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Lecture Notes on Numerical Analysis
Virginia Tech · MATH/CS 5466 · Spring 2016

Image from Johannes Kepler’s Astrono-
mia nova, 1609, (ETH Bibliothek). In this
text Kepler derives his famous equation
that solves two-body orbital motion,

M = E− e sin E,

where M (the mean anomaly) and e
(the eccentricity) are known, and one
solves for E (the eccentric anomaly).
This vital problem spurred the de-
velopment of algorithms for solving
nonlinear equations.

We model our world with continuous mathematics. Whether our
interest is natural science, engineering, even finance and economics,
the models we most often employ are functions of real variables. The
equations can be linear or nonlinear, involve derivatives, integrals,
combinations of these and beyond. The tricks and techniques one
learns in algebra and calculus for solving such systems exactly can-
not tackle the complexities that arise in serious applications. Exact
solution may require an intractable amount of work; worse, for many
problems, it is impossible to write an exact solution using elementary
functions like polynomials, roots, trig functions, and logarithms.

This course tells a marvelous success story. Through the use of
clever algorithms, careful analysis, and speedy computers, we can
construct approximate solutions to these otherwise intractable prob-
lems with remarkable speed. Nick Trefethen defines numerical analysis
to be ‘the study of algorithms for the problems of continuous math-
ematics’. This course takes a tour through many such algorithms,

We highly recommend Trefethen’s
essay, ‘The Definition of Numerical
Analysis’, (reprinted on pages 321–327

of Trefethen & Bau, Numerical Linear
Algebra), which inspires our present
manifesto.

sampling a variety of techniques suitable across many applications.
We aim to assess alternative methods based on both accuracy and
efficiency, to discern well-posed problems from ill-posed ones, and to
see these methods in action through computer implementation.

Perhaps the importance of numerical analysis can be best appre-
ciated by realizing the impact its disappearance would have on our
world. The space program would evaporate; aircraft design would
be hobbled; weather forecasting would again become the stuff of
soothsaying and almanacs. The ultrasound technology that uncov-
ers cancer and illuminates the womb would vanish. Google couldn’t
rank web pages. Even the letters you are reading, whose shapes are
specified by polynomial curves, would suffer. (Several important ex-
ceptions involve discrete, not continuous, mathematics: combinatorial
optimization, cryptography and gene sequencing.)

On one hand, we are interested in complexity: we want algorithms
that minimize the number of calculations required to compute a solu-
tion. But we are also interested in the quality of approximation: since
we do not obtain exact solutions, we must understand the accuracy
of our answers. Discrepancies arise from approximating a compli-
cated function by a polynomial, a continuum by a discrete grid of
points, or the real numbers by a finite set of floating point numbers.
Different algorithms for the same problem will differ in the quality of
their answers and the labor required to obtain those answers; we will
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learn how to evaluate algorithms according to these criteria.
Numerical analysis forms the heart of ‘scientific computing’ or

‘computational science and engineering,’ fields that also encompass
the high-performance computing technology that makes our algo-
rithms practical for problems with millions of variables, visualization
techniques that illuminate the data sets that emerge from these com-
putations, and the applications that motivate them.

Though numerical analysis has flourished in the past seventy
years, its roots go back centuries, where approximations were neces-
sary in celestial mechanics and, more generally, ‘natural philosophy’.
Science, commerce, and warfare magnified the need for numerical
analysis, so much so that the early twentieth century spawned the
profession of ‘computers,’ people who conducted computations with
hand-crank desk calculators. But numerical analysis has always been
more than mere number-crunching, as observed by Alston House-
holder in the introduction to his Principles of Numerical Analysis, pub-
lished in 1953, the end of the human computer era:

The material was assembled with high-speed digital computation
always in mind, though many techniques appropriate only to “hand”
computation are discussed.. . . How otherwise the continued use of
these machines will transform the computer’s art remains to be seen.
But this much can surely be said, that their effective use demands a
more profound understanding of the mathematics of the problem, and
a more detailed acquaintance with the potential sources of error, than
is ever required by a computation whose development can be watched,
step by step, as it proceeds.

Thus the analysis component of ‘numerical analysis’ is essential. We
rely on tools of classical real analysis, such as continuity, differentia-
bility, Taylor expansion, and convergence of sequences and series.

Matrix computations play a fundamental role in numerical analy-
sis. Discretization of continuous variables turns calculus into algebra.
Algorithms for the fundamental problems in linear algebra are cov-
ered in MATH/CS 5465. If you have missed this beautiful content,
your life will be poorer for it; when the methods we discuss this
semester connect to matrix techniques, we will provide pointers.

These lecture notes were developed alongside courses that were
supported by textbooks, such as An Introduction to Numerical Analysis
by Süli and Mayers, Numerical Analysis by Gautschi, and Numerical
Analysis by Kincaid and Cheney. These notes have benefited from this
pedigree, and reflect certain hallmarks of these books. We have also
been significantly influenced by G. W. Stewart’s inspiring volumes,
Afternotes on Numerical Analysis and Afternotes Goes to Graduate School.
I am grateful for comments and corrections from past students, and
welcome suggestions for further repair and amendment.

— Mark Embree
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Interpolation

lecture 1: Polynomial Interpolation in the Monomial Basis

Among the most fundamental problems in numerical analysis
is the construction of a polynomial that approximates a continuous
real function f : [a, b] → IR. Of the several ways we might design
such polynomials, we begin with interpolation: we will construct poly-
nomials that exactly match f at certain fixed points in the interval
[a, b] ⊂ IR.

1.1 Polynomial interpolation: definitions and notation

Definition 1.1. The set of continuous functions that map [a, b] ⊂ IR to
IR is denoted by C[a, b]. The set of continuous functions whose first r
derivatives are also continuous on [a, b] is denoted by Cr[a, b]. (Note
that C0[a, b] ≡ C[a, b].)

Definition 1.2. The set of polynomials of degree n or less is denoted
by Pn.

Note that C[a, b], Cr[a, b] (for any a < b, r ≥ 0) and Pn are linear
spaces of functions (since linear combinations of such functions main- We freely use the concept of vector

spaces. A set of functions V is a real
vector space it is closed under vector
addition and multiplication by a real
number: for any f , g ∈ V, f + g ∈ V,
and for any f ∈ V and α ∈ IR, α f ∈ V.
For more details, consult a text on
linear algebra or functional analysis.

tain continuity and polynomial degree). Furthermore, note that Pn is
an n + 1 dimensional subspace of C[a, b].

The polynomial interpolation problem can be stated as:

Given f ∈ C[a, b] and n + 1 points {xj}n
j=0 satisfying

a ≤ x0 < x1 < · · · < xn ≤ b,

determine some pn ∈ Pn such that

pn(xj) = f (xj) for j = 0, . . . , n.
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It shall become clear why we require n + 1 points x0, . . . , xn, and no
more, to determine a degree-n polynomial pn. (You know the n = 1
case well: two points determine a unique line.) If the number of data
points were smaller, we could construct infinitely many degree-n
interpolating polynomials. Were it larger, there would in general be
no degree-n interpolant.

As numerical analysts, we seek answers to the following questions:

• Does such a polynomial pn ∈ Pn exist?

• If so, is it unique?

• Does pn ∈ Pn behave like f ∈ C[a, b] at points x ∈ [a, b] when
x 6= xj for j = 0, . . . , n?

• How can we compute pn ∈ Pn efficiently on a computer?

• How can we compute pn ∈ Pn accurately on a computer (with
floating point arithmetic)?

• If we want to add a new interpolation point xn+1, can we easily
adjust pn to give an interpolating polynomial pn+1 of one higher
degree?

• How should the interpolation points {xj} be chosen?

Regarding this last question, we should note that, in practice, we
are not always able to choose the interpolation points as freely as
we might like. For example, our ‘continuous function f ∈ C[a, b]’
could actually be a discrete list of previously collected experimental
data, and we are stuck with the values {xj}n

j=0 at which the data was
measured.

1.2 Constructing interpolants in the monomial basis

Of course, any polynomial pn ∈ Pn can be written in the form

pn(x) = c0 + c1x + c2x2 + · · ·+ cnxn

for coefficients c0, c1, . . . , cn. We can view this formula as an expres-
sion for pn as a linear combination of the basis functions 1, x, x2, . . . ,
xn; these basis functions are called monomials.

To construct the polynomial interpolant to f , we merely need to
determine the proper values for the coefficients c0, c1, . . . , cn in the
above expansion. The interpolation conditions pn(xj) = f (xj) for
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j = 0, . . . , n reduce to the equations

c0 + c1x0 + c2x2
0 + · · ·+ cnxn

0 = f (x0)

c0 + c1x1 + c2x2
1 + · · ·+ cnxn

1 = f (x1)

...

c0 + c1xn + c2x2
n + · · ·+ cnxn

n = f (xn).

Note that these n + 1 equations are linear in the n + 1 unknown
parameters c0, . . . , cn. Thus, our problem of finding the coefficients
c0, . . . , cn reduces to solving the linear system

(1.1)



1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...

...
...

. . .
...

1 xn x2
n · · · xn

n





c0

c1

c2

...

cn


=



f (x0)

f (x1)

f (x2)

...

f (xn)


,

which we denote as Ac = f. Matrices of this form, called Vander-
monde matrices, arise in a wide range of applications.1 Provided all 1 Higham presents many interesting

properties of Vandermonde matrices
and algorithms for solving Vander-
monde systems in Chapter 21 of
Accuracy and Stability of Numerical
Algorithms, 2nd ed., (SIAM, 2002). Van-
dermonde matrices arise often enough
that MATLAB has a built-in command
for creating them. If x = [x0, . . . , xn]T ,
then A = fliplr(vander(x)).

the interpolation points {xj} are distinct, one can show that this ma-
trix is invertible.2 Hence, fundamental properties of linear algebra

2 In fact, the determinant takes the
simple form

det(A) =
n

∏
j=0

n

∏
k=j+1

(xk − xj).

This is evident for n = 1; we will
not prove if for general n, as we will
have more elegant ways to establish
existence and uniqueness of polynomial
interpolants. For a clever proof, see
p. 193 of Bellman, Introduction to Matrix
Analysis, 2nd ed., (McGraw-Hill, 1970).

allow us to confirm that there is exactly one degree-n polynomial that
interpolates f at the given n + 1 distinct interpolation points.

Theorem 1.1. Given f ∈ C[a, b] and distinct points {xj}n
j=0, a ≤

x0 < x1 < · · · < xn ≤ b, there exists a unique pn ∈ Pn such that
pn(xj) = f (xj) for j = 0, 1, . . . , n.

To determine the coefficients {cj}, we could solve the above linear
system with the Vandermonde matrix using some variant of Gaus-
sian elimination (e.g., using MATLAB’s \ command); this will take
O(n3) floating point operations. Alternatively, we could (and should)
use a specialized algorithm that exploit the Vandermonde structure
to determine the coefficients {cj} in only O(n2) operations, a vast
improvement.3

3 See Higham’s book for details and
stability analysis of specialized Vander-
monde algorithms.

1.2.1 Potential pitfalls of the monomial basis

Though it is straightforward to see how to construct interpolating
polynomials in the monomial basis, this procedure can give rise to
some unpleasant numerical problems when we actually attempt to
determine the coefficients {cj} on a computer. The primary difficulty
is that the monomial basis functions 1, x, x2, . . . , xn look increasingly
alike as we take higher and higher powers. Figure 1.1 illustrates this
behavior on the interval [a, b] = [0, 1] with n = 5 and xj = j/5.
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Figure 1.1: The six monomial basis
vectors for P5, based on the interval
[a, b] = [0, 1] with xj = j/5 (red circles).
Note that the basis vectors increasingly
align as the power increases: this basis
becomes ill-conditioned as the degree of
the interpolant grows.

Because these basis vectors become increasingly alike, one finds
that the expansion coefficients {cj} in the monomial basis can be-
come very large in magnitude even if the function f (x) remains of
modest size on [a, b].

Consider the following analogy from linear algebra. The vectors[
1

10−10

]
,

[
1
0

]

form a basis for IR2. However, both vectors point in nearly the same
direction, though of course they are linearly independent. We can write
the vector [1, 1]T as a unique linear combination of these basis vec-
tors:

(1.2)

[
1
1

]
= 10, 000, 000, 000

[
1

10−10

]
− 9, 999, 999, 999

[
1
0

]
.

Although the vector we are expanding and the basis vectors them-
selves are all have modest size (norm), the expansion coefficients are
enormous. Furthermore, small changes to the vector we are expand-
ing will lead to huge changes in the expansion coefficients. This is a
recipe for disaster when computing with finite-precision arithmetic.

This same phenomenon can occur when we express polynomials
in the monomial basis. As a simple example, consider interpolating
f (x) = 2x + x sin(40x) at uniformly spaced points (xj = j/n, j =

0, . . . , n) in the interval [0, 1]. Note that f ∈ C∞[0, 1]: this f is a ‘nice’
function with infinitely many continuous derivatives. As seen in
Figures 1.2–1.3, f oscillates modestly on the interval [0, 1], but it
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pn(x) = interpolating polynomial, n = 10

x

Figure 1.2: Degree n = 10 interpolant
p10(x) to f (x) = 2x + x sin(40x) at
the uniformly spaced points x0, . . . , x10
for xj = j/10 over [a, b] = [0, 1].
Even though p10(xj) = f (xj) at the
eleven points x0, . . . , xn (red circles), the
interpolant gives a poor approximation
to f at the ends of the interval.
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f(x) = 2x + x sin(40x)
pn(x) = interpolating polynomial, n = 30

x

Figure 1.3: Repetition of Figure 1.2, but
now with the degree n = 30 interpolant
at uniformly spaced points xj = j/30 on
[0, 1]. The polynomial still overshoots f
near x = 0 and x = 1, though by less
than for n = 10; for this example, the
overshoot goes away as n is increased
further.

certainly does not grow excessively large in magnitude or exhibit any
nasty singularities.

Comparing the interpolants with n = 10 and n = 30 between the
two figures, it appears that, in some sense, pn → f as n increases.
Indeed, this is the case, in a manner we shall make precise in future
lectures.

However, we must address a crucial question:

Can we accurately compute the coefficients c0, . . . , cn

that specify the interpolating polynomial?
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Use MATLAB’s basic Gaussian elimination algorithm to solve the
Vandermonde system Ac = f for c via the command c = A\f, then
evaluate

pn(x) =
n

∑
j=0

cjxj

e.g., using MATLAB’s polyval command.
Since pn was constructed to interpolate f at the points x0, . . . , xn,

we might (at the very least!) expect

f (xj)− pn(xj) = 0, j = 0, . . . , n.

Since we are dealing with numerical computations with a finite preci-
sion floating point system, we should instead be well satisfied if our
numerical computations only achieve | f (xj) − pn(xj)| = O(εmach), More precisely, we might expect

| f (xj)− pn(xj)| ≈ εmach‖ f ‖L∞ ,

where | f ‖L∞ := max
x∈[a,b]

| f (x)|.

where εmach denotes the precision of the floating point arithmetic
system.4

4 For the double-precision arithmetic
used by MATLAB, εmach ≈ 2.2× 10−16.

Instead, the results of our numerical computations are remarkably
inaccurate due to the magnitude of the coefficients c0, . . . , cn and the
ill-conditioning of the Vandermonde matrix.

Recall from numerical linear algebra that the accuracy of solving
the system Ac = f depends on the condition number ‖A‖‖A−1‖ of A.5 5 For information on conditioning and

the accuracy of solving linear systems,
see, e.g.., Lecture 12 of Trefethen and
Bau, Numerical Linear Algebra (SIAM,
1997).

Figure 1.4 shows that this condition number grows exponentially as n
increases.6 Thus, we should expect the computed value of c to have

6 The curve has very regular behavior
up until about n = 20; beyond that
point, where ‖A‖‖A−1‖ ≈ 1/εmach,
the computation is sufficiently unstable
that the condition number is no longer
computed accurately! For n > 20,
take all the curves in Figure 1.4 with a
healthy dose of salt.

errors that scale like ‖A‖‖A−1‖εmach. Moreover, consider the entries
in c. For n = 10 (a typical example), we have

j cj

0 0.00000
1 363.24705
2 −10161.84204
3 113946.06962
4 −679937.11016
5 2411360.82690
6 −5328154.95033
7 7400914.85455
8 −6277742.91579
9 2968989.64443

10 −599575.07912

The entries in c grow in magnitude and oscillate in sign, akin to the
simple IR2 vector example in (1.2). The sign-flips and magnitude of
the coefficients would make

pn(x) =
n

∑
j=0

cjxj
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Figure 1.4: Illustration of some pitfalls
of working with interpolants in the
monomial basis for large n: (a) the con-
dition number of A grows large with n;
(b) as a result, some coefficients cj are
large in magnitude (blue line) and in-
accurately computed; (c) consequently,
the computed ‘interpolant’ pn is far
from f at the interpolation points (red
line): this red curve should be zero!

difficult to compute accurately for large n, even if all the coefficients
c0, . . . , cn were given exactly. Figure 1.4 shows how the largest com-
puted value in c grows with n. Finally, this figure also shows the
quantity we began discussing,

max
0≤j≤n

| f (xj)− pn(xj)|.

Rather than being nearly zero, this quantity grows with n, until the
computed ‘interpolating’ polynomial differs from f at some interpo-
lation point by roughly 1/10 for the larger values of n: we must have
higher standards!

This is an example where a simple problem formulation quickly
yields an algorithm, but that algorithm gives unacceptable numerical
results.

Perhaps you are now troubled by this entirely reasonable question:
If the computations of pn are as unstable as Figure 1.4 suggests, why
should we put any faith in the plots of interpolants for n = 10 and,
especially, n = 30 in Figures 1.2–1.3?

You should trust those plots because I computed them using a
much better approach, about which we shall next learn.
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lecture 2: Superior Bases for Polynomial Interpolants

1.3 Polynomial interpolants in a general basis

The monomial basis may seem like the most natural way to write
down the interpolating polynomial, but it can lead to numerical
problems, as seen in the previous lecture. To arrive at more stable
expressions for the interpolating polynomial, we will derive several
different bases for Pn that give superior computational properties:
the expansion coefficients {cj} will typically be smaller, and it will
be simpler to determine those coefficients. This is an instance of
a general principle of applied mathematics: to promote stability,
express your problem in a well-conditioned basis.

Suppose we have some basis {bj}n
j=0 for Pn. We seek the polyno- Recall that {bj}n

j=0 is a basis if the
functions span Pn and are linearly
independent. The first requirement
means that for any polynomial p ∈ Pn
we can find constants c0, . . . , cn such
that

p = c0b0 + · · ·+ cnbn,

while the second requirement means
that if

0 = c0b0 + · · ·+ cnbn

then we must have c0 = · · · = cn = 0.

mial p ∈ Pn that interpolates f at x0, . . . , xn. Write p in the basis
as

p(x) = c0b0(x) + c1b1(x) + · · ·+ cnbn(x).

We seek the coefficients c0, . . . , cn that express the interpolant p in
this basis. The interpolation conditions are

p(x0) = c0b0(x0) + c1b1(x0) + · · ·+ cnbn(x0) = f (x0)

p(x1) = c0b0(x1) + c1b1(x1) + · · ·+ cnbn(x1) = f (x1)

...

p(xn) = c0b0(xn) + c1b1(xn) + · · ·+ cnbn(xn) = f (xn).

Again we have n + 1 equations that are linear in the n + 1 unknowns
c0, . . . , cn, hence we can arrange these in the matrix form

(1.3)


b0(x0) b1(x0) · · · bn(x0)

b0(x1) b1(x1) · · · bn(x1)
...

...
. . .

...
b0(xn) b1(xn) · · · bn(xn)




c0

c1
...

cn

 =


f (x0)

f (x1)
...

f (xn)

 ,

which can be solved via Gaussian elimination for c0, . . . , cn.
Notice that the linear system for the monomial basis in (1.1) is a

special case of the system in (1.3), with the choice bj(x) = xj. Next
we will look at two superior bases that give more stable expressions
for the interpolant. We emphasize that when the basis changes, so to
do the values of c0, . . . , cn, but the interpolating polynomial p remains the
same, regardless of the basis we use to express it.
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1.4 Constructing interpolants in the Newton basis

To derive our first new basis for Pn, we describe an alternative
method for constructing the polynomial pn ∈ Pn that interpolates
f ∈ C[a, b] at the distinct points {x0, . . . , xn} ⊂ [a, b]. This approach,
called the Newton form of the interpolant, builds pn up from lower
degree polynomials that interpolate f at only some of the data points.

Begin by constructing the polynomial p0 ∈ P0 that interpolates
f at x0: p0(x0) = f (x0). Since p0 is a zero-degree polynomial (i.e., a
constant), it has the simple form

p0(x) = c0.

To satisfy the interpolation condition at x0, set c0 = f (x0). (We
emphasize again: this c0, and the cj below, will be different from the
cj’s obtained in Section 1.2 for the monomial basis.)

Next, use p0 to build the polynomial p1 ∈ P1 that interpolates f at
both x0 and x1. In particular, we will require p1 to have the form

p1(x) = p0(x) + c1q1(x)

for some constant c1 and some q1 ∈ P1. Note that

p1(x0) = p0(x0) + c1q1(x0)

= f (x0) + c1q1(x0).

Since we require that p1(x0) = f (x0), the above equation implies
that c1q1(x0) = 0. Either c1 = 0 (which can only happen in the
special case f (x0) = f (x1), and we seek a basis that works for any f )
or q1(x0) = 0, i.e., q1(x0) has a root at x0. Thus, we deduce that
q1(x) = x− x0. It follows that

p1(x) = c0 + c1(x− x0),

where c1 is still undetermined. To find c1, use the interpolation con-
dition at x1:

f (x1) = p1(x1) = c0 + c1(x1 − x0).

Solving for c1,

c1 =
f (x1)− c0

x1 − x0
.

Next, find the p2 ∈ P2 that interpolates f at x0, x1, and x2, where
p2 has the form

p2(x) = p1(x) + c2q2(x).

Similar to before, the first term, now p1(x), ‘does the right thing’ at
the first two interpolation points, p1(x0) = f (x0) and p1(x1) = f (x1).
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We require that q2 not interfere with p1 at x0 and x1, i.e., q2(x0) =

q2(x1) = 0. Thus, we take q2 to have the form

q2(x) = (x− x0)(x− x1).

The interpolation condition at x2 gives an equation where c2 is the
only unknown,

f (x2) = p2(x2) = p1(x2) + c2q2(x2),

which we can solve for

c2 =
f (x2)− p1(x2)

q2(x2)
=

f (x2)− c0 − c1(x2 − x0)

(x2 − x0)(x2 − x1)
.

Follow the same pattern to bootstrap up to pn, which takes the
form

pn(x) = pn−1(x) + cnqn(x),

where

qn(x) =
n−1

∏
j=0

(x− xj),

and, setting q0(x) = 1, we have

cn =
f (xn)−∑n−1

j=0 cjqj(xn)

qn(xn)
.

Finally, the desired polynomial takes the form

pn(x) =
n

∑
j=0

cjqj(x).

The polynomials qj for j = 0, . . . , n form a basis for Pn, called the
Newton basis. The cj we have just determined are the expansion coef-
ficients for this interpolant in the Newton basis. Figure 1.5 shows the
Newton basis functions qj for [a, b] = [0, 1] with n = 5 and xj = j/5,
which look considerably more distinct than the monomial basis poly-
nomials illustrated in Figure 1.1.

This entire procedure for constructing pn can be condensed into a
system of linear equations with the coefficients {cj}n

j=0 unknown:

(1.4)



1

1 (x1 − x0)

1 (x2 − x0) (x2 − x0)(x2 − x1)

...
...

...
. . .

1 (xn − x0) (xn − x0)(xn − x1) · · · ∏n−1
j=0 (xn − xj)





c0

c1

c2

...

cn


=



f (x0)

f (x1)

f (x2)

...

f (xn)


,
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Figure 1.5: The six Newton basis
polynomials q0, . . . , q5 for P5, based
on the interval [a, b] = [0, 1] with
xj = j/5 (black dots). Compare these
to the monomial basis polynomials
in Figure 1.1: these vectors look far
more distinct from one another than the
monomials.

again a special case of (1.3) but with bj(x) = qj(x). (The unspecified
entries above the diagonal are zero, since qj(xk) = 0 when k < j.) The
system (1.4) involves a triangular matrix, which is simple to solve.
Clearly c0 = f (x0), and once we know c0, we can solve for

c1 =
f (x1)− c0

x1 − x0
.

With c0 and c1, we can solve for c2, and so on. This procedure, for-
ward substitution, requires roughly n2 floating point operations once
the entries are formed.

With this Newton form of the interpolant, one can easily update
pn to pn+1 in order to incorporate a new data point (xn+1, f (xn+1)),
as such a change affects neither the previous values of cj nor qj. The
new data (xn+1, f (xn+1)) simply adds a new row to the bottom of
the matrix in (1.4), which preserves the triangular structure of the
matrix and the values of {c0, . . . , cn}. If we have already found these
coefficients, we easily obtain cn+1 through one more step of forward
substitution.

1.5 Constructing interpolants in the Lagrange basis

The monomial basis gave us a linear system (1.1) of the form Ac = f
in which A was a dense matrix: all of its entries are nonzero. The
Newton basis gave a simpler system (1.4) in which A was a lower
triangular matrix. Can we go one step further, and find a set of basis
functions for which the matrix in (1.3) is diagonal?

For the matrix to be diagonal, the jth basis function would need to
have roots at all the other interpolation points xk for k 6= j. Such func-
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tions, denoted `j for j = 0, . . . , n, are called Lagrange basis polynomials,
and they result in the Lagrange form of the interpolating polynomial.

We seek to construct `j ∈ Pn with `j(xk) = 0 if j 6= k, but `j(xk) = 1
if j = k. That is, `j takes the value one at xj and has roots at all the
other n interpolation points.

What form do these basis functions `j ∈ Pn take? Since `j is a
degree-n polynomial with the n roots {xk}n

k=0,k 6=j, it can be written in
the form

`j(x) =
n

∏
k=0,k 6=j

γk(x− xk)

for appropriate constants γk. We can force `j(xj) = 1 if all the terms
in the above product are one when x = xj, i.e., when γk = 1/(xj −
xk), so that

`j(x) =
n

∏
k=0,k 6=j

x− xk
xj − xk

.

This form makes it clear that `j(xj) = 1. With these new basis func-
tions, the constants {cj} can be written down immediately. The inter-
polating polynomial has the form

pn(x) =
n

∑
k=0

ck`k(x).

When x = xj, all terms in this sum will be zero except for one, the
k = j term (since `k(xj) = 0 except when j = k). Thus,

pn(xj) = cj`j(xj) = cj,

so we can directly write down the coefficients, cj = f (xj).
As desired, this approach to constructing basis polynomials leads

to a diagonal matrix A in the equation Ac = f for the coefficients.
Since we also insisted that `j(xj) = 1, the matrix A is actually just the
identity matrix:

1

1

. . .

1





c0

c1

...

cn

 =



f (x0)

f (x1)

...

f (xn)

 .

Now the coefficient matrix is simply the identity.
A forthcoming exercise will investigate an important flexible and

numerically stable method for constructing and evaluating Lagrange
interpolants known as barycentric interpolation.

Figure 1.6 shows the Lagrange basis functions for n = 5 with
[a, b] = [0, 1] and xj = j/5, the same parameters used in the plots of
the monomial and Newton bases earlier.
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Figure 1.6: The six Lagrange basis
polynomials `0, . . . , `5 for P5, based
on the interval [a, b] = [0, 1] with
xj = j/5 (black dots). Note that each
Lagrange polynomial has roots at n of
the interpolation points. Compare these
polynomials to the monomial and New-
ton basis polynomials in Figures 1.1
and 1.5 (but note the different vertical
scale): these basis vectors look most
independent of all.

The fact that these basis functions are not as closely aligned as the
previous ones has interesting consequences on the size of the coeffi-
cients {cj}. For example, if we have n + 1 = 6 interpolation points
for f (x) = sin(10x) + cos(10x) on [0, 1], we obtain the following
coefficients:

monomial Newton Lagrange
c0 1.0000000e+00 1.0000000e+00 1.0000000e+00

c1 4.0861958e+01 -2.5342470e+00 4.9315059e-01

c2 -3.8924180e+02 -1.7459341e+01 -1.4104461e+00

c3 1.0775024e+03 1.1232385e+02 6.8075479e-01

c4 -1.1683645e+03 -2.9464687e+02 8.4385821e-01

c5 4.3685881e+02 4.3685881e+02 -1.3830926e+00

We emphasize that all three approaches (in exact arithmetic) must
yield the same unique polynomial, but they are expressed in different
bases. The behavior in floating point arithmetic varies significantly
with the choice of basis; the monomial basis is the clear loser.
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lecture 3: Interpolation Error Bounds

1.6 Convergence theory for polynomial interpolation

Interpolation can be used to generate low-degree polynomials that
approximate a complicated function over the interval [a, b]. One
might assume that the more data points that are interpolated (for a
fixed [a, b]), the more accurate the resulting approximation. In this
lecture, we address the behavior of the maximum error

max
x∈[a,b]

| f (x)− pn(x)|

as the number of interpolation points—hence, the degree of the in-
terpolating polynomial—is increased. We begin with a theoretical
result.

Theorem 1.2 (Weierstrass Approximation Theorem).
Suppose f ∈ C[a, b]. For any ε > 0 there exists some polynomial pn

of finite degree n such that maxx∈[a,b] | f (x)− pn(x)| ≤ ε.

Unfortunately, we do not have time to prove this in class.7 As 7 The typical proof is a construction
based on Bernstein polynomials; see,
e.g., Kincaid and Cheney, Numerical
Analysis, 3rd edition, pages 320–323.
This result can be generalized to the
Stone–Weierstrass Theorem, itself a
special case of Bishop’s Theorem for
approximation problems in operator
algebras; see e.g., §5.6–§5.8 of Rudin,
Functional Analysis, 2nd ed. (McGraw
Hill, 1991).

stated, this theorem gives no hint about what the approximating
polynomial looks like, whether pn interpolates f at n + 1 points, or
merely approximates f well throughout [a, b], nor does the Weier-
strass theorem describe the accuracy of a polynomial for a specific
value of n (though one could gain insight into such questions by
studying the constructive proof).

On the other hand, for the interpolation problem studied in the
preceding lectures, we can obtain a specific error formula that gives a
bound on maxx∈[a,b] | f (x)− pn(x)|. From this bound, we can deduce
if interpolating f at increasingly many points will eventually yield
a polynomial approximation to f that is accurate to any specified
precision.

For any x̂ ∈ [a, b] that is not of the interpolation points, we seek to
measure the error

f (x̂)− pn(x̂),

where pn ∈ Pn is the interpolant to f at the distinct points x0, . . . , xn ∈
[a, b]. We can get a grip on this error from the following perspective.
Extend pn by one degree to give a new polynomial that additionally
interpolates f at x̂. This is easy to do with the Newton form of the
interpolant; write the new polynomial as

pn(x) + λ
n

∏
j=0

(x− xj),
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for constant λ chosen so that

f (x̂) = pn(x̂) + λ
n

∏
j=0

(x̂− xj).

For convenience, we write

w(x) :=
n

∏
j=0

(x− xj),

so we could solve for λ as

(1.5) λ =
f (x̂)− pn(x̂)

w(x̂)
.

Now notice that
0 = f (x̂)−

(
pn(x̂) + λw(x̂)

)
implies

(1.6) f (x̂)− pn(x̂) = λw(x̂),

which is an expression for the desired error f (x̂) − pn(x̂). Unfor-
tunately, the formula (1.5) does not give much insight into how the
error behaves as a function of f and the interpolation points.

Theorem 1.3 (Interpolation Error Formula).
Suppose f ∈ Cn+1[a, b] and let pn ∈ Pn denote the polynomial that
interpolates {

(
xj, f (xj)

)
}n

j=0 for distinct points xj ∈ [a, b], j = 0, . . . , n.
Then for every x ∈ [a, b] there exists ξ ∈ [a, b] such that

f (x)− pn(x) =
f (n+1)(ξ)

(n + 1)!

n

∏
j=0

(x− xj).

From this formula follows a bound for the worst error over [a, b]:

(1.7) max
x∈[a,b]

| f (x)− pn(x)| ≤
(

max
ξ∈[a,b]

| f (n+1)(ξ)|
(n + 1)!

)(
max

x∈[a,b]

n

∏
j=0
|x− xj|

)
.

We shall carefully prove this essential result; it will repay the ef-
fort, for this theorem becomes the foundation upon which we shall
build the convergence theory for piecewise polynomial approxima-
tion and interpolatory quadrature rules for definite integrals.

Proof. Consider some arbitrary point x̂ ∈ [a, b]. We seek a de-
scriptive expression for the error f (x̂) − pn(x̂). If x̂ = xj for some
j ∈ {0, . . . , n}, then f (x̂)− pn(x̂) = 0 and there is nothing to prove.
Thus, suppose for the rest of the proof that x̂ is not one of the inter-
polation points.
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To describe f (x̂)− pn(x̂), we shall build the polynomial of degree
n + 1 that interpolates f at x0, . . . , xn, and also x̂. Of course, this
polynomial will give zero error at x̂, since it interpolates f there.
From this polynomial we can extract a formula for f (x̂) − pn(x̂) by
measuring how much the degree n + 1 interpolant improves upon the
degree-n interpolant pn at x̂.

Since we wish to understand the relationship of the degree n + 1
interpolant to pn, we shall write that degree n + 1 interpolant in a
manner that explicitly incorporates pn. Given this setting, use of the
Newton form of the interpolant is natural; i.e., we write the degree
n + 1 polynomial as

pn(x) + λ
n

∏
j=0

(x− xj)

for some constant λ chosen to make the interpolant exact at x̂. For
convenience, we write

w(x) ≡
n

∏
j=0

(x− xj)

and then denote the error of this degree n + 1 interpolant by

φ(x) ≡ f (x)−
(

pn(x) + λw(x)
)
.

To make the polynomial pn(x) + λw(x) interpolate f at x̂, we shall
pick λ such that φ(x̂) = 0. The fact that x̂ 6∈ {xj}n

j=0 ensures that
w(x̂) 6= 0, and so we can force φ(x̂) = 0 by setting

λ =
f (x̂)− pn(x̂)

w(x̂)
.

