]

[
λ t̂∗

0 Â

]
[ u Q ]∗ , (1.13)

which is a partial Schur decomposition of A: the central matrix on the
right has zeros below the diagonal in the first column, but we must extend
this. By the inductive hypothesis we can compute a Schur factorization for
the (n− 1)× (n− 1) matrix Â:

Â = ÛT̂Û∗.

Substitute this formula into (1.13) to obtain

A = [ u Q ]

[
λ t̂∗

0 ÛT̂Û∗

] [
u∗

Q∗

]

= [ u Q ]

[
1 0
0 Û

] [
λ t̂∗Û
0 T̂

] [
1 0
0 Û∗

] [
u∗

Q∗

]

= [ u QÛ ]

[
λ t̂∗Û
0 T̂

]
[ u QÛ ]∗ . (1.14)

The central matrix in this last arrangement is upper triangular,

T :=

[
λ t̂∗Û
0 T̂

]
.

We label the matrices on either side of T in (1.14) as U and U∗, where

U := [ u QÛ ] ,

so that A = UTU∗. Our last task is to confirm that U is unitary: to see
this, note that the orthogonality of u and R(Q), together with the fact that
Û is unitary, implies

U∗U =

[
u∗u u∗QÛ

Û∗Q∗u Û∗Q∗QÛ

]
=

[
1 0
0 I

]
.
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22 Chapter 1. Basic Spectral Theory

Given the Schur factorization A = UTU∗, we wish to show that A and
T have the same eigenvalues. If (λ,v) is a eigenpair of A, so Av = λv, then
UTU∗v = λv. Premultiply that last equation by U∗ to obtain

T(U∗v) = λ(U∗v).

In other words, λ is an eigenvalue of T with eigenvector U∗v. (Note that
‖U∗v‖ = ‖v‖ by unitary invariance of the norm, so U∗v 6= 0.) What then
are the eigenvalues of T? As an upper triangular matrix, zI − T will be
singular (or equivalently, have linearly dependent columns) if and only if one
of its diagonal elements is zero, i.e., z = tj,j for some 1 ≤ j ≤ n. It follows
that

σ(A) = σ(T) = {t1,1, t2,2, . . . , tn,n}.

The Schur factorization is far from unique: for example, multiplying any
column of U by −1 will yield a different Schur form. The following corollary
describes a more significant (and useful) way in which Schur factorizations
can differ. More significantly, as we will address later, the eigenvalues can
appear in any desired order on the diagonal of T. (Note that the order of
the eigenvalues will affect both U and the upper triangular entries of T.)
Next we extract a simple but important corollary from the Schur form.

Corollary 1.12. A matrix A ∈ Cn×n has at most n distinct eigenvalues.

Proof. Compute a Schur factorization A = UTU∗. All values on the
diagonal of T are eigenvalues of A. (This is evident from the proof of Theo-
rem 1.11, of from the fact that (T− tj,jI)x = b is not uniquely solvable for
all b ∈ Cn, due to the failure of back substitution.) The Schur factor T has
at most n distinct diagonal entries. Might A have additional eigenvalues?
Suppose λ ∈ C does not equal any of the diagonal entries of T. Then

A− λI = UTU∗ − λI = U(T− λI)U∗,

and so A− λI is invertible if and only if T− λI is invertible. Since λ 6= tj,j
for all j = 1, . . . , n, T − λI has no zero entries on its main diagonal, and
hence is invertible. (For example, you can use back substitution to solve
(T− λI)x = b uniquely for all b ∈ Cn.) Thus λ is not an eigenvalue of A.
Thus A can have at most n distinct eigenvalues.

One subtle point remains to clear up: What about multiple eigenvalues?
Suppose A has p < n distinct eigenvalues. Do these eigenvalues need to
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1.5. Spectral Theorem for Hermitian Matrices 23

appear with the same multiplicity on the diagonal of T in all Schur factor-
izations? For example, is it possible that a 3× 3 matrix A with eigenvalues
λ1 = 1 and λ2 could have two Schur factorizations

A = U1T1U
∗
1 = U2T2U

∗
2

with Schur factors

T1 =

 1 × ×
0 1 ×
0 0 2

 , T2 =

 1 × ×
0 2 ×
0 0 2


where λ1 = 1 and λ2 = 2 appear with conflicting multiplicities? (It is
common practice to use × to represent a generic value we do not care about.)

It turns out that such situations are impossible: the eigenvalues must
appear with the same multiplicity on the diagonal of all Schur factors. We
will pin that down precisely in Section 1.8.

The Schur factorization has widespread and important implications. We
can view any matrix A as an upper triangular matrix, provided we cast it in
the correct orthonormal basis. This means that a wide variety of phenomena
can be understood for all matrices, if only we can understand them for upper
triangular matrices. (Unfortunately, even this poses a formidable challenge
for many situations!)

1.5 Spectral Theorem for Hermitian Matrices
The Schur factorization has special implications for Hermitian matrices,
A∗ = A. In this case,

UTU∗ = A = A∗ = (UTU∗)∗ = UT∗U∗.

Premultiply this equation by U∗ and postmultiply by U to see that

T = T∗.

Thus, T is both Hermitian and upper triangular : in other words, T must be
diagonal! Furthermore,

tj,j = tj,j ;

in other words, the diagonal entries of T – the eigenvalues of A – must be
real numbers. It is customary in this case to write Λ in place of T.
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24 Chapter 1. Basic Spectral Theory

Unitary Diagonalization of a Hermitian Matrix

Theorem 1.13. Let A ∈ Cn×n be Hermitian, A∗ = A. Then there
exists a unitary matrix

U = [ u1, . . . ,un ] ∈ Cn×n

and diagonal matrix

Λ = diag(λ1, . . . , λn) ∈ Cn×n

such that
A = UΛU∗. (1.15)

The orthonormal vectors u1, . . . ,un are eigenvectors of A, corresponding
to eigenvalues λ1, . . . , λn:

Auj = λjuj , j = 1, . . . , n.

The eigenvalues of A are all real: λ1, . . . , λn ∈ R.

Often it helps to consider equation (1.15) in a slightly different form.
Writing that equation out by components gives

A = [ u1 · · · un ]

λ1
. . .

λn

 u∗1
...

u∗n



= [λ1u1 · · · λnun ]

 u∗1
...

u∗n

 = λ1u1u
∗
1 + · · ·λnunu∗n.

Notice that the matrices

Pj := uju
∗
j ∈ Cn×n

are orthogonal projectors, since P∗j = Pj and

P2
j = uj(u

∗
juj)u

∗
j = uju

∗
j = Pj .

Hence we write

A =

n∑
j=1

λjPj . (1.16)
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1.5. Spectral Theorem for Hermitian Matrices 25

Any Hermitian matrix is a weighted sum of orthogonal projectors! Not just
any orthogonal projectors, though; these obey a special property:

n∑
j=1

Pj =
n∑
j=1

uju
∗
j = [ u1 · · · un ]

 u∗1
...

u∗n

 = UU∗ = I.

Thus, we call this collection {P1, . . . ,Pn} a resolution of the identity. Also
note that if j 6= k, then the orthogonality of the eigenvectors implies

PjPk = uju
∗
juku

∗
k = 0.

In summary, via the Schur form we have arrived at two beautifully simple
ways to write a Hermitian matrix:

A = UΛU∗ =
n∑
j=1

λjPj .

Which factorization is better? That varies with mathematical circumstance
and personal taste.

1.5.1 Revisiting Bernoulli’s Pendulum

We pause for a moment to note that we now have all the tools needed
to derive the general solution (1.7) to Bernoulli’s oscillating pendulum
problem. His matrix A ∈ Cn×n is always Hermitian, so following (1.15) we
write A = UΛU∗, reducing the differential equation (1.6) to

x′′(t) = −UΛU∗x(t).

Premultiply by U∗ to obtain

U∗x′′(t) = −ΛU∗x(t). (1.17)

Notice that the vector x(t) represents the solution to the equation in the
standard coordinate system

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
...
0
1

 .
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26 Chapter 1. Basic Spectral Theory

Noting that these vectors form the columns of the identity matrix I, we could
(in a fussy mood), write

x(t) = Ix(t) = x1(t)e1 + x2(t)e2 + · · ·+ xn(t)en.

In the same fashion, we could let y(t) denote the representation of x(t) in
the coordinate system given by the orthonormal eigenvectors of A:

x(t) = Uy(t) = y1(t)u1 + y2(t)u2 + · · ·+ yn(t)un.

In other words,

y(t) = U∗x(t),

so in the eigenvector coordinate system the initial conditions are

y(0) = U∗x(0), y′(0) = U∗x′(0) = 0.

Then (1.17) becomes

y′′(t) = −Λy(t), y(0) = U∗x(0), y′(0) = 0,

which decouples into n independent scalar equations

y′′j (t) = −λjyj(t), yj(0) = u∗jx(0), y′j(0) = 0, j = 1, . . . , n,

each of which has the simple solution

yj(t) = cos(
√
λjt)yj(0).

Transforming back to our original coordinate system,

x(t) = Uy(t) =
n∑
j=1

cos(
√
λjt)yj(0)uj

=

n∑
j=1

cos(
√
λjt)(u

∗
jx(0))uj , (1.18)

which now makes entirely explicit the equation given earlier in (1.7).
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1.6 Diagonalizable Matrices
The unitary diagonalization enjoyed by all Hermitian matrices is absolutely
ideal: the eigenvectors provide an alternative orthogonal coordinate system
in which the matrix becomes diagonal, hence reducing matrix-vector equa-
tions to uncoupled scalar equations that can be dispatched independently.

We now aim to extend this arrangement to all square matrices. Two
possible ways of generalizing A = UΛU∗ seem appealing:

(i) keep U unitary, but relax the requirement that Λ be diagonal;

(ii) keep Λ diagonal, but relax the requirement that U be unitary.

Obviously we have already addressed approach (i): this simply yields the
Schur triangular form. What about approach (ii)?

Suppose A ∈ Cn×n has eigenvalues λ1, . . . , λn with corresponding eigen-
vectors v1, . . . ,vn. First make the quite reasonable assumption that these
eigenvectors are linearly independent. For example, this assumption holds
whenever the eigenvalues λ1, . . . , λn are distinct (i.e., λj 6= λk when j 6= k),
which we pause to establish in the following lemma.

Lemma 1.14. Eigenvectors associated with distinct eigenvalues are lin-
early independent.

Proof. Let the nonzero vectors v1, . . . ,vm be a set of m ≤ n eigenvectors
of A ∈ Cn×n associated with distinct eigenvalues λ1, . . . , λm. Without loss
of generality, suppose we can write

v1 =
m∑
j=2

γjvj .

Premultiply each side successively by A− λkI for k = 2, . . . ,m to obtain

( m∏
k=2

(A− λkI)
)
vj =

( m∑
j=2

γj

m∏
k=2

(A− λkI)
)
vj

=
m∑
j=2

γj

( m∏
k=2
k 6=j

(A− λkI)
)

(A− λjI)vj = 0,

where the last equality follows from the fact that Avj = λjvj . Note, how-
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ever, that the left side of this equation equals

( m∏
k=2

(A− λkI)
)
v1 =

m∏
k=2

(Av1 − λkv1) =
m∏
k=2

(λ1 − λk)v1,

which can only be zero if v1 = 0 or λ1 = λk for some k > 1, both of which
are contradictions. (Adapted from [HK71, page ??]).

We return to our assumption that A ∈ Cn×n has eigenvalues λ1, . . . , λn
with linearly independent eigenvectors v1, . . . ,vn:

Av1 = λ1v1, . . . , Avn = λnvn.

Organizing these n vector equations into one matrix equation, we find

[ Av1 Av2 · · · Avn ] = [λ1v1 λ2v2 · · · λnvn ] .

Recalling that postmultiplication by a diagonal matrix scales the columns of
the preceding matrix, factor each side into the product of a pair of matrices:

A [ v1 v2 · · · vn ] = [ v1 v2 · · · vn ]


λ1

λ2
. . .

λn

 , (1.19)

We summarize equation (1.19) as

AV = VΛ.

The assumption that the eigenvectors are linearly independent enables us to
invert V, hence

A = VΛV−1. (1.20)

This equation gives an analogue of Theorem 1.13. The class of matrices
that admit n linearly independent eigenvectors – and hence the factorization
A = VΛV−1 – are known as diagonalizable matrices. We now seek a variant
of the projector-based representation (1.16). Toward this end, write V−1 out
by rows,

V−1 =


v̂∗1
v̂∗2
...

v̂∗n

 ∈ Cn×n,
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so that (1.20) takes the form

A = [ v1 v2 · · · vn ]


λ1

λ2
. . .

λn




v̂∗1
v̂∗2
...

v̂∗n

 =

n∑
j=1

λjvjv̂
∗
j . (1.21)

The rows of V−1 are called left eigenvectors, since v̂∗jA = λjv̂
∗
j . (In this

context the normal eigenvectors vj that give Avj = λjvj are right eigenvec-
tors.) Also note that while in general the set of right eigenvectors v1, . . . ,vn
are not orthogonal, the left and right eigenvectors are biorthogonal:

v̂∗jvk = (V−1V)j,k =

{
1, j = k;
0, j 6= k.

This motivates our definition

Pj := vjv̂
∗
j . (1.22)

Three facts follow directly from V−1V = VV−1 = I:

P2
j = Pj , PjPk = 0 if j 6= k,

n∑
j=1

Pj = I.

As in the Hermitian case, we have a set of projectors that give a resolution
of the identity. These observations are cataloged in the following Theorem.

Diagonalization

Theorem 1.15. A matrix A ∈ Cn×n with eigenvalues λ1, . . . , λn and
associated linearly independent eigenvectors v1, . . . ,vn can be written as

A = VΛV−1 (1.23)

for
V = [ v1, . . . ,vn ] ∈ Cn×n

and diagonal matrix

Λ = diag(λ1, . . . , λn) ∈ Cn×n.

Denoting the jth row of V−1 as v̂∗j , the matrices Pj := vjv̂
∗
j are projec-

tors, PjPk = 0 if j 6= k, and

A =

n∑
j=1

λjPj . (1.24)
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While equation (1.24) looks identical to the expression (1.16) for Hermi-
tian matrices, notice an important distinction: the projectors Pj here will
not, in general, be orthogonal projectors, since there is no guarantee that
Pj is Hermitian. Furthermore, the eigenvalues λj of diagonalizable matrices
need not be real, even when A has real entries.

On the surface, diagonalizable matrices provide many of the same advan-
tages in applications as Hermitian matrices. For example, if A = VΛV−1

is a diagonalization, then the differential equation

x′(t) = −Ax(t), x′(0) = 0

has the solution

x(t) =
n∑
j=1

cos(
√
λjt)(v̂

∗
jx(0))vj ,

which generalizes the Hermitian formula (1.18). The n linearly independent
eigenvectors provide a coordinate system for Cn in which the matrix A has
a diagonal representation. Unlike the Hermitian case, this new coordinate
system will not generally be orthogonal, and these new coordinates can dis-
tort physical space in surprising ways that have important implications in
applications – as we shall see in Chapter ??.

1.7 Illustration: Damped Mechanical System
We now have a complete spectral theory for all matrices having n linearly
independent eigenvectors. Do there exist matrices that lack this property?
Indeed there do – we shall encounter such a case in a natural physical setting.

An extensible spring vibrates according to the differential equation

x′′(t) = −x(t)− 2ax′(t), (1.25)

where the term −2ax′(t) corresponds to viscous damping (e.g., a dashpot)
that effectively removes energy from the system when the constant a > 0.
To write this second-order equation as a system of first-order equations, we
introduce the variable y(t) := x′(t), so that[

x′(t)
y′(t)

]
=

[
0 1
−1 −2a

] [
x(t)
y(t)

]
, (1.26)

which we write as x′(t) = A(a)x(t). We wish to tune the constant a to
achieve the fastest energy decay in this system. As we shall later see, this
can be accomplished (for a specific definition of ‘fastest’) by minimizing the
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Figure 1.4. Eigenvalues λ±(a) of the damped spring for a ∈ [0, 3/2]; for reference,
four values a are marked with circles, and the gray line shows the imaginary axis.

real part of the rightmost eigenvalue of A(a). For any fixed a, the eigenvalues
are given by

λ± = −a±
√
a2 − 1

with associated eigenvectors

v± =

[
1
λ±

]
.

For a ∈ [0, 1), these eigenvalues form a complex conjugate pair; for a ∈
(1,∞), λ± form a pair of real eigenvalues. In both cases, the eigenvalues are
distinct, so its eigenvectors are linearly independent and A(a) is diagonaliz-
able.

At the point of transition between the complex and real eigenvalues,
a = 1, something interesting happens: the eigenvalues match, λ+ = λ−,
as do the eigenvectors, v+ = v−: the eigenvectors are linearly dependent!
Moreover, this is the value of a that gives the most rapid energy decay, in the
sense that the decay rate

α(a) := max
λ∈σ(A(a))

Reλ =

{
−a, a ∈ [0, 1];

−a+
√
a2 − 1, a ∈ [1,∞)

is minimized when a = 1. This is evident from the plotted eigenvalues in
Figure 1.4, and solutions in Figure 1.5.

The need to fully understand physical situations such as this motivates
our development of a spectral theory for matrices that are not diagonalizable.
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t
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x(t)

Figure 1.5. Solution x(t) of the damped spring equation with x(0) = 1 and x′(0) =
0, for various values of a. The critical value a = 1 causes the most rapid decay of
the solution, yet for this parameter the matrix A(a) is not diagonalizable.

1.8 Nondiagonalizable Matrices: The Jordan Form
Matrices A ∈ Cn×n that are not diagonalizable are rare (in a sense that can
be made quite precise), but do arise in applications. Our goal in this section is
to derive something as close as possible to diagonal form for such monsters,
the famous Jordan canonical form. While the process we shall describe
has a constructive flavor, we must emphasize this point: the “algorithm” to
follow is not a stable computational procedure that applied mathematicians
use in the heat of battle. In fact, the Jordan form is a fragile object that
is rarely ever computed. So why work through the details? Comprehension
of the steps that follow gives important insight into how matrices behave
in a variety of settings, so while you may never need to build the Jordan
form of a matrix, your understanding of its general properties will pay rich
dividends.

We take two approaches here. In this section, we follow a constructive
technique due to Fletcher & Sorensen [FS83], giving a (relatively) clean
proof of the existence of the Jordan form. The next section gives a less
rigorous but more concrete approach, illustrated with several examples.
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1.8.1 Sylvester equation preliminaries

The first approach begins with a warm-up exercise, a quick introduction to
Sylvester equations. Suppose that A ∈ Cn×n, B ∈ Cm×m, and C ∈
Cm×n. We will soon have cause to think about solving equations of the form

A X − X
B

= C (1.27)

for the unknown X ∈ Cm×n. Under what conditions on the square
matrices A and B will this Sylvester equation have a unique solution?
We will prove the following theorem constructively.