Furthermore, since f (xj) = pn(xj) and w(xj) = 0 at all the n + 1
interpolation points x0, . . . , xn, we also have φ(xj) = f (xj)− pn(xj)−
λw(xj) = 0. Thus, φ is a function with at least n + 2 zeros in the
interval [a, b]. Rolle’s Theorem8 tells us that between every two con- 8 Recall the Mean Value Theorem

from calculus: Given d > c, suppose
f ∈ C[c, d] is differentiable on (c, d).
Then there exists some η ∈ (c, d) such
that ( f (d) − f (c))/(d − c) = f ′(η).
Rolle’s Theorem is a special case: If
f (d) = f (c), then there is some point
η ∈ (c, d) such that f ′(η) = 0.

secutive zeros of φ, there is some zero of φ′. Since φ has at least n + 2
zeros in [a, b], φ′ has at least n + 1 zeros in this same interval. We
can repeat this argument with φ′ to see that φ′′ must have at least n
zeros in [a, b]. Continuing in this manner with higher derivatives, we
eventually conclude that φ(n+1) must have at least one zero in [a, b];
we denote this zero as ξ, so that φ(n+1)(ξ) = 0.

We now want a more concrete expression for φ(n+1). Note that

φ(n+1)(x) = f (n+1)(x)− p(n+1)
n (x)− λw(n+1)(x).

Since pn is a polynomial of degree n or less, p(n+1)
n ≡ 0. Now observe

that w is a polynomial of degree n + 1. We could write out all the
coefficients of this polynomial explicitly, but that is a bit tedious,
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and we do not need all of them. Simply observe that we can write
w(x) = xn+1 + q(x), for some q ∈ Pn, and this polynomial q will
vanish when we take n + 1 derivatives:

w(n+1)(x) =
(

dn+1

dxn+1 xn+1
)
+ q(n+1)(x) = (n + 1)! + 0.

Assembling the pieces, φ(n+1)(x) = f (n+1)(x) − λ (n + 1)!. Since
φ(n+1)(ξ) = 0, we conclude that

λ =
f (n+1)(ξ)

(n + 1)!
.

Substituting this expression into 0 = φ(x̂) = f (x̂)− pn(x̂)− λw(x̂),
we obtain

f (x̂)− pn(x̂) =
f (n+1)(ξ)

(n + 1)!

n

∏
j=0

(x̂− xj).

This error bound has strong parallels to the remainder term in
Taylor’s formula. Recall that for sufficiently smooth h, the Taylor
expansion of f about the point x0 is given by

f (x) = f (x0)+ (x− x0) f ′(x0)+ · · ·+
(x− x0)

k

k!
f (k)(x0)+ remainder.

Ignoring the remainder term at the end, note that the Taylor expan-
sion gives a polynomial model of f , but one based on local infor-
mation about f and its derivatives, as opposed to the polynomial
interpolant, which is based on global information, but only about f ,
not its derivatives.

An interesting feature of the interpolation bound is the polynomial
w(x) = ∏n

j=0(x − xj). This quantity plays an essential role in ap-
proximation theory, and also a closely allied subdiscipline of complex
analysis called potential theory. Naturally, one might wonder what
choice of points {xj} minimizes |w(x)|: We will revisit this question
when we study approximation theory in the near future. For now, we
simply note that the points that minimize |w(x)| over [a, b] are called
Chebyshev points, which are clustered more densely at the ends of the
interval [a, b].

Example 1.1 ( f (x) = sin(x)). We shall apply the interpolation
bound to f (x) = sin(x) on x ∈ [−5, 5]. Since f (n+1)(x) = ± sin(x) or
± cos(x), we have maxx∈[−5,5] | f (n+1)(x)| = 1 for all n. The interpo-
lation result we just proved then implies that for any choice of distinct
interpolation points in [−5, 5],

n

∏
j=0
|x− xj| < 10n+1,
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the worst case coming if all the interpolation points are clustered at
an end of the interval [−5, 5]. Now our theorem ensures that

max
x∈[−5,5]

| sin(x)− pn(x)| ≤ 10n+1

(n + 1)!
.

For small values of n, this bound will be very large, but eventually
(n + 1)! grows much faster than 10n+1, so we conclude that our error
must go to zero as n → ∞ regardless of where in [−5, 5] we place our
interpolation points! The error bound is shown in the first plot below.

Consider the following specific example: Interpolate sin(x) at
points uniformly selected in [−1, 1]. At first glance, you might think
there is no reason that we should expect our interpolants pn to con-
verge to sin(x) for all x ∈ [−5, 5], since we are only using data from
the subinterval [−1, 1], which is only 20% of the total interval and
does not even include one entire period of the sine function. (In fact,
sin(x) attains neither its maximum nor minimum on [−1, 1].) Yet
the error bound we proved above ensures that the polynomial in-
terpolant must converge throughout [−5, 5]. This is illustrated in
the first plot below. The next plots show the interpolants p4(x) and
p10(x) generated from these interpolation points. Not surprisingly,
these interpolants are most accurate near [−1, 1], the location of the
interpolation points (shown as circles), but we still see convergence
well beyond [−1, 1], in the same way that the Taylor expansion for
sin(x) at x = 0 will converge everywhere.

Example 1.2 (Runge’s Example). The error bound (1.7) suggests those
functions for which interpolants might fail to converge as n → ∞:
beware if higher derivatives of f are large in magnitude over the
interpolation interval. The most famous example of such behavior
is due to Carl Runge, who studied convergence of interpolants for
f (x) = 1/(1 + x2) on the interval [−5, 5]. This function looks beau-
tiful: it resembles a bell curve, with no singularities in sight on IR, as
Figure 1.8 shows. However, the interpolants to f at uniformly spaced
points over [−5, 5] do not seem to converge even for x ∈ [−5, 5].
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Figure 1.7: Interpolation of sin(x) at
points x0, . . . , xn uniformly distributed
on [−1, 1]. We develop an error bound
from Theorem 1.3 for the interval
[a, b] = [−5, 5]. The bound proves that
even though the interpolation points
only fall in [−1, 1], the interpolant will
still converge throughout [−5, 5]. The
top plot shows this convergence for
n = 0, . . . , 40; the bottom plots show
the polynomials p4 and p10, along with
the interpolation points that determine
these polynomials (black circles).

Look at successive derivatives of f ; they expose its crucial flaw:

f ′(x) = − 2x
(1 + x2)2

f ′′(x) =
8x2

(1 + x2)3 −
2

(1 + x2)2

f ′′′(x) = − 48x3

(1 + x2)4 +
24x

(1 + x2)3

f (iv)(x) =
348x4

(1 + x2)5 −
288x2

(1 + x2)4 +
24

(1 + x2)3

f (vi)(x) =
46080x6

(1 + x2)7 −
57600x4

(1 + x2)6 +
17280x2

(1 + x2)5 −
720

(1 + x2)4 .

At certain points on [−5, 5], f (n+1) blows up more rapidly than
(n + 1)!, and the interpolation bound (1.7) suggests that pn will
not converge to f on [−5, 5] as n gets large. Not only does pn fail
to converge to f ; the error between certain interpolation points gets
enormous as n increases.
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Figure 1.8: Interpolation of Runge’s
function 1/(x2 + 1) at points x0, . . . , xn
uniformly distributed on [−5, 5]. The
top plot shows this convergence for
n = 0, . . . , 25; the bottom plots show the
interpolating polynomials p4, p8, p16,
and p24, along with the interpolation
points that determine these polynomi-
als (black circles). These interpolants
do not converge to f as n → ∞. This is
not a numerical instability, but a fatal
flaw that arises when interpolating with
large degree polynomials at uniformly
spaced points.

The following code uses MATLAB’s Symbolic Toolbox to compute
higher derivatives of the Runge function. Several of the resulting
plots follow.9 Note how the scale on the vertical axis changes from plot to 9 Not all versions of MATLAB have the

Symbolic Toolbox, but you should be
able to run this code on any Student
Edition or on copies on Virginia Tech
network.

plot!

% rungederiv.m

% routine to plot derivatives of Runge’s example,

% f(x) = 1/(1+x^2) on [-5,5]
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Figure 1.9: Runge’s function

f (x) =
1

1 + x2

and a few of its derivatives on x ∈
[−5, 5]. Notice how large the derivatives
grow in magnitude: the vertical scale on
the plot for f (25) (bottom-right) is 1025.

figure(1), clf, set(gca,’fontsize’,18)

for j=0:25

syms x

fj = vectorize(diff(1/(x^2+1),j)); % compute derivative (Symbolic Toolbox)

x = linspace(-5,5,1000); fjx = eval(fj); % evaluate on a grid of points

plot(x,fjx,’b-’,’linewidth’,2); % plot derivative

title(sprintf(’Runge’’s Example: f^{(%d)}(x)’,j),’fontsize’,14)

input(’ ’)

end

Some improvement can be made by a careful selection of the in-
terpolation points {x0}. In fact, if one interpolates Runge’s example,
f (x) = 1/(1 + x2), at the Chebyshev points for [−5, 5],

xj = 5 cos
( jπ

n

)
, j = 0, . . . , n,
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then the interpolant will converge!
As a general rule, interpolation at Chebyshev points is greatly

preferred over interpolation at uniformly spaced points for reasons
we shall understand in a few lectures. However, even this set is not
perfect: there exist functions for which the interpolants at Chebyshev
points do not converge. Examples to this effect were constructed by
Marcinkiewicz and Grunwald in the 1930s. We close with two re-
sults of a more general nature.10 We require some general notation to 10 An excellent exposition of these

points is given in volume 3 of I. P.
Natanson, Constructive Function Theory
(Ungar, 1965).

describe a family of interpolation points that can change as the poly-
nomial degree increases. Toward this end, let {x[n]j }

n
j=0 denote the set

of interpolation points used to construct the degree-n interpolant. As
we are concerned here with the behavior of interpolants as n→ ∞, so
we will speak of the system of interpolation points {{x[n]j }

n
j=0}∞

n=0.
Our first result is bad news.

Theorem 1.4 (Faber’s Theorem).
Let {{x[n]j }

n
j=0}∞

n=0 be any system of interpolation points with x[n]j ∈

[a, b] and x[n]j 6= x[n]` for j 6= ` (i.e., distinct interpolation points for
each polynomial degree). Then there exists some function f ∈ C[a, b]
such that the polynomials pn that interpolate f at {x[n]j }

n
j=0 do not

converge uniformly to f in [a, b] as n→ ∞.

The good news is that there always exists a suitable set of interpo-
lation points for any given f ∈ C[a, b].

Theorem 1.5 (Marcinkiewicz’s Theorem).
Given any f ∈ C[a, b], there exist a system of interpolation points
with x[n]j ∈ [a, b] such that the polynomials pn that interpolate f at

{x[n]j }
n
j=0 converge uniformly to f in [a, b] as n→ ∞.

These results are both quite abstract; for example, the construction
of the offensive example in Faber’s Theorem is not nearly as con-
crete as Runge’s nice example for uniformly spaced points discussed
above. We will revisit the question of the convergence of interpolants
in a few weeks when we discuss Chebyshev polynomials. Then we
will be able to say something much more positive: there exists a nice
set of points that works for all but the ugliest functions in C[a, b].
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lecture 4: Constructing Finite Difference Formulas

1.7 Application: Interpolants for Finite Difference Formulas

The most obvious use of interpolants is to construct polynomial mod-
els of more complicated functions. However, numerical analysts rely
on interpolants for many other numerical chores. For example, in a
few weeks we shall see that common techniques for approximating
definite integrals amount to exactly integrating a polynomial inter-
polant. Here we turn to a different application: the use of interpolat-
ing polynomials to derive finite difference formulas that approximate
derivatives, the to use those formulas to construct approximations of
differential equation boundary value problems.

1.7.1 Derivatives of Interpolants

Theorem 1.3 from the last lecture showed how well the interpolant
pn ∈ Pn approximates f . Here we seek deeper connections between
pn and f .

How well do derivatives of pn approximate derivatives of f ?

Let p ∈ Pn denote the degree-n polynomial that interpolates f at
the distinct points x0, . . . , xn. We want to derive a bound on the error
f ′(x)− p′(x). Let us take the proof of Theorem 1.3 as a template, and
adapt it to analyze the error in the derivative.

For simplicity, assume that x̂ ∈ {x0, . . . , xn}, i.e., assume that x̂
is one of the interpolation points. Suppose we extend p(x) by one
degree so that the derivative of the resulting polynomial at x̂ matches
f ′(x̂). To do so, use the Newton form of the interpolant, writing the
new polynomial as

p(x) + λw(x),

again with

w(x) :=
n

∏
j=0

(x− xj).

The derivative interpolation condition at x̂ is

(1.8) f ′(x̂) = p′(x̂) + λw′(x̂),

and since w(xj) = 0 for j = 0, . . . , n, the new polynomial maintains
the standard interpolation at the n + 1 interpolation points:

(1.9) f (xj) = p(xj) + λw(xj), j = 0, . . . , n.
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Here we must tweak the proof of Theorem 1.3 slightly. As in that
proof, define the error function

φ(x) := f (x)−
(

p(x) + λw(x)
)
.

Because of the standard interpolation conditions (1.9) at x0, . . . , xn,
φ must have n + 1 zeros. Now Rolle’s theorem implies that φ′ has
(at least) n zeros, each of which occurs strictly between every two
consecutive interpolation points. But in addition to these points, φ′

must have another root at x̂ (which we have required to be one of the
interpolation points, and thus distinct from the other n roots). Thus,
φ′ has n + 1 distinct zeros on [a, b].

Now, repeatedly apply Rolle’s theorem to see that φ′′ has n distinct
zeros, φ′′′ has n− 1 distinct zeros, etc., to conclude that φ(n+1) has a
zero: call it ξ. That is,

(1.10) 0 = φ(n+1)(ξ) = f (n+1)(ξ)−
(

p(n+1)(ξ) + λw(n+1)(ξ)
)
.

We must analyze

φ(n+1)(x) = f (n+1)(x)−
(

p(n+1)(x) + λw(n+1)(x)
)
.

Just as in the proof of Theorem 1.3, note that p(n+1) = 0 since p ∈ Pn

and w(n+1)(x) = (n + 1)!. Thus from (1.10) conclude

λ =
f (n+1)(ξ)

(n + 1)!
.

From (1.8) we arrive at

f ′(x̂)− p′(x̂) = λw′(x̂) =
f (n+1)(ξ)

(n + 1)!
w′(x̂).

To arrive at a concrete estimate, perhaps we should say something
more specific about w′(x̂). Expanding w and computing w′ explicitly
will take us far into the weeds; it suffices to invoke an interesting
result from 1889.

Lemma 1.1 was proved by Andrey
Markov in 1889, generalizing a result
for n = 2 that was obtained by the
famous chemist Mendeleev in his
research on specific gravity. Markov’s
younger brother Vladimir extended
it to higher derivatives (with a more
complicated right-hand side) in 1892.
The interesting history of this inequality
(and extensions into the complex plane)
is recounted in a paper by Ralph Boas,
Jr. on ‘Inequalities for the derivatives
of polynomials,’ Math. Magazine 42

(4) 1969, 165–174. The result is called
the ‘Markov brothers’ inequality’ to
distinguish it from the more famous
‘Markov’s inequality’ in probability
theory (named, like ‘Markov chains,’ for
Andrey; Vladimir died of tuberculosis
at the age of 25 in 1897).

Lemma 1.1 (Markov brothers’ inequality for first derivatives).
For any polynomial q ∈ Pn,

max
x∈[a,b]

|q′(x)| ≤ 2n2

b− a
max

x∈[a,b]
|q(x)|.

We can thus summarize our discussion as the following theorem,
an analogue of Theorem 1.3.
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Theorem 1.6 (Bound on the derivative of an interpolant).
Suppose f ∈ C(n+1)[a, b] and let pn ∈ Pn denote the polynomial that
interpolates {

(
xj, f (xj)

)
}n

j=0 at distinct points xj ∈ [a, b], j = 0, . . . , n.
Then for every xk ∈ {x0, . . . , xn}, there exists some ξ ∈ [a, b] such that

f ′(xk)− p′n(xk) =
f (n+1)(ξ)

(n + 1)!
w′(xk),

where w(x) = ∏n
j=0(x− xj). From this formula follows the bound

(1.11) | f ′(xk)− p′n(xk)| ≤
2n2

b− a

(
max

ξ∈[a,b]

| f (n+1)(ξ)|
(n + 1)!

)(
max

x∈[a,b]

n

∏
j=0
|x− xj|

)
.

Why don’t we simply ‘take a derivative
of Theorem 1.3’? The subtlety is the
f (n+1)(ξ) term in Theorem 1.3. Since ξ
depends on x, taking the derivative of
f (n+1)(ξ(x)) via the chain rule would
require explicit knowledge of ξ(x). We
don’t want to work out a formula for
ξ(x) for each f and interval [a, b].

Contrast the bound (1.11) with (1.7) from Theorem 1.3: the bounds
are the same, aside from the leading constant 2n2/(b− a) inherited
from Lemma 1.1.

For our later discussion it will help to get a rough bound for he
case where the interpolation points are uniformly distributed, i.e.,

xj = a + jh, j = 0, . . . , n

with spacing equal to h := (b− a)/n. We seek to bound

max
x∈[a,b]

n

∏
j=0
|x− xj|,

i.e., maximize the product of the distances of x from each of the
interpolation points. Consider the sketch in the margin. Think about

x0 x1 x2 x3 x4 x5

�h-

how you would place x ∈ [x0, xn] so as to make ∏n
j=0 |x− xj| as large

as possible. Putting x somewhere toward the ends, but not too near
one of the interpolation points, will maximize product. Convince
yourself that, regardless of where x is placed within [x0, xn]:

0 0.2 0.4 0.6 0.8 1
-15

-10

-5

0

5 #10-4

w(x)

x

n = 5

Notice that for n = 5 uniformly
spaced points on [0, 1], w(x) takes its
maximum magnitude between the two
interpolation points on each end of the
domain.

• at least one interpolation point is no more than h/2 away from x;

• a different interpolation point is no more than h away from x;

• a different interpolation point is no more than 2h away from x;
...

• the last remaining (farthest) interpolation point is no more than
nh = b− a away from x.

This reasoning gives the bound

(1.12) max
x∈[a,b]

n

∏
j=0
|x− xj| ≤

h
2
· h · 2h · · · nh =

hn+1n!
2

.

Substituting this into (1.11) and using b− a = nh gives the following
result.
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Corollary 1.1 (The derivative of an interpolant at equispaced points).
Suppose f ∈ C(n+1)[a, b] and let pn ∈ Pn denote the polynomial
that interpolates {

(
xj, f (xj)

)
}n

j=0 at equispaced points xj = a + jh for
h = (b− a)/n. Then for every xk ∈ {x0, . . . , xn},

(1.13) | f ′(xk)− p′n(xk)| ≤
nhn

n + 1

(
max

ξ∈[a,b]
| f (n+1)(ξ)|

)
.

1.7.2 Finite difference formulas

The preceding analysis was toward a very specific purpose: to use
interpolating polynomials to develop formulas that approximate
derivatives of f from the value of f at a few points.

Example 1.3 (First derivative). We begin with the simplest case:
formulas for the first derivative f ′(x). Pick some value for x0 and
some spacing parameter h > 0.

First construct the linear interpolant to f at x0 and x1 = x0 + h.
Using the Newton form, we have

p1(x) = f (x0) +
f (x1)− f (x0)

x1 − x0
(x− x0)

= f (x0) +
f (x1)− f (x0)

h
(x− x0).

Take a derivative of the interpolant:

(1.14) p′1(x) =
f (x1)− f (x0)

h
,

which is precisely the conventional definition of the derivative, if
we take the limit h → 0. But how accurate an approximation is
it? Appealing to Corollary 1.1 with n = 1 and [a, b] = [x0, x1] =

x0 + [0, h], we have

(1.15) | f ′(xk)− p′1(xk)| ≤
(

1
2

max
ξ∈[x0,x1]

| f ′′(ξ)|
)

h

Does the bound (1.15) improve if we use a quadratic interpolant to
f through x0, x1 = x0 + h and x2 = x0 + 2h? Again using the Newton
form, write

p2(x) = f (x0) +
f (x1)− f (x0)

x1 − x0
(x− x0) +

f (x2)− f (x0)− f (x1)− f (x0)
x1−x0

(x2 − x0)

(x2 − x0)(x2 − x1)
(x− x0)(x− x1)

= f (x0) +
f (x1)− f (x0)

h
(x− x0) +

f (x0)− 2 f (x1) + f (x2)

2h2 (x− x0)(x− x1).(1.16)
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Taking a derivative of this interpolant with respect to x gives

p′2(x) =
f (x1)− f (x0)

h
+

f (x0)− 2 f (x1) + f (x2)

2h2 (2x− x0 − x1).

Evaluate this at x = x0, x = x1, and x = x2 and simplify as much as
possible to get:

p′2(x0) =
−3 f (x0) + 4 f (x1)− f (x2)

2h
(1.17)

p′2(x1) =
f (x2)− f (x0)

2h
(1.18)

p′2(x2) =
f (x0)− 4 f (x1) + 3 f (x2)

2h
.(1.19)

These beautiful formulas are right-looking, central, and left-looking
approximations to f ′. Though we used an interpolating polynomial
to derive these formulas, those polynomials are now nowhere in
sight: they are merely the scaffolding that lead to these formulas.

These formulas can also be derived
by strategically combining Taylor
expansions for f (x + h) and f (x− h).
That is an easier route to simple for-
mulas like (1.18), but is less appealing
when more sophisticated approxima-
tions like (1.17) and (1.19) (and beyond)
are needed.

How accurate are these formulas? Corollary 1.1 with n = 2 and
[a, b] = [x0, x2] = x0 + [0, 2h] gives

(1.20) | f ′(xk)− p′2(xk)| ≤
(

2
3

max
ξ∈[x0,x2]

| f ′′′(ξ)|
)

h2.

Notice that these approximations indeed scale with h2, rather than h,
and so the quadratic interpolant leads to a much better approxima-
tion to f ′, at the cost of evaluating f at three points (for f ′(x0) and
f ′(x2)), rather than two.

Example 1.4 (Second derivative). While we have only proved a
bound for the error in the first derivative, f ′(x) − p′(x), you can
see that similar bounds should hold when higher derivatives of p
are used to approximate corresponding derivatives of f . Here we
illustrate with the second derivative.

Since p1 is linear, p′′1 (x) = 0 for all x, and the linear interpolant
will not lead to any meaningful bound on f ′′(x). Thus, we focus on
the quadratic interpolant to f at the three uniformly spaced points
x0, x1, and x2. Take two derivatives of the formula (1.16) for p2(x) to
obtain

(1.21) p′′2 (x) =
f (x0)− 2 f (x1) + f (x2)

h2 ,

which is a famous approximation to the second derivative that is
often used in the finite difference discretization of differential equa-
tions. One can show that, like the approximations p′2(xk), this for-
mula is accurate to order h2.

Example 1.5 (Mathematica code for computing difference formulas).
Code to follow. . . .
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lecture 5: Finite Difference Methods for Differential Equations

1.7.3 Application: Boundary Value Problems

Example 1.6 (Dirichlet boundary conditions). Suppose we want to
solve the differential equation

−u′′(x) = g(x), x ∈ [0, 1]

for the unknown function u, subject to the Dirichlet boundary condi-
tions

u(0) = u(1) = 0.

One common approach to such problems is to approximate the
solution u on a uniform grid of points

0 = x0 < x1 < · · · < xn = 1

with xj = j/N.
We seek to approximate the solution u(x) at each of the grid

points x0, . . . , xn. The Dirichlet boundary conditions give the end
values immediately:

u(x0) = 0, u(xn) = 0.

At each of the interior grid points, we require a local approximation
of the equation

−u′′(xj) = g(xj), j = 1, . . . , n− 1.

For each, we will (implicitly) construct the quadratic interpolant p2,j

to u(x) at the points xj−1, xj, and xj+1, and then approximate

−p′′2,j(xj) ≈ −u′′(xj) = g(xj).

Aside from some index shifting, we have already constructed p′′2,j in
equation (1.21):

(1.22) p′′2,j(x) =
u(xj−1)− 2u(xj) + u(xj+1)

h2 .

Just one small caveat remains: we cannot construct p′′2,j(x), because we
do not know the values of u(xj−1), u(xj), and u(xj+1): finding those val-
ues is the point of our entire endeavor. Thus we define approximate
values

uj ≈ u(xj), j = 1, . . . , n− 1.

and will instead use the polynomial p2,j that interpolates uj−1, uj,
and uj+1, giving

(1.23) p′′2,j(x) =
uj−1 − 2uj + uj+1

h2 .
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Let us accumulate all our equations for j = 0, . . . , n:

u0 = 0

u0 − 2u1 + u2 = −h2g(x1)

u1 − 2u2 + u3 = −h2g(x2)

...

un−3 − 2un−2 + un−1 = −h2g(xn−2)

un−2 − 2un−1 + un = −h2g(xn−1)

un = 0.

Notice that this is a system of n + 1 linear equations in n + 1 variables
u0, . . . , un+1. Thus we can arrange this in matrix form as

(1.24)



1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 1

1





u0

u1

u2
...

un−2

un−1

un


=



0
−h2 g(x1)

−h2 g(x2)
...

−h2 g(xn−2)

−h2 g(xn−1)

0


,

where the blank entries are zero. Notice that the first and last entries
are trivial: u0 = un = 0, and so we can trim them off to yield the
slightly simpler matrix

(1.25)


−2 1
1 −2 1

. . . . . . . . .
1 −2 1

1 −2




u1

u2
...

un−2

un−1

 =


−h2 g(x1)

−h2 g(x2)
...

−h2 g(xn−2)

−h2 g(xn−1)

 .

Solve this (n− 1)× (n− 1) linear system of equations using Gaussian
elimination. One can show that the solution to the differential equa-

Ideally, use an efficient version of
Gaussian elimination that exploits the
banded structure of this matrix to give a
solution in O(n) operations.tion inherits the accuracy of the interpolant: the error |u(xj) − uj|

behaves like O(h2) as h→ 0.

Example 1.7 (Mixed boundary conditions). Modify the last example
to keep the same differential equation

−u′′(x) = g(x), x ∈ [0, 1]
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but now use mixed boundary conditions,

u′(0) = u(1) = 0.

The derivative condition on the left is the only modification; we must
change the first row of equation (1.24) to encode this condition. One
might be tempted to use a simple linear interpolant to approximate
the boundary condition on the left side, adapting formula (1.14) to
give:

(1.26)
u1 − u0

h
= 0.

This equation makes intuitive sense: it forces u1 = u0, so the ap-
proximate solution will have zero slope on its left end. This gives the
equation

(1.27)



−1 1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2





u0

u1

u2
...

un−2

un−1


=



0
−h2 g(x1)

−h2 g(x2)
...

−h2 g(xn−2)

−h2 g(xn−1)


,

where we have trimmed off the elements associated with the un = 0.
The approximation of the second derivative (1.23) is accurate up to

O(h2), whereas the estimate (1.26) of u′(0) = 0 is only O(h) accurate.
Will it matter if we compromise accuracy that little bit, if only in
one of the n equations in (1.27)? What if instead we approximate
u′(0) = 0 to second-order accuracy?

Equations (1.17)–(1.19) provide three formulas that approximate
the first derivative to second order. Which one is appropriate in this
setting? The right-looking formula (1.17) gives the approximation

(1.28) u′(0) ≈ −3u0 + 4u1 − u2

2h
,

which involves the variables u0, u1, and u2 that we are already con-
sidering. In contrast, the centered formula (1.18) needs an estimate of
u(−h), and the left-looking formula (1.19) needs u(−h) and u(−2h).
Since these values of u fall outside the domain [0, 1] of u, the centered
and left-looking formulas would not work.

Combining the right-looking formula (1.28) with the boundary
condition u′(0) = 0 gives

−3u0 + 4u1 − u2

2h
= 0,
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with which we replace the first row of (1.27) to obtain

(1.29)



−3 4 −1
1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2





u0

u1

u2
...

un−2

un−1


=



0
−h2 g(x1)

−h2 g(x2)
...

−h2 g(xn−2)

−h2 g(xn−1)


.

Is this O(h2) accurate approach at the boundary worth the (rather
minimal) extra effort? Let us investigate with an example. Set the
right-hand side of the differential equation to

g(x) = cos(πx/2),

which corresponds to the exact solution

u(x) =
4

π2 cos(πx/2). Verify that u satisfies the boundary
conditions u′(0) = 0 and u(1) = 0.

Figure 1.10 compares the solutions obtained by solving (1.27) and (1.29)
with n = 4. Clearly, the simple adjustment that gave the O(h2) ap-
proximation to u′(0) = 0 makes quite a difference! This figures shows Indeed, we used this small value

of n because it is difficult to see the
difference between the exact solution
and the approximation from (1.29) for
larger n.

that the solutions from (1.27) and (1.29) differ, but plots like this are
not the best way to understand how the approximations compare as
n→ ∞. Instead, compute maximum error at the interpolation points,

max
0≤j≤n

|u(xj)− uj|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.1
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x

u(x)

−3u0 + 4u1 − u2 = 0

u1 − u0 = 0

Figure 1.10: Approximate solutions
to −u′′(x) = cos(πx/2) with u′(0) =
u(1) = 0. The black curve shows u(x).
The red approximation is obtained by
solving (1.27), which uses the O(h)
approximation u′(0) = 0; the blue
approximation is from (1.29) with the
O(h2) approximation of u′(0) = 0. Both
approximations use n = 4.
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−3u0 + 4u1 − u2 = 0

Figure 1.11: Convergence of approxi-
mate solutions to −u′′(x) = cos(πx/2)
with u′(0) = u(1) = 0. The red line
shows the approximation from (1.27);
it converges like O(h) as h → 0. The
blue line shows the approximation
from (1.29), which converges like O(h2).

for various values of n. Figure 1.11 shows the results of such exper-
iments for n = 22, 23, . . . , 212. Notice that this figure is a ‘log-log’
plot; on such a scale, the errors fall on straight lines, and from the
slope of these lines one can determine the order of convergence. The
slope of the red curve is −1, so the accuracy of the approximations
from (1.27) is O(n−1) = O(h) accurate. The slope of the blue curve is
−2, so (1.29) gives an O(n−2) = O(h2) accurate approximation. How large would n need to be, to

get the same accuracy from the O(h)
approximation that was produced
by the O(h2) approximation with
n = 212 = 4096? Extrapolation of
the red curve suggests we would need
roughly n = 108.

This example illustrates a general lesson: when constructing finite
difference approximations to differential equations, one must ensure
that the approximations to the boundary conditions have the same
order of accuracy as the approximation of the differential equation
itself. These formulas can be nicely constructed by from derivatives
of polynomial interpolants of appropriate degree.
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lecture 6: Interpolating Derivatives

1.8 Hermite Interpolation and Generalizations

Example 1.1 demonstrated that polynomial interpolants to sin(x)
attain arbitrary accuracy for x ∈ [−5, 5] as the polynomial degree
increases, even if the interpolation points are taken exclusively from
[−1, 1]. In fact, as n → ∞ interpolants based on data from [−1, 1]
will converge to sin(x) for all x ∈ IR. More precisely, for any x ∈
IR and any ε > 0, there exists some positive integer N such that
| sin(x) − pn(x)| < ε for all n ≥ N, where pn interpolates sin(x) at
n + 1 uniformly-spaced interpolation points in [−1, 1].

In fact, this is not as surprising as it might first appear. The Taylor
series expansion uses derivative information at a single point to
produce a polynomial approximation of f that is accurate at nearby
points. In fact, the interpolation error bound derived in the previous
lecture bears close resemblance to the remainder term in the Taylor
series. If f ∈ C(n+1)[a, b], then expanding f at x0 ∈ (a, b), we have

This is the Lagrange form of the error.
f (x) =

n

∑
k=0

f (k)(x0)

k!
(x− x0)

k +
f (n+1)(ξ)

(n + 1)!
(x− x0)

n+1

for some ξ ∈ [x, x0] that depends on x. The first sum is simply a
degree n polynomial in x; from the final term – the Taylor remainder
– we obtain the bound

max
x∈[a,b]

∣∣∣ f (x)−
( n

∑
k=0

f (k)(x0)

k!
(x− x0)

k
)∣∣∣ ≤ ( max

ξ∈[a,b]

| f (n+1)(ξ)|
(n + 1)!

)(
max

x∈[a,b]
|x− x0|n+1

)
,

which should certainly remind you of the interpolation error formula
in Theorem 1.3.

One can view polynomial interpolation and Taylor series as two
extreme approaches to approximating f : one uses global information,
but only about f ; the other uses only local information, but requires
extensive knowledge of the derivatives of f . In this section we shall
discuss an alternative based on the best features of each of these
ideas: use global information about both f and its derivatives.

1.8.1 Hermite interpolation

In cases where the polynomial interpolants of the previous sections
incurred large errors for some x ∈ [a, b], one typically observes
that the slope of the interpolant differs markedly from that of f at
some of the interpolation points {xj}. (Recall Runge’s example in
Figure 1.8.) Why not then force the interpolant to match both f and f ′ at
the interpolation points?
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Often the underlying application provides a motivation for such
derivative matching. For example, if the interpolant approximates the
position of a particle moving in space, we might wish the interpolant
to match not only position, but also velocity. Hermite interpolation is Typically the position of a particle is

given in terms of a second-order differ-
ential equation (in classical mechanics,
arising from Newton’s second law,
F = ma). To solve this second-order
ODE, one usually writes it as a system
of first-order equations whose numer-
ical solution we will study later in the
semester. One component of the system
is position, the other is velocity, and
so one automatically obtains values
for both f (position) and f ′ (velocity)
simultaneously.

the general procedure for constructing such interpolants.

Given f ∈ C1[a, b] and n + 1 points {xj}n
j=0 satisfying

a ≤ x0 < x1 < · · · < xn ≤ b,

determine some hn ∈ P2n+1 such that

hn(xj) = f (xj), h′n(xj) = f ′(xj) for j = 0, . . . , n.

Note that h must generally be a polynomial of degree 2n + 1 to
have sufficiently many degrees of freedom to satisfy the 2n + 2 con-
straints. We begin by addressing the existence and uniqueness of this
interpolant.

Existence is best addressed by explicitly constructing the desired
polynomial. We adopt a variation of the Lagrange approach used
in Section 1.5. We seek degree-(2n + 1) polynomials {Ak}n

k=0 and
{Bk}n

k=0 such that

Ak(xj) =

{
0, j 6= k,
1, j = k,

A′k(xj) = 0 for j = 0, . . . , n;

Bk(xj) = 0 for j = 0, . . . , n, B′k(xj) =

{
0, j 6= k
1, j = k

.

These polynomials would yield a basis for P2n+1 in which hn has a
simple expansion:

(1.30) hn(x) =
n

∑
k=0

f (xk)Ak(x) +
n

∑
k=0

f ′(xk)Bk(x).