Unique solvability of Sylvester equations

Theorem 1.16. Let A ∈ Cn×n, B ∈ Cm×m, and C ∈ Cm×n. There
exists a unique matrix X ∈ Cm×n that solves the Sylvester equation
AX−XB = C if and only if σ(A) ∩ σ(B) = ∅, i.e., A and B have no
eigenvalues in common.

Proof. Following Sorensen [ES, Chap. 4], we shall prove this theorem
constructively, using an algorithm for solving Sylvester equations called
the Bartels–Stewart method [BS72]. Start by computing Schur factor-
izations A = UTU∗ and B = QRQ∗, so the Sylvester equation becomes

UTU∗X−XQRQ∗ = C. (1.28)

Premultiply both sides by U∗ and postmultiply by Q. Since U and Q are
unitary matrices, we transform equation (1.28) to

TU∗XQ−U∗XQR = U∗CQ.

Define Z := U∗XQ and D := U∗CQ. Now we can solve AX −XB = C
uniquely if and only if we can solve

TZ− ZR = D (1.29)

uniquely, where T and R are upper-triangular matrices. We will solve for
each column of Z successively, which will require us to handle D column-by-
column. Thus we partition Z and D into columns

Z = [ z1 z2 · · · zm ] , D = [ d1 d2 · · · dm ] ,
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where zj ,dj ∈ Cn for j = 1, . . . ,m. As usual, let ek denote the kth column
of the identity matrix. Notice that

Zek = zk, Rek =


r1,k
...
rk,k
0

 =
k∑
j=1

rj,kek, Dek = dk,

noting the upper-triangular structure of R. To solve for z1, the first column
of Z, premultiply (1.29) by e1 to get

TZe1 − ZRe1 = De1,

which simplifies to

Tz1 − Z

[
r1,1

0

]
= d1.

The structure of that first column of R allows for a further simplification,

Tz1 − r1,1z1 = d1.

Factor the right-hand side to give

(T− r1,1I)z1 = d1. (1.30)

Notice that T−r1,1I is an upper triangular matrix, and so we can solve (1.30)
uniquely for z1 if and only if none of the diagonal entries of T− r1,1I is zero,
or, equivalently, if r1,1 (an eigenvalue of B) does not equal a diagonal entry
of T (the eigenvalues of A). Thus, we can compute a unique z1 if and only
if r1,1 6∈ σ(A).

To compute z2, we follow a similar strategy. Multiply (1.29) against e2

to obtain TZe2 − ZRe2 = De2, i.e.,

Tz2 − Z(r1,2e1 + r2,2e2) = d2,

which further simplifies to

Tz2 − r1,2z1 − r2,2z2 = d2.

Since we have computed z1 already, move the r1,2z1 term to the right-hand
side to yield

(T− r2,2I)z2 = d2 + r1,2z1.
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This equation has a unique solution z2 if and only if the diagonal of T−r2,2I
is nonzero, i.e., if r2,2 6∈ σ(A).

Continue this same procedure for the subsequent columns of Z. At the
kth step, we have

(T− rk,kI)zk = dk +

k−1∑
j=1

rj,kzj ,

which has a unique solution zk if and only if rk,k 6∈ σ(A).
Continuing this process for k = 2, . . .m gives z1, . . . , zm. Each step of the

process produces a unique solution if and only if rk,k 6∈ σ(A) for k = 1, . . . ,m.
Since {r1,1, . . . , rm,m} = σ(B), this means that a unique solution Z to (1.29)
exists if and only if σ(A) ∩ σ(B) = ∅.

From the solution Z, form X = UZQ∗ to solve AX−XB = C.

Sylvester equations (and especially the special case of Lyapunov
equations, AX + XA∗ = C) arise in many contexts in control theory. They
will also be essential to the next step of our development.

1.8.2 Block diagonalization

We seek to transform any square matrix A ∈ Cn×n into something as close
as possible to diagonal form. The first (and, in a sense, most important) step
is to transform A into block diagonal form. Suppose A has p ≤ n distinct
eigenvalues. We seek some invertible matrix V ∈ Cn×n such that

A = V

T1
. . .

Tp

V−1, (1.31)

where the off-diagonal blocks are all zero, and each diagonal block Tk has
a single eigenvalue σ(Tk) = {λk}. (Since there are p blocks and p distinct
eigenvalues, this implies that σ(Tj)∩σ(Tk) = ∅ when j 6= k.) Our approach
follows Fletcher & Sorensen [FS83].

Block Diagonalization

Theorem 1.17. Let A ∈ Cn×n have p distinct eiegnvalues λ1, . . . , λp.
There exists an invertible matrix V ∈ Cn×n such that (1.31) holds, where
each block Tk has the single eigenvalue λk.
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Proof. Start with a Schur factorization, A = UTU∗. The proof will be
inductive on the number of eigenvalues, p. If p = 1, the Schur factorization
is trivially of the form (1.31). Inductively assume a factorization of the
form (1.31) exists for matrices with p− 1 eigenvalues.

We can construct the Schur factorization A = UTU∗ so that eigenvalue
λ1 occurs in the leading a1 entries on the main diagonal of T, and in none
of the subsequent diagonal entries. Thus, the Schur form has the form

A = U

[
T1 S
0 T̂1

]
U∗,

where T1 ∈ Ca1×a1 with σ(T1) = {λ1} and σ(T1) ∩ σ(T̂1) = ∅. (In what
follows we will not emphasize the dimensions of the various block matrices
that appear; presume they are all set to the proper dimensions that make
matrix multiplication sensible.) We can think of block-diagonalizing as ap-
plying a series of transformations to A (a matrix on the left, its inverse on
the right) to progressively move A to block-diagonal form. To start, the
Schur factorization gives

U∗AU =

[
T1 C
0 T̂1

]
.

Now we seek to apply some new transformation (S and S−1) to give

S−1U∗AUS = S−1

[
T1 C
0 T̂1

]
S =

[
T1 0
0 T̂1

]
. (1.32)

To leave those T1 and T̂1 matrices on the main diagonal fixed by the trans-
formation, we will look for S of the form

S :=

[
I −X
0 I

]
,

for some X that remains to be determined. Notice that S has an easy inverse:[
I −X
0 I

]−1

=

[
I X
0 I

]
.

To figure out how to choose X, compute

S−1

[
T1 C
0 T̂1

]
S =

[
I X
0 I

] [
T1 C
0 T̂1

] [
I −X
0 I

]

=

[
T1 C + XT̂1 −T1X
0 T̂1

]
.
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To conform with the goal (1.32), we need X to give C + XT̂1 −T1X = 0:

T1X−XT̂1 = C.

Conveniently enough, this is a Sylvester equation, as we have just studied!
Theorem 1.16 ensures we can find a unique X that solves this equation
provided σ(T1) ∩ σ(T̂1) = ∅. The ordering of the eigenvalues in the Schur
factor ensures that this is the case. Hence, we can find invertible S ∈ Cn×n
so that

S−1U∗AUS =

[
T1 0
0 T̂1

]
.

Notice that T̂1 has p− 1 distinct eigenvalues. By the inductive assumption,
we can find some invertible V̂ ∈ C(n−a1)×(n−a1) such that

V̂−1T̂1V̂ =

T2
. . .

Tp

 ,
with σ(Tj) = {λj} for j = 2, . . . , p. Thus,[

I 0
0 V̂−1

]
S−1U∗AUS

[
I 0
0 V̂

]
=

[
I 0
0 V̂−1

] [
T1 0
0 T̂1

] [
I 0
0 V̂

]

=


T1

T2
. . .

Tp

 .
Define

V := US

[
I 0
0 V̂

]
with V−1 =

[
I 0
0 V̂−1

]
S−1U∗,

so that

A = V


T1

T2
. . .

Tp

V−1,

thus establishing the theorem.
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1.8.3 The spectral representation of a matrix

Recall that in equation (1.16) we wrote a Hermitian A ∈ Cn×n in the form

A =
n∑
j=1

λjPj ,

where Pj was an orthogonal projector, and in (1.24) we obtained the same
formula for a general diagonalizable A, though in that case the projectors
Pj need not be orthogonal. In this subsection we will use the block diago-
nalization to develop a similar formula that holds for all matrices.

Start with the block diagonalization (1.31), where the diagonal block Tj

has dimension aj × aj . The key step is to partition the matrix V ∈ Cn×n
into columns of commensurate size,

V = V1

︸︷︷︸
a1

V2

︸︷︷︸
a2

· · · Vp

︸︷︷︸
ap


n

and to partition the rows of V−1 similarly:

V̂∗ := V−1 =

V̂∗1

V̂∗2

· · ·

V̂∗p

}
a1}
a2

}
ap︸ ︷︷ ︸

n

The simple identity V̂∗V = V−1V = I has an important implication:

V̂∗V =

 V̂∗1V1 · · · V̂∗1Vp
...

. . .
...

V̂∗pV1 · · · V̂∗pVp


implies that

V̂∗jVk =

{
0 ∈ Caj×ak , j 6= k;

I ∈ Caj×aj , j = k.
(1.33)
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Flip the identity around in the opposite order, VV̂∗ = VV−1 = I, and we
learn another interesting fact:

I = VV̂∗ = V1V̂
∗
1 + · · ·+ VpV̂

∗
p. (1.34)

This statement means the identity matrix can be expressed as the sum of the
n×n matrices V1V̂

∗
1, . . . ,VpV̂

∗
p. We say that these VjV̂

∗
j form a resolution

of the identity.
We shall now use the partitioning of V and V̂∗ into columns and rows

to express the block diagonalization (1.31) in a new manner. We write

A =

V1 · · · Vp

T1
. . .

Tp


 V̂∗1

...
V̂∗p

 . (1.35)

Multiply the first two matrices together to get

A =

V1T1 · · · VpTp


 V̂∗1

...
V̂∗p

 ,
and then take the product of these last two matrices to arrive at

A = V1T1V̂
∗
1 + · · ·+ VpTpV̂

∗
p. (1.36)

Let us take a close look at one of the terms in this sum,

VjTjV̂
∗
j ∈ Cn×n. (1.37)

Since Tj is upper triangular, with eigenvalue λj on the main diagonal, we
can write

Tj = λjI + Rj ,

where Rj ∈ Caj×aj is strictly upper triangular, meaning that it has zero on
and below the main diagonal. Thus we can write (1.37) as

VjTjV̂
∗
j = Vj(λjI + Rj)V̂

∗
j

= λjVjV̂
∗
j + VjRjV̂

∗
j .

Substituting such expressions for each j into the sum (1.36) gives

A =

p∑
j=1

(
λjVjV̂

∗
j + VjRV̂∗j

)
. (1.38)
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40 Chapter 1. Basic Spectral Theory

Compare this sum to the expression (1.16) for Hermitian A and (1.24) for
diagonalizable A. Inspired by the similarity, we establish the following no-
tation.

Spectral Projectors and Nilpotents

Definition 1.18. Using the notation of this subsection, the spectral
projector Pj and the spectral nilpotent associated with the eigenvalue λj
are defined by

Pj := VjV̂
∗
j , Dj := VjRjV̂

∗
j .

The names of Pj and Dj were not selected by accident! Notice that

P2
j = VjV̂

∗
jVjV̂

∗
j = Vj(V̂

∗
jVj)V̂

∗
j = Vj(I)V̂∗j = Pj ,

so Pj is a projector. (Recall that (1.33) implies that V̂∗jVj = I.) Similarly,
since V̂∗jVk = 0 when j 6= k, we also have the important fact that

PjPk = 0, j 6= k.

We call Dj the spectral nilpotent because it is a nilpotent matrix, meaning
that Dm

j = 0 for some positive integer m. This fact follows easily from the
strictly upper triangular structure of Rj :

D
aj
j = (VjRjV̂

∗
j )
aj

= VjR
aj
j V̂∗j = Vj0V̂∗j = 0.

We formally collect the sum (1.38) and the related facts.

Spectral Representation of a Square Matrix

Theorem 1.19. Suppose the matrix A ∈ Cn×n has p distinct eigenval-
ues λ1, . . . , λp. There exist projectors P1, . . . ,Pp and nilpotent matrices
D1, . . . ,Dp such that

A =

p∑
j=1

λjPj +

p∑
j=1

Dj .
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1.8.4 The Jordan form

For many purposes, the spectral representation in Theorem 1.19 gives en-
tirely adequate insight into the spectral structure of a matrix. However, it
is possible to push a bit harder, to impose some extra structure upon the
upper triangular matrices Tj . This extra structure will demand some work,
but the effort will give you excellent practice working with block-matrix mul-
tiplication and similarity transformations. We start with some definitions.

Algebraic and Geometric Multiplicity

Definition 1.20. Let λj be an eigenvalue of A ∈ Cn×n.

The algebraic multiplicity aj of λj is the number of times λj appears on
the diagonal of T in the Schur factorization A = UTU∗.

The geometric multiplicity gj of λj is the number of linearly independent
eigenvectors of A corresponding to λj, i.e., gj = dim(N(A− λjI)).

To obtain the Jordan form, we simply need to independently transform
each of the Tj ∈ Caj×aj matrices into something close to diagonal form. For
each of these upper triangular matrices we shall build an invertible Wj ∈
Caj×aj such that

WjTjW
−1
j = Jj , (1.39)

where Jj ∈ Caj×aj is a block diagonal matrix with gj blocks:

Jj =


Jj,1

Jj,2
. . .

Jj,gj

 . (1.40)

Each of these sub-blocks is nearly diagonal; in fact, they are bidiagonal, with
nonzero entries only on the main diagonal and the first superdiagonal:

Jj,k =


λj 1

λj
. . .
. . . 1

λj

 . (1.41)

A matrix of this form is called a Jordan block.
Our ultimate goal is to find an invertible matrix X such that X−1AX

is a block diagonal matrix in which all the submatrices on the diagonal are
Jordan blocks. This arrangement is the Jordan canonical form of A.
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From (1.39) we have Tj = WjJjW
−1
j . Substitute this form of TJ

into the block-diagonalization (1.31) to obtain Substitute the transforma-
tions (1.39) of the diagonal blocks Tj to obtain

A = V

T1
. . .

Tp

V−1 = V

W1J1W
−1
1

. . .
WpJpW

−1
p

V−1

= V

W1
. . .

Wp


J1

. . .
Jp


W−1

1
. . .

W−1
p

V−1

= X

J1
. . .

Jp

X−1,

where

X = V

W1
. . .

Wp

 .
This factorization

A = X

J1
. . .

Jp

X−1 (1.42)

is the Jordan canonical form of A. Given what we already know, we “sim-
ply” need to discover these Wj transformations to complete our derivation
of this pivotal factorization.

The derivation of these Wj transformations turns out to be rather intri-
cate. Before plunging in, pause for a moment to think about a special case
(not just a special case; in fact, the most common case).

What if there are as many (linearly independent) eigenvectors as there
are eigenvalues, i.e., aj = gj? Then

aj = gj = dim(N(A− λjI)) = dim(N(T− λjI)).

Since λj 6∈ σ(Tk) for k 6= j, the submatrix Tk − λjI is invertible for k 6= j.
Thus, null space of T− λjI all comes from the Tj − λjI block:

aj = dim(N(T− λjI)) = dim(N(Tj − λjI)),
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so Tj−λjI is a aj×aj matrix whose null space has dimension aj . This means
that (Tj −λjI)x = 0 for all x ∈ Caj , which is only possible if Tj −λjI = 0:
hence Tj = λjI, and the upper triangular block is already diagonal, in the
form (1.40). The transformation Wj is trivial in this common, important
case: Wj = I. Thus, the proof below is only necessary for those monsters
where there is a deficit of linearly independent eigenvectors, gj < aj .

1.8.5 Proof of the Jordan form

We continue to follow the proof of Fletcher & Sorensen [FS83].
When a Jordan block of the form Jj,k in (1.41) has a zero eigenvalue,

notice that it can be written in a concise block form as

E =


0 1

0
. . .
. . . 1

0

 =

[
0 I
0 0

]
∈ Cd×d, (1.43)

where the identity matrix is of size dimension d − 1 × d − 1. For example,
when d = 4,

E =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 =

[
0 I
0 0

]
.

It will be helpful to notice that

E∗E =

[
0 0
0 I

]
, I−E∗E =

[
1 0
0 0

]
. (1.44)

In this subsection we will focus on transforming a single triangular block
Tj with eigenvalue λj into the Jordan form (1.40). Since we focus on the
one block, we will drop the subscript j. We shall thus deal with

T = λI + R,

where R is strictly upper triangular (it has zero on the main diagonal).
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Theorem 1.21. For any strictly upper triangular matrix R ∈ Ca×a
there exists an invertible W ∈ Ca×a such that

R = WJW−1,

where N = diag(E1, . . . ,Eg) with the blocks

Ek =

[
0 I
0 0

]
∈ Cdk×dk

arranged by decreasing dimension, d1 ≥ d2 ≥ · · · ≥ dm, that sum to a:
d1 + · · ·+ dm = a.

(Here the notation N is meant to denote nilpotent, since Nd1 = Na = 0.)

Proof. We prove this theorem by induction on the dimension, a. If a = 1,
the strictly upper triangular R ∈ C1×1 is simply R = 0, so take W = 1 and
N = 0.

Now suppose the result holds for all strictly upper triangular matrices of
dimension a− 1 or less. Partition R ∈ Ca×a as

R =

[
0 r∗

0 R̂

]
.

We will execute a series of similarity transformations that take R to the
desired form.

• First similarity transformation. Using the inductive assumption, write

R̂ = W1N1W
−1
1 , N1 = diag(E1, . . . ,Eq),

with the Ej blocks of decreasing dimension,d1 ≥ d2 ≥ · · · ≥ dq. Define

S1 :=

[
1 0
0 W1

]
, with S−1

1 =

[
1 0
0 W−1

1

]
,

so that

R1 := S−1
1 RS1 =

[
0 r∗W−1

1

0 N1

]
=

 0 s∗ t∗

0 E1 0
0 0 N2

 , (1.45)

where we have introduced the notation

[ s∗ t∗ ] := r∗W−1
1 , N1 =: diag(E1,N2).
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• Second similarity transformation. We seek to hammer the s∗ and t∗

vectors into the correct form. First, we will transform s∗ so that it only has
a nonzero in its first entry. Define

S2 :=

 1 s∗E∗1 0
0 I 0
0 0 I

 , with S−1
2 =

 1 −s∗E∗1 0
0 I 0
0 0 I


so that

R2 := S−1
2 R1S2 =

 0 s∗ − s∗E∗1E1 t∗

0 E1 0
0 0 N2

 =

 0 ρe∗1 t∗

0 E1 0
0 0 N2

 ,
where the (1, 2) entry is s∗ − s∗E∗1E1 = s∗(I−E∗1E1) = s∗e1e

∗
1 (see (1.44)),

and we have defined ρ := s∗e1.
The proof now bifurcates into two cases, depending on the value of ρ.