To show how we can construct the polynomials Ak and Bk, we recall
the Lagrange basis polynomials used for the standard interpolation
problem,

`k(x) =
n

∏
j=0,j 6=k

(x− xj)

(xk − xj)
.

Consider the definitions

Ak(x) :=
(
1− 2(x− xk)`

′
k(xk)

)
`2

k(x),

Bk(x) := (x− xk)`
2
k(x).

Note that since `k ∈ Pn, we have Ak, Bk ∈ P2n+1. Figure 1.12 shows
these Hermite basis polynomials and their derivatives for n = 5 using
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Figure 1.12: The Hermite basis poly-
nomials for n = 5 on the interval
[a, b] = [0, 1] with xj = j/5 (black dots).
• A0, . . . , A5: Aj(xj) = 1 (black circles).
• B0, . . . , B5: Bj(xk) = 0 for all j, k.
• A′0, . . . , A′5: A′j(xk) = 0 for all j, k.
• B′0, . . . , B′5: B′j(xj) = 1 (black circles).
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uniformly spaced points on [0, 1]. It is a straightforward exercise
to verify that these Ak and Bk, and their first derivatives, obtain the
specified values at {xj}n

j=0.
These interpolation conditions at the points {xj} ensure that the

2n + 2 polynomials {Ak, Bk}n
k=0, each of degree 2n + 1, form a basis

for P2n+1, and thus we can always write hn via the formula (1.30).
Figure 1.13 compares the standard polynomial interpolant pn ∈ Pn

to the Hermite interpolant hn ∈ P2n+1 and the standard interpolant of
the same degree, p2n+1 ∈ P2n+1 for the example f (x) = sin(20x) +
e5x/2 using uniformly spaced points on [0, 1] with n = 5. Note the
distinction between hn and p2n+1, which are both polynomials of the
same degree.

Here are a couple of basic results whose proofs follow the same
techniques as the analogous proofs for the standard interpolation
problem.

The uniqueness result hinges on the
fact that we interpolate f and f ′ both at
all interpolation points. If we vary the
number of derivatives interpolated at
each data point, we open the possibility
of non-unique interpolants.

Theorem 1.7. The Hermite interpolant hn ∈ P2n+1 is unique.

Theorem 1.8. Suppose f ∈ C2n+2[x0, xn] and let hn ∈ P2n+1 such
that hn(xj) = f (xj) and h′n(xj) = f ′(xj) for j = 0, . . . , n. Then for any
x ∈ [x0, xn], there exists some ξ ∈ [x0, xn] such that

f (x)− hn(x) =
f (2n+2)(ξ)

(2n + 2)!

n

∏
j=0

(x− xj)
2.

The proof of this latter result is directly analogous to the standard
polynomial interpolation error in Theorem 1.3. Think about how you
would prove this result for yourself. Hint: the proof has some resemblance

to our proof of Theorem 1.6. Invoke
Rolle’s theorem to get n roots of a
certain function, then use the derivative
interpolation to get another n + 1 roots.

1.8.2 Hermite–Birkhoff interpolation

Of course, one need not stop at interpolating f and f ′. Perhaps your
application has more general requirements, where you want to in-
terpolate higher derivatives, too, or have the number of derivatives
interpolated differ at each interpolation point. Such general polyno- For example, suppose you seek an in-

terpolant that is particularly accurate in
the vicinity of one of the interpolation
points, and so you wish to interpo-
late higher derivatives at that point:
a hybrid between an interpolating
polynomial and a Taylor expansion.

mials are called Hermite–Birkhoff interpolants, and you already have
the tools at your disposal to compute them. Simply formulate the
problem as a linear system and find the desired coefficients, but be-
ware that in some situations, there may be infinitely many polynomials
that satisfy the interpolation conditions. For these problems, it is gen-
erally simplest to work with the monomial basis, though one could
design Newton- or Lagrange-inspired bases for particular situations.
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Figure 1.13: Interpolation of
f (x) = sin(20x) + e5x/2 at uniformly
spaced points for x ∈ [0, 1]. Top plot:
the standard polynomial interpolant
p5 ∈ P5. Middle plot: the Hermite
interpolant h5 ∈ P11. Bottom plot: the
standard interpolant p11 ∈ P11.

Though the last two plots show
polynomials of the same degree, notice
how the interpolants differ. (At first
glance it appears the Hermite interpo-
lation condition fails at the rightmost
point in the middle plot; zoom in to see
that the slope of the interpolant indeed
matches f ′(1).)
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1.8.3 Hermite–Fejér interpolation

Another Hermite-like scheme initially sounds like a bad idea: make
the interpolant have zero slope at all the interpolation points.

Given f ∈ C1[a, b] and n + 1 points {xj}n
j=0 satisfying

a ≤ x0 < x1 < · · · < xn ≤ b,

determine some hn ∈ P2n+1 such that

hn(xj) = f (xj), h′n(xj) = 0 for j = 0, . . . , n.

That is, explicitly construct hn such that its derivatives in general
do not match those of f . This method, called Hermite–Fejér interpola-
tion, turns out to be remarkably effective, even better than standard
Hermite interpolation in certain circumstances. In fact, Fejér proved
that if we choose the interpolation points {xj} in the right way, hn is
guaranteed to converge to f uniformly as n→ ∞.

For a proof of Theorem 1.9, see page 57

of I. P. Natanson, Constructive Function
Theory, vol. 3 (Ungar, 1965).

Theorem 1.9. For each n ≥ 1, let hn be the Hermite–Fejér interpolant
of f ∈ C[a, b] at the Chebyshev interpolation points

xj =
a + b

2
+
( b− a

2

)
cos
( (2j + 1)π

2n + 2

)
, j = 0, . . . , n.

Then hn(x) converges uniformly to f on [a, b].
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lecture 7: Trigonometric Interpolation

1.9 Trigonometric interpolation for periodic functions

Thus far all our interpolation schemes have been based on polynomi-
als. However, if the function f is periodic, one might naturally prefer
to interpolate f with some set of periodic functions.

To be concrete, suppose we have a continuous 2π-periodic func-
‘2π-periodic’ means that f is
continuous throughout IR and
f (x) = f (x + 2π) for all x ∈ IR.

The choice of period 2π makes the
notation a bit simpler, but the idea can
be easily adapted for any period.

tion f that we wish to interpolate at the uniformly spaced points
xk = 2πk/n for k = 0, . . . , n with n = 5. We shall build an interpolant
as a linear combination of the 2π-periodic functions

b0(x) = 1, b1(x) = sin(x), b2(x) = cos(x), b3(x) = sin(2x), b4(x) = cos(2x).

Note that we have six interpolation conditions at xk for k = 0, . . . , 5,
but only five basis functions. This is not a problem: since f is peri-
odic, f (x0) = f (x5), and the same will be true of our 2π-periodic
interpolant: the last interpolation condition is automatically satisfied.

We shall construct an interpolant of the form

t5(x) =
4

∑
k=0

ck bk(x)

such that
t5(xj) = f (xj), j = 0, . . . , 4.

To compute the unknown coefficients c0, . . . , c4, set up a linear system
as usual,

b0(x0) b1(x0) b2(x0) b3(x0) b4(x0)

b0(x1) b1(x1) b2(x1) b3(x1) b4(x1)

b0(x2) b1(x2) b2(x2) b3(x2) b4(x2)

b0(x3) b1(x3) b2(x3) b3(x3) b4(x3)

b0(x4) b1(x4) b2(x4) b3(x4) b4(x4)




c0

c1

c2

c3

c4

 =


f (x0)

f (x1)

f (x2)

f (x3)

f (x4)

 ,

which can be readily generalized to accommodate more interpolation
points. We could solve this system for c0, . . . , cn, but we prefer to You would b6(x) = sin(3x),

b7(x) = cos(3x), etc.: one function
for each additional interpolation point.
Generally you would use an odd value
of n, to include pairs of sines and
cosines.

express the problem in a more convenient basis for the trigonometric
functions. Recall Euler’s formula,

To prove this, write the Taylor expan-
sion of eiθx , then separate the real and
imaginary components to give Taylor
expansions for cos(θx) and sin(θx).

eiθx = cos(θx) + i sin(θx),

which also implies that

e−iθx = cos(θx)− i sin(θx).

From these formulas it follows that

span{eiθx, e−iθx} = {cos(θx), sin(θx)}.
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Note that we can also write b0(x) ≡ 1 = ei0x. Putting these pieces
together, we arrive at an alternative basis for the trigonometric inter-
polation space:

span{1, sin(x), cos(x), sin(2x), cos(2x)} = span{e−2ix, e−ix, e0ix, eix, e2ix}.

The interpolant tn can thus be expressed in the form

t4(x) =
2

∑
k=−2

γk eikx =
2

∑
k=−2

γk (e
ix)k.

This last sum is written in a manner that emphasizes that t4 is a
polynomial in the variable eix, and hence tn is a trigonometric polynomial.
In this basis, the interpolation conditions give the linear system

e−2ix0 e−ix0 e0ix0 eix0 ei2x0

e−2ix1 e−ix1 e0ix1 eix1 ei2x1

e−2ix2 e−ix2 e0ix2 eix2 ei2x2

e−2ix3 e−ix3 e0ix3 eix3 ei2x3

e−2ix4 e−ix4 e0ix4 eix4 ei2x4




γ−2

γ−1

γ0

γ1

γ2

 =


f (x0)

f (x1)

f (x2)

f (x3)

f (x4)

 ,

again with the natural generalization to larger odd integers n. At first
blush this matrix looks no simpler than the one we first encountered,
but a fascinating structure lurks. Notice that a generic entry of this
matrix has the form e`ixk for ` = −(n − 1)/2, . . . , (n − 1)/2 and
k = 0, . . . , n− 1. Since xk = 2πk/n, rewrite this entry as

e`ixk =
(
eixk
)`

=
(
e2π ik/n)` = (e2π i/n)k`

= ωk`,

where ω = e2π i/n is an nth root of unity. In the n = 5 case, the linear This name comes from the fact that
ωn = 1.system can thus be written as

(1.31)


ω0 ω0 ω0 ω0 ω0

ω−2 ω−1 ω0 ω1 ω2

ω−4 ω−2 ω0 ω2 ω4

ω−6 ω−3 ω0 ω3 ω6

ω−8 ω−4 ω0 ω4 ω8




γ−2

γ−1

γ0

γ1

γ2

 =


f (x0)

f (x1)

f (x2)

f (x3)

f (x4)

 .

Denote this system by Fγ = f. Notice that each column of F equals
some (entrywise) power of the vector

ω0

ω1

ω2

ω3

ω4

 .

In other words, the matrix F has Vandermonde structure. From our past
experience with polynomial fitting addressed in Section 1.2.1, we
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might fear that this formulation is ill-suited to numerical computa-
tions, i.e., solutions γ to the system Fγ = f could be polluted by large

In the language of numerical linear
algebra, we might fear that the matrix
F is ill-conditioned, i.e., the condition
number ‖F‖‖F−1‖ is large.numerical errors.

Before jumping to this conclusion, examine F∗F. To form F∗ note F∗ is the conjugate-transpose of F:

F∗ = FT,

so (F∗)j,k = Fk,j.

that ω−` = ω`, so

F∗F =


ω0 ω2 ω4 ω6 ω8

ω0 ω1 ω2 ω3 ω4

ω0 ω0 ω0 ω0 ω0

ω0 ω−1 ω−2 ω−3 ω−4

ω0 ω−2 ω−4 ω−6 ω−8




ω0 ω0 ω0 ω0 ω0

ω−2 ω−1 ω0 ω1 ω2

ω−4 ω−2 ω0 ω2 ω4

ω−6 ω−3 ω0 ω3 ω6

ω−8 ω−4 ω0 ω4 ω8

 .

The (`, k) entry for F∗F thus takes the form

(F∗F)`,k = ω0 + ω(k−`) + ω2(k−`) + ω3(k−`) + ω4(k−`).

On the diagonal, when ` = k, we simply have

(F∗F)k,k = ω0 + ω0 + ω0 + ω0 + ω0 = n.

On the off-diagonal, use ωn = 1 to see that all the off diagonal entries
simplify to

(F∗F)`,k = ω0 + ω1 + ω2 + ω3 + ω4, ` 6= k.

You can think of this last entry as n times the average of ω0, ω1, ω2,
ω3, and ω4, which are uniformly spaced points on the unit circle,
shown in the plot to the right.
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1
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ω4

As these points are uniformly positioned about the unit circle,
their mean must be zero, and hence

(F∗F)`,k = 0, ` 6= k.

We thus must conclude that

F∗F = nI,

thus giving a formula for the inverse:

F−1 =
1
n

F∗.

The system Fγ = f can be immediately solved without the need for
any factorization of F:

γ =
1
n

F∗f.

The ready formula for F−1 is reminiscent of a unitary matrix. In fact, Q ∈ Cn×n is unitary if and only if
Q−1 = Q∗, or, equivalently, Q∗Q = I.the matrices

1√
n

F and
1√
n

F∗
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are indeed unitary, and hence ‖n−1/2F‖2 = ‖n−1/2F∗‖2 = 1. The matrix 2-norm is defined as

‖F‖2 = max
x 6=0

‖Fx‖2

‖x‖2
,

where the vector norm on the right
hand side is the Euclidean norm

‖y‖2 =
(

∑
k
|yk |2

)1/2
= (y∗y)1/2.

The 2-norm of a unitary matrix is one:
If Q∗Q = I, then

‖Qx‖2
2 = x∗Q∗Qx = x∗x = ‖x‖2,

so ‖Q‖2 = 1.

From this we can compute the condition number of F:

‖F‖2‖F−1‖2 =
1
n
‖F‖2‖F∗‖2 = ‖n−1/2F‖2‖n−1/2F∗‖2 = 1.

This special Vandermonde matrix is perfectly conditioned! One can easily
solve the system Fγ = f to high precision. The key distinction be-
tween this case and standard polynomial interpolation is that now we
have a Vandermonde matrix based on points eixk that are equally spaced
about the unit circle in the complex plane, whereas before our points
were distributed over an interval on the real line. This distinction
makes all the difference between an unstable matrix equation and
one that is not only perfectly stable, but also forms the cornerstone of
modern signal processing.

In fact, we have just computed the ‘Discrete Fourier Transform’
(DFT) of the data vector 

f (x0)

f (x1)
...

f (xn−1)

 .

The coefficients γ−(n−1)/2, . . . , γ(n−1)/2 that make up the vector

γ =
1
n

F∗f

are the discrete Fourier coefficients of the data in f. From where does
this name derive?

1.9.1 Connection to Fourier series

In a real analysis course, one learns that a 2π-periodic function f can
be written as the Fourier series

f (x) =
∞

∑
k=−∞

ck eikx,

where the Fourier coefficients c` are defined via

ck :=
1

2π

∫ 2π

0
f (x)e−ikx.

Notice that γk = ((1/n)F∗f)k is an approximation to this ck:

To ensure pointwise convergence of
this series for all x ∈ [0, 2π], f must
be a continuous 2π-periodic function
with a continuous first derivative. The
functions ek(x) = eikx/

√
2π form

an orthonormal basis for the space
L2[0, 2π] with the inner product

( f , g) =
∫ 2π

0
f (x)g(x)dx.

The Fourier series is simply an expan-
sion of f in this basis: f = ∑

k
( f , ek) ek .

γk =
1
n

n−1

∑
`=0

f (x`)ω−`k

=
1
n

n−1

∑
k=0

f (xk)e
−(2πk/n)i` =

1
n

n−1

∑
k=0

f (xk)e
−i`xk .
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Now use the fact that f (x0)e−i`x0 = f (xn)e−i`xn to view the last sum
as a composite trapezoid rule approximation of an integral: The composite trapezoid rule will be

discussed in Chapter 3.

2πγ` =
2π

n

(
1
2

f (x0)e−i`x0 +
n−1

∑
k=1

f (xk)e
−i`xk +

1
2

f (xn)e−i`xn

)

≈
∫ 2π

0
f (x)e−i`x dx

= 2πc`.

The coefficient γ` that premultiplies ei`x in the trigonometric interpolating
polynomial is actually an approximation of the Fourier coefficient c`.

Let us go one step further. Notice that the trigonometric interpolant

tn(x) =
(n−1)/2

∑
k=−(n−1)/2

γk eikx

is an approximation to the Fourier series

f (x) =
∞

∑
k=−∞

ck eikx

obtained by (1) truncating the series, and (2) replacing ck with γk.
To assess the quality of the approximation, we need to understand
the magnitude of the terms dropped from the sum, as well as the
accuracy of the composite trapezoid rule approximation γk to ck. We
will thus postpone discussion of f (x)− tn(x) until we develop a few
more analytical tools in the next two chapters.

1.9.2 Computing the discrete Fourier coefficients

Normally we would require O(n2) operations to compute these co-
efficients using matrix-vector multiplication with F∗, but Cooley and
Tukey discovered in 1965 that given the amazing structure in F∗,
one can arrange operations so as to compute γ = n−1F∗f in only
O(n log n) operations: a procedure that we now famously call the Fast

Apparently the FFT was discovered
earlier by Gauss, but it was forgotten,
given its limited utility before the
advent of automatic computation.
Jack Good (Bletchley Park codebreaker
and, later, a Virginia Tech statistician)
published a similar idea in 1958. Good
recalls: ‘John Tukey (December 1956)
and Richard L. Garwin (September
1957) visited Cheltenham and I had
them round to steaks and fries on
separate occasions. I told Tukey briefly
about my FFT (with little detail) and,
in Cooley and Tukey’s well known
paper of 1965, my 1958 paper is the
only citation.’ See D. L. Banks, ‘A
conversation with I. J. Good,’ Stat. Sci.
11 (1996) 1–19.

Fourier Transform (FFT).

We can summarize this section as follows.

The FFT of a vector of uniform samples of a 2π-periodic
function f gives the coefficients for the trigonometric in-
terpolant to f at those sample points. These coefficients
approximate the function’s Fourier coefficients.
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Example 1.8 (Trig interpolation of a smooth periodic function).
Figure 1.14 shows the degree n = 5, 7, 9 and 11 trigonometric inter-
polants to the 2π-periodic function f (x) = ecos(x)+sin(2x). Notice that
although all the interpolation points are all drawn from the interval
[0, 2π) (indicated by the gray region on the plot), the interpolants are
just as accurate outside this region. In contrast, a standard polyno-
mial fit through the same points will behave very differently: (non-
constant) polynomials must satisfy |pn(x)| → ∞ as |x| → ∞. Fig-
ure 1.15 shows this behavior for n = 7: for x ∈ [0, 2π], the polynomial
fit to f is about as accurate as the n = 7 trigonometric polynomial in
Figure 1.14. Outside of [0, 2π],the polynomial is much worse.

Example 1.9 (Trig interpolation of non-smooth function).
Figure 1.15 shows that a standard (non-perioidic) polynomial fit to
a periodic function can yield a good approximation, at least over the
interval from which the interpolation points are drawn. Now turn
the tables: how well does a (periodic) trigonometric polynomial fit a
smooth but non-periodic function? Simply take f (x) = x on [0, 2π],
and construct the trigonometric interpolant as described above for
n = 11. The top plot in Figure 1.16 shows that t11 gives a very poor
approximation to f , constrained by design to be periodic even though
f is not. The fact that f (2π) 6= f (0) acts like a discontinuity, vastly
impairing the quality of the approximation. The bottom plot in Fig-
ure 1.16 repeats this exercise for f (x) = (x − π)2. Since in this case
f (0) = f (2π) we might expect better results; indeed, the approxi-
mation looks quite reasonable. Note, however, that f ′(0) 6= f ′(π),
and this lack of smoothness severely slows convergence of tn to f as
n → ∞. Figure 1.17 contrasts this slow rate of convergence with the
much faster convergence observed for f (x) = ecos(x)+sin(2x) used in
Figure 1.14. Clearly the periodic interpolant is much better suited to
smooth f .

1.9.3 Fast MATLAB implementation

MATLAB organizes its Fast Fourier Transform is a slightly different
fashion than we have described above. To fit with MATLAB, reorder
the unknowns in the system (1.31) to obtain

(1.32)


ω0 ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω−2 ω−1

ω0 ω2 ω4 ω−4 ω−2

ω0 ω3 ω6 ω−6 ω−3

ω0 ω4 ω8 ω−8 ω−4




γ0

γ1

γ2

γ−2

γ−1

 =


f (x0)

f (x1)

f (x2)

f (x3)

f (x4)

 ,
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Figure 1.14: Trigonometric in-
terpolant to 2π-periodic function
f (x) = ecos(x)+sin(2x), using n = 5, 7, 9
and 11 points uniformly spaced over
[0, 2π) ({xk}n

k=0 for xk = 2πk/n). Since
both f and the interpolant are periodic,
the function fits well throughout IR,
not just on the interval for which the
interpolant was designed.
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Figure 1.15: Polynomial fit of degree
n = 7 through uniformly spaced grid
points x0, . . . , xn for xj = 2π j/n, for
the same function f (x) = ecos(x)+sin(2x)

used in Figure 1.14. In contrast to the
trigonometric fits in the earlier figure,
the polynomial grows very rapidly
outside the interval [0, 2π]. Moral: if
your function is periodic, fit it with a
trigonometric polynomial.
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Figure 1.16: Trigonometric polynomial
fit of degree n = 11 through uniformly
spaced grid points x0, . . . , xn for xj =
2π j/n, for the non-periodic function
f (x) = x (top) and for f (x) = (x− π)2

(bottom). By restricting the latter
function to the domain [0, 2π], one
can view it as a continuous periodic
function with a jump discontinuity in
the first derivative. The interpolant t11
seems to give a good approximation to
f , but the discontinuity in the derivative
slows the convergence of tn to f as
n→ ∞.

which amounts to reordering the columns of the matrix in (1.31). You
can obtain this matrix by the command ifft(eye(n)). For n = 5,

5 ∗ ifft(eye(5)) =


ω0 ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω−2 ω−1

ω0 ω2 ω4 ω−4 ω−2

ω0 ω3 ω6 ω−6 ω−3

ω0 ω4 ω8 ω−8 ω−4

 .
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Figure 1.17: Convergence of the
trigonometric polynomial inter-
polants to f (x) = ecos(x)+sin(2x) and
f (x) = (x − π)2. For the first func-
tion, convergence is extremely rapid as
n → ∞. The second function, restricted
to [0, 2π], can be viewed as a continu-
ous but not continuously differentiable
function. Though the approximation
in Figure 1.16 looks good over [0, 2π],
the convergence of tn to f is slow as
n→ ∞.

Similarly, the inverse of this matrix can be computed from fft(eye(n))

command:

fft(eye(5))/5 =
1
5


ω0 ω0 ω0 ω0 ω0

ω0 ω−1 ω−2 ω−3 ω−4

ω0 ω−2 ω−4 ω−6 ω−8

ω0 ω2 ω4 ω6 ω8

ω0 ω1 ω2 ω3 ω4

 .

We could construct this matrix and multiply it against f to obtain γ,
but that would require O(n2) operations. Instead, we can compute γ

directly using the fft command:

γ = fft(f)/n.

Recall that this reordered vector gives

γ =


γ0

γ1

γ2

γ−2

γ−1

 ,

which must be taken into account when constructing tn.

Example 1.10 (MATLAB code for trigonometric interpolation).
We close with a sample of MATLAB code one could use to construct
the interpolant tn for the function f (x) = ecos(x)+sin(2x). First we
present a generic code that will work for any (real- or complex-
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valued) 2π-periodic f . Take special note of the simple one line com-
mand to find the coefficient vector γ.

f = @(x) exp(cos(x)+sin(2*x)); % define the function

n = 5; % # terms in trig polynomial (must be odd)

xk = [0:n-1]’*2*pi/n; % interpolation points

xx = linspace(0,2*pi,500)’; % fine grid on which to plot f, t_n

tn = zeros(size(xx)); % initialize t_n

gamma = fft(f(xk))/n; % solve for coefficients, gamma

for k=1:(n+1)/2

tn = tn + gamma(k)*exp(1i*(k-1)*xx); % gamma_0, gamma_1, ... gamma_{(n-1)/2} terms

end

for k=(n+1)/2+1:n

tn = tn + gamma(k)*exp(1i*(-n+k-1)*xx); % gamma_{-(n-1)/2}, ..., gamma_{-1} terms

end

plot(xx,f(xx),’b-’), hold on % plot f

plot(xx, tn,’r-’) % plot t_n

In the case that f is real-valued (as with all the examples shown in
this section), one can further show that

γ−k = γk,

indicating that the imaginary terms will not make any contribution to
tn. Since for k = 1, . . . , (n− 1)/2,

γ−ke−1ikx + γke1ikx = 2
(

Re(γk) cos(kx)− Im(γk) sin(kx)
)

,

the code can be simplified slightly to construct tn as follows.

gamma = fft(f(xk))/n; % solve for coefficients, gamma

tn = gamma(1)*exp(1i*0*xx); % initialize t_n(x) = gamma_0

for k=2:(n+1)/2

tn = tn + 2*real(gamma(k))*cos((k-1)*xx) ...

- 2*imag(gamma(k))*sin((k-1)*xx); % exploit gamma_{-k} = conj(gamma_k)

end
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lecture 8: Piecewise interpolation

1.10 Piecewise polynomial interpolation

We have seen, through Runge’s example, that high degree poly-
nomial interpolation can lead to large errors when the (n + 1)st
derivative of f is large in magnitude. In other cases, the interpolant
converges to f , but the polynomial degree must be fairly high to
deliver an approximation of acceptable accuracy throughout [a, b].
Beyond theoretical convergence questions, high-degree polynomials
can be delicate to work with, even when using a stable implemen-
tation (the Lagrange basis, in its barycentric form). Many practical
approximation problems are better solved by a simpler ‘piecewise’
alternative: instead of approximating f with one high-degree inter-
polating polynomial over a large interval [a, b], patch together many
low-degree polynomials that each interpolate f on some subinterval
of [a, b].

1.10.1 Piecewise linear interpolation

The simplest piecewise polynomial interpolation uses linear poly-
nomials to interpolate between adjacent data points. Informally, the
idea is to ‘connect the dots.’ Given n + 1 data points {(xj, f j)}n

j=0, we
need to construct n linear polynomials {sj}n

j=1 such that

sj(xj−1) = f j−1, and sj(xj) = f j

for each j = 1, . . . , n. It is simple to write down a formula for these Note that all the sj’s are linear polyno-
mials. Unlike our earlier notation, the
subscript j does not reflect the polyno-
mial degree.

polynomials,

sj(x) = f j −
(xj − x)

(xj − xj−1)
( f j − f j−1).

Each sj is valid on x ∈ [xj−1, xj], and the interpolant S(x) is defined
as S(x) = sj(x) for x ∈ [xj−1, xj].

To analyze the error, we can apply the interpolation bound devel-
oped in the last lecture. If we let ∆ denote the largest space between
interpolation points,

∆ := max
j=1,...,n

|xj − xj−1|,

then the standard interpolation error bound gives

max
x∈[x0,xn ]

| f (x)− S(x)| ≤ max
x∈[x0,xn ]

| f ′′(x)|
2

∆2.

In particular, this proves convergence as ∆ → 0 provided f ∈
C2[x0, xn].
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Figure 1.18: Piecewise linear inter-
polant to f (x) = sin(20x) + e5x/2 at
n = 5 uniformly spaced points (top),
and the derivative of this interpolant
(bottom). Notice that the interpolant is
continuous, but its derivative has jump
discontinuities.

What could go wrong with this simple approach? The primary
difficulty is that the interpolant is continuous, but generally not con-
tinuously differentiable. Still, these functions are easy to construct and
cheap to evaluate, and can be very useful despite their simplicity.

1.10.2 Piecewise cubic Hermite interpolation

To remove the discontinuities in the first derivative of the piecewise
linear interpolant, we begin by modeling our data with cubic poly-
nomials over each interval [xj, xj+1]. Each such cubic has four free
parameters (since P3 is a vector space of dimension 4); we require
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these polynomials to interpolate both f and its first derivative:

sj(xj−1) = f (xj−1), j = 1, . . . , n;

sj(xj) = f (xj), j = 1, . . . , n;

s′j(xj−1) = f ′(xj−1), j = 1, . . . , n;

s′j(xj) = f ′(xj), j = 1, . . . , n.

To satisfy these conditions, take sj to be the Hermite interpolant to
the data (xj−1, f (xj−1), f ′(xj−1)) and (xj, f (xj), f ′(xj)). The resulting
function, S(x) := sj(x) for x ∈ [xj−1, xj], will always have a contin-
uous derivative, S ∈ C1[x0, xn], but generally S 6∈ C2[x0, xn] due to
discontinuities in the second derivative at the interpolation points.

In many applications, we lack specific values for S′(xj) = f ′(xj);
we simply want the function S(x) to be as smooth as possible. That
motivates our next topic: splines.
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Figure 1.19: Piecewise cubic Hermite
interpolant to f (x) = sin(20x) + e5x/2

at n = 5 uniformly spaced points (top),
and the derivative of this interpolant
(middle). Now both the interpolant and
its derivative are continuous, and the
derivative interpolates f ′. However,
the second derivative of the interpolant
now has jump discontinuities (bottom).
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lecture 9: Introduction to Splines

1.11 Splines

Spline fitting, our next topic in interpolation theory, is an essential
tool for engineering design. As in the last lecture, we strive to inter-
polate data using low-degree polynomials between consecutive grid
points. The piecewise linear functions of Section 1.10 were simple,
but suffered from unsightly kinks at each interpolation point, reflect-
ing a discontinuity in the first derivative. By increasing the degree of
the polynomial used to model f on each subinterval, we can obtain
smoother functions. Long before numerical analysts got

their hands on them, ‘splines’ were
used in the woodworking, shipbuild-
ing, and aircraft industries. In such
work ‘splines’ refer to thin pieces of
wood that are bent between physical
constraints called ducks (apparently
these were also called dogs and rats in
some settings; modern versions are
sometimes called whales because of their
shape). The spline, a thin beam, bends
gracefully between the ducks to give
a graceful curve. For some discussion
of this history, see the brief ‘History of
Splines’ note by James Epperson in the
19 July 1998 NA Digest, linked from the
class website. For a beautiful derivation
of cubic splines from Euler’s beam
equation—that is, from the original
physical situation, see Gilbert Strang’s
Introduction to Applied Mathematics,
Wellesley Cambridge Press, 1986.

1.11.1 Cubic splines: first approach

Rather than setting S′(xj) to a particular value, suppose we simply
require S′ to be continuous throughout [x0, xn]. This added freedom
allows us to impose a further condition: require S′′ to be continuous
on [x0, xn], too. The polynomials we construct are called cubic splines.
In spline parlance, the interpolation points {xj}n

j=0 are called knots.
These cubic spine requirements can be written as:

sj(xj−1) = f (xj−1), j = 1, . . . , n;

sj(xj) = f (xj), j = 1, . . . , n;

s′j(xj) = s′j+1(xj), j = 1, . . . , n− 1;

s′′j (xj) = s′′j+1(xj), j = 1, . . . , n− 1.

Compare these requirements to those imposed by piecewise cubic
Hermite interpolation. Add up all these new requirements:

n + n + (n− 1) + (n− 1) = 4n− 2 constraints

and compare to the total free variables available:

(n cubic polynomials)×(4 variables per cubic) = 4n variables.

So far, we thus have an underdetermined system, and there will be in-
finitely many choices for the function S(x) that satisfy the constraints.

There are several canonical ways to add two extra constraints that
uniquely define S:

• natural splines require S′′(x0) = S′′(xn) = 0;

• complete splines specify values for S′(x0) and S′(xn);

• not-a-knot splines require S′′′ to be continuous at x1 and xn−1. Since the third derivative of a cubic is
a constant, the not-a-knot requirement
forces s1 = s2 and sn−1 = sn. Hence,
while S(x) interpolates the data at x2
and xn−1, the derivative continuity
requirements are automatic at those
knots; hence the name “not-a-knot”.
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Figure 1.20: Not-a-knot cubic spline
interpolant to f (x) = sin(20x) + e5x/2

at n = 5 uniformly spaced knots (top),
along with its first (middle) and second
(bottom) derivative. Note that S, S′, and
S′′ are all continuous. Look closely at
the plot of S′′: clearly this function will
have jump discontinuities at the interior
nodes x2 and x3, but the not-a-knot
condition forces S′′′ to be continuous at
the knots x1 and x4 = xn−1.
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Figure 1.21: Complete cubic spline
interpolant to f (x) = sin(20x) + e5x/2

at n = 5 uniformly spaced knots (top),
along with its first (middle) and second
(bottom) derivative. Note that S, S′, and
S′′ are all continuous. For a complete
cubic spline, one specifies the value
of S′(x0) and S′(xn); in this case we
have set S′(x0) = S′(xn) = 0, as you
can confirm in the middle plot. In the
bottom plot, see that S′′′(x) will have
jump discontinuities at all the interior
knots x1, . . . , xn−1, in contrast to the
not-a-knot spline shown in Figure 1.20.
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Natural cubic splines are a popular choice for they can be shown,
in a precise sense, to minimize curvature over all the other possible
splines. They also model the physical origin of splines, where beams
of wood extend straight (i.e., zero second derivative) beyond the first
and final ‘ducks.’

Continuing with the example from the last section, Figure 1.20

shows a not-a-knot spline, where S′′′ is continuous at x1 and xn−1.
The cubic polynomials s1 for [x0, x1] and s2 for [x1, x2] must satisfy

s1(x1) = s2(x1)

s′1(x1) = s′2(x1)

s′′1 (x1) = s′′2 (x1)

s′′′1 (x1) = s′′′2 (x1)

Two cubics that match these four conditions must be the same:
s1(x) = s2(x), and hence x1 is ‘not a knot.’ (The same goes for xn−1.)
Notice this behavior in Figure 1.20. In contrast, Figure 1.21 shows the
complete cubic spline, where S′(x0) = S′(xn) = 0.

However we assign the two additional conditions, we get a system
of 4n equations (the various constraints) in 4n unknowns (the cubic
polynomial coefficients). These equations can be set up as a system
involving a banded coefficient matrix (zero everywhere except for a
limited number of diagonals on either side of the main diagonal). We

One can arrange Gaussian elimination
to solve an n× n tridiagonal system in
O(n) operations.

could derive this linear system by directly enforcing the continuity
conditions on the cubic polynomial that we have just described. In- Try constructing this matrix!

stead, we will develop a more general approach that expresses the
spline function S(x) as the linear combination of special basis func-
tions, which themselves are splines.
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lecture 10: B-Splines

1.11.2 B-Splines: a basis for splines

Throughout our discussion of standard polynomial interpolation, we
viewed Pn as a linear space of dimension n + 1, and then expressed
the unique interpolating polynomial in several different bases (mono-
mial, Newton, Lagrange). The most elegant way to develop spline
functions uses the same approach. A set of basis splines, depending
only on the location of the knots and the degree of the approximating
piecewise polynomials can be developed in a convenient, numerically
stable manner. (Cubic splines are the most prominent special case.)

For example, each cubic basis spline, or B-spline, is a continuous
piecewise-cubic function with continuous first and second deriva-
tives. Thus any linear combination of such B-splines will inherit the
same continuity properties. The coefficients in the linear combination
are chosen to obey the specified interpolation conditions.

B-splines are built up recursively from constant B-splines. Though
we are interpolating data at n + 1 knots x0, . . . , xn, to derive B-splines
we need extra nodes outside [x0, xn] as scaffolding upon which to
construct the basis. Thus, add knots on either end of x0 and xn:

· · · < x−2 < x−1 < x0 < x1 < · · · < xn < xn+1 < · · · .

Given these knots, define the constant (zeroth-degree) B-splines:

Bj,0(x) =

{
1 x ∈ [xj, xj+1);
0 otherwise.

The following plot shows the basis function B0,0 for the knots xj = j.
Note, in particular, that Bj,0(xj+1) = 0. The line drawn beneath
the spline marks the support of the spline, that is, the values of x for
which B0,0(x) 6= 0.

-3 -2 -1 0 1 2 3 4 5 6 7

0

0.5

1 B0,0(x)

x

From these degree-0 B-splines, manufacture B-splines of higher de-
gree via the recurrence

(1.33) Bj,k(x) =

(
x− xj

xj+k − xj

)
Bj,k−1(x) +

(
xj+k+1 − x

xj+k+1 − xj+1

)
Bj+1,k−1(x).
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While not immediately obvious from the formula, this construction
ensures that Bj,k has one more continuous derivative than does Bj,k−1.
Thus, while Bj,0 is discontinuous (see previous plot), Bj,1 is continu-
ous, Bj,2 ∈ C1(IR), and Bj,3 ∈ C2(IR). One can see this in the three
plots below, where again xj = j. As the degree increases, the B-spline
Bj,k becomes increasingly smooth. Smooth is good, but it has a con-
sequence: the support of Bj,k gets larger as we increase k. This, as we
will see, has implications on the number of nonzero entries in the
linear system we must ultimately solve to find the expansion of the
desired spline in the B-spline basis.
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x
From these plots and the recurrence defining Bj,k, one can deduce

several important properties:

• Bj,k ∈ Ck−1(IR) (continuity);

• Bj,k(x) = 0 if x 6∈ (xj, xj+k+1) (compact support);

• Bj,k(x) > 0 for x ∈ (xj, xj+k+1) (positivity).

Finally, we are prepared to write down a formula for the spline
that interpolates {(xj, f j)}n

j=0 as a linear combination of the basis
splines we have just constructed. Let Sk(x) denote the spline consist-
ing of piecewise polynomials in Pk. In particular, Sk must obey the
following properties:
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• Sk(xj) = f j for j = 0, . . . , n;

• Sk ∈ Ck−1[x0, xn] for k ≥ 1.

The beauty of B-splines is that the second of these properties is
automatically inherited from the B-splines themselves. (Any linear
combination of Ck−1(IR) functions must itself be a Ck−1(IR) function.)
The interpolation conditions give n + 1 equations that constrain the
unknown coefficients cj,k in the expansion of Sk:

(1.34) Sk(x) = ∑
j

cj,kBj,k(x).

What limits should j have in this sum? For the greatest flexibility, let

If Bj,k(x) = 0 for all x ∈ [x0, xn], it
cannot contribute to the interpolation
requirement Sk(xj) = f j, j = 0, . . . , n.

j range over all values for which

Bj,k(x) 6= 0 for some x ∈ [x0, xn].

Figure 1.22 shows the B-splines of degree k = 1, 2, 3 that overlap
the interval [x0, x4] for xj = j. For k ≥ 1, Bj,k(x) is supported on
(xj, xj+k+1), and hence the limits on the sum in (1.34) take the form

(1.35) Sk(x) =
n−1

∑
j=−k

cj,kBj,k(x), k ≥ 1.

The sum involves n + k coefficients cj,k, which must be determined to
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1 B−3,3 B−2,3 B−1,3 B0,3 B1,3 B2,3 B3,3

Figure 1.22: B-splines of degree k = 1
(top), k = 2 (middle), and k = 3
(bottom) that are supported on the
interval [x0, xn] for xj = j with n = 4.
Note that n + k B-splines are supported
on [x0, xn].
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satisfy the n + 1 interpolation conditions

f` = Sk(x`) =
n−1

∑
j=−k

cj,kBj,k(x`), ` = 0, . . . , n.

Before addressing general k ≥ 1, we pause to handle the special case
of k = 0, i.e., constant splines.

1.11.3 Constant splines, k = 0

The constant B-splines give Bn,0(xn) = 1 and so, unlike the general
k ≥ 1 case, the j = n B-spline must be included in the spline sum:

S0(x) =
n

∑
j=0

cj,0Bj,0(x).

The interpolation conditions give, for ` = 0, . . . , n,

f` = S0(x`) =
n

∑
j=0

cj,0Bj,0(x`)

= c`,0B`,0(x`) = c`,0,

since Bj,0(x`) = 0 if j 6= `, and B`,0(x`) = 1 (recall the plot of
B0,0(x) shown earlier). Thus c`,0 = f`, and the degree k = 0 spline
interpolant is simply

S0(x) =
n

∑
j=0

f j Bj,0(x).
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lecture 11: Matrix Determination of Splines; Energy Minimization

1.11.4 General case, k ≥ 1

Now consider the general spline interpolant of degree k ≥ 1,

Sk(x) =
n−1

∑
j=−k

cj,kBj,k(x),

with constants c−k,k, . . . , cn−1,k determined to satisfy the interpolation
conditions Sk(`) = f`, i.e.,

n−1

∑
j=−k

cj,kBj,k(x`) = f`, ` = 0, . . . , n.

By now we are accustomed to transforming constraints like this into
matrix equations. Each value ` = 0, . . . , n gives a row of the equation

(1.36)



B−k,k(x0) B−k+1,k(x0) · · · Bn−1,k(x0)

B−k,k(x1) B−k+1,k(x1) · · · Bn−1,k(x1)

...
...

. . .
...

B−k,k(xn) B−k+1,k(xn) · · · Bn−1,k(xn)





c−k,k

c−k+1,k

...

cn−1,k


=



f0

f1

...

fn


.

Let us consider the matrix in this equation. The matrix will have
n + 1 rows and n + k columns, so when k > 1 the system of equations
will be underdetermined. Since B-splines have ‘small support’ (i.e., One could obtain an (n + 1)× (n + 1)

matrix by arbitrarily setting k − 1
certain values of cj,k to zero, but this
would miss a great opportunity: we can
constructively include all n+ k B-splines
and impose k extra properties on Sk to
pick out a unique spline interpolant
from the infinitely many options that
satisfy the interpolation conditions.

Bj,k(x) = 0 for most x ∈ [x0, xn]), this matrix will be sparse: most
entries will be zero.

The following subsections will describe the particular form the
system (1.36) takes for k = 1, 2, 3. In each case we will illustrate the
resulting spline interpolant through the following data set.

(1.37)
j 0 1 2 3 4

xj 0 1 2 3 4
f j 1 3 2 −1 1

1.11.5 Linear splines, k = 1

Linear splines are simple to construct: in this case n + k = n + 1, so
the matrix in (1.36) is square. Let us evaluate it: since

Bj,1(x`) =

{
1, ` = j + 1;
0, ` 6= j + 1,
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S1(x)

Figure 1.23: Linear spline S1 interpolat-
ing 5 data points {(xj, f j)}4

j=0.

the matrix is simply

B−1,1(x0) B0,1(x0) · · · Bn−1,1(x0)

B−1,1(x1) B0,1(x1) · · · Bn−1,1(x1)

...
...

. . .
...

B−1,1(xn) B0,1(xn) · · · Bn−1,1(xn)


=



1 0 · · · 0

0 1
. . .

...

...
. . . . . . 0

0 · · · 0 1


= I.

The system (1.36) is thus trivial to solve, reducing to

c−1,1

c−0,k

...

cn−1,k


=



f0

f1

...

fn


,

which gives the unique linear spline

This above discussion is a pedantic way
to arrive at an obvious solution: Since
the jth ‘hat function’ B-spline equals
one at xj+1 and zero at all other knots,
just write the unique formula for the
interpolant immediately.

S1(x) =
n−1

∑
j=−1

f j+1 Bj,1(x).

Figure 1.23 shows the unique piecewise linear spline interpolant to
the data in (1.37), which is a linear combination of the five linear
splines shown in Figure 1.22. Explicitly,

S1(x) = f0B−1,1(x) + f1B0,1(x) + f2B1,1(x) + f3B2,1(x) + f4B3,1(x)

= B−1,1(x) + 3 B0,1(x) + 2 B1,1(x)− B2,1(x) + B3,1(x).
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Note that linear splines are simply C0 functions that interpolate a
given data set—between the knots, they are identical to the piecewise
linear functions constructed in Section 1.10.1. Note that S1(x) is sup-
ported on (x−1, xn+1) with S1(x) = 0 for all x 6∈ (x−1, xn+1). This is
a general feature of splines: Outside the range of interpolation, Sk(x)
goes to zero as quickly as possible for a given set of knots while still
maintaining the specified continuity.

1.11.6 Quadratic splines, k = 2

The construction of quadratic B-splines from the linear splines via
the recurrence (1.33) forces the functions Bj,2 to have a continuous
derivative, and also to be supported over three intervals per spline, as
seen in the middle plot in Figure 1.22. The interpolant takes the form

S2(x) =
n−1

∑
j=−2

cj,2Bj,2(x),

with coefficients specified by n + 1 equations in n + 2 unknowns:

(1.38)



B−2,2(x0) B−1,2(x0) · · · Bn−1,2(x0)

B−2,2(x1) B−1,2(x1) · · · Bn−1,2(x1)

...
...

. . .
...

B−2,2(xn) B−1,2(xn) · · · Bn−1,2(xn)





c−2,2

c−1,2

...

cn−1,2


=



f0

f1

...

fn


.

Since there are more variables than constraints, we expect infinitely
many quadratic splines that interpolate the data.

Evaluate the entries of the matrix in (1.38). First note that

Bj,2(x`) = 0, ` 6∈ {j + 1, j + 2},

so the matrix is zero in all entries except the main diagonal (Bj,2(xj+2))
and the first superdiagonal (Bj,2(xj+1)). To evaluate these nonzero en-
tries, recall that the recursion (1.33) for B-splines gives

Bj,2(x) =
( x− xj

xj+2 − xj

)
Bj,1(x) +

( xj+3 − x
xj+3 − xj+1

)
Bj+1,1(x).

Evaluate this function at xj+1 and xj+2, using our knowledge of the
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Bj,1 linear B-splines (‘hat functions’):

Bj,2(xj+1) =
( xj+1 − xj

xj+2 − xj

)
Bj,1(xj+1) +

( xj+3 − xj+1

xj+3 − xj+1

)
Bj+1,1(xj+1)

=
( xj+1 − xj

xj+2 − xj

)
· 1 +

( xj+3 − xj+1

xj+3 − xj+1

)
· 0 =

xj+1 − xj

xj+2 − xj
;

Bj,2(xj+2) =
( xj+2 − xj

xj+2 − xj

)
Bj,1(xj+2) +

( xj+3 − xj+2

xj+3 − xj+1

)
Bj+1,1(xj+2)

=
( xj+2 − xj

xj+2 − xj

)
· 0 +

( xj+3 − xj+2

xj+3 − xj+1

)
· 1 =

xj+3 − xj+2

xj+3 − xj+1
.

Use these formulas to populate the superdiagonal and subdiagonal
of the matrix in (1.38). In the (important) special case of uniformly
spaced knots

xj = x0 + jh, for fixed h > 0,

gives the particularly simple formulas

Bj,2(xj+1) = Bj,2(xj+2) =
1
2

,

hence the system (1.38) becomes


1/2 1/2

1/2 1/2
. . . . . .

1/2 1/2





c−2,2

c−1,2

c0,2

...

cn−1,2


=


f0

f1

...

fn

 ,

where the blank entries are zero. This (n + 1)× (n + 2) system will
have infinitely many solutions, i.e., infinitely many splines that satisfy
the interpolation conditions. How to choose among them? Impose
one extra condition, such as S′2(x0) = 0 or S′2(xn) = 0.

As an example, let us work through the condition S′2(x0) = 0; it
raises an interesting issue. Refer to the middle plot in Figure 1.22.
Due to the small support of the quadratic B-splines, B′j,2(x0) = 0 for
j > 0, so

(1.39) S′2(x0) = c−2,2B′−2,2(x0) + c−1,2B′−1,2(x0) + c0,2B′0,2(x0).

The derivatives of the B-splines at knots are tricky to compute. Dif-
ferentiating the recurrence (1.33) with k = 2, we can formally write

B′j,2(x) =
( 1

xj+2 − xj

)
Bj,1(x)+

( x− xj

xj+2 − xj

)
B′j,1(x)−

( 1
xj+3 − xj+1

)
Bj+1,1(x)+

( xj+3 − x
xj+3 − xj+1

)
B′j+1,1(x).
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Try to evaluate this expression at xj, xj+1, or xj+2: you must face that
fact that the linear B-splines Bj,1 and Bj+1,1 are not differentiable at the
knots! You must instead check that the one-sided derivatives match,
e.g.,

lim
h→0
h<0

Bj,2(xj+1 + h)− Bj,2(xj+1)

h
= lim

h→0
h>0

Bj,2(xj+1 + h)− Bj,2(xj+1)

h
.

A mildly tedious calculation verifies that indeed these one-sided first
derivatives do match, and that is the point of splines: each time you
increase the degree k, you increase the smoothness, so Bj,2 ∈ C1(IR).

Now regarding formula (1.39), one can compute

B′−2,2(x0) = −
2

x1 − x−1
, B′−1,2(x0) =

2
x1 − x−1

, B′0,2(x0) = 0,

and so, in the special case of a uniformly spaced grid (xj = x0 + jh),
the condition S′(x0) = 0 becomes

−1
h

c−2,2 +
1
h

c−1,2 = 0.

Insert this equation as the first row in the linear system for the coeffi-
cients,

−1/h 1/h

1/2 1/2

1/2 1/2
. . . . . .

1/2 1/2





c−2,2

c−1,2

c0,2

...

cn−1,2


=



0

f0

f1

...

fn


,

and solve this for c−2,2, . . . , cn−1,2 to determine the unique interpolat-
ing quadratic spline with S′2(x0) = 0.

Figure 1.24 shows quadratic spline interpolants to the data in (1.37).
One spline is determined with the extra condition S′2(x0) = 0
described above; the other satisfies S′2(xn) = 0. In any case, the
quadratic spline S2 is supported on (x−2, xn+2).

1.11.7 Cubic splines, k = 3

Cubic splines are the most famous of all splines. We began this sec-
tion by discussing cubic splines as an alternative to piecewise cubic
Hermite interpolation. Now we will show how to derive the same
cubic splines from the cubic B-splines.

Begin by reviewing the bottom plot in Figure 1.22. The cubic B-
splines B−3,3, . . . , Bn−1,3 take nonzero values on the interval [x0, xn],
and hence we write the cubic spline as

(1.40) S3(x) =
n−1

∑
j=−3

cj,3 Bj,3(x).
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S2(x), S′2(xn) = 0

S2(x), S′2(x0) = 0

Figure 1.24: Two choices for the
quadratic spline S2 that interpolates
the 5 data points {(xj, f j)}4

j=0 in (1.37).
The blue spline satisfies the extra con-
dition that S′2(x0) = 0, while the red
spline satisfies S′2(xn) = 0. Check to see
that these conditions are consistent with
the splines in the plot.

The linear system (1.36) now involves n + 1 equations in n + 3 un-
knowns:

(1.41)



B−3,3(x0) B−2,3(x0) · · · Bn−1,3(x0)

B−3,3(x1) B−2,3(x1) · · · Bn−1,3(x1)

...
...

. . .
...

B−3,3(xn) B−2,3(xn) · · · Bn−1,3(xn)





c−3,3

c−2,3

...

cn−1,3


=



f0

f1

...

fn


.

Given the support of cubic splines, note that

Bj,3(x`) = 0, ` 6∈ {j + 1, j + 2, j + 3},

which implies that only three diagonals of the matrix in (1.41) will
be nonzero. We shall only work out the nonzero entries in the case of
uniformly spaced knots, xj = x0 + jh for fixed h > 0. In this case,

Bj,3(xj+1) =
( xj+1 − xj

xj+3 − xj

)
Bj,2(xj+1) +

( xj+4 − xj+1

xj+4 − xj+1

)
Bj+1,2(xj+1) =

( h
3h

)
· 1

2
+
(3h

3h

)
· 0 =

1
6

Bj,3(xj+2) =
( xj+2 − xj

xj+3 − xj

)
Bj,2(xj+2) +

( xj+4 − xj+2

xj+4 − xj+1

)
Bj+1,2(xj+2) =

(2h
3h

)
· 1

2
+
(2h

3h

)
· 1

2
=

2
3

Bj,3(xj+3) =
( xj+3 − xj

xj+3 − xj

)
Bj,2(xj+3) +

( xj+4 − xj+3

xj+4 − xj+1

)
Bj+1,2(xj+3) =

(3h
3h

)
· 0 +

( h
3h

)
· 1

2
=

1
6

,

where we have used the fact that Bj,2(xj+1) = Bj,2(xj+2) = 1/2 and
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Bj,2(xj) = Bj,2(xj+3) = 0. Substituting these values into (1.41) gives

(1.42)



1/6 2/3 1/6

1/6 2/3 1/6

. . . . . . . . .

1/6 2/3 1/6





c−3,3

c−2,3

...

cn−1,3


=



f0

f1

...

fn


involving a matrix with n + 1 rows and n + 3 columns. Again, in-
finitely many cubic splines satisfy these interpolation conditions; two
independent requirements must be imposed to determine a unique
spline. Recall the three alternatives discussed in Section 1.11.1: com-
plete splines (specify a value for S′3 at x0 and xn), natural splines
(force S′′3 (x0) = S′′3 (xn) = 0), or not-a-knot splines. One can show that
imposing natural spline conditions on S3 requires

(x2 − x−1)c−3,3 − (x2 + x1 − x−1 − x−2)c−2,3 + (x1 − x−2)c−1,3 = 0

(xn+2 − xn−1)cn−3,3 − (xn+2 + xn+1 − xn−1 − xn−2)cn−2,3 + (xn+1 − xn−2)cn−1,3 = 0,

which for equally spaced knots (xj = x0 + jh) simplify to

3hc−3,3 − 6hc−2,3 + 3hc−1,3 = 0

3hcn−3,3 − 6hcn−2,3 + 3hcn−1,3 = 0.

It is convenient to add these conditions (dividing out the h) as the
first and last row of (1.41) to give

(1.43)



3 −6 3

1/6 2/3 1/6

1/6 2/3 1/6

. . . . . . . . .

1/6 2/3 1/6

3 −6 3





c−3,3

c−2,3

c−1,3

...

cn−2,3

cn−1,3



=



0

f0

f1

...

fn

0



.

This system of n + 3 equations in n + 3 variables has a unique solu-
tion, the natural cubic spline interpolant. It is a useful exercise to work out the

extra rows you would add to (1.41) to
impose complete or not-a-knot boundary
conditions.

Figure 1.25 shows the natural cubic spline interpolant to the
data (1.37). Clearly this spline satisfies the interpolation conditions,
but now there seems to be an artificial peak near x = 5 that you
might not have anticipated from the data values. This is a feature
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Figure 1.25: Cubic spline S3 interpolant
to 5 data points {(xj, f j)}4

j=0, imposing
the two extra natural spline conditions
S′′3 (x0) = S′′3 (xn) = 0 to give a unique
spline.

of the natural boundary conditions: by forcing S′′3 to be zero at x0

and xn, we ensure that the spline S3 has constant slope at x0 and xn.
Eventually this slope must be reversed, as our B-splines force S3(x)
to be zero outside (x−3, xn+3), the support of the B-splines that con-
tribute to the sum (1.40).

Of course, one can implement splines of higher degree, k > 3,
if if greater continuity is required at the knots, or if there are more
than two boundary conditions to impose (e.g., if one wants both first
and second derivatives to be zero at the boundary). The procedure
in that case follows the pattern detailed above: work out the entries
in the matrix (1.36) and add in rows to encode the additional k − 1
constraints needed to specify a unique degree-k spline interpolant.

1.11.8 Optimality properties of splines

Splines often enjoy a beautiful property: among all sufficiently
smooth interpolants , certain splines minimize ‘energy’, quantified
for a function g ∈ C2[x0, xn] as∫ xn

x0

g′′(x)2 dx.

To give a flavor for such results, we present one example. For a similar result involving complete
cubic splines, see Theorem 2.3.1 of
Gautschi’s Numerical Analysis (2nd ed.,
Birkhäuser, 2012). The proof here is an
easy adaptation of Gautchsi’s.Theorem 1.10 (Natural cubic splines minimize energy).

Suppose S3 is the natural cubic spline interpolant to {(xj, f j)}n
j=0, and

g is any C2[x0, xn] function that also interpolates the same data. Then∫ xn

x0

S′′3 (x)2 dx ≤
∫ xn

x0

g′′(x)2 dx.
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Proof. The proof will actually quantify how much larger g′′ is than S′′3
by showing that

(1.44)
∫ xn

x0

g′′(x)2 dx =
∫ xn

x0

S′′3 (x)2 dx +
∫ xn

x0

(
g′′(x)− S′′3 (x)

)2 dx.

Expanding the right-hand side, see that this claim is equivalent to

(1.45)
∫ xn

x0

(
g′′(x)− S′′3 (x)

)
S′′3 (x)dx = 0.

To prove this claim, break the integral on the left into segments
[xj, xj+1] between the knots. Write This decomposition of [x0, xn] will

allow us to exploit the fact that S3
is a standard cubic polynomial, and
hence infinitely differentiable, on these
subintervals.

∫ xn

x0

(
g′′(x)− S′′3 (x)

)
S′′3 (x)dx =

n

∑
j=1

∫ xj

xj+1

(
g′′(x)− S′′3 (x)

)
S′′3 (x)dx.

On each subinterval, integrate by parts to obtain

(1.46)
∫ xj

xj+1

(
g′′(x)− S′′3 (x)

)
S′′3 (x)dx =

[
(g′(x)− S′3(x))S′′3 (x)

]xj

x=xj−1
−
∫ xj

xj+1

(
g′(x)− S′3(x)

)
S′′′3 (x)dx.

Focus now on the integral on the right-hand side; we can show it is
zero by integrating it by parts to get

(1.47)
∫ xj

xj+1

(
g′(x)− S′3(x)

)
S′′′3 (x)dx =

[
(g(x)− S3(x))S′′′3 (x)

]xj

x=xj−1
−
∫ xj

xj+1

(
g(x)− S3(x)

)
S′′′′3 (x)dx.

The boundary term on the right is zero, since g(x`)− S3(x`) = 0 for
` = 0, . . . , n (both g and S3 must interpolate the data). The integral
on the right is also zero: since S3 is a cubic polynomial on [xj−1, xj],
S′′′′3 (x) = 0. Thus (1.46) reduces to∫ xj

xj+1

(
g′′(x)− S′′3 (x)

)
S′′3 (x)dx =

[
(g′(x)− S′3(x))S′′3 (x)

]xj

x=xj−1

Adding up these contributions over all the subintervals,

∫ xn

x0

(
g′′(x)− S′′3 (x)

)
S′′3 (x)dx =

n

∑
j=1

[
(g′(x)− S′3(x))S′′3 (x)

]xj

x=xj−1
.

Most of the boundary terms on the right cancel one another out,
leaving only∫ xn

x0

(
g′′(x)−S′′3 (x)

)
S′′3 (x)dx =

(
(g′(xn)−S′3(xn))S′′3 (xn)

)
−
(
(g′(x0)−S′3(x0))S′′3 (x0)

)
.

Each of the terms on the right is zero by virtue of the natural cu-
bic spline condition S′′3 (x0) = S′′3 (xn) = 0. This confirms the for-
mula (1.45), and hence the equivalent (1.44) that quantifies how much
larger g′′ can be than S′′3 .
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1.11.9 Some omissions

The great utility of B-splines in engineering has led to the develop-
ment of the subject far beyond these basic notes. Among the omis-
sions are: interpolation imposed at points distinct from the knots,
convergence of splines to the function they are approximating as the
number of knots increases, integration and differentiation of splines,
tension splines, etc. Splines in higher dimensions (‘thin-plate splines’)
are used, for example, to design the panels of a car body.

1.12 Handling Polynomials in MATLAB

To close this discussion of interpolating polynomials, we mention a
few notes about polynomials in matlab.

1.12.1 MATLAB’s Polynomial Format

By convention, matlab represents polynomials by their coefficients,
listed by decreasing powers of x. Thus c0 + c1x + c2x2 + c3x3 is repre-
sented by the vector

[c3 c2 c1 c0],

while 7 + 3x + 5x3 − 2x4 would be represented by

[− 2 5 0 3 7]

In this last example note the 0 corresponding to the x2 term: all lower
powers of x must be accounted for in coefficient vector.

Given a polynomial in a vector, say p = [− 2 5 0 3 7], one can
evaluate p(x) using the command polyval, e.g.

>> polyval(p,x)

This command works if x is a scalar or a vector. Thus, for example, to
plot p(x) for x ∈ [0, 1], one could use

>> x = linspace(0,1,500); % 500 uniform points between 0 and 1

>> plot(x,polyval(p,x)) % plot p(x) with x from 0 to 1

One can also compute the roots of polynomials very easily with the
command

>> roots(p) % compute roots of p(x)=0

though one should be cautious of numerical errors when the degree
of the polynomial is large. One can construct a polynomial directly

Type type roots to see matlab’s code
for the roots command. Scan to the
bottom to see the crucial lines. From
the coefficients matlabconstructs a
companion matrix, then computes its
eigenvalues using the eig command.
For some (larger degree) polynomials,
these eigenvalues are very sensitive to
perturbations, and the roots can be very
inaccurate. For a famous example due
to Wilkinson, try roots(poly[1:24])),
should return the roots 1, . . . , 24.

from its roots, using the poly command. For example,

>> poly([1:4])

ans =

1 -10 35 -50 24



73

poly returns the coefficients of the monic polynomial with roots
1, 2, 3, 4:

24− 50x + 35x2 − 10x3 + x4 = (x− 1)(x− 2)(x− 3)(x− 4).

This gives a slick way to construct the Lagrange basis function

`j(x) =
n

∏
k=0
k 6=j

x− xk
xj − xk

given the vector xx = [x0 · · · xn] of interpolation points:

>> ell_j = poly(xx([1:j j+2:end])); % specify roots of ell_j

>> ell_j = ell_j/polyval(ell_j,xx(j+1)); % scale so ell_j(xx(j+1)) = 1

Note that the indices of xx account for the fact that xj = xx(j+ 1).

1.12.2 Constructing Polynomial Interpolants

matlabhas a built-in code for constructing polynomial interpolants.
In fact, it is a special case of the polynomial approximation code
polyfit. When you request that polyfit produce a degree-n polyno-
mial through n + 1 pairs of data, you obtain an interpolant. For ex-

Beware! The numerical implementation
of polyfit is not ideal for polynomial
interpolation: the code uses the Van-
dermonde basis. Thus, restrict your use
of polyfit to low degree polynomials.
The command type polyfit will show
you matlab’s code.

ample, the following code will interpolate f (x) = sqrt(x) at xj = j/4
for j = 0, . . . , 4:

>> f = @(x) sqrt(x); % define f

>> xx = [0:4]/4; % define interpolation points

>> p = polyfit(xx,f(xx),4); % quartic polynomial interpolant

>> polyval(p,xx) % evaluate p at interpolation points

ans =

0.0000 0.5000 0.7071 0.8660 1.0000

>> f(xx) % compare to f at interpolation points

ans =

0 0.5000 0.7071 0.8660 1.0000

1.12.3 Piecewise Polynomial Interpolants and Splines

matlab also includes a general-purpose interp1 command that
constructs various piecewise polynomial interpolants. For example,
the ’linear’ option constructs piecewise linear interpolants.

>> f = @(x) sin(3*pi*x); % define f

>> xx = [0:10]/10; % define "knots"

>> x = linspace(0,1,500); % evaluation points

>> plot(x,interp1(xx,f(xx),x,’linear’)) % plot piecewise linear interpolant
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Alternatively, the ’spline’ option constructs the not-a-knot cubic
spline approximation.

>> plot(x,interp1(xx,f(xx),x,’spline’)) % plot cubic spline interpolant

The spline command (which interp1 uses to construct the spline)
will return matlab’s data structure that stores the cubic spline inter-
polant. >> S = spline(xx,f(xx))

S =

form: ’pp’

breaks: [1x11 double]

coefs: [10x4 double]

pieces: 10

order: 4

dim: 1

For example, S.breaks contains the list of knots. One can also pass
arguments to spline to specify complete boundary conditions. How-
ever, there is no easy way to impose natural boundary conditions.

Another option to interp1 has a mis-
leading name: ’pchip’ constructs a
particular spline-like interpolant de-
signed to be quite smooth: it cannot
match any derivative information about
f , as no derivative information is even
passed to the function.

For more sophisticated data fitting operations, matlab offers a Curve
Fitting Toolbox (which fits both curves and surfaces).

1.12.4 Chebfun

Chebfun is a free package of matlab routines developed by Nick
Trefethen and colleagues at Oxford University. Using sophisticated
techniques from polynomial approximation theory, Chebfun auto-
matically represents an arbitrary (piecewise smooth) function f (x) to
machine precision, and allows all manner of operations on this func-
tion, overloading every conceivable matlab matrix/vector operation.
There is no way to do this beautiful and powerful system justice in
a few lines of text here. Go to chebfun.org, download the software,
and start exploring. Suffice to say, Chebfun significantly enrich one’s
study and practice of numerical analysis.

In fact, it was used to generate a num-
ber of the plots in these notes.
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Approximation Theory

lecture 12: Introduction to Approximation Theory

Interpolation is an invaluable tool in numerical analysis: it
provides an easy way to replace a complicated function by a polyno-
mial (or piecewise polynomial), and, at least as importantly, it provides
a mechanism for developing numerical algorithms for more sophis-
ticated problems. Interpolation is not the only way to approximate We saw one example in Section 1.7:

finite difference formulas for approxi-
mating derivatives and solving differen-
tial equation boundary value problems.
Several other applications will follow
later in the semester.

a function, though: and indeed, we have seen that the quality of the
approximation can depend perilously on the choice of interpolation
points.

If approximation is our goal, interpolation is only one means to
that end. In this chapter we investigate alternative approaches that
directly optimize the quality of the approximation. How do we mea-
sure this quality? That depends on the application. Perhaps the most
natural means is to minimize the maximum error of the approximation.

Given f ∈ C[a, b], find p∗ ∈ Pn such that

max
x∈[a,b]

| f (x)− p∗(x)| = min
p∈Pn

max
x∈[a,b]

| f (x)− p(x)|.

This is called the minimax approximation problem.
Norms clarify the notation. For any g ∈ C[a, b], define

‖g‖∞ := max
x∈[a,b]

|g(x)|,

the ‘infinity norm of g’. One can show that ‖ · ‖∞ satisfies the basic
norm axioms on the vector space C[a, b] of continuous functions. ‖g‖∞ ≥ 0 for all g ∈ C[a, b]

‖g‖∞ = 0⇐⇒ g(x) = 0 for all x ∈ [a, b].
‖αg‖∞ = |α|‖g‖∞ for all α ∈ C, g ∈ C[a, b].
‖g + h‖∞ ≤ ‖g‖∞ + ‖h‖∞, for all g, h ∈ C[a, b].

Thus the minimax approximation problem seeks p∗ ∈ Pn such that

‖ f − p∗‖∞ = min
p∈Pn
‖ f − p‖∞.
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Notice that, for better or worse, this approximation will be heavily
influenced by extreme values of f (x), even if they occur over only a
small range of x ∈ [a, b].

Some applications call instead for an approximation that balances
the size of the errors against the range of x values over which they
are attained. In such cases it is most common to minimize the inte-
gral of the square of the error, the least squares approximation problem.

Given f ∈ C[a, b], find p∗ ∈ Pn such that( ∫ b

a
( f (x)− p∗(x))2 dx

)1/2
= min

p∈Pn

( ∫ b

a
( f (x)− p(x))2 dx

)1/2
.

This problem is often associated with energy minimization in mechan-
ics, giving one motivation for its widespread appeal. As before, we
express this more compactly by introducing the two-norm of g ∈ [a, b]:

‖g‖2 =
( ∫ b

a
|g(x)|2 dx

)1/2
,

so the least squares problem becomes

‖ f − p∗‖2 = min
p∈Pn
‖ f − p‖2.

This chapter focuses on these two problems. Before attacking them
we mention one other possibility, minimizing the absolute value of
the integral of the error: the least absolute deviations problem. This problem has become quite im-

portant in recent years. In particular,
the analogous problem resulting when
f is replaced by its vector discretiza-
tion f ∈ Cn plays a pivotal role in
compressive sensing.

Given f ∈ C[a, b], find p∗ ∈ Pn such that∫ b

a
| f (x)− p∗(x)|dx = min

p∈Pn

∫ b

a
| f (x)− p(x)|dx.

With this problem we associate the one-norm of g ∈ C[a, b],

‖g‖1 =
∫ b

a
|g(x)|dx,

giving the least absolute deviations problem as

‖ f − p∗‖1 = min
p∈Pn
‖ f − p‖1.
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2.1 Minimax Approximation: General Theory

The goal of minimizing the maximum error of a polynomial p from
the function f ∈ C[a, b] is called minimax (or uniform, or L∞) approxi-
mation: Find p∗ ∈ Pn such that

‖ f − p∗‖∞ = min
p∈Pn

‖ f − p‖∞.