• ρ = 0, third similarity transformation. When ρ = 0, R2 has the form

R2 =

 0 0 t∗

0 E1 0
0 0 N2

 .
It will take a few transformations to make this fact evident, but this structure
implies that E1 is a Jordan block of R. First swap rows and columns to
place E1 in the (1, 1) block. Define

S3 :=

 0 I 0
1 0 0
0 0 I

 , with S−1
3 =

 0 1 0
I 0 0
0 0 I

 .
Premultiplication by S3 swaps the first two (block) rows; postmultiplication
by S−1

3 swaps the first two (block columns. Thus

R3 := S−1
3 R2S3 =

E1 0 0
0 0 t∗

0 0 N2

 .
• ρ = 0, fourth similarity transformation. Notice that 2 × 2 block
matrix at the bottom-right of R3: it has dimension no larger than (a− 1)×
(a − 1) (since E1 has dimension at least 1 × 1). Thus we can apply the
inductive assumption again to factor[

0 t∗

0 N2

]
= ŴN3Ŵ

−1,
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where
N3 = diag(Ê2, . . . , Êg),

which implicitly defines the integer g. Thus

R3 =

[
E1 0
0 ŴN3Ŵ

−1

]
.

Define the transformation

S4 :=

[
I 0
0 Ŵ

]
, with S−1

4 =

[
I 0
0 Ŵ−1

]
,

so

R4 := S−1
4 R3S4 =

[
E1 0
0 N3

]
.

Now this series of transformations have taken R into a block diagonal matrix
with the required diagonal blocks. One small detail remains: We want to
arrange the blocks in decreasing size. It might be possible that E1 is smaller
than one of the Êj matrices that fall on the diagonal of N3.

• ρ = 0, fifth similarity transformation. Introduce a matrix S5 that is
a permutation of the rows and columns of the identity matrix (akin to S3

above) so that

R5 = S−1
5 R4S5 = diag(E1, . . . ,Eg) =: N,

where we have relabelled the matrices E1, Ê2, . . . , Êg to have new names
E1, . . . ,Eg with Ej ∈ Cdj×dj and d1 ≥ d2 ≥ · · · ≥ dg, as required.

• ρ = 0, wrap-up. We can now wrap-up the ρ = 0 case. We have built
invertible matrices S1, . . . ,S5 so that

N = diag(E1, . . . ,Eg) = S−1
5 R4S5

= S−1
5 S−1

4 R3S4S5

= S−1
5 S−1

4 S−1
3 R2S3S4S5

= S−1
5 S−1

4 S−1
3 S−1

2 R1S2S3S4S5

= S−1
5 S−1

4 S−1
3 S−1

2 S−1
1 RS1S2S3S4S5

= (S1S2S3S4S5)−1R(S1S2S3S4S5) = W−1RW,

where W := S1S2S3S4S5. The proof is complete for the ρ = 0 case.
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• ρ 6= 0, third similarity transformation. Now we attend to the re-
maining case, ρ 6= 0. Recall that the first two similarity transformations left
us with

R2 = S−1
2 R1S2 =

 0 ρe∗1 t∗

0 E1 0
0 0 N2

 .
The ρ 6= 0 case corresponds to the situation where the E1 block will be
enlarged by one dimension. The specific value of ρ 6= 0 will not matter, so
scale it out via the transformation

S3 :=

 ρ 0 0
0 I 0
0 0 ρ

 , with S−1
3 =

 1/ρ 0 0
0 I 0
0 0 1/ρ

 .
Premultiplication of R2 by S−1

3 scales the first and third rows of R2 by 1/ρ;
postmultiplication by S3 scales the first and third columns by ρ. As a result,

R3 := S−1
3 R2S3 =

 0 e∗1 t∗

0 E1 0
0 0 N2

 .
Notice that the upper-left 2 × 2 block forms an enlarged Jordan block of
the form (1.43). If E1 ∈ Cd1×d1 , then by the structure of E1 (see (1.43)),

[
0 e∗1
0 E1

]
=

 0 1 0
0 0 I
0 0 0

 =: E ∈ C(d1+1)×(d1+1). (1.46)

Thus, E1 has been enlarged by one dimension to give E.

• ρ 6= 0, remaining similarity transformation. With the definition for
E in (1.46) we can write

R3 =

[
E e1t

∗

0 N2

]
.

The rest of the proof executes successive transformations that progressively
clear e1t

∗ out of the (1, 2) block of R3. First we need to think carefully
about dimensions. Recall that N2 emerged in (1.45) through invocation
of the inductive assumption, with N2 = diag(E2, . . . ,Eq). That inductive
assumption gave blocks Ej of dimension dj × dj with d1 ≥ d2 ≥ · · · ≥ dq.
Thus

Nd1
2 = diag(Ed1

2 , . . . ,E
d1
q ) = 0, (1.47)
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due to the dimension of the Ej blocks and their nilpotent structure. Intro-
duce the new transformation

S̃1 :=

[
1 e2t

∗

0 I

]
, S̃−1

1 :=

[
1 −e2t

∗

0 I

]
,

and form

R̃1 := S̃−1
1 R3S̃1 =

[
E e2t

∗N2 + e1t
∗ −Ee2t

∗

0 N2

]
.

Notice from the structure of E in (1.46) that

Ee1 = e2

and hence we can simplify R̃1 to

R̃1 =

[
E e2t

∗N2

0 N2

]
.

Notice the alteration we have made to the (1, 2) block. The next step makes
the pattern clear: proceed with

S̃2 :=

[
1 e3t∗N2

0 I

]
, S̃−1

2 :=

[
1 −e3t∗N2

0 I

]
,

so, noting that Ee3 = e2, we arrive at

R̃2 := S̃−1
2 R̃1S̃2 =

[
E e3t

∗N2
2

0 N2

]
.

Notice that higher power of N2 in the new (1, 2) block. Now proceed apace:
for k ≥ 3, define

S̃k :=

[
1 ek+1t∗Nk−1

2

0 I

]
, S̃−1

k :=

[
1 −ek+1t∗Nk−1

2

0 I

]
,

and with Eek+1 = ek, we arrive at

R̃k := S̃−1
k R̃k−1S̃k =

[
E ek+1t

∗Nk
2

0 N2

]
.

Repeat these steps for k = 3, . . . , d1. The last step delivers, by invoking
Nd1

2 = 0 in (1.47),

R̃d1 =

[
E ed1+1t

∗Nd1
2

0 N2

]
=

[
E 0
0 N2

]
= diag(E,E2, . . . ,Eq). (1.48)
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Check that ed1+1 in the (1, 2) block makes sense: The first block row of R̃d1

has d1+1 rows, so the vector ed1+1 is the last column of the (d1+1)×(d1+1)
identity matrix: we have not exceeded the allowable dimensions.

Finally, we have reduced R to a block diagonal form. Renaming E1 := E
and setting g = q, we have

N = diag(E1, . . . ,Eg) = R̃d1

= S̃−1
d1

R̃d1−1S̃d−1

= S̃−1
d1
· · · S̃−1

1 R3S̃1 · · · S̃d−1

= S̃−1
d1
· · · S̃−1

1 S−1
3 R2S3S̃1 · · · S̃d−1

= S̃−1
d1
· · · S̃−1

1 S−1
3 S−1

2 R1S2S3S̃1 · · · S̃d−1

= S̃−1
d1
· · · S̃−1

1 S−1
3 S−1

2 S−1
1 RS1S2S3S̃1 · · · S̃d−1

=
(
S1S2S3S̃1 · · · S̃d−1

)−1
R
(
S1S2S3S̃1 · · · S̃d−1

)
= W−1RW,

where W := S1S2S3S̃1 · · · S̃d−1. This completes the proof for the ρ 6= 0 case.
Having handled the ρ = 0 case (where E1 is a stand-alone Jordan

block) and the ρ 6= 0 case (where E1 is expanded by one dimension), we
have completed the proof for all strictly upper triangular R ∈ Ca×a.

The number of Jordan blocks, g, in the factor N = W−1RW in
Theorem 1.21 reveals the number of (linearly independent) eigenvectors of
T = λI + R associated with the eigenvalue λ. To see this, we should assess
the null space of T− λI. Since W is invertible,

dim(N(T− λI)) = dim(N(R)) = dim(N(WNW−1)) = dim(N(N)).

Recall from basic linear algebra that N is in reduced row-echelon form, and
the first column of every Jordan block of N is a “free column”; the other
columns of N are “pivot columns”. From this one intuits that dim(N(N)) = g
and dim(R(N)) = a−g. Notice that Tv = λv if and only if v ∈ N(R), which
is true if and only if W−1v ∈ N(N). Hence T has g linearly independent
eigenvectors associated with λ. Thus, g is the geometric multiplicity of λ,
as given in Definition 1.20.
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Assembling the Jordan from from Theorem 1.21

Return to the full matrix A with its p diagonal blocks, Tj = λjI+Rj . Apply
Theorem 1.21 to Rj to get Rj = WjNjW

−1
j . Then

Tj = λjI + WjNjW
−1
j = Wj(λjI + Nj)W

−1
j . (1.49)

Define Jj := λjI + Ĵj , and we have

Tj = WjJW−1
j ,

thus finishing the construction of the Jordan form

A = X

J1
. . .