Let us begin by connecting this problem to polynomial interpolation.
On Problem Set 2 you were asked to prove that

(2.1) ‖ f −Πn f ‖∞ ≤
(
1 + ‖Πn‖∞

)
‖ f − p∗‖∞,

where Πn is the linear interpolation operator for That is, p = Πn f ∈ Pn is the polynomial
that interpolates f at x0, . . . , xn.

x0 < x1 < · · · < xn

with x0, . . . , xn ∈ [a, b]. Here ‖Πn‖∞ is the operator norm of Πn:

‖Πn‖∞ = max
f∈C[a,b]

‖Πn f ‖∞

‖ f ‖∞

You further show that

‖Πn‖ = max
x∈[a,b]

n

∑
j=0
|`j(x)|,

where `j denotes the jth Lagrange interpolation basis function

`j(x) =
n

∏
k=0
k 6=j

x− xk
xj − xk

.

Now appreciate the utility of bound (2.1): the linear interpolant
Πn f (which is easy to compute) is within a factor of 1 + ‖Πn‖∞ of the
optimal approximation p∗. Note that ‖Πn‖∞ ≥ 1: how much larger
than one depends on the distribution of the interpolation points.

In the following sections we shall characterize and compute p∗
(indeed more difficult than computing the interpolant), then use the
theory of minimax approximation to find an excellent set of almost
fail-safe interpolation points.

We begin by working out a simple example by hand.

Example 2.1. Suppose we seek the constant that best approximates
f (x) = ex over the interval [0, 1], shown in the margin. Before go-

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

x

f (x
) =

ex

ing on, sketch out a constant function (degree-0 polynomial) that
approximates f in a manner that minimizes the maximum error.

Since f (x) increases monotonically for x ∈ [0, 1], the optimal
constant approximation p∗ = c0 must fall between f (0) = 1 and
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f (1) = e, i.e., 1 ≤ c0 ≤ e. Moreover, since f is monotonic and p∗ is
a constant, the function f − p∗ is also monotonic, so the maximum
error maxx∈[a,b] | f (x) − p∗(x)| must be attained at one of the end
points, x = 0 or x = 1. Thus,

‖ f − p∗‖∞ = max{|e0 − c0|, |e1 − c0|}.

The picture to the right shows |e0 − c0| (blue) and |e1 − c0| (red) for
c0 ∈ [1, e]. The optimal value for c0 will be the point at which the

         
   

   

   e− 1

e− 1
2

0
1 e− 1

2
e

c0

|e
0 −

c 0|

|e 1−
c0 |

larger of these two lines is minimal. The figure clearly reveals that this
happens when the errors are equal, at c0 = (1 + e)/2. We conclude
that the optimal minimax constant polynomial approximation to ex

on x ∈ [0, 1] is p∗(x) = c0 = (1 + e)/2.

The plots in Figure 2.1 compare f to the optimal polynomial p∗
(top), and show the error f − p∗ (bottom). We picked c0 so that the
error f − p∗ was equal in magnitude at the end points x = 0 and
x = 1; in fact, it is equal in magnitude, but opposite in sign,

e0 − c0 = −(e1 − c0).

This property—maximal error being attained with alternating sign—
is a key feature of minimax approximation.
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Figure 2.1: Minimax approximation
of degree k = 0 to f (x) = ex on
x ∈ [0, 1]. The top plot compares f
to p∗; the bottom plot shows the error
f − p∗, whose extreme magnitude is
attained, with opposite sign, at two values
of x ∈ [0, 1].
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lecture 13: Equioscillation, Part 1

2.2 Oscillation Theorem

The previous example hints that the points at which the error f − p∗
attains its maximum magnitude play a central role in the theory of
minimax approximation. The Theorem of de la Vallée Poussin is a
first step toward such a result. We include its proof to give a flavor of The proof is adapted from Section 8.3

of Süli and Mayers, An Introduction to
Numerical Analysis (Cambridge, 2003).

how such results are established.

Theorem 2.1 (de la Vallée Poussin’s Theorem).
Let f ∈ C[a, b] and suppose r ∈ Pn is some polynomial for which
there exist n + 2 points {xj}n+1

j=0 with a ≤ x0 < x1 < · · · < xn+1 ≤ b at
which the error f (x)− r(x) oscillates signs, i.e.,

sgn( f (xj)− r(xj)) = −sgn( f (xj+1)− r(xj+1))

for j = 0, . . . , n. Then

sgn(x) =


1, x > 0;
0, x = 0;
−1, x < 0.

(2.2) min
p∈Pn

‖ f − p‖∞ ≥ min
0≤j≤n+1

| f (xj)− r(xj)|.

Before proving this result, look at Figure 2.2 for an illustration of the
theorem. Suppose we wish to approximate f (x) = ex with some
quintic polynomial, r ∈ P5 (i.e., n = 5). This polynomial is not neces-
sarily the minimax approximation to f over the interval [0, 1]. However,
in the figure it is clear that for this r, we can find n + 2 = 7 points
at which the sign of the error f (x) − r(x) oscillates. The red curve These n + 2 points are by no means

unique: we have a continuum of choices
available. However, taking the extrema
of f − r will give the the best bounds in
the theorem.

shows the error for the optimal minimax polynomial p∗ (whose
computation is discussed below). This is the point of de la Vallée
Poussin’s theorem: Since the error f (x) − r(x) oscillates sign n + 2
times, the minimax error ±‖ f − p∗‖∞ exceeds | f (xj) − r(xj)| at one of
the points xj that give the oscillating sign. In other words, de la Val-
lée Poussin’s theorem gives a nice mechanism for developing lower
bounds on ‖ f − p∗‖∞.

Proof. Suppose we have n + 2 ordered points, {xj}n+1
j=0 ⊂ [a, b], such

that f (xj) − r(xj) alternates sign at consecutive points, and let p∗
denote the minimax polynomial,

‖ f − p∗‖∞ = min
p∈Pn

‖ f − p‖∞.

We will prove the result by contradiction. Thus suppose

(2.3) ‖ f − p∗‖∞ < | f (xj)− r(xj)|, for all j = 0, . . . , n + 1.
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Figure 2.2: Illustration of de la Vallée
Poussin’s theorem for f (x) = ex and
n = 5. Some polynomial r ∈ P5 gives
an error f − r for which we can identify
n + 2 = 7 points xj, j = 0, . . . , n + 1
(black dots) at which f (xj) − r(xj)
oscillates sign. The minimum value
of | f (xj) − r(xj)| gives a lower bound
the maximum error ‖ f − p∗‖∞ of the
optimal approximation p∗ ∈ P5.

As the left hand side is the maximum difference of f − p∗ over all
x ∈ [a, b], that difference can be no larger at xj ∈ [a, b], and so:

(2.4) | f (xj)− p∗(xj)| < | f (xj)− r(xj)|, for all j = 0, . . . , n + 1.

Now consider

p∗(x)− r(x) = ( f (x)− r(x))− ( f (x)− p∗(x)),

which is a degree n polynomial, since p∗, r ∈ Pn. Equation (2.4) states
that f (xj) − r(xj) always has larger magnitude than f (xj) − p∗(xj).
Thus, regardless of the sign of f (xj)− p∗(xj), the magnitude | f (xj)−
p∗(xj)| will never be large enough to overcome | f (xj) − r(xj)|, and
hence

sgn(p∗(xj)− r(xj)) = sgn( f (xj)− r(xj)).

We know from the hypothesis that f (x) − r(x) must change sign
at least n + 1 times (at least once in each interval (xj, xj+1) for j =

0, . . . , n), and thus the degree-n polynomial p∗ − r must do the same.
But n + 1 sign changes implies n + 1 roots; the only degree-n polyno-
mial with n + 1 roots is the zero polynomial, i.e., p∗ = r. However,
this contradicts the strict inequality in equation (2.3). Hence, there
must be at least one j for which

‖ f − p∗‖∞ ≥ | f (xj)− r(xj)|,

thus yielding the theorem.

Now suppose we can find some degree-n polynomial, call it r̃ ∈
Pn, and n + 2 points x0 < · · · < xn+1 in [a, b] such that not only does
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the sign of f − r̃ oscillate, but the error takes its extremal values at
these points. That is,

| f (xj)− r̃(xj)| = ‖ f − r̃‖∞, j = 0, . . . , n + 1,

and
f (xj)− r̃(xj) = −

(
f (xj+1)− r̃(xj+1)

)
, j = 0, . . . , n.

Now apply de la Valée Poussin’s theorem to this special polynomial

The red curve in Figure 2.2 shows
an error function that satisfies these
requirements.

r̃. Equation (2.2) gives

min
p∈Pn

‖ f − p‖ ≥ min
0≤j≤n+1

| f (xj)− r̃(xj)|.

On the other hand, we have presumed that

| f (xj)− r̃(xj)| = ‖ f − r̃‖∞

for all j = 0, . . . , n + 1. Thus, by de la Vallée Poussin’s theorem,

min
p∈Pn

‖ f − p‖ ≥ min
0≤j≤n+1

| f (xj)− r̃(xj)| = ‖ f − r̃‖∞.

Since r̃ ∈ Pn, it follows that

min
p∈Pn

‖ f − p‖ = ‖ f − r̃‖∞,

and this equioscillating r̃ must be an optimal approximation to f .

The question remains: Does such a polynomial with equioscillat-
ing error always exist? The following theorem ensures it does. For a direct proof, see Section 8.3 of

Süli and Mayers. Another excellent
resource is G. W. Stewart, Afternotes
Goes to Graduate School, SIAM, 1998; see
Stewart’s Lecture 3.

Theorem 2.2 (Oscillation Theorem). Suppose f ∈ C[a, b]. Then
p∗ ∈ Pn is a minimax approximation to f from Pn on [a, b] if and only
if there exist n + 2 points x0 < x1 < · · · < xn+1 such that

| f (xj)− p∗(xj)| = ‖ f − p∗‖∞, j = 0, . . . , n + 1

and the sign of the error oscillates at these points:

f (xj)− p∗(xj) = −
(

f (xj+1)− p∗(xj+1)
)
, j = 0, . . . , n.

Note that this result is if and only if : the oscillation property exactly
characterizes the minimax approximation. We have proved one direc-
tion already by appeal to de la Vallée Poussin’s theorem. The proof of
the other direction is rather more involved.



82

lecture 14: Equioscillation, Part 2
A direct proof that an optimal minimax approximation p∗ ∈ Pn must
give an equioscillating error is rather tedious, requiring one the chase
down the oscillation points one at a time. The following approach is
a bit more appealing. We begin with a technical result from which
the main theorem will readily follow.

This ‘lemma’ is a diluted version of
Kolmolgorov’s Theorem, which is (a) an
‘if and only if’ version of this lemma
that (b) appeals to approximation with
much more general classes of functions,
not just polynomials, and (c) handles
complex-valued functions. The proof
here is adapted from that more general
setting given in Theorem 2.1 of DeVore
and Lorentz, Constructive Approximation
(Springer, 1993).

Lemma 2.1. Let p∗ ∈ Pn be a minimax approximation of f ∈ C[a, b],

‖ f − p∗‖∞ = min
p∈Pn

‖ f − p‖∞,

and let X denote the set of all points x ∈ [a, b] for which

| f (x)− p∗(x)| = ‖ f − p∗‖∞.

Then for all q ∈ Pn,

(2.5) max
x∈X

(
f (x)− p∗(x)

)
q(x) ≥ 0.

Proof. We will prove the lemma by contradiction. Suppose p∗ ∈ Pn is
a minimax approximation, but that (2.5) fails to hold, i.e., there exists
some q̃ ∈ Pn and ε > 0 such that

max
x∈X

(
f (x)− p∗(x)

)
q̃(x) < −2ε.

We first note that ‖q̃‖∞ > 0. Since
(

f (x)− p∗(x)
)
q(x) is a continuous

function on [a, b], it must remain negative on some sufficiently small
neighborhood of X. More concretely, we can find δ > 0 such that

(2.6) max
x∈X̃

( f (x)− p∗(x)
)
q̃(x) < −ε,

where
X̃ := {ξ ∈ [a, b] : min

x∈X
|ξ − x| < δ}.

To arrive at a contradiction, we will design a function p̃ that better
approximates f than p∗, i.e., ‖ f − p̃‖∞ < ‖ f − p∗‖∞. This function
will take the form

p̃(x) = p∗(x)− λq̃(x)

for (small) constant λ we shall soon determine. Let E := ‖ f − p∗‖∞

and pick M such that |q̃(x)| ≤ M for all x ∈ X̃. Then for all x ∈ X̃,

| f (x)− p̃(x)|2 =
(

f (x)− p∗(x)
)2

+ 2λ
(

f (x)− p∗(x)
)
q̃(x) + λ2q̃(x)2

= E2 + 2λ
(

f (x)− p∗(x)
)
q̃(x) + λ2q̃(x)2

< E2 − 2λε + λ2M2,(2.7)
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where this inequality follows from (2.6). To show that p̃ is a better
approximation to f than p∗, it will suffice to show that the right-hand
side of (2.7) is smaller than E2: note that for any λ ∈ (0, 2ε/M2), then

(2.8) | f (x)− p̃(x)|2 < E2 − 2λε + λ2M2 < E2 − 4ε2

M2 +
4ε2

M2 = E2 = ‖ f − p∗‖2

for all x ∈ X̃. Thus p̃ beats p∗ on X̃. Now since X comprises the
points where | f (x)− p∗(x)| attains its maximum, away from X̃ this
error must be bounded away from its maximum, i.e., there exists
some η > 0 such that

max
x∈[a,b]
x 6∈X̃

| f (x)− p∗(x)| ≤ E− η.

Now we want to show that | f (x)− p̃(x)| < E for these x 6∈ X̃ as well.
In particular, for such x

| f (x)− p̃(x)| = | f (x)− p∗(x) + λq̃(x)|

≤ | f (x)− p∗(x)|+ λ|q̃(x)|

≤ E− η + λ‖q̃‖∞,

and so if λ ∈ (0, η/‖q̃‖∞),

| f (x)− p̃(x)| < E− η +
η

‖q̃‖∞
‖q̃‖∞ = E.

In conclusion, if

λ ∈
(

0, min(2ε/M2, η/‖q̃‖∞)
)

,

then we constructed p̃(x) := p∗(x)− λq̃(x) such that

| f (x)− p̃(x)| < E for all x ∈ [a, b],

i.e., ‖ f − p̃‖∞ < ‖ f − p∗‖, contradicting the optimality of p∗.

With this lemma, we can readily complete the proof of the Oscilla-
tion Theorem.

Completion of the Proof of the Oscillation Theorem. We must show that
if p∗ is a minimax approximation to f , then there exist n + 2 points
in [a, b] on which the error f − p∗ changes sign. If p∗ = f , the result
holds trivially. Suppose then that ‖ f − p∗‖∞ > 0. In the language
of Lemma 2.1, we need to show that (a) the set X contains (at least) Recall that X contains all the points

x ∈ [a, b] for which the maximum error
is attained: | f (x)− p∗(x)| = ‖ f − p∗‖∞.

n + 2 points and (b) the error oscillates sign at these points. Suppose
this is not the case, i.e., we cannot identify n + 2 consecutive points in
X at which the error oscillates in sign. Suppose we can only identify
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m such points, 1 ≤ m < n + 2, which we label x0 < · · · < xm−1. We
will show how to construct a q that violates Lemma 2.1.

If m = 1, f (x) − p∗(x) has the same sign for all x ∈ X. Set
q(x) = −sgn( f (x0) − p∗(x0)) (a constant, hence in Pn), so that
( f (x)− p∗(x))q(x) < 0 for all x ∈ X, contradicting Lemma 2.1.

If m > 1, the between each consecutive pair of these m points one
can then identify x̃1, . . . , x̃m−1 where the error changes sign. (See the
sketch in the margin.) Then define

r
x0

r

r rx1 r

r
x2

r

rx3 r

r
x4

x̃1 x̃2 x̃3 x̃4

sketch for m = 5r = f (x)− p∗(x) for x ∈ X

q(x) = ±(x− x̃1)(x− x̃2) · · · (x− x̃m−1).

Since m < n + 2 by assumption, m− 1 ≤ n, i.e., q ∈ Pn, so Lemma 2.1
should hold with this choice of q. Since the sign of q(x) does not
change between its roots, it does not change within the intervals

(a, x̃1), (x̃1, x̃2), · · · , (x̃m−2, x̃m−1), (x̃m−1, b),

and the sign of q flips between each of these intervals. Thus the sign
of
(

f (x)− p∗(x)
)
q(x) is the same for all x ∈ X. Pick the ± sign in the

definition of q such that(
f (x)− p∗(x)

)
q(x) < 0 for all x ∈ X,

thus contradicting Lemma 2.1. Hence, there must be (at least) n + 2
consecutive points in X at which the error flips sign.

Thus far we have been careful to only speak of a minimax approx-
imation, rather than the minimax approximation. In fact, the later
terminology is more precise, for the minimax approximant is unique.

Theorem 2.3 (Uniqueness of minimax approximant).
The minimax approximant p∗ ∈ Pn of f ∈ C[a, b] over the interval

[a, b] is unique.

The proof is a straightforward application of the Oscillation Theorem.
Suppose p1 and p2 are both minimax approximations from Pn to
f on [a, b]. Then one can show that (p1 + p2)/2 is also a minimax
approximation. Apply the Oscillation Theorem to obtain n + 2 points
at which the error for (p1 + p2)/2 oscillates sign. One can show that
these points must also be oscillation points for p1 and p2, and that p1

and p2 agree at these n + 2 points. Polynomials of degree n that agree
at n + 2 points must be the same.

For the full details of this proof, see
Theorem 8.5 in Süli and Mayers.

This oscillation property forms the basis of algorithms that find the
minimax approximation: iteratively adjust an approximating poly-
nomial until it satisfies the oscillation property. The most famous
algorithm for computing the minimax approximation is called the
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Figure 2.3: Illustration of the equioscil-
lating minimax error f − p∗ for approx-
imations of degree n = 2, 3, 4, and 5
with f (x) = ex for x ∈ [a, b]. In each
case, the error attains its maximum
with alternating sign at n + 2 points.

Remez exchange algorithm, essentially a specialized linear program-
ming procedure. In exact arithmetic, this algorithm is guaranteed to
terminate with the correct answer in finitely many operations.

The oscillation property is demonstrated in the Example 2.1, where
we approximated f (x) = ex with a constant. Indeed, the maxi-
mum error is attained at two points (that is, n + 2, since n = 0), and
the error differs in sign at those points. Figure 2.3 shows the errors
f (x) − p∗(x) for minimax approximations p∗ of increasing degree. These examples were computed in

matlab using the Chebfun pack-
age’s remez algorithm. For details, see
www.chebfun.org.

The oscillation property becomes increasingly apparent as the poly-
nomial degree increases. In each case, there are n + 2 extreme points
of the error, where n is the degree of the approximating polynomial.

Example 2.2 (ex revisited). Now we shall use the Oscillation Theorem
to compute the optimal linear minimax approximation to f (x) = ex

on [0, 1]. Assume that the minimax polynomial p∗ ∈ P1 has the form
p∗(x) = α + βx. Since f is convex, a quick sketch of the situation
suggests the maximal error will be attained at the end points of the
interval, x0 = 0 and x2 = 1. We assume this to be true, and seek some
third point x1 ∈ (0, 1) that attains the same maximal error, δ, but with
opposite sign. If we can find such a point, then the Oscillation Theo-
rem guarantees that the resulting polynomial is optimal, confirming
our assumption that the maximal error was attained at the ends of
the interval.
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This scenario suggests the following three equations:

f (x0)− p∗(x0) = δ

f (x1)− p∗(x1) = −δ

f (x2)− p∗(x2) = δ.

Substituting the values x0 = a, x2 = b, and p∗(x) = α + βx, these
equations become

1− α = δ

ex1 − α− βx1 = −δ

e− α− β = δ.

The first and third equation together imply β = e− 1. We also deduce
that 2α = ex1 − x1(e− 1) + 1. A variety of choices for x1 will satisfy
these conditions, but in those cases δ will not be the maximal error. We
must ensure that

|δ| = max
x∈[a,b]

| f (x)− p∗(x)|.

To make this happen, require that the derivative of error be zero at x1,
reflecting that the error f − p∗ attains a local minimum/maximum at
x1. (The plots in Figure 2.3 confirm that this is reasonable.) Imposing

This requirement need not hold at the
points x0 and x2, since these points
are on the ends of the interval [a, b]; it
is only required at the interior points
where the extreme error is attained,
xj ∈ (a, b).

the condition that f ′(x1)− p′∗(x1) = 0 yields

ex1 − β = 0.

Now we can explicitly solve the equations to obtain
Notice that we have a system of four
nonlinear equations in four unknowns,
due to the ex1 term. Generally such
nonlinear systems might not have a
solution; in this case we can compute
one.

α = 1
2
(
e− (e− 1) log(e− 1)

)
= 0.89406 . . .

β = e− 1 = 1.71828 . . .

x1 = log(e− 1) = 0.54132 . . .

δ = 1
2
(
2− e + (e− 1) log(e− 1)

)
= 0.10593 . . . .

Figure 2.4 shows the optimal approximation, along with the error
f (x) − p∗(x) = ex − (α + βx). In particular, notice the size of the
maximum error (δ = 0.10593 . . .) and the point x1 = 0.54132 . . . at
which this error is attained.
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p∗(x), equioscillating at n + 1 = 3
points.
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lecture 15: Chebyshev Polynomials for Optimal Interpolation

2.3 Optimal Interpolation Points via Chebyshev Polynomials

As an application of the minimax approximation procedure, we con-
sider how best to choose interpolation points {xj}n

j=0 to minimize

‖ f − pn‖∞,

where pn ∈ Pn is the interpolant to f at the specified points.
Recall the interpolation error bound developed in Section 1.6: If

f ∈ Cn+1[a, b], then for any x ∈ [a, b] there exists some ξ ∈ [a, b] such
that

f (x)− pn(x) =
f (n+1)(ξ)

(n + 1)!

n

∏
j=0

(x− xj).

Taking absolute values and maximizing over [a, b] yields the bound

‖ f − pn‖∞ = max
ξ∈[a,b]

| f (n+1)(ξ)|
(n + 1)!

max
x∈[a,b]

∣∣∣ n

∏
j=0

(x− xj)
∣∣∣.

For Runge’s example, f (x) = 1/(1 + x2) for x ∈ [−5, 5], we observed
that ‖ f − pn‖∞ → ∞ as n → ∞ if the interpolation points {xj} are
uniformly spaced over [−5, 5]. However, Marcinkiewicz’s theorem
(Section 1.6) guarantees there is always some scheme for assigning
the interpolation points such that ‖ f − pn‖∞ → 0 as n → ∞. While
there is no fail-safe a priori system for picking interpolations points
that will yield uniform convergence for all f ∈ C[a, b], there is a dis-
tinguished choice that works exceptionally well for just about every
function you will encounter in practice. We determine this set of in-
terpolation points by choosing those {xj}n

j=0 that minimize the error
bound (which is distinct from – but hopefully akin to – minimizing
the error itself, ‖ f − pn‖∞). That is, we want to solve

(2.9) min
x0,...,xn

max
x∈[a,b]

∣∣∣ n

∏
j=0

(x− xj)
∣∣∣.

Notice that
n

∏
j=0

(x− xj) = xn+1 − xn
n

∑
j=0

xj + xn−1
n

∑
j=0

n

∑
k=0

xjxk − · · ·+ (−1)n+1
n

∏
j=0

xj

= xn+1 − r(x),

where r ∈ Pn is a degree-n polynomial depending on the interpola-
tion nodes {xj}n

j=0.
For example, when n = 1,

(x− x0)(x− x1) = x2 −
(
(x0 + x1)x− x0x1

)
= x2 − r1(x),
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where r1(x) = (x0 + x1)x− x0x1. By varying x0 and x1, we can obtain
make r1 any function in P1.

To find the optimal interpolation points according to (2.9), we
should solve

min
r∈Pn

max
x∈[a,b]

|xn+1 − r(x)| = min
r∈Pn

‖xn+1 − r(x)‖∞.

Here the goal is to approximate an (n + 1)-degree polynomial, xn+1,
with an n-degree polynomial. The method of solution is somewhat
indirect: we will produce a class of polynomials of the form xn+1 −
r(x) that satisfy the requirements of the Oscillation Theorem, and
thus r(x) must be the minimax polynomial approximation to xn+1.
As we shall see, the roots of the resulting polynomial xn+1 − r(x)
will fall in the interval [a, b], and can thus be regarded as ‘optimal’
interpolation points. For simplicity, we shall focus on the interval
[a, b] = [−1, 1].

Definition 2.1. The degree-n Chebyshev polynomial is defined for
x ∈ [−1, 1] by the formula

Tn(x) = cos(n cos−1 x).

At first glance, this formula may not appear to define a polynomial
at all, since it involves trigonometric functions. But computing the Furthermore, it doesn’t apply if

|x| > 1. For such x one can define
the Chebyshev polynomials using
hyperbolic trigonometric functions,
Tn(x) = cosh(n cosh−1 x). Indeed, using
hyperbolic trigonometric identities, one
can show that this expression generates
for x 6∈ [−1, 1] the same polynomials
we get for x ∈ [−1, 1] from the standard
trigonometric identities. We discuss this
point in more detail at the end of the
section.

first few examples, we find

n = 0: T0(x) = cos(0 cos−1 x) = cos(0) = 1

n = 1: T1(x) = cos(cos−1 x) = x

n = 2: T2(x) = cos(2 cos−1 x) = 2 cos2(cos−1 x)− 1 = 2x2 − 1.

For n = 2, we employed the identity cos 2θ = 2 cos2 θ − 1, substituting
θ = cos−1 x. More generally, use the cosine addition formula

cos α + cos β = 2 cos
(α + β

2

)
cos

(α− β

2

)
to get the identity

cos
(
(n + 1)θ

)
= 2 cos θ cos nθ − cos

(
(n− 1)θ

)
.

This formula implies, for n ≥ 2,

Tn+1(x) = 2xTn(x)− Tn−1(x),

a formula related to the three term recurrence used to construct
orthogonal polynomials.

In fact, Chebyshev polynomials are
orthogonal polynomials on [−1, 1] with
respect to the inner product

〈 f , g〉 =
∫ b

a

f (x)g(x)√
1− x2

dx,

a fact we will use when studying Gaus-
sian quadrature later in the semester.

Chebyshev polynomials exhibit a wealth of interesting properties,
of which we mention just three.
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Theorem 2.4. Let Tn be the degree-n Chebyshev polynomial

Tn(x) = cos(n cos−1 x)

for x ∈ [−1, 1].

• |Tn(x)| ≤ 1 for x ∈ [−1, 1].

• The roots of Tn are the n points ξ j = cos (2j−1)π
2n , j = 1, . . . , n.

• For n ≥ 1, |Tn(x)| is maximized on [−1, 1] at the n + 1 points
ηj = cos(jπ/n), j = 0, . . . , n:

Tn(ηj) = (−1)j.

Proof. These results follow from direct calculations. For x ∈ [−1, 1],
Tn(x) = cos(n cos−1(x)) cannot exceed one in magnitude because
cosine cannot exceed one in magnitude. To verify the formula for the
roots, compute

Tn(ξ j) = cos
(

n cos−1 cos
( (2j− 1)π

2n

))
= cos

( (2j− 1)π
2

)
= 0,

since cosine is zero at half-integer multiples of π. Similarly,

Tn(ηj) = cos
(

n cos−1 cos
( jπ

n

))
= cos(jπ) = (−1)j.

Since Tn(ηj) is a nonzero degree-n polynomial, it cannot attain more
than n + 1 extrema on [−1, 1], including the endpoint: we have thus
characterized all the maxima of |Tn| on [−1, 1].

Figure 2.5 shows Chebyshev polynomials Tn for nine different
values of n.

2.3.1 Interpolation at Chebyshev Points

Finally, we are ready to solve the key minimax problem that will
reveal optimal interpolation points. Looking at the above plots of
Chebyshev polynomials, with their striking equioscillation properties,
perhaps you have already guessed the solution yourself.

We defined the Chebyshev polynomials so that

Tn+1(x) = 2xTn(x)− Tn−1(x)

with T0(x) = 1 and T1(x) = x. Thus Tn+1 has the leading coefficient
2n for n ≥ 0. Define

T̂n+1 = 2−nTn+1
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Figure 2.5: Chebyshev polynomials Tn
of degree n = 1, 2, 3 (top), n = 5, 7, 10
(middle), and n = 15, 20, 30 (bottom).
Note how rapidly these polynomials
grow outside the interval [−1, 1].
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for n ≥ 0, with T̂0(x) = 1. These normalized Chebyshev polynomials
are monic, i.e., the leading term in T̂n+1(x) is xn+1, rather than 2nxn+1

as for Tn+1(x). Thus, we can write

T̂n+1(x) = xn+1 − rn(x)

for some polynomial rn(x) = xn+1 − T̂n+1(x) ∈ Pn. We do not
especially care about the particular coefficients of this rn; our quarry
will be the roots of T̂n+1, the optimal interpolation points.

For n ≥ 0, the polynomials T̂n+1(x) oscillate between ±2−n for
x ∈ [−1, 1], with the maximal values attained at

ηj = cos
( jπ

n + 1

)
for j = 0, . . . , n + 1. In particular,

T̂n+1(ηj) = (ηj)
n+1 − rn(ηj) = (−1)j2−n.

Thus, we have found a polynomial rn ∈ Pn, together with n + 2
distinct points, ηj ∈ [−1, 1] where the maximum error

max
x∈[−1,1]

|xn+1 − rn(x)| = 2−n

is attained with alternating sign. Thus, by the oscillation theorem, we
have found the minimax approximation to xn+1.

Theorem 2.5 (Optimal approximation of xn+1).
The optimal approximation to xn+1 from Pn for x ∈ [−1, 1] is

rn(x) = xn+1 − T̂n+1(x) = xn+1 − 2−nTn+1(x) ∈ Pn.

Thus, the optimal interpolation points are those n + 1 roots of
xn+1 − rn(x), that is, the roots of the degree-(n + 1) Chebyshev poly-
nomial:

ξ j = cos
( (2j + 1)π

2n + 2

)
, j = 0, . . . , n.

For generic intervals [a, b], a change of variable demonstrates that
the same points, appropriately shifted and scaled, will be optimal.

Similar properties hold if interpolation is performed at the n + 1
points

ηj = cos
( jπ

n

)
, j = 0, . . . , n,

which are also called Chebyshev points and are perhaps more pop-
ular due to their slightly simpler formula. (We used these points
to successfully interpolate Runge’s function, scaled to the interval
[−5, 5].) While these points differ from the roots of the Chebyshev
polynomial, they have the same distribution as n→ ∞. That is the key.
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Figure 2.6: Repetition of Figure 1.8,
interpolating Runge’s function 1/(x2 +
1) on x ∈ [−5, 5], but now using
Chebyshev points xj = 5 cos(jπ/n).
The top plot shows this convergence
for n = 0, . . . , 25; the bottom plots
show the interpolating polynomials
p4, p8, p16, and p24, along with the
interpolation points that determine
these polynomials (black circles).
Unlike interpolation at uniformly
spaced points, these interpolants do
converge to f as n → ∞. Notice how the
interpolation points cluster toward the
ends of the domain [−5, 5].

We emphasize the utility of interpolation at Chebyshev points by
quoting the following result from Trefethen’s excellent Approximation
Theory and Approximation Practice (SIAM, 2013). Trefethen emphasizes
that worst-case results like Faber’s theorem (Theorem 1.4) give mis-
leadingly pessimistic concerns about interpolation. If the function
f ∈ C[a, b] has just a bit of smoothness (i.e., bounded derivatives),
interpolation in Chebyshev points is ‘bulletproof’. The following the-
orem consolidates aspects of Theorem 7.2 and 8.2 in Trefethen’s book.
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The results are stated for [a, b] = [−1, 1] but can be adapted to any
real interval.

Theorem 2.6 (Convergence of Interpolants at Chebyshev Points).
For any n > 0, let pn denote the interpolant to f ∈ C[−1, 1] at the

Chebyshev points

xj = cos
( jπ

n

)
, j = 0, . . . , n.

• Suppose f ∈ Cν[−1, 1] for some ν ≥ 1, with f (ν) having variation
V(ν), i.e.,

V(ν) := max
x∈[−1,1]

f (ν)(x)− min
x∈[−1,1]

f (ν)(x).

Then for any n > ν,

‖ f − pn‖∞ ≤
4V(ν)

π(ν(n− ν)ν).

• Suppose f is analytic on [−1, 1] and can be analytically continued
(into the complex plane) onto the region bounded by the ellipse

i

ρ = 1.75

ρ = 1.25

−i

Interval [−1, 1] (blue), with two ellipses
Eρ for ρ = 1.25 and ρ = 1.75.

Eρ :=
{ρeiθ + e−iθ/ρ

2
: θ ∈ [0, 2π)

}
.

Suppose further that | f (z)| ≤ M on and inside Eρ. Then

‖ f − pn‖∞ ≤
2Mρ−n

ρ− 1
.

For example, the first part of this theorem implies that if f ′ exists
and is bounded, then ‖ f − pn‖∞ must converge at least as fast as
1/n as n → ∞. While that is not such a fast rate, it does indeed
show convergence of the interpolant. The second part of the theorem
ensures that if f is well behaved in the region of the complex plane
around [−1, 1], the convergence will be extremely fast: the larger the
area of C in which f is well behaved, the faster the convergence.

2.3.2 Chebyshev polynomials beyond [−1, 1]

Another way of interpreting the equioscillating property of Cheby-
shev polynomials is that Tn solves the approximation problem

‖Tn‖∞ = min
p∈Pn

p monic

‖p‖∞,

over the interval [−1, 1], where a polynomial is monic if it has the
form xn + q(x) for q ∈ Pn−1.
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In some applications, such as the analysis of iterative methods for
solving large-scale systems of linear equations, one needs to bound
the size of the Chebyshev polynomial outside the interval [−1, 1]. Fig-
ure 2.5 shows that Tn grows very quickly outside [−1, 1], even for
modest values of n. How fast?

To describe Chebyshev polynomials outside [−1, 1], we must re-
place the trigonometric functions in the definition Tn(x) = cos(n cos−1 x)
with hyperbolic trigonometric functions:

(2.10) Tn(x) = cosh(n cosh−1 x), x 6∈ (−1, 1).

Is this definition is consistent with

Tn(x) = cos(n cos−1 x), x ∈ [−1, 1]

used previously? Trivially one can see that the new definition also
gives T0(x) = 1 and T1(x) = x. Like standard trigonometric func-
tions, the hyperbolic functions also satisfy the addition formula

cosh α + cosh β = 2 cosh
(α + β

2

)
cosh

(α− β

2

)
,

and so

cosh
(
(n + 1)θ

)
= 2 cosh θ cosh nθ − cosh

(
(n− 1)θ

)
,

leading to the same three-term recurrence as before:

Tn+1(x) = 2xTn(x)− Tn−1(x).

Thus, the definitions are consistent.
We would like a more concrete formula for Tn(x) for x 6∈ [−1, 1]

than we could obtain from the formula (??). Thankfully Chebyshev
polynomials have infinitely many interesting properties to lean on.
Consider the change of variables

x =
w + w−1

2
,

which allows us to write

x =
elog w + e− log w

2
= cosh(log w).

Thus work from the definition to obtain

Tn(x) = cosh(n cosh−1(x))

= cosh(n log w)

= cosh(log wn) =
elog(wn) + e− log(wn)

2
=

wn + w−n

2
.
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We emphasize this last important formula:

(2.11) Tn(x) =
wn + w−n

2
, x =

w + w−1

2
6∈ (−1, 1).

We have thus shown that |Tn(x)| will grow exponentially in n for any
x 6∈ (−1, 1) for which |w| 6= 1. When does |w| = 1? Only when
x = ±1. Hence,

|Tn(x)| grows exponentially in n for all x 6∈ [−1, 1].

Example 2.3. We want to evaluate Tn(2) as a function of n. First, find
w such that 2 = (w + w−1)/2, i.e.,

w2 − 4w + 1 = 0.

Solve this quadratic for
w± = 2±

√
3.

We take w = 2 +
√

3 = 3.7320 . . .. Thus by (2.11) Which ± choice should you make?
It does not matter. Notice that (2 −√

3)−1 = 2 +
√

3, and this happens in
general: w± = 1/w∓.Tn(2) =

(2 +
√

3)n + (2−
√

3)n

2
≈ (2 +

√
3)n

2

as n→ ∞, since (2−
√

3)n = (0.2679 . . .)n → 0.
Take a moment to reflect on this: We have a beautifully concrete

way to write down |Tn(x)| that does not involve any hyperbolic
trigonometric formulas, or require use of the Chebyshev recurrence
relation. Formulas of this type can be very helpful for analysis in
various settings. You will see one such example on Problem Set 3.
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lecture 16: Introduction to Least Squares Approximation

2.4 Least squares approximation

The minimax criterion is an intuitive objective for approximating
a function. However, in many cases it is more appealing (for both
computation and for the given application) to find an approximation
to f that minimizes the integral of the square of the error.

Given f ∈ C[a, b], find P∗ ∈ Pn such that( ∫ b

a
( f (x)− P∗(x))2 dx

)1/2
= min

p∈Pn

( ∫ b

a
( f (x)− p(x))2 dx

)1/2
.(2.12)

This is an example of a least squares problem.

2.4.1 Inner products for function spaces

To facilitate the development of least squares approximation theory,
we introduce a formal structure for C[a, b]. First, recognize that C[a, b]
is a linear space: any linear combination of continuous functions on
[a, b] must itself be continuous on [a, b].

Definition 2.2. The inner product of the functions f , g ∈ C[a, b] is

〈 f , g〉 =
∫ b

a
f (x)g(x)dx.

The inner product satisfies the following basic axioms: For simplicity we are assuming that
f and g are real-valued. To handle
complex-valued functions, one general-
izes the inner product to

〈 f , g〉 =
∫ b

a
f (x)g(x)dx,

which then gives 〈 f , g〉 = 〈g, f 〉.

• 〈α f + g, h〉 = α〈 f , h〉+ 〈g, h〉 for all f , g, h ∈ C[a, b] and all α ∈ IR;

• 〈 f , g〉 = 〈g, f 〉 for all f , g ∈ C[a, b];

• 〈 f , f 〉 ≥ 0 for all f ∈ C[a, b].

With this inner product we associate the norm

‖ f ‖2 := 〈 f , f 〉1/2 =
(∫ b

a
f (x)2 dx

)1/2
.

This is often called the ‘L2 norm,’ where the superscript ‘2’ in L2

refers to the fact that the integrand involves the square of the func-
tion f ; the L stands for Lebesgue, coming from the fact that this inner
product can be generalized from C[a, b] to the set of all functions that
are square-integrable, in the sense of Lebesgue integration. By restrict-
ing our attention to continuous functions, we dodge the measure-
theoretic complexities.

The Lebesgue theory gives a more
robust definition of the integral than
the conventional Riemann approach.
With such notions one can extend least
squares approximation beyond C[a, b],
to more exotic function spaces.
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2.4.2 Least squares minimization via calculus

We are now ready to solve the least squares problem. We shall call
the optimal polynomial P∗ ∈ Pn, i.e.,

‖ f − P∗‖2 = min
p∈Pn

‖ f − p‖2.

We can solve this minimization problem using basic calculus. Con-
sider this example for n = 1, where we optimize the error over
polynomials of the form p(x) = c0 + c1x. The polynomial that mini-
mizes ‖ f − p‖2 will also minimize its square, ‖ f − p‖2

2. For any given
p ∈ P1, define the error function

E(c0, c1) := ‖ f (x)− (c0 + c1x)‖2
L2 =

∫ b

a
( f (x)− c0 − c1x)2 dx

=
∫ b

a

(
f (x)2 − 2 f (x)(c0 + c1x) + (c2

0 + 2c0c1x + c2
1x2)

)
dx

=
∫ b

a
f (x)2 dx− 2c0

∫ b

a
f (x)dx− 2c1

∫ b

a
x f (x)dx

+ c2
0(b− a) + c0c1(b

2 − a2) + 1
3 c2

1(b
3 − a3).

To find the optimal polynomial, P∗, optimize E over c0 and c1, i.e.,
find the values of c0 and c1 for which

∂E
∂c0

=
∂E
∂c1

= 0.

First, compute

∂E
∂c0

= −2
∫ b

a
f (x)dx + 2c0(b− a) + c1(b2 − a2)

∂E
∂c1

= −2
∫ b

a
x f (x)dx + c0(b2 − a2) + c1

2
3 (b

3 − a3).

Setting these partial derivatives equal to zero yields

2c0(b− a) + c1(b2 − a2) = 2
∫ b

a
f (x)dx

c0(b2 − a2) + c1
2
3 (b

3 − a3) = 2
∫ b

a
x f (x)dx.

These equations, linear in the unknowns c0 and c1, can be written in
the matrix form[

2(b− a) b2 − a2

b2 − a2 2
3 (b

3 − a3)

] [
c0

c1

]
=

 2
∫ b

a f (x)dx

2
∫ b

a x f (x)dx

 .

When b 6= a this system always has a unique solution. The resulting
c0 and c1 are the coefficients for the monomial-basis expansion of the
least squares approximation P∗ ∈ P1 to f on [a, b].
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Example 2.4 ( f (x) = ex). Apply this result to f (x) = ex for x ∈ [0, 1].
Since ∫ 1

0
ex dx = e− 1,

∫ 1

0
xex dx =

[
ex(x− 1)

]1
x=0 = 1,

we must solve the system[
2 1

1 2
3

] [
c0

c1

]
=

[
2e− 2

2

]
.

The desired solution is

c0 = 4e− 10, c1 = 18− 6e.

Figure 2.7 compares f to this least squares approximation P∗ and the
minimax approximation p∗ computed earlier.
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Figure 2.7: Top: Approximation of
f (x) = ex (blue) over x ∈ [0, 1] via
least squares (P∗, shown in red) and
minimax (p∗, shown as a gray line).

Bottom: Error curves for least
squares, f − P∗ (red), and minimax,
f − p∗ (gray) approximation. While the
curves have similar shape, note that the
red curve does not attain its maximum
deviation from f at n + 2 = 3 points,
while the gray one does.

We can see from the plots in Figure 2.7 that the approximation
looks decent to the eye, but the error is not terribly small. We can In fact, ‖ f − P∗‖2 = 0.06277 . . .. This is

indeed smaller than the 2-norm error
of the minimax approximation p∗:
‖ f − p∗‖2 = 0.07228 . . ..

decrease that error by increasing the degree of the approximating
polynomial. Just as we used a 2-by-2 linear system to find the best
linear approximation, a general (n + 1)-by-(n + 1) linear system can
be constructed to yield the degree-n least squares approximation.
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2.4.3 General polynomial bases

Note that we performed the above minimization in the monomial
basis: p(x) = c0 + c1x is a linear combination of 1 and x. Our expe-
rience with interpolation suggests that different choices for the basis
may yield approximation algorithms with superior numerical proper-
ties. Thus, we develop the form of the approximating polynomial in
an arbitrary basis.

Suppose {φk}n
k=0 is a basis for Pn. Any p ∈ Pn can be written as

p(x) =
n

∑
k=0

ckφk(x).

The error expression takes the form

E(c0, . . . , cn) := ‖ f (x)− p(x)‖2
L2 =

∫ b

a

(
f (x)−

n

∑
k=0

ckφk(x)
)2

dx

= 〈 f , f 〉 − 2
n

∑
k=0

ck〈 f , φk〉+
n

∑
k=0

n

∑
`=0

ckc`〈φk, φ`〉.

To minimize E, we seek critical values of c = [c0, . . . , cn+1]
T ∈ IRn+1,

i.e., we want coefficients where the gradient of E with respect to c
is zero: ∇c E = 0. To compute this gradient, evaluate ∂E/∂cj for
j = 0, . . . , n:

∂E
∂cj

=
∂

∂cj
〈 f , f 〉 − ∂

∂cj

(
2

n

∑
k=0

ck〈 f , φk〉
)
+

∂

∂cj

( n

∑
k=0

n

∑
`=0

ckc`〈φk, φ`〉
)

= 0− 2〈 f , φj〉+
∂

∂cj

(
c2

j 〈φj, φj〉+
n

∑
k=0
k 6=j

ckcj〈φk, φj〉+
n

∑
`=0
` 6=j

cjc`〈φj, φ`〉+
n

∑
k=0
k 6=j

n

∑
`=0
` 6=j

ckc`〈φk, φ`〉
)

In this last line, we have broken the double sum on the previous line
into four parts: one that contains c2

j , two that contain cj (ckcj for k 6= j;
cjc` for ` 6= j), and one (the double sum) that does not involve cj at
all. This decomposition makes it easier to compute the derivative:

∂

∂cj

(
c2

j 〈φj, φj〉 +
n

∑
k=0
k 6=j

ckcj〈φk, φj〉+
n

∑
`=0
` 6=j

cjc`〈φj, φ`〉+
n

∑
k=0
k 6=j

n

∑
`=0
` 6=j

ckc`〈φk, φ`〉
)

= 2cj〈φj, φj〉+
n

∑
k=0
k 6=j

ck〈φk, φj〉+
n

∑
`=0
` 6=j

c`〈φj, φ`〉+ 0

= 2cj〈φj, φj〉+ 2
n

∑
k=0
k 6=j

ck〈φk, φj〉.
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These terms contribute to ∂E/∂cj to give

(2.13)
∂E
∂cj

= −2〈 f , φj〉+ 2
n

∑
k=0

ck〈φk, φj〉.

To minimize E, set ∂E/∂cj = 0 for j = 0, . . . , n, which gives the n + 1
equations

(2.14)
n

∑
k=0

ck〈φk, φj〉 = 〈 f , φj〉, j = 0, . . . , n,

in the n + 1 unknowns c0, . . . , cn. Since these equations are linear in
the unknowns, write them in matrix form:

(2.15)


〈φ0, φ0〉 〈φ0, φ1〉 · · · 〈φ0, φn〉
〈φ1, φ0〉 〈φ1, φ1〉 · · · 〈φ1, φn〉

...
...

. . .
...

〈φn, φ0〉 〈φn, φ1〉 · · · 〈φn, φn〉




c0

c1
...

cn

 =


〈 f , φ0〉

〈 f , φ1〉
...

〈 f , φn〉

 ,

which we denote Gc = b. The matrix G is called the Gram matrix.
Using this matrix-vector notation, we can accumulate the partial
derivatives formulas (2.13) for E into the gradient

∇c E = 2
(
Gc− b

)
.

Since c is a critical point if and only if ∇c E(c) = 0, we must ask:

• How many critical points are there? Equivalently, how many c
solve Gc = b?

• If c is a critical point, is it a (local or even global) minimum?

We will answer the first question by showing that G is invertible, and
hence E has a unique critical point. To answer the second question,
we must inspect the Hessian

∇2
c E = ∇c(∇cE) = 2G.

The critical point c is local minimum if and only if the Hessian is
symmetric positive definite. A matrix G is positive definite provided

z∗Gz > 0 for all z 6= 0.The symmetry of the inner product implies 〈φj, φk〉 = 〈φk, φj〉, and
hence G is symmetric. (In this case, symmetry also follows from the
equivalence of mixed partial deritivates.) The following theorem
confirms that G is indeed positive definite.
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lecture 17: Fundamentals of Least Squares Approximation, Part I
lecture 18: Fundamentals of Least Squares Approximation, Part II

Theorem 2.7. If φ0, . . . , φn are linearly independent, the Gram matrix
G is positive definite.

This proof is very general: we are
thinking of φ0, . . . , φn being a basis for
Pn (and hence linearly independent),
but the same proof applies to any
linearly independent set of vectors in a
general inner product space.Proof. For a generic z ∈ IRn+1, consider the product

z∗Gz =

[
z0 z1 · · · zn

] 
〈φ0, φ0〉 〈φ0, φ1〉 · · · 〈φ0, φn〉
〈φ1, φ0〉 〈φ1, φ1〉 · · · 〈φ1, φn〉

...
. . .

...

〈φn, φ0〉 〈φn, φ1〉 · · · 〈φn, φn〉




z0

z1

...

zn



=

[
z0 z1 · · · zn

] 
∑n

k=0 zj〈φ0, φk〉

∑n
k=0 zj〈φ1, φk〉

...

∑n
k=0 zj〈φn, φk〉

 =
n

∑
j=0

n

∑
k=0

zjzk〈φj, φk〉.

Now use linearity of the inner product to write

z∗Gz =
n

∑
j=0

n

∑
k=0

zjzk〈φj, φk〉 =
〈 n

∑
j=0

zjφj,
n

∑
k=0

zkφk

〉
=

∥∥∥∥ n

∑
j=0

zjφj

∥∥∥∥2

.

Thus, by nonnegativity of the norm, z∗Gz ≥ 0. This is enough to
show that G is positive semidefinite. To show that G is positive definite,
we must show that z∗Gz > 0 if z 6= 0. Now since φ0, . . . , φn are
linearly independent, ∑n

j=0 cjφj = 0 if and only if c0 = · · · = cn = 0,
i.e., if and only if z = 0. Thus, if z 6= 0, z∗Gz > 0.

Eigenvalues illuminate. The surfaces
below visualize E(c0, c1) for best ap-
proximation of f (x) = ex from P1 over
x ∈ [−1, 1] (top) and x ∈ [0, 1].

For [−1, 1], the eigenvalues of G are
relatively large, and the error surface
looks very bowl-like.
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error surface is much more ‘shallow’
in one direction. (The orientation of
the trough can be found from the
corresponding eigenvector of G.)
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Eigenvalues of G: λ1 = (4 +
√

13)/6 = 1.26759 . . .
λ2 = (4−

√
13)/6 = 0.06574 . . .

This answers the second question posed above, and also makes the
answer to the first trivial.

Corollary 2.1. If φ0, . . . , φn are linearly independent, the Gram matrix
G is invertible.

Proof. The matrix G is invertible if Gz = 0 implies z = 0, i.e., G has
a trivial null space. If Gz = 0, then z∗Gz = 0. Theorem 2.7 ensures
that G is positive definite, so z∗Gz = 0 implies z = 0. Hence, G has a
trivial null space, and is thus invertible.

We can summarize our findings as follows.
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Given any basis φ0, . . . , φn, the least squares approximation
P∗ to f ∈ C[a, b] is unique and can be expressed as

P∗ =
n

∑
j=0

cjφj,

where the coefficients c are computed as the unique solu-
tion of Gc = b.

As with the interpolation problem studied earlier, different choices of
basis will give different linear algebra problems, but ultimately result
in the same overall approximation P∗. We shall study several choices
for the basis in Sections 2.4.5 and 2.4.6. Before doing so, we establish
a fundamental property of least squares approximation.

2.4.4 Orthogonality of the error

This is the fundamental theorem of linear least squares problems:

The error f − P∗ is orthogonal to the approximating subspace Pn.

Having worked hard to characterize the optimal approximation, the
formula Gc = b makes the proof of this result trivial.

Theorem 2.8. The function P∗ ∈ Pn is the least squares approxima-
tion to f ∈ C[a, b] if and only if the error f − P∗ is orthogonal to the
subspace Pn from which the approximation was drawn:

〈 f − P∗, q〉 = 0, for all q ∈ Pn.

Proof. First suppose that P∗ is the least squares approximation. Thus
given any basis φ0, . . . , φn for Pn, we can express P∗ = c0φ0 + · · ·+
cnφn, where the coefficients solve Gc = b. Now for any basis function
φj, use the linearity of the inner product to compute

〈 f − P∗, φj〉 = 〈 f , φj〉 − 〈P∗, φj〉

= 〈 f , φj〉 −
〈 n

∑
k=0

ckφk, φj

〉
= 〈 f , φj〉 −

n

∑
k=0

ck〈φk, φj〉.

Recall that the jth row of the equation Gc = b (see (2.14) is precisely

n

∑
k=0

ck〈φk, φj〉 = 〈 f , φj〉,

so since the least squares approximation must satisfy Gc = b,
conclude that 〈 f − P∗, φj〉 = 0. Since this orthogonality holds for
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j = 0, . . . , n, the error f − P∗ is orthogonal to the entire basis for Pn,
and hence it is orthogonal to any vector q = ∑n

j=0 djφj ∈ Pn, since

〈 f − P∗, q〉 =
〈

f − P∗,
n

∑
j=0

djφj

〉
=

n

∑
k=0

dj〈 f − P∗, φj〉 =
n

∑
k=0

dj · 0 = 0.

Thus, the least squares error f − P∗ is orthogonal to all q ∈ Pn.

On the other hand suppose that p ∈ Pn gives an error f − p that is
orthogonal to all q ∈ Pn, i.e.,

(2.16) 〈 f − p, q〉 = 0, for all q ∈ Pn.

Let φ0, . . . , φn be a basis for Pn. Then we can find c0, . . . , cn so that
p = c0φ0 + · · ·+ cnφn. The orthogonality of f − p to Pn in (??) implies
in particular that 〈 f − p, φj〉 = 0 for all j = 0, . . . , n, i.e., using linearity
of the inner product,

0 =
〈

f −
n

∑
k=0

ckφk, φj

〉
= 〈 f , φj〉 −

n

∑
k=0

ck〈φk, φj〉

for j = 0, . . . , n. Thus orthogonality of the error implies that

n

∑
k=0

ck〈φk, φj〉 = 〈 f , φj〉, j = 0, . . . , n,

and these n + 1 equations precisely give Gc = b: since the coefficients
of p satisfy the linear system that characterizes the (unique) least
squares approximation, p must be that least squares approximation,
p = P∗. Thus, orthogonality of the error f − p with all q ∈ Pn implies
that p is the least squares approximation.

2.4.5 Monomial basis

Suppose we apply this method on the interval [a, b] = [0, 1] with the
monomial basis, φk(x) = xk. In that case,

〈φk, φj〉 = 〈xk, xj〉 =
∫ 1

0
xj+k dx =

1
j + k + 1

,

and the coefficient matrix has an elementary structure. In fact, this is
a form of the notorious Hilbert matrix. It is exceptionally difficult to See M.-D. Choi, ‘Tricks or treats with

the Hilbert matrix,’ American Math.
Monthly 90 (1983) 301–312.

obtain accurate solutions with this matrix in floating point arithmetic,
reflecting the fact that the monomials are a poor basis for Pn on [0, 1].
Let G denote the n + 1-dimensional Hilbert matrix, and suppose b
is constructed so that the exact solution to the system Gc = b is
c = [1, 1, . . . , 1]T . Let ĉ denote computed solution to the system in
MATLAB. Ideally the forward error ‖c − ĉ‖2 will be nearly zero (if
the rounding errors incurred while constructing b and solving the
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system are small). Unfortunately, this is not the case – the condition
number of G grows exponentially in the dimension n, and the accu-
racy of the computed solution to the linear system quickly degrades
as n increases.

n ‖G‖‖G−1‖ ‖c− ĉ‖
5 1.495× 107 7.548× 10−11

10 1.603× 1014 0.01288

15 4.380× 1017
12.61

20 1.251× 1018
46.9

Clearly these errors are not acceptable!

The last few condition numbers
‖G‖‖G−1‖ are in fact smaller than
they ought to be: matlab computes the
condition number based as the ratio of
the largest to smallest singular values
of G; the smallest singular value can
only be determined accurately if it is
larger than about ‖G‖εmach, where
εmach ≈ 2.2× 10−16. Thus, if the true
condition number is larger than about
1/εmach, we should not expect matlab

to compute it accurately.In summary: The monomial basis forms an ill-conditioned basis for Pn

over the real interval [a, b].

2.4.6 Orthogonal basis

In the search for a basis for Pn that will avoid the numerical difficul-
ties, let the structure of the equation Gc = b be our guide. What
choice of basis would make the matrix G, written out in (2.15), as
simple as possible? If the basis vectors are orthogonal, i.e., Section 2.5 will derive a procedure for

computing an orthogonal basis for Pn.

〈φj, φk〉
{
6= 0, j = k;
= 0, j 6= k,

then G only has nonzeros on the main diagonal, giving the system
〈φ0, φ0〉 0 · · · 0

0 〈φ1, φ1〉
. . .

...
...

. . . . . . 0

0 · · · 0 〈φn, φn〉




c0

c1

...

cn

 =


〈 f , φ0〉

〈 f , φ1〉
...

〈 f , φn〉

 .

This system decouples into n + 1 scalar equations 〈φj, φj〉cj = 〈 f , φj〉
for j = 0, . . . , n. Solve these scalar equations to get

cj =
〈φj, φj〉
〈 f , φj〉

, j = 0, . . . , n.

Thus, with respect to the orthogonal basis the least squares approxi-
mation to f is given by

(2.17) P∗(x) =
n

∑
j=0

cjφj(x) =
n

∑
j=0

〈 f , φj〉
〈φj, φj〉

φj(x).

The formula (2.17) has an outstanding property: if we wish to
extend approximation from Pn one degree higher to Pn+1, we simply
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add in one more term. If we momentarily use the notation P∗,k for
the least squares approximation from Pk, then

P∗,n+1(x) = P∗,n(x) +
〈 f , φn+1〉
〈φn+1, φn+1〉

φn+1(x).

In contrast, to increase the degree of the least squares approximation
in the monomial basis, one would need to extend the G matrix by
one row and column, and re-solve form Gc = b: increasing the degree
changes all the old coefficients in the monomial basis.

An orthogonal basis also permits a beautifully simple formula for
the norm of the error, ‖ f − P∗‖2. This result is closely related to Parseval’s

identity, which essentially says that if
φ0, φ1, . . . forms an orthogonal basis
for the (possibly infinite dimensional)
vector space V, then for any f ∈ V,

‖ f ‖2 = ∑
j

〈 f , φj〉2

〈φj, φj〉
.

To put the utility of the formula (2.18)
in context, think about minimax ap-
proximation. We have various bounds,
like de la Vallée Poussin’s theorem, on
the minimax error, but no easy formula
exists to give you that error directly.

Theorem 2.9. Let φ0, . . . , φn denote an orthogonal basis for Pn. Then
for any f ∈ C[a, b], the norm of the error f − P∗ of the least squares
approximation P∗ ∈ Pn is

(2.18) ‖ f − P∗‖2 =

√√√√‖ f ‖2
2 −

n

∑
j=0

〈 f , φj〉2
〈φj, φj〉

.

Proof. First, use the formula (2.17) for P∗ to compute

‖P∗‖2
2 =

〈 n

∑
j=0

〈 f , φj〉
〈φj, φj〉

φj,
n

∑
k=0

〈 f , φk〉
〈φk, φk〉

φk

〉

=
n

∑
j=0

n

∑
k=0

〈 f , φj〉
〈φj, φj〉

〈 f , φk〉
〈φk, φk〉

〈φj, φk〉,

using linearity of the inner product. Since the basis polynomials are
orthogonal, 〈φj, φk〉 = 0 for j 6= k, which reduces the double sum to

‖P∗‖2
2 =

n

∑
j=0

〈 f , φj〉
〈φj, φj〉

〈 f , φj〉
〈φj, φj〉

〈φj, φj〉 =
n

∑
j=0

〈 f , φj〉2

〈φj, φj〉
.

This calculation simplifies our primary concern:

‖ f − P∗‖2
2 = 〈 f − P∗, f − P∗〉 = 〈 f , f 〉 − 〈 f , P∗〉 − 〈P∗, f 〉+ 〈P∗, P∗〉

= 〈 f , f 〉 − 2〈 f , P∗〉+ 〈P∗, P∗〉

= 〈 f , f 〉 − 2
〈

f ,
n

∑
j=0

〈 f , φj〉
〈φj, φj〉

φj

〉
+ 〈P∗, P∗〉

= 〈 f , f 〉 − 2
n

∑
j=0

〈 f , φj〉2

〈φj, φj〉
+

n

∑
j=0

〈 f , φj〉2

〈φj, φj〉

= ‖ f ‖2
2 −

n

∑
j=0

〈 f , φj〉2

〈φj, φj〉
,

as required.
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2.4.7 Coda: Connection to discrete least squares (Optional Section)

Studies of numerical linear algebra inevitably address the discrete least
squares problem: Given A ∈ IRm×n and b ∈ IRm with m ≥ n, solve

(2.19) min
x∈IRn

‖Ax− b‖2,

using the Euclidean norm ‖v‖2 =
√

v∗v. One can show that the
minimizing x solves the linear system

(2.20) A∗Ax = A∗b,

which are called the normal equations. If rank(A) = n (i.e., the
columns of A are linearly independent), then A∗A ∈ IRn×n is in-
vertible, and

(2.21) x = (A∗A)−1A∗b.

One learns that, for purposes of numerical stability, it is preferable to
compute the QR factorization

A = QR,

where the columns of Q ∈ IRm×n are orthonormal, Q∗Q = I, and
R ∈ IRn×n is upper triangular (rj,k = 0 if j > k) and invertible if
the columns of A are linearly independent. Substituting QR for A
reduces the solution formula (2.21) to

(2.22) x = R−1Q∗b.

How does this “least squares problem” relate to the polynomial
approximation problem in this section? We consider two perspec-
tives.

2.4.8 Discrete least squares as subspace approximation

Notice that the he problem (2.19) can be viewed as

(2.23) min
x∈IRn

‖Ax− b‖2 = min
v∈Ran(A)

‖b− v‖2,

i.e., the discrete least squares problem seeks to approximate b with Ran(A) = {Ax : x ∈ IRn} is the range
(column space) of A.some vector v = Ax from the subspace Ran(A) ⊂ IRm. Writing

A =
[
a1 · · · an

]
for a1, . . . , an ∈ IRm, we seek

v = Ax = x1a1 + · · · xnan ∈ IRm
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to approximate b ∈ IRm.
Viewing a1, . . . , an as a basis for the approximating subspace

Ran(A), one can develop the least squares theory precisely as we
have earlier in this section, using the inner product

〈aj, ak〉 = a∗k aj.

Minimizing the error function

E(x1, . . . , xn) = ‖b− (x1a1 + · · ·+ xnan)‖2
2

with respect to x1, . . . , xn just as in the previous development leads to
the Gram matrix problem

(2.24)


〈a1, a1〉 〈a1, a2〉 · · · 〈a1, an〉
〈a2, a1〉 〈a2, a2〉 · · · 〈a2, an〉

...
...

. . .
...

〈an, a1〉 〈an, a2〉 · · · 〈an, an〉




x1

x2
...

xn

 =


〈b, a1〉

〈b, a2〉
...

〈b, an〉

 ,

which is a perfect analogue of (2.15). In fact, notice that (2.24) is
nothing other than

A∗Ax = A∗b,

the familiar normal equations! What role does the QR factorization
play? The columns of Q form an orthonormal basis for Ran(A):

Ran(A) = span{a1, . . . , an} = span{q1, . . . , qn} = Ran(Q).

So the approximation problem (2.23) is equivalent to

min
x∈IRn

‖Ax− b‖2 = min
v∈Ran(Q)

‖b− v‖2

= min
c1,...,cn

‖b− (c1q1 + · · ·+ cnqn)‖2.

The Gram matrix system with respect to this basis is

(2.25)


〈q1, q1〉 〈q1, q2〉 · · · 〈q1, qn〉
〈q2, q1〉 〈q2, q2〉 · · · 〈q2, qn〉

...
...

. . .
...

〈qn, q1〉 〈qn, q2〉 · · · 〈qn, qn〉




c1

c2
...

cn

 =


〈b, q1〉

〈b, q2〉
...

〈b, qn〉

 .

The orthonormality of the vectors q1, . . . , qn means that q∗j qk = 0 if
j 6= k and q∗j qj = ‖qj‖2

2 = 1, and so the matrix in (2.25) is the identity.
Hence

cj = 〈b, qj〉,

so we can write
c = Q∗b.
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The approximation v to b is then

v = c1q1 + · · ·+ cnqn = Qc = QQ∗b.

Now using the fact that Q∗Q = I,

QQ∗ = (AR−1)(AR−1)∗

= A(R∗R)−1A∗ = A(A∗A)−1A∗.

Thus the least squares approximation to b is

v = QQ∗b = A
(
(A∗A)−1A∗b) = Ax,

where x solves the original least squares problem (2.19).
Thus, the orthogonal basis for the approximating space Ran(A)

leads to an easy formula for the approximation, in just the same fash-
ion that orthogonal polynomials made quick work of the polynomial
least squares problem in (2.17).

2.4.9 Discrete least squares for polynomial approximation

Now we turn the tables for another view of the connection between
the the polynomial approximation problem and the matrix least
squares problem (2.19).

Suppose we only know how to solve discrete least squares prob-
lems like (2.19), and want to use that technology to construct some
polynomial p ∈ Pn that approximates f ∈ C[a, b] over x ∈ [a, b].

We could sample f at, say, m + 1 discrete points x0, . . . , xm uni-
formly distributed over [a, b]: set hm := (b− a)/m and let

xk = a + khm.

We then want to solve

(2.26) min
p∈Pn

m

∑
j=0
| f (xj)− p(xj)|2.

This least squares error, when scaled by hm, takes the form of a Rie-
mann sum that, in the m→ ∞ limit, approximates an integral:

lim
m→∞

hm

m

∑
k=0

( f (xk)− p(xk))
2 =

∫ b

a
( f (x)− p(x))2 dx.

That is, as we take more and more approximation points, the er-
ror (2.26) that we are minimizing better and better approximates the
integral error formulation (2.12).

To solve (2.26), represent p ∈ Pn using the monomial basis,

p(x) = c0 + c1x + · · ·+ cnxn.
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Then write (2.26) as
min

c0,...,cn
‖f−Ac‖2

2,

where

A =



1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2
...

...
...

. . .
...

1 xm x2
m · · · xn

m


, c =



c0

c1

c2

...

cn


, f =



f (x0)

f (x1)

f (x2)

...

f (xm)


.

This discrete problem can be solved via the normal equations, i.e., find
c ∈ IRn+1 to solve the matrix equation

A∗Ac = A∗f.

Compute the right-hand side as

A∗f =



∑n
k=0 f (xk)

∑n
k=0 xk f (xk)

∑n
k=0 x2

k f (xk)

...

∑n
k=0 xn

k f (xk)


∈ IRn+1.

Notice that if m + 1 approximation points are uniformly spaced over
[a, b], xk = a + khm for hm = (b− a)/m, then

lim
m→∞

hmA∗f =



∫ b
a f (x)dx∫ b

a x f (x)dx∫ b
a x2 f (x)dx

...∫ b
a xn f (x)dx


=



〈 f , 1〉

〈 f , x〉

〈 f , x2〉
...

〈 f , xn〉


,

which is precisely the right hand side vector b ∈ IRn+1 obtained for
the original least squares problem at the beginning of this section
in (2.15). Similarly, the (j + 1, k + 1) entry of A∗A ∈ IR(n+1)×(n+1) for
the discrete problem can be formed as

(A∗A)j+1,k+1 =
m

∑
`=0

xj
`xk

` =
m

∑
`=0

xj+k
` ,

and thus for uniformly spaced approximation points,

lim
m→∞

hm(A∗A)j+1,k+1 =
∫ b

a
xj+k dx = 〈xj, xk〉.
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Thus in aggregate we have

lim
m→∞

hm A∗A = G,

where G is the same Gram matrix in (2.15).

We arrive at the following beautiful conclusion: The normal equa-
tions A∗Ac = A∗f formed for polynomial approximation by discrete
least squares converges to exactly the same (n + 1) × (n + 1) system
Gc = b that we independently derived for the polynomial approxi-
mation problem (2.12) with the integral form of the error.
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lecture 19: Orthogonal Polynomials, Part I
lecture 20: Orthogonal Polynomials, Part II

2.5 Systems of orthogonal polynomials

Given a basis for Pn, we can obtain the least squares approximation
to f ∈ C[a, b] by solving the linear system Gc = b as described in
Section 2.4.3. In particular, we could expand polynomials in any basis
{φk}n

k=0 for Pn,

p =
n

∑
k=0

ckφk,

and then solve the system
〈φ0, φ0〉 〈φ0, φ1〉 · · · 〈φ0, φn〉

〈φ1, φ0〉 〈φ1, φ1〉
...

...
. . .

...

〈φn, φ0〉 〈φn, φ1〉 · · · 〈φn, φn〉




c0

c1

...

cn

 =


〈 f , φ0〉

〈 f , φ1〉
...

〈 f , φn〉

 .

If the basis is orthogonal, so that 〈φj, φk〉 = 0 when j 6= k, the Gram
matrix is diagonal, and the coefficients take the simple form

cj =
〈 f , φj〉
〈φj, φj〉

.

The simplicity of this solution is compelling, but some work is re-
quired to construct a basis that has this orthogonality property. This
section derives an efficient method to build this basis. In fact, for
later use we slightly generalize the inner product to incorporate a
weight function.

Definition 2.3. Given a function w ∈ C[a, b] with w(x) > 0, the inner Generalizations are possible: for ex-
ample, we can allow w(x) = 0 on a
set of measure zero (e.g., finitely many
points on [a, b]), and we can take [a, b]
to be the unbounded interval [0, ∞) or
(−∞, ∞), provided we are willing to
restrict C[a, b] to functions that have
finite norm on these intervals.

product of f , g ∈ C[a, b] with respect to the weight w is

〈 f , g〉 =
∫ b

a
f (x)g(x)w(x)dx.