Jp

X−1

with J := diag(J1, . . . ,Jp).
The Jordan form is just a special kind of block diagonalization of A, so

should not affect the spectral projectors Pj and spectral nilpotents discussed
in Theorem 1.8.3. Indeed, substituting in the factorization (1.49) for Tj into
the block-diagonalization (1.35) gives

A =

V1 · · · Vp

T1
. . .

Tp


 V̂∗1

...
V̂∗p



=

V1 · · · Vp


W1J1W

−1
1

. . .
WpJpW

−1
p


 V̂∗1

...
V̂∗p



=

V1W1 · · · VpWp

J1
. . .

Jp


 W−1

1 V̂∗1
...

W−1
p V̂∗p



=

X1 · · · Xp

J1
. . .

Jp


 X̂∗1

...
X̂∗p

 = XJX−1,
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where the matrices Xj := VjWj form the columns of X, and X̂∗j := W−1
j V̂∗p

for the rows of X. This form form for A can be multiplied out to give

A =

p∑
j=1

XjJjX̂
∗
j .

Notice that
XjX̂

∗
j = VjWjW

−1
j V̂∗j = VjV̂

∗
j = Pj .

Similarly, writing Jj = λjI + Nj , we have

XjNjX̂
∗
j = VjWjNjW

−1
j V̂∗j = VjRjV̂

∗
j = Dj .

so we can form the spectral projectors and nilpotents just as well using the
ingredients from the block diagonalization or the Jordan form.

Observe that R(Xk) is an invariant subspace, meaning that if x ∈ R(Xk),
then Ax ⊂ R(Xk). To see this, write such an x as a linear combination of
the columns of Xk, giving x = Xkc. Then

Ax =

p∑
j=1

XjJjX̂
∗
jXkc = XkJkc ∈ R(Xk).

Thus AR(Xk) ⊆ R(Xk). Observe that Pk is a projector onto this invariant
subspace R(Xk) and along N(X̂∗k).

Index, Defective, Derogatory

The index, ij , of the eigenvalue λj equals the length of the longest Jor-
dan chain (equivalently, the dimension of the largest Jordan block) as-
sociated with λj . Note that 1 ≤ ij ≤ aj .

An eigenvalue λj is called defective if ij > 1 (i.e., it has a Jordan
block of dimension larger than one, or, equivalently, lacking aj linearly
independent eigenvectors, aj > gj).

An eigenvalue λj is called derogatory if gj > 1 (i.e., it has more than one
linearly independent eigenvector).

A matrix with at least one defective (or derogatory) eigenvalue is some-
times casually called a defective (or dergatory) matrix.

In the notation of Theorem 1.21, the index ij corresponds to the largest
Jordan block E1 ∈ Cd1×d1 .
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Jordan Canonical Form

Theorem 1.22. Let A ∈ Cn×n have distinct eigenvalues λ1, . . . , λp with
algebraic multiplicities a1, . . . , ap, geometric multiplicities g1, . . . , gp, and
indices i1, . . . , ip. There exist J ∈ Cn×n and invertible X ∈ Cn×n such
that

A = XJX−1,

which can be partitioned in the form

X = [ X1 · · · Xp ] , J =

J1
. . .

Jp

 , X−1 =

 X̂∗1
...

X̂∗p


with Xj ∈ Cn×aj , Jj ∈ Caj×aj . Each matrix Jj is of the form

Jj =

Jj,1
. . .

Jj,gj

 = λjI + Nj ,

where Nj ∈ Caj×aj is nilpotent of degree ij: N
ij
j = 0. The submatrices

Jj,k are Jordan blocks of the form

Jj,k =


λj 1

λj
. . .
. . . 1

λj

 .
The spectral projectors and spectral nilpotents of A are defined as

Pj := XjX̂
∗
j ∈ Cn×n, Dj := XjNjX̂

∗
j ∈ Cn×n.

For j 6= k they satisfy

P2
j = Pj , PjPk = 0,

p∑
j=1

Pj = I,

D
ij
j = 0, PjDj = DjPj = Dj , PjDk = DkPj = 0,

and give the spectral representation of A:

A =

p∑
j=1

(λjPj + Dj).
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Some pitfalls of Jordan form computation

One could imagine using the proof of Theorem 1.21 to numerically compute
the Jordan form, but, as Fletcher & Sorensen [FS83] note, (citing the
seminal work of Golub & Wilkinson [GW76]), computation of the Jor-
dan form is fraught with challenges. First, you would need to compute the
block-triangulation of A. This requires that you identify the distinct eigen-
values of A. When you numerically compute the eigenvalues of a matrix, you
actually compute the eigenvalues of A + E for some matrix E that is very
small in norm: this makes it impossible to know if two eigenvalues really are
the same, or are just distinct eigenvalues that are close together. Even if you
have a block triangularlization, then to execute the proof of Theorem 1.21,
one needs to determine if ρ = 0. What is we merely have ρ ≈ 10−10? Should
that be regarded as zero? Decisions like this affect the size of the Jordan
blocks, and thus the ultimate Jordan form.

One can always construct an arbitrarily small perturbation E that will
turn a nondiagonalizable matrix A into a diagonalizable matrix A+E. This
suggests the tempting idea that, ‘Nondiagonalizable matrices never arise in
practical physical situations.’ However, we have seen in Section 1.7 that
reality is more nuanced. An enriched understanding requires the tools of
perturbation theory, to be developed in Chapter ??.

Cayley–Hamilton Theorem

The Jordan form provides one convenient approach to defining and analyzing
functions of matrices, f(A), as we shall examine in detail in Chapter ??. For
the moment, consider two special polynomials that bear a close connection
to the spectral characterization of Theorem 1.22.

Characteristic Polynomial and Minimal Polynomial

Suppose the matrix A ∈ Cn×n has the Jordan structure detailed in
Theorem 1.22. The characteristic polynomial of A is given by

pA(z) =

p∏
j=1

(z − λj)aj ,
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a degree-n polynomial; the minimal polynomial of A is

mA(z) =

p∏
j=1

(z − λj)dj .

Since the algebraic multiplicity can never exceed the index of an eigen-
value (the size of the largest Jordan block), we see that mA is a polynomial
of degree no greater than n. If A is not derogatory, then pA = mA; if A is
derogatory, then the degree of mA is strictly less than the degree of pA, and
mA divides pA. Since

(Jj − λjI)dj = N
dj
j = 0,

notice that

pA(Jj) = mA(Jj) = 0, j = 1, . . . , p,

and so

pA(A) = mA(A) = 0.

Thus, both the characteristic polynomial and minimal polynomials annihi-
late A. In fact, mA is the lowest degree polynomial that annihilates A. The
first fact, proved in the 2 × 2 and 3 × 3 case by Cayley [Cay58], is known
as the Cayley–Hamilton Theorem

Cayley–Hamilton Theorem

Theorem 1.23. The characteristic polynomial pA of A ∈ Cn×n anni-
hilates A:

pA(A) = 0.

1.9 A Concrete Approach to the Jordan Form
The preceding section gave a detailed proof of the Jordan form, but that
formal approach disguises some nuances of the form that comes from exam-
ining some concrete examples. In this section we will build the Jordan form
up gradually for a few small matrices.
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1.9.1 Take 1: one eigenvalue, one block

Suppose A is a matrix with one eigenvalue λ, but only one eigenvector, i.e.,
dim(N(A− λI)) = 1, as in the illustrative example

A =

 1 1 1
0 1 1
0 0 1

 . (1.50)

Notice that A − λI has zeros on the main diagonal, and this structure has
interesting implications for higher powers of A− λI:

A−λI =

 0 1 1
0 0 1
0 0 0

 , (A−λI)2 =

 0 0 2
0 0 0
0 0 0

 , (A−λI)3 =

 0 0 0
0 0 0
0 0 0

 .
Zeros cascade up successive diagonals with every higher power, and thus the
null space of (A − λI)k grows in dimension with k. In particular, we must
have that (A− λI)n = 0, so

N((A− λI)n) = Cn.

For the moment assume that (A − λI)n−1 6= 0, and hence we can always
find some vector

xn 6∈ N((A− λI)n−1), xn ∈ N((A− λI)n).

For example (1.50), we could take

x3 =

 0
0
1

 .
(This assumption equates to the fact that A has only one linearly indepen-
dent eigenvector. Can you explain why?) Now define

xn−1 := (A− λI)xn.

Notice that (A−λI)n−2xn−1 = (A−λI)n−1xn 6= 0, yet (A−λI)n−1xn−1 =
(A− λI)nxn = 0, and so

xn−1 6∈ N((A− λI)n−2), xn−1 ∈ N((A− λI)n−1).
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Repeat this procedure, defining

xn−2 := (A− λI)xn−1,

...
x1 := (A− λI)x2.

For each k = 1, . . . , n, we have

xk 6∈ N((A− λI)k−1), xk ∈ N((A− λI)k).

The k = 1 case is particularly interesting: x1 6∈ N((A−λI)0) = N(I) = {0},
so x1 6= 0, and x1 ∈ N(A−λI), so Ax1 = λx1, so x1 is an eigenvector of A.

To be concrete, return to (1.50): we compute

x2 := (A− λI)x3 =

 1
1
0

 , x1 := (A− λI)x2 =

 1
0
0

 .
Notice that we now have three equations relating x1, x2, and x3:

(A− λI)x1 = 0,

(A− λI)x2 = x1,

(A− λI)x3 = x2.

Confirm that we can rearrange these into the matrix form

[ Ax1 Ax2 Ax3 ] = [ 0 x1 x2 ] + [λx1 λx2 λx3 ] ,

which we factor as

A [ x1 x2 x3 ] = [ x1 x2 x3 ]

λ 1
λ 1

λ

 , (1.51)

and abbreviate as
AX = XJ.