One can confirm that this definition is consistent with the axioms
required of an inner product that were described on page 97. For any
such inner product, we then have the following definitions.

Definition 2.4. The functions f , g ∈ C[a, b] are orthogonal if 〈 f , g〉 = 0.

Definition 2.5. A set of functions {φk}n
k=0 is a system of orthogonal

polynomials provided:
• φk is a polynomial of exact degree k (with φ0 6= 0);

• 〈φj, φk〉 = 0 when j 6= k.
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Be sure not to overlook the first property, that φk has exact degree k;
it ensures the following result.

Lemma 2.2. The system of orthogonal polynomials {φk}`k=0 is a basis
for P`, for all ` = 0, . . . , n.

The proof follows by observing that the exact degree property en-
sures that φ0, . . . , φ` are ` + 1 linearly independent vectors in the
` + 1-dimensional subspace Pn.We can apply it to derive the next
lemma, one we will use repeatedly.

Lemma 2.3. Let {φj}n
j=0 be a system of orthogonal polynomials. Then

〈p, φn〉 = 0 for any p ∈ Pn−1.

Proof. Lemma 2.2 ensures that {φk}n−1
j=0 is a basis for Pn−1. Thus for

any p ∈ Pn−1, one can determine constants c0, . . . , cn−1 such that

p =
n−1

∑
j=0

cjφj.

The linearity of the inner product and orthogonality of {φj}n
j=0 imply

〈p, φn〉 =
〈 n−1

∑
j=0

cjφj, φn

〉
=

n−1

∑
j=0

cj〈φj, φn〉 =
n−1

∑
j=0

0 = 0,

as required.

We need a mechanism for constructing orthogonal polynomials.
The Gram–Schmidt process used to orthogonalize vectors in IRn can
readily be generalized to the present setting. Suppose that we have
some (n + 1)-dimensional subspace S with the basis p0, p1, . . . , pn.
Then the classical Gram–Schmidt algorithm takes the following form.

Algorithm 2.1 (Gram–Schmidt orthogonalization, prototype).
Given a basis {p0, . . . , pn} for some subspace S, the following

algorithm constructs an orthogonal basis {φ0, . . . , φn} for S:

φ0 := p0

for k = 1, . . . , n
φk := pk −

(
least squares approximation to pk from span{φ0, . . . , φk−1}

)
end

Focus on the construction of φk: By the orthogonality of the er-
ror in least squares approximation (Theorem 2.8, which holds for
the general inner products described above), φk is orthogonal to
φ0, . . . , φk−1. Moreover, φk is not zero, since the linear independence
of p0, . . . , pn ensures

pk 6∈ span{p0, . . . , pk−1} = span{φ0, . . . , φk−1}.
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Since the basis φ0, . . . , φk−1 is orthogonal, the best approximation to
pk can be easily written down via Theorem 2.9 as

k−1

∑
j=0

〈pk, φj〉
〈φj, φj〉

φj.

Thus the Gram–Schmidt process takes this more precise formulation.

Algorithm 2.2 (Gram–Schmidt orthogonalization, general basis).
Given a basis {p0, . . . , pn} for some subspace S, the following

algorithm constructs an orthogonal basis {φ0, . . . , φn} for S:

φ0 := p0

for k = 1, . . . , n

φk := pk −
k−1

∑
j=0

〈pk, φj〉
〈φj, φj〉

φj

end

This is a convenient process, but like the vector Gram–Schmidt pro-
cess the amount of work required at each step grows as k increases,
as pk must be orthogonalized against more φj polynomials. Fortu-
nately, there is a slick way to choose the initial basis {p0, . . . , pn} for
which the Gram–Schmidt process takes a much simpler form.

Suppose one has a set of orthogonal polynomials, {φj}k−1
j=0 , and

seeks the next orthogonal polynomial, φk. Since φk−1 has exact de-
gree k − 1, the polynomial xφk−1(x) has exact degree k, and hence
xφk−1(x) ∈ Pk but

xφk−1(x) 6∈ span{φ0, . . . , φk−1}.

Thus, we could apply a Gram–Schmidt step to orthogonalize xφk−1(x)
against φ0, . . . , φk−1 to get a new orthogonal basis vector, φk, giving

Pk = span{φ0, . . . , φk}.

What is special about the special choice pk(x) = xφk−1(x)? It will
gives an essential simplification to the customary Gram–Schmidt
recurrence

φk(x) = xφk−1(x)−
k−1

∑
j=0

〈xφk−1(x), φj(x)〉
〈φj, φj〉

φj(x).

The trick is that the x in xφk−1(x) can be flipped to the other side of
the inner product,

〈xφk−1(x), φj(x)〉 =
∫ b

a

(
xφk−1(x)

)
φj(x)w(x)dx

=
∫ b

a
φk−1(x)

(
xφj(x)

)
w(x)dx

= 〈φk−1(x), xφj(x)〉.
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Now, recall from Lemma 2.3 that φk−1 is orthogonal to all polynomi-
als of degree less that k− 1. Thus since xφj(x) ∈ Pj+1, if j + 1 < k− 1,

〈xφk−1(x), φj(x)〉 = 〈φk−1(x), xφj(x)〉 = 0,

allowing us to neglect all terms in the Gram–Schmidt sum for which
j < k− 2:

k−1

∑
j=0

〈xφk−1(x), φj(x)〉
〈φj, φj〉

φj =
k−1

∑
j=k−2

〈xφk−1(x), φj(x)〉
〈φj, φj〉

φj.

Thus we can compute orthogonal polynomials efficiently, even if the
necessary polynomial degree is large. This fact has vital implications The Gram–Schmidt process does

not simplify to a short recurrence
in all settings. We used the key fact
〈xφn, φk〉 = 〈φn, xφk〉, which does not hold
in general inner product spaces, but works
perfectly well in our present setting
because our polynomials are real valued
on [a, b]. The short recurrence does
not hold, for example, if you compute
orthogonal polynomials over a general
complex domain, instead of the real
interval [a, b].

in numerical linear algebra: indeed, it is a reason that the iterative
conjugate gradient method for solving Ax = b often executes with
blazing speed, but that is a story for another class.

Theorem 2.10 (Three-Term Recurrence for Orthogonal Polynomials).
Given a weight function w(x) (w(x) ≥ 0 for all x ∈ (a, b), and
w(x) = 0 only on a set of measure zero), a real interval [a, b], and an
associated real inner product

〈 f , g〉 =
∫ b

a
w(x) f (x)g(x)dx,

then a system of (monic) orthogonal polynomials {φk}n
k=0 can be

generated as follows:

φ0(x) = 1,

φ1(x) = x− 〈x, 1〉
〈1, 1〉 ,

φk(x) = xφk−1(x)− 〈xφk−1(x), φk−1(x)〉
〈φk−1(x), φk−1(x)〉 φk−1(x)− 〈xφk−1(x), φk−2(x)〉

〈φk−2(x), φk−2(x)〉 φk−2(x), for k ≥ 2.

The above process constructs monic orthogonal polynomials, i.e.,
φk has leading term xk. Other normalizations can be imposed with
simple modifications to the Gram–Schmidt algorithm that preserve
the three-term recurrence structure. In some settings other normal-
izations are more convenient, e.g., ‖φk‖2 = 〈φk, φk〉 = 1 or φ(0) = 1.

We next illustrate these ideas for a particularly important class of
orthogonal polynomials that use the constant weight w(x) = 1.

2.5.1 Legendre polynomials

On the interval [a, b] = [−1, 1] with weight w(x) = 1 for all x, the
orthogonal polynomials are known as Legendre polynomials. Start with
φ0(x) = 1, and then orthogonalize φ1(x) = xφ0(x) = x; since φ0 is
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even and φ1 is odd over x ∈ [−1, 1], 〈x, 1〉 = 0, giving φ1 = x. This
begins an inductive cascade: in the Gram–Schmidt process, for all k,

〈xφk−1(x), φk−1〉 = 0,

since if φk−1 is even, xφk−1 will be odd (or vice versa), and the inner
product of even and odd functions with w(x) = 1 over x ∈ [−1, 1] is
always zero. Thus for Legendre polynomials the conventional three-
term recurrence in Theorem 2.10 reduces to

φk(x) = xφk−1(x)− 〈xφk−1(x), φk−2(x)〉
〈φk−2(x), φk−2(x)〉 φk−2(x).

Legendre polynomials enjoy many nice properties and identities;
with some extra work, one can simplify the coefficient multiplying
φk−2 to

The recurrence for the monic Legendre
polynomial is given, e.g., by Dahlquist
and Björck, Numerical Methods in Scien-
tific Computing, vol. 1, p. 571. In contrast
to these monic polynomials, Legen-
dre polynomials are, by longstanding
tradition, usually normalized so that
φk(0) = 1.

φk(x) = xφk−1(x)− (k− 1)2

4(k− 1)2 − 1
φk−2(x).

The first few Legendre polynomials φ0, . . . , φ6 are presented below
(and plotted in the margin):

-1 -0.5 0 0.5 1
-2

0

2

φ0

x

-1 -0.5 0 0.5 1
-2

0

2

φ1

x

-1 -0.5 0 0.5 1
-1

0

1

φ2

x

-1 -0.5 0 0.5 1
-1

0

1

φ3

x

-1 -0.5 0 0.5 1
-0.5

0

0.5

φ4

x

-1 -0.5 0 0.5 1
-0.2

0

0.2

φ5

x

-1 -0.5 0 0.5 1
-0.1

0

0.1

φ6

x

φ0(x) = 1

φ1(x) = x

φ2(x) = x2 − 1
3

φ3(x) = x3 − 3
5 x

φ4(x) = x4 − 6
7 x2 + 3

35

φ5(x) = x5 − 10
9 x3 + 5

21 x

φ6(x) = x6 − 15
11 x4 + 5

11 x2 − 5
231 .

Orthogonal polynomials play a key role in a prominent technique
for computing integrals known as Gaussian quadrature. In that con-
text, we will see other families of orthogonal polynomials: the Cheby-
shev, Laguerre, and Hermite polynomials. These polynomials differ
in their weight functions and the intervals of IR on which they are
posed.

Example 2.5 ( f (x) = ex). We repeat our previous example: approx-
imating f (x) = ex on [0, 1] with a linear polynomial. First, we need
to construct orthogonal polynomials for this interval. Set φ0(x) = 1;
then a straightforward computation gives φ1(x) = x − 1/2. We then
compute

〈ex, φ0(x)〉 =
∫ 1

0
ex dx = e− 1

〈ex, φ1(x)〉 =
∫ 1

0
ex(x− 1/2)dx = (3− e)/2,
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and

〈φ0, φ0〉 =
∫ 1

0
12 dx = 1

〈φ1, φ1〉 =
∫ 1

0
(x− 1/2)2 dx = 1/12.

Assemble these inner products to obtain a formulas for P∗:

P∗(x) =
〈ex, φ0〉
〈φ0, φ0〉

φ0(x) +
〈ex, φ0〉
〈φ1, φ1〉

φ1(x)

=
e− 1

1
1 +

(3− e)/2
1/12

(x− 1/2)

= (e− 1) + (18− 6e)(x− 1/2)

= 4e− 10 + x(18− 6e).

Note that this is exactly the polynomial we obtained in Example 2.4
using the monomial basis.

With this procedure, one can easily to increase the degree of the
approximating polynomial. To increase the degree by one, simply
add

〈 f , φn+1〉
〈φn+1, φn+1〉

φn+1

to the old approximation. Were we using a general (non-orthogonal)
basis, to increase the degree of the approximation we would need to
solve a new (n + 2)-by-(n + 2) linear system to find the coefficients
of the least squares approximation. Indeed, an advantage to the It is true, however, that both these

methods for finding the least squares
polynomial will generally be more
expensive then simply finding a poly-
nomial interpolant.

new method is that we express the optimal polynomial in a ‘good’
basis—the basis of orthonormal polynomials—rather than the monic
polynomial basis.





3
Quadrature

lecture 21: Interpolatory Quadrature Rules
The past two chapters have developed a suite of tools for poly-

nomial interpolation and approximation. We shall now apply these
tools toward the approximation of definite integrals.

To compute the least squares approximations discussed in Sec-
tion 2.4, one needs to compute integrals for the inner products

〈 f , φj〉 =
∫ b

a
f (x)φj(x)dx

that form the right-hand side of the Gram matrix equation Gc = b.
Of course, many other applications require the evaluation of definite
integrals; integrals across (many) different variables pose additional
challenges.

Many definite integrals are difficult or impossible to evaluate ex-
actly, so our next charge is to develop algorithms that approximate
such integrals quickly and accurately. This field is known as quadra-
ture, a name that suggests the approximation of the area under a
curve by area of subtending quadrilaterals. (a “Riemann sum”).

The term quadrature is used to distin-
guish the numerical approximation of
a definite integral from the numerical
solution of an ordinary differential
equation, which is often called numerical
integration. Approximation of a double
integral is sometimes called cubature.

For more details on quadrature rules,
see Süli and Mayers, Chapter 7, which
has guided many aspects of our presen-
tation here.

3.1 Interpolatory Quadrature

Given f ∈ C[a, b], we seek approximations to the definite integral

∫ b

a
f (x)dx.

All the methods we consider in these notes are variants of interpola-
tory quadrature rules, meaning that they approximate the integral of f
by the exact integral of a polynomial interpolant to f :

∫ b

a
f (x)dx ≈

∫ b

a
pn(x)dx,
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where pn ∈ Pn interpolates f at n + 1 points in [a, b]. Will such
rules produce a reasonable estimate to the integral? Of course, that
depends on properties of f and the interpolation points.

Our goal in this section is to develop a convenient formula for the
approximation ∫ b

a
pn(x)dx

that will not require the explicit construction of pn. As is often the
case, the task becomes direct and simple if we express the interpolant
in the correct basis. Recall the Lagrange form of the interpolant pre-
sented in Section 1.5: Given n + 1 distinct interpolation points

x0, . . . , xn ∈ [a, b],

the interpolant can be written as

(3.1) pn(x) =
n

∑
j=0

f (xj)`j(x),

where the basis functions `0, . . . , `n take the familiar form

`j(x) =
n

∏
k=0
k 6=j

x− xk
xj − xk

.

The integral of pn can then be computed in terms of the integral of
the basis functions:∫ b

a
pn(x)dx =

∫ b

a

n

∑
j=0

f (xj)`j(x)dx =
n

∑
j=0

f (xj)
∫ b

a
`j(x)dx.

In the nomenclature of quadrature rules, the integrals of the basis

Why is the Lagrange basis special?
Could you not do the same kind of
expansion with the monomial or New-
ton bases? Yes indeed: but then you
would need to compute the coefficients
cj that multiply these basis functions
in the expansion pn(x) = ∑ cjφj(x),
which requires the solution of a (non-
trivial) linear system. The beauty of
the Lagrange approach is that these
coefficients are instantly available by
evaluating f at the quadrature nodes:
cj = f (xj).

functions are called weights, denoted

wj :=
∫ b

a
`j(x)dx.

The degree-n interpolatory quadrature rule at distinct nodes
x0, . . . , xn takes the form∫ b

a
f (x)dx ≈

n

∑
j=0

wj f (xj),

for the weights

wj =
∫ b

a
`j(x)dx.

It is worth stating an obvious theorem, which we will revisit in
future lectures.
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Theorem 3.1 (Exactness of Interpolatory Quadrature).
The degree-n interpolatory quadrature rule at distinct points x0, . . . , xn ∈
[a, b] is exact for any polynomial of degree n or less: if f ∈ Pn, then

∫ b

a
f (x)dx =

n

∑
j=0

wj f (xj).

The proof is simple: If f ∈ Pn, its polynomial interpolant pn ∈ Pn

is exactly f , and so the exact integral of pn is the same thing as the
exact integral of f . However, the result is not inconsequential. There
are some circumstances in numerical computations where it is easier
to use a quadrature rule to evaluate the integral of a polynomial,
rather than computing the integral directly from the polynomial
coefficients.

Finite element methods give one such
setting, where in some cases f is rep-
resented by its values f (xj) on a com-
putational mesh, rather than by its
coefficients.It is no surprise that a quadrature rule based on a degree-n in-

terpolant will exactly integrate f ∈ Pn. However, in special cases a
degree-n interpolant will exactly integrate polynomials of higher degree.
This motivates the next definition.

Definition 3.1. An interpolatory quadrature rule has degree of exact-
ness m if for all f ∈ Pm,∫ b

a
f (x)dx =

n

∑
j=0

wj f (xj).

By Theorem 3.1, a degree-n quadrature rule has degree of exactness
m ≥ n. Thus it will be particularly interesting to see circumstances in
which this degree of exactness is exceeded.
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lecture 22: Newton–Cotes quadrature

3.2 Newton–Cotes quadrature

You encountered the most basic method for approximating an inte-
gral when you learned calculus: the Riemann integral is motivated by
approximating the area under a curve by the area of rectangles that
touch that curve, which gives a rough estimate that becomes increas-
ingly accurate as the width of those rectangles shrinks. This amounts
to approximating the function f by a piecewise constant interpolant,
and then computing the exact integral of the interpolant. When only
one rectangle is used to approximate the entire integral, we have the
most simple Newton–Cotes formula; see Figure 3.1.

0 2 4 6 8 10
0

2

4

6

8

10

12

x

f (x)
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x

Figure 3.1: Estimates of
∫ 10

0 f (x)dx,
shown in gray: the first approximates f
by a constant interpolant; the second, a
composite rule, uses a piecewise constant
interpolant. You probably have encoun-
tered this second approximation as a
Riemann sum.

Newton–Cotes formulas are interpolatory quadrature rules where
the quadrature notes x0, . . . , xn are uniformly spaced over [a, b],

xj = j
(

b− a
n

)
.

Given the lessons we learned about polynomial interpolation at uni-
formly spaced points in Section 1.6, you should rightly be suspicious
of applying this idea with large n (i.e., high degree interpolants).
A more reliable way to increase accuracy follows the lead of basic
Riemann sums: partition [a, b] into smaller subintervals, and use
low-degree interpolants to approximate the integral on each of these
smaller domains. Such methods are called composite quadrature rules.

In some cases, the function f may be fairly regular over most of
the domain [a, b], but then have some small region of rapid growth or
oscillation. Modern adaptive quadrature rules are composite rules on
which the subintervals of [a, b] vary in size, depending on estimates
of how rapidly f is changing in a given part of the domain. Such
methods seek to balance the competing goals of highly accurate
approximate integrals and as few evaluations of f as possible.We
shall not dwell much on these sophisticated quadrature procedures
here, but rather start by understanding some methods you were
probably introduced to in your first calculus class.

3.2.1 The trapezoid rule

The trapezoid rule is a simple improvement over approximating the
integral by the area of a single rectangle. A linear interpolant to f can
be constructed, requiring evaluation of f at the interval end points
x0 = a and x1 = b. Using the interpolatory quadrature methodology
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described in the last section, we write

p1(x) = f (a)
(

x− b
a− b

)
+ f (b)

(
x− a
b− a

)
,

and compute its integral as∫ b

a
p1(x)dx =

∫ b

a
f (a)

(
x− b
a− b

)
+ f (b)

(
x− a
b− a

)
dx

= f (a)
∫ b

a

x− x1

x0 − x1
dx + f (b)

∫ b

a

x− x1

x0 − x1
dx

= f (a)
(

b− a
2

)
+ f (b)

(
b− a

2

)
.

In summary,

Trapezoid rule:∫ b

a
f (x)dx ≈ b− a

2

(
f (a) + f (b)

)
.
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63.5714198. . . (trapezoid)
73.4543644. . . (exact)

Figure 3.2: Trapezoid rule estimate of∫ 10
0 f (x)dx, shown in gray.

The procedure behind the trapezoid rule is illustrated in Figure 3.2
where the area approximating the integral is colored gray.

To derive an error bound for the trapezoid rule, simply integrate
the fundamental interpolation error formula in Theorem 1.3. That
gave, for each x ∈ [a, b], some ξ ∈ [a, b] such that

f (x)− p1(x) = 1
2 f ′′(ξ)(x− a)(x− b).

Note that ξ will vary with x, which we emphasize by writing ξ(x).
Integrate this formula to obtain∫ b

a
f (x)dx−

∫ b

a
p1(x)dx =

∫ b

a

1
2

f ′′(ξ(x))(x− a)(x− b)dx

=
1
2

f ′′(η)
∫ b

a
(x− a)(x− b)dx

=
1
2

f ′′(η)(
1
6

a3 − 1
2

a2b +
1
2

ab2 − 1
6

b3)

= − 1
12

f ′′(η)(b− a)3

for some η ∈ [a, b]. The second step follows from the mean value
theorem for integrals.

The mean value theorem for inte-
grals states that if h, g ∈ C[a, b] and
h does not change sign on [a, b], then
there exists some η ∈ [a, b] such that∫ b

a g(t)h(t)dt = g(η)
∫ b

a h(t)dt. The re-
quirement that h not change sign is es-
sential. For example, if g(t) = h(t) = t
then

∫ 1
−1 g(t)h(t)dt =

∫ 1
−1 t2 dt = 2/3,

yet
∫ 1
−1 h(t)dt =

∫ 1
−1 t dt = 0, so for

all η ∈ [−1, 1], g(η)
∫ 1
−1 h(t)dt = 0 6=∫ 1

−1 g(t)h(t)dt = 2/3.

In a forthcoming lecture we shall develop a much more general
theory, based on the Peano kernel, from which we can derive this error
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bound, plus bounds for more complicated schemes, too. For now, we
summarize the bound in the following Theorem.

Theorem 3.2. Let f ∈ C2[a, b]. The error in the trapezoid rule is

∫ b

a
f (x)dx−

(
b− a

2

(
f (a) + f (b)

))
= − 1

12
f ′′(η)(b− a)3

for some η ∈ [a, b].

This bound has an interesting feature: if we are integrating over
the small interval, b − a = h � 1, then the error in the trapezoid
rule approximation is O(h3) as h → 0, while the error in the linear
interpolant upon which this quadrature rule is based is only O(h2)

(from Theorem 1.3).

Example 3.1 ( f (x) = ex(cos x + sin x)). Here we demonstrate the
difference between the error for linear interpolation of a function,
f (x) = ex(cos x + sin x), between two points, x0 = 0 and x1 = h, and
the trapezoid rule applied to the same interval. The theory reveals
that linear interpolation will have an O(h2) error as h → 0, while the
trapezoid rule has O(h3) error, as confirmed in Figure 3.3.

10-310-210-1100
10-12

10-10

10-8

10-6

10-4

10-2

100

h

trapezoid error

interpolation error

O(h2)

O(h 3)

Figure 3.3: Error of linear interpolation
and trapezoid rule approximation for
f (x) = ex(cos x + sin x) for x ∈ [0, h] as
h→ 0.

3.2.2 Simpson’s rule

To improve the accuracy of the trapezoid rule, increment the degree
of the interpolating polynomial. This will increase the number of
evaluations of f (often very costly), but hopefully will significantly
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decrease the error. Indeed it does – by an even greater margin than
we might expect.

Simpson’s rule integrates the quadratic interpolant p2 ∈ P2 to f at
the uniformly spaced points

x0 = a, x1 = (a + b)/2, x2 = b.

Using the interpolatory quadrature formulation of the last section,∫ b

a
p2(x)dx = w0 f (a) + w1 f ( 1

2 (a + b)) + w2 f (c),

where

w0 =
∫ b

a

(
x− x1

x0 − x1

)(
x− x2

x0 − x2

)
dx =

b− a
6

w1 =
∫ b

a

(
x− x0

x1 − x0

)(
x− x2

x1 − x2

)
dx =

2(b− a)
3

w2 =
∫ b

a

(
x− x0

x2 − x0

)(
x− x1

x2 − x1

)
dx =

b− a
6

.

In summary:

Simpson’s rule:∫ b

a
f (x)dx ≈ b− a

6

(
f (a) + 4 f ( 1

2 (a + b)) + f (b)
)

.
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Figure 3.4: Simpson’s rule estimate of∫ 10
0 f (x)dx, shown in gray.

Simpson’s rule enjoys a remarkable feature: though it only approxi-
mates f by a quadratic, it integrates any cubic polynomial exactly! One
can verify this by directly applying Simpson’s rule to a generic cu-
bic polynomial. Write f (x) = αx3 + q(x), where q ∈ P2. Let
I( f ) =

∫ b
a f (x)dx and let I2( f ) denote the Simpson’s rule approx-

imation. Then, by linearity of the integral,

I( f ) = αI(x3) + I(q)

and, by linearity of Simpson’s rule,

I2( f ) = αI2(x3) + I2(q).

Since Simpson’s rule is an interpolatory quadrature rule based on
quadratic polynomials, its degree of exactness must be at least 2
(Theorem 3.1), i.e., it exactly integrates q: I2(q) = I(q). Thus

I( f )− I2( f ) = α
(

I(x3)− I2(x3)
)

.
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So Simpson’s rule will be exact for all cubics if it is exact for x3. A
simple computation gives

I2(x3) =
b− a

6

(
a3 + 4

( a + b
2

)3
+ b3

)
=

b− a
12

(
3a3 + 3a2b + 3ab2 + 3b3

)
=

b4 − a4

4
= I(x3),

confirming that Simpson’s rule is exact for x3, and hence for all cu-
bics. For now we simply state an error bound for Simpson’s rule,

In fact, Newton–Cotes formulas based
on approximating f by an even-degree
polynomial always exactly integrate
polynomials one degree higher.which we will prove in a future lecture.

Theorem 3.3. Let f ∈ C4[a, b]. The error in the Simpson’s rule is∫ b

a
f (x)dx−

(
b− a

6

(
f (a)+ 4 f ((a+ b)/2)+ f (b)

))
= − 1

90
f (4)(η)(b− a)5

for some η ∈ [a, b].

This error formula captures the fact that Simpson’s rule is exact
for cubics, since it features the fourth derivative f (4)(η), two deriva-
tives greater than f ′′(η) in the trapezoid rule bound, even though
the degree of the interpolant has only increased by one. Perhaps it is
helpful to visualize the exactness of Simpson’s rule for cubics. Fig-
ure 3.5 shows f (x) = x3 (blue) and its quadratic interpolant (red).
On the left, the area under f is colored gray: its area is the integral
we seek. On the right, the area under the interpolant is colored gray.
Accounting area below the x axis as negative, both integrals give an
identical value even though the functions are quite different. It is
remarkable that this is the case for all cubics.

Typically one does not see Newton–Cotes rules based on poly-
nomials of degree higher than two (i.e., Simpson’s rule). Because Integrating the cubic interpolant at

four uniformly spaced points is called
Simpson’s three-eighths rule.

it can be fun to see numerical mayhem, we give an example to em-
phasize why high-degree Newton–Cotes rules can be a bad idea.
Recall that Runge’s function f (x) = 1/(1 + x2) gave a nice exam-
ple for which the polynomial interpolant at uniformly spaced points
over [−5, 5] fails to converge uniformly to f . This fact suggests that
Newton–Cotes quadrature will also fail to converge as the degree of
the interpolant grows. The exact value of the integral we seek is∫ 5

−5

1
1 + x2 dx = 2 tan−1(5) = 2.75680153 . . . .

Just as the interpolant at uniformly spaced points diverges, so too
does the Newton–Cotes integral. Figure 3.6 illustrates this diver-
gence, and shows that integrating the interpolant at Chebyshev
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Figure 3.5: Simpson’s rule applied to
f (x) = x3 on x ∈ [−1, 3/2]. The areas
under f (x) (blue) and its quadratic
interpolant (red) are the same, even
though the functions are quite different.

points, called Clenshaw–Curtis quadrature, does indeed converge.
Section 3.3 describes this latter quadrature in more detail. Before
discussing it, we describe a way to make Newton–Cotes rules more
robust: integrate low-degree polynomials over subintervals of [a, b].
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Figure 3.6: Integrating interpolants
pn at n + 1 uniformly spaced points
(red) and at Chebyshev points (blue) for
Runge’s function, f (x) = 1/(1 + x2)
over x ∈ [−5, 5].

3.2.3 Composite rules

As an alternative to integrating a high-degree polynomial, one can
pursue a simpler approach that is often very effective: Break the
interval [a, b] into subintervals, then apply a standard Newton–Cotes
rule (e.g., trapezoid or Simpson) on each subinterval. Applying the
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trapezoid rule on n subintervals gives∫ b

a
f (x)dx =

n

∑
j=1

∫ xj

xj−1

f (x)dx ≈
n

∑
j=1

(xj − xj−1)

2

(
f (xj−1 + f (xj)

)
.

The standard implementation assumes that f is evaluated at uni-
formly spaced points between a and b, xj = a + jh for j = 0, . . . , n and
h = (b− a)/n, giving the following famous formulation:

Composite Trapezoid rule:

∫ b

a
f (x)dx ≈ h

2

(
f (a) + 2

n−1

∑
j=1

f (a + jh) + f (b)
)

.

(Of course, one can readily adjust this rule by partitioning [a, b]
into subintervals of different sizes.) The error in the composite trape-
zoid rule can be derived by summing up the error in each application
of the trapezoid rule:∫ b

a
f (x)dx− h

2

(
f (a) + 2

n−1

∑
j=1

f (a + jh) + f (b)
)
=

n

∑
j=1

(
− 1

12 f ′′(ηj)(xj − xj−1)
3
)

= − h3

12

n

∑
j=1

f ′′(ηj)

for ηj ∈ [xj−1, xj]. We can simplify these f ′′ terms by noting that
1
n (∑

n
j=1 f ′′(ηj)) is the average of n values of f ′′ evaluated at points in

the interval [a, b]. Naturally, this average cannot exceed the maximum
or minimum value that f ′′ assumes on [a, b], so there exist points
ξ1, ξ2 ∈ [a, b] such that

f ′′(ξ1) ≤
1
n

n

∑
j=1

f ′′(ηj) ≤ f ′′(ξ2).

Thus the intermediate value theorem guarantees the existence of
some η ∈ [a, b] such that

f ′′(η) =
1
n

n

∑
j=1

f ′′(ηj).

We arrive at a bound on the error in the composite trapezoid rule.

Theorem 3.4. Let f ∈ C2[a, b]. The error in the composite trapezoid
rule over n intervals of uniform width h = (b− a)/n is∫ b

a
f (x)dx− h

2

(
f (a) + 2

n−1

∑
j=1

f (a + jh) + f (b)
)
= − h2

12
(b− a) f ′′(η).

for some η ∈ [a, b].
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This error analysis has an important consequence: the error for the
composite trapezoid rule is only O(h2), not the O(h3) we saw for the
usual trapezoid rule (in which case b− a = h since n = 1).

A similar construction leads to the composite Simpson’s rule. We
now must ensure that n is even, since each interval on which we
apply the standard Simpson’s rule has width 2h. Simple algebra
leads to the following formula.

Composite Simpson’s rule:

∫ b

a
f (x)dx ≈ h

3

(
f (a) + 4

n/2

∑
j=1

f (a + (2j− 1)h) + 2
n/2−1

∑
j=1

f (a + 2jh) + f (b)
)

.

Now use Theorem 3.3 to derive an error formula for the composite
Simpson’s rule, using the same approach as for the composite trape-
zoid rule.

Theorem 3.5. Let f ∈ C2[a, b]. The error in the composite Simpson’s
rule over n/2 intervals of uniform width 2h = 2(b− a)/n is

∫ b

a
f (x)dx− h

3

(
f (a) + 4

n/2

∑
j=1

f (a + (2j− 1)h) + 2
n/2−1

∑
j=1

f (a + 2jh) + f (b)
)

= − h4

180
(b− a) f (4)(η)

for some η ∈ [a, b].

The illustrations in Figure 3.7 compare the composite trapezoid and
Simpson’s rules for the same number of function evaluations. One
can see that Simpson’s rule, in this typical case, gives considerably
better accuracy.

Reflect for a moment. Suppose you are willing to evaluate f a
fixed number of times. How can you get the most bang for your
buck? If f is smooth, a rule based on a high-order interpolant (such
as the Clenshaw–Curtis and Gaussian quadrature rules we will
present in a few lectures) are likely to give the best result. If f is not
smooth (e.g., with kinks, discontinuous derivatives, etc.), then a ro-
bust composite rule would be a good option. (A famous special case:
If the function f is sufficiently smooth and is periodic with period
b− a, then the trapezoid rule converges exponentially.)
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Figure 3.7: Composite trapezoid rule
(left) and composite Simpson’s rule
(right).3.2.4 Adaptive Quadrature

If f is continuous, we can attain arbitrarily high accuracy with com-
posite rules by taking the spacing between function evaluations, h,
to be sufficiently small. This might be necessary to resolve regions
of rapid growth or oscillation in f . If such regions only make up a
small proportion of the domain [a, b], then uniformly reducing h over
the entire interval will be unnecessarily expensive. One wants to
concentrate function evaluations in the region where the function is
the most ornery. Robust quadrature software adjusts the value of h
locally to handle such regions. To learn more about such techniques,
which are not foolproof, see W. Gander and W. Gautschi, “Adaptive
quadrature—revisited,” BIT 40 (2000) 84–101. This paper criticizes the routines

quad and quad8 that were included
in MATLAB version 5. In light of
this analysis MATLAB improved its
software, essentially incorporating the
two routines suggested in this paper
starting in version 6 as the routines
quad (adaptive Simpson’s rule) and
quadl (an adaptive Gauss–Lobatto rule).
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lecture 23: Clenshaw–Curtis quadrature

3.3 Clenshaw–Curtis quadrature

To get faster convergence for a fixed number of function evalua-
tions, one might wish to increase the degree of the approximating
polynomial further still, then integrate that high-degree polynomial.
As evidenced in the discussion of polynomial interpolation in Sec-
tion 1.6, the success of such an approach depends significantly on the
choice of the interpolation points and the nature of the function being
interpolated. For example, we would not expect the integral of a high
degree polynomial interpolant to Runge’s function f (x) = (x2 + 1)−1

over uniformly spaced points on [−5, 5] to accurately approximate

∫ 5

−5

1
x2 + 1

dx,

since the underlying interpolants fail to converge for this example.

However, recall that Theorem 2.6 ensures that the polynomials
that interpolate f at Chebyshev points will converge, provided f is just
a bit smooth. This suggests that the integrals of such interpolating
polynomials will also be accurate as n increases, and indeed this is
the case.