By construction, the columns of X are linearly independent, so

A = XJX−1. (1.52)

This is known as the Jordan canonical form of A: it is not a diagonalization,
since J has nonzeros on the superdiagonal – but this is as close as we get.
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For more general A with one eigenvalue and one eigenvector, equa-
tion (1.51) generalizes as expected, giving

A = XJX−1

with

X = [ x1 x2 · · · xn ] , J =


λ 1

λ
. . .
. . . 1

λ

 ∈ Cn×n,
with unspecified entries equal to zero.

Notice that x1 is the only eigenvector in X. The kth column of X is
called a generalized eigenvector of grade k, and the collection {x1, . . . ,xn}
is a Jordan chain. The matrix J is called a Jordan block.

With this basic structure in hand, we are prepared to add the next layer
of complexity.

1.9.2 Take 2: one eigenvalue, multiple blocks

Again presume that A is upper triangular with a single eigenvalue λ, and
define d1 ∈ {1, . . . , n} to be the largest integer such that

dim(N((A− λI)d1−1) 6= dim(N((A− λI)d1).

The assumptions of the last section required d = n. Now we relax that
assumption, and we will have to work a bit harder to get a full set of n
generalized eigenvectors. Consider the following enlargement of our last ex-
ample:

A =


1 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1

 ,
for which

A− λI =


0 1 1 0
0 0 1 0
0 0 0 0
0 0 0 0

 , (A− λI)2 =


0 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

(A− λI)3 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (A− λI)4 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .
Embree – draft – 29 March 2017



i
i

“book” — 2017/3/29 — 10:04 — page 58 — #60 i
i

i
i

i
i

58 Chapter 1. Basic Spectral Theory

In this case, d1 = 3 < 4 = n. Now define x1,d1 ∈ Cn so that

x1,d1 6∈ N((A− λI)d1−1), x1,d1 ∈ N((A− λI)d1).

In the 4× 4 example, take

x1,3 :=


0
0
1
0

 6∈ N((A− λI)2), x1,3 ∈ N((A− λI)3).

Now build out the Jordan chain just as in Section 1.9.1:

x1,d1−1 := (A− λI)x1,d1 ,

...
x1,1 := (A− λI)x1,2.

For the example,

x1,2 := (A− λI)x1,3 =


1
1
0
0

 , x1,1 := (A− λI)x1,2 =


1
0
0
0

 .
This chain {x1,1, . . . ,x1,d1} has length d1; if d1 < n, we cannot build from
this chain alone an invertible matrix X ∈ Cn×n such that A = XJX−1, as
in (1.52). We must derive n − d1 more generalized eigenvectors associated
with λ: this is the most subtle aspect of the Jordan form. (As a payback for
this difficulty, matrices with this structure are called derogatory.)

We defined d1 ∈ {1, . . . , n} to be the largest integer such that

dim(N((A− λI)d1))− dim(N((A− λI)d1−1)) ≥ 1.

If d1 < n, define d2 ∈ {1, . . . , d1} to be the largest integer such that

dim(N((A− λI)d2))− dim(N((A− λI)d2−1)) ≥ 2,

and pick x2,d2 such that

x2,d2 6∈ N((A− λI)d2−1), x2,d2 ∈ N((A− λI)d2)

and
x2,d2 6∈ span{x1,d2 , . . . ,x1,d1}.
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The last condition ensures that x2,d2 is linearly independent of the first
Jordan chain. Now build out the rest of the second Jordan chain.

x2,d2−1 := (A− λI)x2,d2 ,

...
x2,1 := (A− λI)x2,2.

In the 4× 4 example, we have

dim(N((A−λI)0)) = 0, dim(N((A−λI)1)) = 2, dim(N((A−λI)2)) = 3,

dim(N((A− λI)3)) = 4, dim(N((A− λI)4)) = 4,

and thus d2 = 1. Since

N(A− λI) = span




1
0
0
0

 ,


0
0
0
1


 ,

and x1,1 = [1, 0, 0, 0]T, we select

x2,1 =


0
0
0
1

 .
In this case, d1 + d2 = 3 + 1 = 4 = n, so we have a full set of generalized
eigenvectors, associated with the equations

(A− λI)x1,1 = 0,

(A− λI)x1,2 = x1,1,

(A− λI)x1,3 = x1,2,

(A− λI)x2,1 = 0.

We arrange these in matrix form,

A [ x1,1 x1,2 x1,3 x2,1 ] = [ x1,1 x1,2 x1,3 x2,1 ]


λ 1

λ 1
λ

λ

 . (1.53)
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The last matrix has horizontal and vertical lines drawn to help you see the
block-diagonal structure, with the jth diagonal block of size dj × dj corre-
sponding to the jth Jordan chain.

In the example, we were able to stop at this stage because d1 +d2 = n. If
d1 +d2 < n, we find another Jordan chain by repeating the above procedure:
Define d3 ∈ {1, . . . , d2} to be the largest integer such that

dim(N((A− λI)d3))− dim(N((A− λI)d3−1)) ≥ 3,

and pick x3,d3 such that

x3,d3 6∈ N((A− λI)d3−1), x3,d3 ∈ N((A− λI)d3)

and
x3,d3 6∈ span{x1,d3 , . . . ,x1,d1 ,x2,d3 , . . . ,x2,d2}.

Then complete the Jordan chain

x3,d3−1 := (A− λI)x3,d3 ,

...
x3,1 := (A− λI)x3,2.

Repeat this pattern until d1 + · · ·+dk = n, which will lead to a factorization
of the form (1.53), but now with k individual Jordan blocks on the main
diagonal of the last matrix. (We have not explicitly justified that all must
end this well, with the matrix X = [ x1,1 · · · xk,dk ] ∈ Cn×n invertible;
such formalities can be set with a little reflection on the preceding steps.)

We have now finished with the case where A has a single eigenvalue. Two
extreme cases merit special mention: d1 = n (one Jordan block of size n×n,
so that A is defective but not derogatory) and d1 = d2 = · · · = dn = 1
(n Jordan blocks of size 1 × 1, so that A is derogatory but not defective).
(Did you notice that a diagonalizable matrix with one eigenvalue must be a
multiple of the identity matrix?)

We shall not dwell here in the case of multiple eigenvalues; the structure
goes through just as for single eigenvalues, with each distinct eigenvalue now
contributing one of the diagonal Jordan factors Jj , a column-block Xj of
X, and a row-block X̂∗j of X−1, as discussed in Theorem 1.22.

1.10 Analytic Approach to Spectral Theory
The approach to the Jordan form in the last section was highly algebraic:
Jordan chains were constructed by repeatedly applying A−λI to eigenvectors
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of the highest grade, and these were assembled to form a basis for the invari-
ant subspace associated with λ. Once the hard work of constructing these
Jordan chains is complete, results about the corresponding spectral projec-
tors and nilpotents can be proved directly from the fact that V−1V = I.

In this section we briefly mention an entirely different approach, one
based much more on analysis rather than algebra, and for that reason one
more readily suitable to infinite dimensional matrices. This approach gives
ready formulas for the spectral projectors and nilpotents, but more work
would be required to determine the properties of these matrices.

To begin, recall that resolvent R(z) := (zI − A)−1 defined in (1.8) on
page 14 for all z ∈ C that are not eigenvalues of A. Recall from Section 1.3
that the resolvent is a rational function of the parameter z. Suppose that
A has p distinct eigenvalues, λ1, . . . , λp, and for each of these eigenvalues,
let Γj denote a small circle in the complex plane centered at λj with radius
sufficiently small that no other eigenvalue is on or in the interior Γj . Then
we can then define the spectral projector and spectral nilpotent for λj :

Pj :=
1

2π i

∫
Γj

R(z) dz, Dj :=
1

2π i

∫
Γj

(z − λj)R(z) dz. (1.54)

In these definitions the integrals are taken entrywise. For example, the ma-
trix and resolvent

A =

 1 0 0
0 2 0
1 0 1

 , R(z) =


1

z − 1
0 0

0
1

z − 2
0

1

(z − 1)2
0

1

z − 1



with eigenvalues λ1 = 1 and λ2 = 2 has spectral projectors

P1 =
1

2π i



∫
Γ1

1

z − 1
dz 0 0

0

∫
Γ1

1

z − 2
dz 0∫

Γ1

1

(z − 1)2
dz 0

∫
Γ1

1

z − 1
dz

 =

 1 0 0
0 0 0
0 0 1

 ,
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P2 =
1

2π i



∫
Γ2

1

z − 1
dz 0 0

0

∫
Γ2

1

z − 2
dz 0∫

Γ2

1

(z − 1)2
dz 0

∫
Γ2

1

z − 1
dz

 =

 0 0 0
0 1 0
0 0 0

 ,

D1 =
1

2π i



∫
Γ1

1 dz 0 0

0

∫
Γ1

z − 1

z − 2
dz 0∫

Γ1

1

z − 1
dz 0

∫
Γ1

1 dz

 =

 0 0 0
0 0 0
1 0 0

 ,

and D2 = 0.
One can verify that all the properties of spectral projectors and nilpotents

outlined in Theorem 1.22 hold with this alternative definition. We will not
exhaustively prove the properties of these resolvent integrals (for such details,
consult Cox’s notes for CAAM 335, or Section I.5 of the excellent monograph
by Tosio Kato [Kat80]), but we will give one representative proof to give
you a taste of how these arguments proceed.

First Resolvent Identity

Lemma 1.24. If w and z are not eigenvalues of A ∈ Cn×n, then

(z − w)R(z)R(w) = R(w)−R(z).

Proof. Given the identity (z − w)I = (zI−A)− (wI−A), multiply both
sides on the left by R(z) and on the right by R(w) to obtain the result.

Theorem 1.25. The matrix Pj defined in (1.54) is a projector.

Proof. We shall show that P2
j = I. Let Γj and Γ̂j denote two circles in

the complex plane that enclose λj and not other eigenvalues of A; moreover,
suppose that Γ̂j is strictly contained in the interior of Γj . It follows that

PjPj =
( 1

2π i

∫
Γj

R(z) dz
)( 1

2π i

∫
Γ̂j

R(w) dw
)
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=
( 1

2π i

)2
∫

Γj

∫
Γ̂j

R(z)R(w) dw dz

=
( 1

2π i

)2
∫

Γj

∫
Γ̂j

R(w)−R(z)

z − w
dw dz,

where the last step is a consequence of the First Resolvent Identity. Now
split the integrand into two components, and swap the order of integration
in the first integral to obtain

PjPj =
( 1

2π i

)2
∫

Γ̂j

R(w)

∫
Γj

1

z − w
dz dw −

( 1

2π i

)2
∫

Γj

R(z)

∫
Γ̂j

1

z − w
dw dz.

λj

w

zΓj

Γ̂j

Figure 1.6. Contours use
in proof that P2

j = Pj .

It remains to resolve the two double integrals.
These calculations require careful consideration of
the contour arrangements and the respective vari-
ables of integration, z ∈ Γj and w ∈ Γ̂j . To com-
pute ∫

Γ̂j

1

z − w
dw,

notice that the integrand has a pole at w = z, but
since w ∈ Γ̂j , this pole occurs outside the contour
of integration, and hence the integral is zero. On
the other hand, the integrand in

∫
Γj

1

z − w
dz

has a pole at z = w, which occurs inside the contour of integration since
z ∈ Γj . It follows that

PjPj =
( 1

2π i

)2
∫

Γ̂j

R(w)(2π i) dw = Pj .

Variations on this proof can be used to derive a host of similar relation-
ships, which we summarize below.
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Theorem 1.26. Let Pj and Dj denote the spectral projectors and nilpo-
tents defined in (1.54) for eigenvalue λj, where λ1, . . . , λp denote the
distinct eigenvalues of A ∈ Cn×n and d1, . . . , dp their indices. Then

• P2
j = Pj;

• D
dj
j = 0 (in particular, Dj = 0 if dj = 1);

• PjDj = DjPj = Dj;

• PjPk = 0 when j 6= k;

• DjPk = PkDj = DjDk = 0 when j 6= k.

It is an interesting exercise to relate the spectral projectors and nilpotents
to the elements of the Jordan form developed in the last section. Ultimately,
one arrives at a beautifully concise expansion for a generic matrix.

Spectral Representation of a Matrix

Theorem 1.27. Any matrix A with distinct eigenvalues λ1, . . . , λp
and corresponding spectral projectors P1, . . . ,Pp and spectral nilpotents
D1, . . . ,Dp can be written in the form

A =

p∑
j=1

λjPj + Dj .

1.11 Coda: Simultaneous Diagonalization
We conclude this chapter with a basic result we will have cause to apply
later, which serves as a nice way to tie together several concepts we have
encountered.

Simultaneous Diagonalization

Theorem 1.28. Let A,B ∈ Cn×n be diagonalizable matrices. Then
AB = BA if and only if there exists some invertible V ∈ Cn×n such
that VAV−1 = Λ and VBV−1 = Γ are both diagonal.
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Proof. First suppose that A and B are both simultaneously diagonaliz-
able, i.e., there exists an invertible V ∈ Cn×n such that VAV−1 = Λ and
VBV−1 = Γ are both diagonal. Then using the multiplication of diagonal
matrices is always commutative,

AB = V−1ΛVV−1ΓV = V−1ΛΓV = V−1ΓΛV = V−1ΓVV−1ΛV = BA.

Now suppose that A and B are diagonalizable matrices that commute:
AB = BA. Diagonalize A to obtain

V−1AV =

[
λ1I 0
0 D

]
,

where λ1 6∈ σ(D), i.e., we group all copies of the eigenvalue λ1 in the upper-
left corner. Now partition V−1BV accordingly:

V−1BV =

[
W X
Y Z

]
.

Since A and B commute, so too do V−1AV and V−1BV:

V−1AVV−1BV =

[
λ1W λ1X
DY DZ

]

= V−1BVV−1AV =

[
λ1W XD
λ1Y ZD

]
.

Equating the (1,2) blocks gives λ1X = XD, i.e., X(D − λ1I) = 0. Since
λ1 6∈ σ(D), the resolvent (D−λ1I) is invertible, so we conclude that X = 0.
Similarly, the (2,1) blocks imply DY = λ1Y, and hence Y = 0. Finally, the
(2, 2) blocks imply that D and Z commute. In summary, we arrive at the
block-diagonal form

V−1BV =

[
W 0
0 Z

]
,

where W and Z are diagonalizable, since B is diagonalizable. We wish to
further simplify W to diagonal form. Write W = SΓS−1 for diagonal Γ,
and define

T =

[
S 0
0 I

]
.

Then

T−1V−1BVT =

[
S−1 0
0 I

] [
W 0
0 Z

] [
S 0
0 I

]
=

[
Γ 0
0 Z

]
,
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which has a diagonal (1, 1) block. This transformation has no affect on the
already-diagonalized (1,1) block of V−1AV:

T−1V−1AVT =

[
S−1 0
0 I

] [
λ1I 0
0 D

] [
S 0
0 I

]
=

[
λ1I 0
0 S−1ZS

]
.

In summary, we have simultaneously block-diagonalized portions of A and
B. Apply the same strategy for each remaining eigenvalue of A, i.e., to the
commuting matrices S−1DS−1 and Z.

One rough way to summarize this result: diagonalizable matrices com-
mute if and only if they have the same eigenvectors.

Problems
1. Suppose A ∈ Cn×n is invertible, and E ∈ Cn×n is a ‘small’ perturba-

tion. Use Theorem 1.9 to develop a condition on ‖E‖ to ensure that
A + E is invertible, and provide a bound on ‖(A + E)−1‖.

2. Bernoulli’s description of the compound pendulum with three equal
masses (see Section 1.2) models an ideal situation: there is no energy
loss in the system. When we add a viscous damping term, the displace-
ment xj(t) of the jth mass is governed by the differential equationx′′1(t)

x′′2(t)
x′′3(t)

 =

 −1 1 0
1 −3 2
0 2 −5

x1(t)
x2(t)
x3(t)

− 2a

x′1(t)
x′2(t)
x′3(t)


for damping constant a ≥ 0. We write this equation in matrix form,

x′′(t) = −Ax(t)− 2ax′(t).

(Note the leading minus sign when you construct A!) As with the
damped harmonic oscillator in Section 1.7, we introduce y(t) := x′(t)
and write the second-order system in first-order form:[

x′(t)
y′(t)

]
=

[
0 I
−A −2aI

] [
x(t)
y(t)

]
.

Denote the eigenvalues of A as γ1, γ2, and γ3 with corresponding
eigenvectors u1 u2, and u3.
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(a) What are the eigenvalues and eigenvectors of the matrix

S(a) =

[
0 I
−A 2aI

]
in terms of the constant a ≥ 0 and the eigenvalues and eigenvec-
tors of A ? (Give symbolic values in terms of γ1, γ2, and γ3.)

(b) For what values of a ≥ 0 does the matrix S(a) have a double
eigenvalue? What can you say about the eigenvectors associated
with this double eigenvalue? (Give symbolic values in terms of
γ1, γ2, and γ3.)

(c) Produce a plot in MATLAB (or the program of your choice) su-
perimposing the eigenvalues of S(a) for a ∈ [0, 3].

(d) What value of a minimizes the maximum real part of the eigenval-
ues? That is, find the a ≥ 0 that minimizes the spectral abscissa

α(S(a)) := max
λ∈S(a)

Reλ.

3. Consider the 8× 8 matrix

A =



601 300 0 0 0 0 0 0
3000 1201 0 0 0 0 0 300

475098 110888 301 100 −15266 −202 4418 27336
4594766 1185626 −900 −299 −130972 −3404 34846 272952
−22800 −6000 0 0 601 0 0 −1800

−3776916 −968379 0 0 108597 2402 −28800 −222896
−292663 −71665 0 0 8996 200 −2398 −16892
−37200 −14400 0 0 300 0 0 −2399


.

Using MATLAB’s eig command, do your best to approximate the true
eigenvalues of A and the dimensions of the associated Jordan blocks.
(Do not worry about the eigenvectors and generalized eigenvectors!)
Justify your answer as best as you can. The matrices A and A∗ have
identical eigenvalues. Does MATLAB agree?

4. If a spectral projector Pj is orthogonal, show that the associated in-
variant subspace R(Pj) is orthogonal to the complementary invariant
subspace. Construct a matrix with three eigenvalues, where spectral
projector is orthogonal, and the other two spectral projectors are not
orthogonal.

5. Let A,B,C ∈ Cn×n, and suppose that AB = BA and AC = CA.
It is tempting to claim that, via Theorem 1.28 on simultaneous diag-
onalization, we should have BC = CB. Construct a counterexample,
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and explain why this does not contradict the characterization that ‘the
matrices A and B commute if and only if they have the same eigen-
vectors’.
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