This procedure of integrating interpolants at Chebyshev points is
known as Clenshaw–Curtis quadrature. If f is smooth, this method
typically converges much faster than the composite trapezoid and
Simpson’s rules, which are only based on low-degree polynomial
interpolants. In fact, the Clenshaw–Curtis method competes very
well with the Gaussian quadrature schemes discussed in the next sec-
tions, although those Gaussian quadrature schemes have historically
received much greater attention. See L. N. Trefethen, ‘Is Gauss Quadra-

ture Better than Clenshaw–Curtis?’,
SIAM Review 50 (2008) 67–87.Suppose we wish to integrate a function over [−1, 1]. Then Clenshaw–

Curtis quadrature evaluates f at the n + 1 Chebyshev points

xj = cos
( jπ

n

)
, j = 0, . . . , n.

The Lagrange form of the polynomial interpolant at these points
takes the form

pn(x) =
n

∑
j=0

f (xj)`j(x),

where

`j(x) =
n

∏
k=0

x− xk
xj − xk
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are the usual Lagrange basis functions. Since the Clenshaw–Curtis
quadrature rule will integrate the polynomial interpolant at the
Chebyshev points, the rule will give

∫ 1

−1
f (x)dx ≈

∫ 1

−1
pn(x)dx =

n

∑
j=0

f (xj)
∫ 1

−1
`j(x)dx.

Thus, defining the weights to be

wj :=
∫ 1

−1
`j(x)dx,

the Clenshaw–Curtis quadrature rule takes the following compact
form.

Clenshaw–Curtis rule:∫ 1

−1
f (x)dx ≈

n

∑
j=0

wj f (xj),

where xj = cos(jπ/n) and wj =
∫ 1
−1 `j(x)dx.

Connecting interpolation at Chebyshev points to trigonometric inter-
polation leads to a convenient algorithm for computing the weights
wj using a fast Fourier transform, which is much more stable and
convenient than integrating the Lagrange interpolating polynomials
directly. We shall not go into details here. Interested readers can con-
sult Trefethen’s paper, ‘Is Gauss Quadrature Better than Clenshaw–
Curtis?’ (2008) or his book Spectral Methods in MATLAB (2000).
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lecture 24: Gaussian quadrature rules: fundamentals

3.4 Gaussian quadrature

It is clear that the trapezoid rule,

b− a
2
(

f (a) + f (b)
)
,

exactly integrates linear polynomials, but not all quadratics. In fact,
one can show that no quadrature rule of the form

wa f (a) + wb f (b)

will exactly integrate all quadratics over [a, b], regardless of the choice
of constants wa and wb. However, notice that a general quadrature
rule with two points,

w0 f (x0) + w1 f (x1),

has four parameters (w0, x0, w1, x1). We might then hope that we
could pick these four parameters in such a fashion that the quadra-
ture rule is exact for a four-dimensional subspace of functions, P3.
This section explores generalizations of this question.

3.4.1 A special 2-point rule

Suppose we consider a more general class of 2-point quadrature
rules, where we do not initially fix the points at which the integrand
f is evaluated:

I( f ) = w0 f (x0) + w1 f (x1)

for unknowns nodes x0, x1 ∈ [a, b] and weights w0 and w1. We wish to
pick x0, x1, w0, and w1 so that the quadrature rule exactly integrates
all polynomials of the largest degree possible. Since this quadrature
rule is linear, it will suffice to check that it is exact on monomials.
There are four unknowns; to get four equations, we will require I( f )
to exactly integrate 1, x, x2, x3.

f (x) = 1 :
∫ b

a
1 dx = I(1) =⇒ b− a = w0 + w1

f (x) = x :
∫ b

a
x dx = I(x) =⇒ 1

2 (b
2 − a2) = w0x0 + w1x1

f (x) = x2 :
∫ b

a
x2 dx = I(x2) =⇒ 1

3 (b
3 − a3) = w0x2

0 + w1x2
1

f (x) = x3 :
∫ b

a
x3 dx = I(x3) =⇒ 1

4 (b
4 − a4) = w0x3

0 + w1x3
1
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Three of these constraints are nonlinear equations of the unknowns
x0, x1, w0, and w1: thus questions of existence and uniqueness of
solutions becomes a bit more subtle than for the linear equations we
so often encounter.

In this case, a solution does exist:

w0 = w1 = 1
2 (b− a),

x0 = 1
2 (b + a)−

√
3

6 (b− a), x1 = 1
2 (b + a) +

√
3

6 (b− a).

Notice that x0, x1 ∈ [a, b]: If this were not the case, we could not
use these points as quadrature nodes, since f might not be defined
outside [a, b]. When [a, b] = [−1, 1], the interpolation points are
±1/
√

3, giving the quadrature rule

I( f ) = f (−1/
√

3) + f (1/
√

3).

3.4.2 Generalization to higher degrees

Emboldened by the success of this humble 2-point rule, we consider
generalizations to higher degrees. If some two-point rule (n + 1 inte-
gration nodes, for n = 1) will exactly integrate all cubics (3 = 2n + 1),
one might anticipate the existence of rules based on n + 1 points that
exactly integrate all polynomials of degree 2n + 1, for general values
of n. Toward this end, consider quadrature rules of the form

In( f ) =
n

∑
j=0

wj f (xj),

for which we will choose the nodes {xj} and weights {wj} (a total
of 2n + 2 variables) to maximize the degree of polynomial that is
integrated exactly.

The primary challenge is to find satisfactory quadrature nodes.
Once these are found, the weights follow easily: in theory, one could
obtain them by integrating the polynomial interpolant at the nodes,
though better methods are available in practice. In particular, this
procedure for assigning weights ensures, at a minimum, that In( f )
will exactly integrate all polynomials of degree n. This assumption
will play a key role in the coming development.

Orthogonal polynomials, introduced in Section 2.5, play a central
role in this exposition, and they suggest a generalization of the inter-
polatory quadrature procedures we have studied up to this point.

Let {φj}n+1
j=0 be a system of orthogonal polynomials with respect to

the inner product

〈 f , g〉 =
∫ b

a
f (x)g(x)w(x)dx
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for some weight function w ∈ C(a, b) that is non-negative over (a, b) and
takes the value of zero only on a set of measure zero.

This weight function plays an essential
role in the discussion: it defines the
inner product, and so it dictates what
it means for two functions to be or-
thogonal. Change the weight function,
and you will change the orthogonal
polynomials.

Now we wish to construct an interpolatory quadrature rule for an
integral that incorporates the weight function w(x) in the integrand:

In the Section 3.4.4 we shall see some
useful examples of weight functions.

In( f ) =
n

∑
j=0

wj f (xj) ≈
∫ b

a
f (x)w(x)dx.

It is our aim to make In(p) exact for all p ∈ P2n+1. First, we will show
that any interpolatory quadrature rule In will at least be exact for the
weighted integral of degree-n polynomials. Showing this is a simple
modification of the argument made in Section 3.1 for unweighted
integrals.

Given a set of distinct nodes x0, . . . , xn, construct the polynomial
interpolant to f at those nodes:

pn(x) =
n

∑
j=0

f (xj)`j(x),

where `j(x) is the usual Lagrange basis function for polynomial
interpolation. The interpolatory quadrature rule will exactly integrate
the weighted integral of the interpolant pn:∫ b

a
f (x)w(x)dx ≈

∫ b

a
pn(x)w(x)dx =

∫ b

a

( n

∑
j=0

f (xj)`j(x)
)

w(x)dx

=
n

∑
j=0

f (xj)
∫ b

a
`j(x)w(x)dx.

Thus we define the quadrature weights for the weighted integral to be

wj :=
∫ b

a
`j(x)w(x)dx,

giving the rule

In( f ) =
n

∑
j=0

wj f (xj) ≈
∫ b

a
f (x)w(x)dx.

Apply this rule to a degree-n polynomial, p. Since p ∈ Pn, it is its
own degree-n polynomial interpolant, so the integral of the inter-
polant delivers the exact weighted integral of p: Note that the weight function w(x)

can include all sorts of nastiness, all of
which is absorbed in the quadrature
weights w0, . . . , wn.

∫ b

a
p(x)w(x)dx =

n

∑
j=0

wj p(xj) = In(p).

This is the case regardless of how the (distinct) nodes x0, . . . , xn were
chosen. Now we seek a way to choose the nodes so that the quada-
ture rule is exactly for a higher degree polynomials.
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To begin, consider an arbitrary p ∈ P2n+1. Using polynomial
division, we can always write

p(x) = φn+1(x)q(x) + r(x)

for some q, r ∈ Pn that depend on p. Integrating this p, we obtain∫ b

a
p(x)w(x)dx =

∫ b

a
φn+1(x)q(x)w(x)dx +

∫ b

a
r(x)w(x)dx

= 〈φn+1, q〉+
∫ b

a
r(x)w(x)dx

=
∫ b

a
r(x)w(x)dx.

The last step is a consequence that important basic fact, proved in
Section 2.5, that the orthogonal polynomial φn+1 is orthogonal to all
q ∈ Pn.

Now apply the quadrature rule to p, and attempt to pick the inter-
polation nodes {xj} to yield the value of the exact integral computed
above. In particular,

In(p) =
n

∑
j=0

wj p(xj) =
n

∑
j=0

wjφn+1(xj)q(xj) +
n

∑
j=0

wjr(xj)

=
n

∑
j=0

wjφn+1(xj)q(xj) +
∫ b

a
r(x)w(x)dx.

This last statement is a consequence of the fact that In(·) will exactly
integrate all r ∈ Pn. This will be true regardless of our choice for
the distinct nodes {xj} ⊂ [a, b]. (Recall that the quadrature rule
is constructed so that it exactly integrates a degree-n polynomial
interpolant to the integrand, and in this case the integrand, r, is a
degree n polynomial. Hence In(r) will be exact.)

Notice that we can force agreement between In(p) and
∫ b

a p(x)w(x)dx
provided

n

∑
j=0

wj φn+1(xj)q(xj) = 0.

We cannot make assumptions about q ∈ Pn, as this polynomial will
vary with the choice of p, but we can exploit properties of φn+1. Since
φn+1 has exact degree n + 1 (recall this property of all orthogonal
polynomials), it must have n + 1 roots. If we choose the interpolation
nodes {xj} to be the roots of φn+1, then ∑n

j=0 wj φn+1(xj)q(xj) =

0 as required, and we have a quadrature rule that is exact for all
polynomials of degree 2n + 1.

Before we can declare victory, though, we must exercise some
caution. Perhaps φn+1 has repeated roots (so that the nodes {xj} are
not distinct), or perhaps these roots lie at points in the complex plane
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where f may not even be defined. Since we are integrating f over the
interval [a, b], it is crucial that φn+1 has n + 1 distinct roots in [a, b].
Fortunately, this is one of the many beautiful properties enjoyed by
orthogonal polynomials.

Theorem 3.6 (Roots of Orthogonal Polynomials).
Let {φk}n+1

k=0 be a system of orthogonal polynomials on [a, b] with
respect to the weight function w(x). Then φk has k distinct real roots,
{x(k)j }

k
j=1, with x(k)j ∈ [a, b] for j = 1, . . . , k.

Proof. The result is trivial for φ0. Fix any k ∈ {1, . . . , n + 1}. Suppose
that φk, a polynomial of exact degree k, changes sign at j < k distinct
roots {x(k)` }

j
`=1, in the interval [a, b]. Then define

q(x) = (x− x(k)1 )(x− x(k)2 ) · · · (x− x(k)j ) ∈ Pj.

This function changes sign at exactly the same points as φk does on
[a, b]. Thus, the product of these two functions, φk(x)q(x), does not
change sign on [a, b]. See the illustration in Figure 3.8.

  

0

  

0

  

0

φk(x)
q(x)

φk(x)q(x)

a b a b a b
Figure 3.8: The functions φk , q, and φkq
from the proof of Theorem 3.9.As the weight function w(x) is nonnegative on [a, b], it must also be

that φk qw does not change sign on [a, b]. However, the fact that q ∈ Pj

for j < k implies that

∫ b

a
φk(x)q(x)w(x)dx = 〈φk, q〉 = 0,

since φk is orthogonal to all polynomials of degree k − 1 or lower
(Lemma 2.3). Thus, we conclude that the integral of some continuous
nonzero function φk qw that never changes sign on [a, b] must be zero.
This is a contradiction, as the integral of such a function must always
be positive. Thus, φk must have at least k distinct zeros in [a, b]. As φk

is a polynomial of degree k, it can have no more than k zeros.



138

We have arrived at Gaussian quadrature rules: Integrate the polyno-
mial that interpolates f at the roots of the orthogonal polynomial
φn+1. What are the weights {wj}? Write the interpolant, pn, in the
Lagrange basis,

pn(x) =
n

∑
j=0

f (xj)`j(x),

where the basis polynomials `j are defined as usual,

(3.2) `j(x) =
n

∏
k=0,k 6=j

(x− xk)

(xj − xk)
.

Integrating this interpolant gives

In( f ) =
∫ b

a
pn(x)w(x)dx =

∫ b

a

n

∑
j=0

f (xj)`j(x)w(x)dx =
n

∑
j=0

f (xj)
∫ b

a
`j(x)w(x)dx,

revealing a formula for the quadrature weights:

wj =
∫ b

a
`j(x)w(x)dx.

This construction proves the following result.

Theorem 3.7. Suppose In( f ) is the Gaussian quadrature rule

In( f ) =
n

∑
j=0

wj f (xj),

where the nodes {xj}n
j=0 are the n + 1 roots of a degree-(n + 1) or-

thogonal polynomial on [a, b] with weight function w, and wj =∫ b
a `j(x)w(x)dx. Then

In( f ) =
∫ b

a
f (x)w(x)dx

for all polynomials f of degree 2n + 1.

As a side-effect of this high-degree exactness, we obtain an inter-
esting new formula for the weights in Gaussian quadrature. Since
the Lagrange basis polynomial `k is the product of n linear factors
(see (3.2)), `k ∈ Pn, and

(`k)
2 ∈ P2n ⊆ P2n+1.

Thus the Gaussian quadrature rule exactly integrates (`k)
2w(x). We

write ∫ b

a
(`k(x))2w(x)dx =

n

∑
j=0

wj(`k(xj))
2

= wk(`k(xk))
2 = wk,
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where we have used the fact that `k(xj) = 0 if j 6= k, and `k(xk) = 1.
This leads to another formula for the Gaussian quadrature weights:

(3.3) wk =
∫ b

a
`k(x)w(x)dx =

∫ b

a
(`k(x))2 w(x)dx.

This latter formula is more computationally appealing than the for-
mer, because it is more numerically reliable to integrate positive-
valued integrands. This is a neat fact, but, as described in Section , One avoids floating point errors that

can be introduced by adding quantities
that are similar in magnitude but
opposite in sign, known as catastrophic
cancellation.

there is a still-better way to compute these weights: by computing
eigenvectors of a symmetric tridiagonal matrix.

Of course, in many circumstances we are not simply integrating
polynomials, but more complicated functions, so we want better
insight about the method’s performance than Theorem 3.7 provides.
One can prove the following error bound. See, e.g., Süli and Mayers, pp. 282–283.

Theorem 3.8. Suppose f ∈ C2n+2[a, b] and let In( f ) be the usual
(n + 1)-point Gaussian quadrature rule on [a, b] with weight function
w(x) and nodes {xj}n

j=0. Then

∫ b

a
f (x)w(x)dx− In( f ) =

f (2n+2)(ξ)

(2n + 2)!

∫ b

a
ψ2(x)w(x)dx

for some ξ ∈ [a, b] and ψ(x) = ∏n
j=0(x− xj).
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lecture 25: Gaussian quadrature: nodes, weights; examples; extensions

3.4.3 Computing Gaussian quadrature nodes and weights

When first approaching Gaussian quadrature, the complicated char-
acterization of the nodes and weights might seem like a significant
drawback. For example, if one approximates an integral with an
(n + 1)-point Gaussian quadrature rule and finds the accuracy insuf-
ficient, one must compute an entirely new set of nodes and weights
for a larger n from scratch.

Many years ago, one would need to look up pre-computed nodes
and weights for a given rule in book of mathematical tables, and one
was thus limited to using values of n for which one could easily find
tabulated values for the nodes and weights.

However, in a landmark paper of 1969, Gene Golub and John
Welsch found a nice characterization of the nodes and weights in G. H. Golub and J. H. Welsch, “Calcula-

tion of Gauss Quadrature Rules,” Math.
Comp. 23 (1969) 221–230.

terms of a symmetric matrix eigenvalue problem. Given the existence
of excellent algorithms for computing such eigenvalues, one can
readily compute Gaussian quadrature nodes for arbitrary values of n. In general, such algorithms require

O(n3) operations to compute all eigen-
values and eigenvectors of an n × n
matrix; for the modest values of n most
common in practice (n in the tens or
at most low hundreds), this expense is
not onerous. Exploiting the structure of
Jn, this algorithm could be sped up to
O(n2).

Some details of this derivation are left for a homework exercise, but
we summarize the results here.

One can show, via the discussion in Section 2.5, that, given values
φ−1(x) = 0 and φ0(x) = 1 the subsequent orthogonal polynomials
can be generated via the three-term recurrence relation

(3.4) φk+1(x) = x φk(x)− αkφk(x)− βkφk−1(x).

The values of α0, . . . , αn and β1, . . . , βn follow from the Gram–Schmidt
process used in Section 2.5. Later we will also need the definition A good source for the values of

{αk} and {βk} is Table 1.1 in Walter
Gautschi’s Orthogonal Polynomials,
Oxford University Press, 2004.β0 := 〈1, 1〉 =

∫ b

a
w(x)dx.

Given a fixed value of n, collect the coefficients {αk}n
k=0 and

{βk}n
k=1 and use them to populate the Jacobi matrix

(3.5) Jn =



α0
√

β1√
β1 α1

√
β2√

β2
. . . . . .

. . . αn−1
√

βn√
βn αn


.

The following theorem (whose proof is left for as a homework
exercise) gives a ready way to compute the roots of φn+1.
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Theorem 3.9. Let {φj}n+1
j=0 denote a sequence of monic orthogonal

polynomials generated by the recurrence relation (3.4). Then λ is a
root of φn+1 if and only if λ is an eigenvalue of Jn with correspond-
ing eigenvector

(3.6) v(λ) =



φ0(λ)

φ1(λ)/
√

β1

φ2(λ)/
√

β1β2

...

φn(λ)/
√

β1 · · · βn


.

Theorem 3.9 thus gives a convenient way to compute the nodes of
a Gaussian quadrature rule. Given the nodes, one could compute
the weights using either of the formulas (3.3) involving Lagrange
basis functions. However, Golub and Welsch proved that these same
weights could be extracted from the eigenvectors of the Jacobi ma-
trix Jn. Label the eigenvalues of Jn as

λ0 < λ1 < · · · < λn

and the corresponding eigenvectors, given by the formula (3.6), as

v0 = v(λ0), v1 = v(λ1), . . . , vn = v(λn).

Then, with a bit of work, one can show that the weights for n + 1-
point Gaussian quadrature can be computed as

Note: assumes (vj)1 = φ0(λj) = 1.(3.7) wj = β0
1
‖vj‖2

2
,

where ‖ · ‖2 is the vector 2-norm.
The formula (3.7) relies on the specific form of the eigenvector

in (3.6). If the eigenvector is normalized differently (e.g., MATLAB’s
eigs routine gives unit eigenvectors, ‖vj‖2 = 1, then one should use
the general formula

(3.8) wj = β0
(vj)

2
1

‖vj‖2
2

,

where (vj)1 is the first entry in the eigenvector vj.

3.4.4 Examples of Gaussian Quadrature

Let us examine four well-known Gaussian quadrature rules.
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method interval, (a, b) weight, w(x)

Gauss–Legendre (−1, 1) 1

Gauss–Chebyshev (−1, 1)
1√

1− x2

Gauss–Laguerre (0, ∞) e−x

Gauss–Hermite (−∞, ∞) e−x2

The weight function plays an essential role here. For example, a
Gauss–Chebyshev quadrature rule with n + 1 = 5 points will exactly
integrate polynomials of degree 2n + 1 = 9 times the weight function.
Thus this rule will exactly integrate

∫ 1

−1

x9
√

1− x2
dx,

but it will not exactly integrate

∫ 1

−1
x10 dx.

This is a subtle point that many students overlook when first learning
about Gaussian quadrature.

Example 3.2. Gauss–Legendre Quadrature
When numerical analysts speak of “Gaussian quadrature” without
further qualification, they typically mean Gauss–Legendre quadra-
ture, i.e., quadrature with the weight function w(x) = 1 (perhaps over
a transformed domain (a, b); see Section 3.4.5.) As discussed in Sec-
tion 2.5.1, the orthogonal polynomials for this interval and weight are
called Legendre polynomials. To construct a Gaussian quadrature rule
with n + 1 points, determine the roots of the degree-(n + 1) Legendre
polynomial, then find the associated weights.

First consider n = 1. The quadratic Legendre polynomial is

φ2(x) = x2 − 1/3,

and from this polynomial one can derive the 2-point quadrature rule
that is exact for cubic polynomials, with roots ±1/

√
3. This agrees

with the special 2-point rule derived in Section 3.4.1. The values for
the weights follow simply, w0 = w1 = 1, giving the 2-point Gauss–
Legendre rule

In( f ) = f (−1/
√

3) + f (1/
√

3)

that exactly integrates polynomials of degree 2n + 1 = 3, i.e., all
cubics. Recall that Simpson’s rule also exactly

integrates cubics, but it requires three
f evaluations, rather than the two f
evaluations required of this rule.
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Figure 3.9: Nodes and weights of
Gauss–Legendre quadrature, for var-
ious values of n. In each case, the
location of the vertical line indicates xj,
while the height of the line shows wj.

For Gauss–Legendre quadrature rules based on larger numbers of
points, we can compute the nodes and weights using the symmetric
eigenvalue formulation discussed in Section 3.4.3. For this weight,
one can show

αk = 0, k = 0, 1, . . . ;

β0 = 2;

βk =
k2

4k2 − 1
, k = 1, 2, 3, . . . .

Figure 3.9 shows the nodes and weights for six values of n, as com-
puted via the eigenvalue problem. Notice that the points are not uni-
formly spaced, but are slightly more dense at the ends of the interval.
Moreover, the weights are smaller at these ends of the interval.

The table below shows nodes and weights for n = 4, as computed
in MATLAB.

j nodes, xj weights, wj

0 −0.906179845938664 0.236926885056189

1 −0.538469310105683 0.478628670499366

2 0.000000000000000 0.568888888888889

3 0.538469310105683 0.478628670499367

4 0.906179845938664 0.236926885056189

Example 3.3. Gauss–Chebyshev quadrature
Another popular class of Gaussian quadrature rules use as their
nodes the roots of the Chebyshev polynomials. The standard degree-
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k Chebyshev polynomial is defined as

Tk(x) = cos(k cos−1 x),

which can be generated by the recurrence relation

Tk+1(x) = 2xTk(x)− Tk−1(x).

with T0(x) = 1 and T1(x) = x. These Chebyshev polynomials are
orthogonal on (−1, 1) with respect to the weight function

w(x) =
1√

1− x2
.

The degree-(n + 1) Chebyshev polynomial has the roots

xj = cos
( (j + 1/2)π

n + 1

)
, j = 0, . . . , n.

In this case all the weights work out to be identical; one can show

wj =
π

n + 1

for all j = 0, . . . n. Figure 3.10 shows these nodes and weights. One See Süli and Mayers, Problem 10.4 for a
sketch of a proof.can also define the monic Chebyshev polynomials according to the

recurrence (3.4) with

αk = 0, k = 0, 1, . . . ;

β0 = π;

β1 = 1/2;

βk = 1/4, k = 2, 2, 3, . . . .

The resulting polynomials are scaled versions of the usual Chebyshev
polynomials Tk+1(x), and thus have the same roots.

Again, we emphasize that the weight function plays a crucial role:
the Gauss–Chebyshev rule based on n + 1 interpolation nodes will
exactly compute integrals of the form∫ 1

−1

p(x)√
1− x2

dx

for all p ∈ P2n+1. For a general integral∫ 1

−1

f (x)√
1− x2

dx.

the quadrature rule should be implemented as
Note that the 1/

√
1− x2 component of

the integrand is not evaluated here; its
influence has already been incorporated
into the weights {wj}.

In( f ) =
n

∑
j=0

wj f (xj);
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Figure 3.10: Nodes and weights of
Gauss–Chebyshev quadrature, for
various values of n. In each case, the
location of the vertical line indicates
xj, while the height of the line shows
wj. The nodes, roots of Chebyshev
polynomials, cluster toward the end of
the intervals; the weights are the same
for all the nodes, wj = π/(n + 1).

The Chebyshev weight function w(x) = 1/(1 − x2) blows up
at ±1, so if the integrand f does not balance this growth, adaptive
Newton–Cotes rules will likely have to place many interpolation
nodes near these singularities to achieve decent accuracy, while
Gauss–Chebyshev quadrature has no problems. Moreover, in this
important case, the nodes and weights are trivial to compute, thus
allaying the need to solve the eigenvalue problem.

It is worth pointing out that Gauss–Chebyshev quadrature is quite
different than Clenshaw–Curtis quadrature. Though both use Cheby-
shev points as interpolation nodes, only Gauss–Chebyshev incorpo-
rates the weight function w(x) = (1− x2)−1/2 in the weights {wj}.
Thus Clenshaw–Curtis is more appropriately compared to Gauss–
Legendre quadrature. Since the Clenshaw–Curtis method is not a
Gaussian quadrature formula, it will generally be exact only for all
p ∈ Pn, rather than all p ∈ P2n+1.

Example 3.4. Gauss–Laguerre quadrature
The Laguerre polynomials form a set of orthogonal polynomials over
(0, ∞) with the weight function w(x) = e−x. The accompanying
quadrature rule approximates integrals of the form

∫ ∞

0
f (x)e−x dx.

The recurrence (3.4) uses the coefficients
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Figure 3.11: Nodes and weights of
Gauss–Laguerre quadrature, for various
values of n. In each case, the location
of the vertical line indicates xj, while
the height of the line shows log10 wj.
Note that the horizontal axis is scaled
logarithmically. As n increases the
quadrature rule includes larger and
larger nodes to account for the infinite
domain of integration; however, the
weights are exceptionally small for the
larger nodes. For example for n = 16,
w16 ≈ 10−23.

αk = 2k + 1, k = 0, 1, . . . ;

β0 = 1;

βk = k2, k = 1, 2, 3, . . . .

Figure 3.11 shows the nodes and weights for several values of n.
Since the domain of integration (0, ∞) is infinite, the quadrature
nodes xj get larger and larger. As the nodes get larger, the corre-
sponding weights decay rapidly. When wj < 10−15, it becomes
difficult to reliably compute the weights by solving the Jacobi matrix
eigenvalue problem. To get the small weights given here, we have
used Chebfun’s lagpts routine routine, which uses a more efficient
algorithm of Glaser, Liu, and Rokhlin (2007).

Example 3.5. Gauss–Hermite quadrature
The Hermite polynomials are orthogonal polynomials over (−∞, ∞)

with the weight function w(x) = e−x2
. This quadrature rule approxi-

mates integrals of the form∫ ∞

−∞
f (x)e−x2

dx.

The Hermite polynomials can be generated using the recurrence (3.4)
with coefficients

αk = 0, k = 0, 1, . . . ;

β0 =
√

π;

βk = k/2, k = 1, 2, 3, . . . .

Figure 3.12 shows nodes and weights for various values of n. Though
the interval of integration is infinite, the nodes do not grow as
rapidly as for Gauss–Laguerre quadrature, since the Hermite weight
w(x) = e−x2

decays more rapidly than the Laguerre weight w(x) =

e−x. (Again, the nodes and weights in the figure were computed with
Chebfun’s implementation of the Glaser, Liu, and Rokhlin algorithm.)
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Figure 3.12: Nodes and weights of
Gauss–Hermite quadrature, for various
values of n. In each case, the location of
the vertical line indicates xj, while the
height of the line shows log10 wj. Con-
trast this plot to Figure 3.11. Though
the domain of integration is infinite in
both cases, the weight function here,
e−x2

, decays much more rapidly than
e−x , explaining why the largest nodes
are smaller than seen in Figure 3.11 for
Gauss–Laguerre quadrature.

3.4.5 Changing variables to transform domains

One notable drawback of Gaussian quadrature is the need to pre-
compute (or look up) the requisite weights and nodes. If one has
a quadrature rule for the interval [c, d], and wishes to adapt it to
the interval [a, b], there is a simple change of variables procedure to
eliminate the need to recompute the nodes and weights from scratch.
Let τ be a linear transformation taking [c, d] to [a, b],

τ(x) = a +
(

b− a
d− c

)
(x− c)

with inverse τ−1 : [a, b]→ [c, d],

τ−1(y) = c +
(

d− c
b− a

)
(y− a).

Then we have∫ b

a
f (x)w(x)dx =

∫ τ−1(b)

τ−1(a)
f (τ(x))w(τ(x))τ′(x)dx

=

(
b− a
d− c

) ∫ d

c
f (τ(x))w(τ(x))dx.

The quadrature rule for [a, b] takes the form

Î( f ) =
n

∑
j=0

ŵj f (x̂j),

for

ŵj =

(
b− a
d− c

)
wj, x̂j = τ−1(xj),

where {xj}n
j=0 and {wj}n

j=0 are the nodes and weights for the quadra-
ture rule on [c, d].

Be sure to note how this change of variables alters the weight
function. The transformed rule will now have a weight function

w(τ(x)) = w(a + (b− a)(x− c)/(d− c)),

not simply w(x). To make this concrete, consider Gauss–Chebyshev
quadrature, which uses the weight function w(x) = (1− x2)−1/2 on
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[−1, 1]. If one wishes to integrate, for example,
∫ 1

0 x(1− x2)−1/2 dx, it
is not sufficient just to use the change of variables formula described
here. To compute the desired integral, one would have to adjust the
nodes and weights to accommodate w(x) = (1− x2)−1/2 on [0, 1].

Composite rules Employing this change of variables technique, it is
simple to devise a method for decomposing the interval of integra-
tion into smaller regions, over which Gauss quadrature rules can
be applied. (The most straightforward application is to adjust the
Gauss–Legendre quadrature rule, which avoids complications in-
duced by the weight function, since w(x) = 1 in this case.) Such
techniques can be used to develop Gaussian-based adaptive quadra-
ture rules.

3.4.6 Gauss–Radau and Gauss-Lobatto quadrature

Some applications make it necessary or convenient to force one or
both of the end points of the interval of integration to be among the
quadrature points. Such methods are known as Gauss–Radau and
Gauss–Lobatto quadrature rules, respectively; rules based on n + 1
interpolation points exactly integrate all polynomials in P2n or P2n−1:
each quadrature node that we fix decreases the optimal order by one.
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lecture 26: Richardson extrapolation

3.5 Richardson extrapolation, Romberg integration

Throughout numerical analysis, one encounters procedures that
apply some simple approximation (e.g., linear interpolation) to con-
struct some equally simple algorithm (e.g., differentiate the inter-
polant to get a finite difference formula (Section 1.7), integrate the
interpolant to get the trapezoid rule (Section 3.2). An unfortunate
consequence is that such approximations often converge slowly, with
errors decaying only like h or h2, where h is some discretization pa-
rameter (e.g., the spacing between interpolation points). In the case of integration, you might

prefer using a higher order method,
like Clenshaw–Curtis or Gaussian
quadrature. What we talk about here is
an alternative to such approaches.

In this lecture we describe a remarkable, fundamental tool of clas-
sical numerical analysis. Like alchemists who sought to convert lead
into gold, so we will take a sequence of slowly convergent data and
extract from it a highly accurate estimate of our solution. This pro-
cedure is Richardson extrapolation, an essential but easily overlooked
technique that should be part of every numerical analyst’s toolbox.
When applied to quadrature rules, the procedure is called Romberg
integration.

We begin in a general setting: Suppose we seek some abstract
quantity, ξ ∈ IR, which could be the value of a definite integral, a
derivative, the solution to a differential equation at a certain point,
or something else entirely. Further suppose we cannot compute ξ

exactly; we can only access numerical approximations to it, gener-
ated by some function (an algorithm) Φ that depends upon a mesh
parameter h. We compute Φ(h) for several values of h, expecting that
Φ(h) → Φ(0) = ξ as h → 0. To obtain good accuracy, one naturally
seeks to evaluate Φ with increasingly smaller values of h. There are
two reasons not to do so:

• Often Φ becomes increasingly expensive to evaluate as h shrinks; For example, computing Φ(h/2) often
requires at least twice as much work
as Φ(h). In some cases, Φ(h/2) could
require 4, or even 8, times as much
work at Φ(h), i.e., the expense of Φ
could grow like 1/h or 1/h2 or 1/h3,
etc.

• The numerical accuracy with which we can evaluate Φ may de-
teriorate as h gets small, due to rounding errors in floating point
arithmetic. (For an example of the latter, try computing estimates
of f ′(α) using the formula f ′(α) ≈ ( f (α + h)− f (α))/h as h→ 0.)

Assume that Φ is infinitely continuously differentiable as a function of
h, thus allowing us to expand Φ(h) in the Taylor series

Φ(h) = Φ(0) + h Φ′(0) + 1
2 h2 Φ′′(0) + 1

6 h3 Φ′′′(0) + · · · .

The derivatives here may seem to complicate matters (e.g., what are
the derivatives of a quadrature rule with respect to h?), but we shall
not need to compute them: they key is that the function Φ behaves
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smoothly in h. Recalling that Φ(0) = ξ, we can rewrite the Taylor For the sake of clarity let us discuss
a concrete case, elaborated upon in
Example 3.6 below. Suppose we wish
to compute ξ = f ′(α) using the finite
difference formula

Φ(h) =
f (α + h)− f (α)

h
.

The quotient rule gives

Φ′(h) =
f (α)− f (α + h)

h2 +
f ′(α + h)

h
,

which will depend smoothly on h pro-
vided f is smooth near α. In particular,
a Taylor expansion for f gives

f (α+ h) = f (α)+ h f ′(α)+ 1
2 h2 f ′′(α)+ 1

6 h3 f ′′′(η)

for some η ∈ [α, α + h]. Substitute this
formula into the equation for Φ′(h) and
simplify to get

Φ′(h) =
f ′(α + h)− f ′(α)

h
− 1

2 f ′′(α)− 1
6 h f ′′′(η).

Now this expression leads to a clean
formula for the first coefficient of the
Taylor series for Φ(h):

c1 = Φ′(0) = lim
h→0

Φ′(h) = 1
2 f ′′(α).

The moral of the example: while it
might seem strange to take a Taylor se-
ries of the “algorithm” Φ, the quantities
involved often have a very natural in-
terpretation in terms of the underlying
problem at hand.

series for Φ(h) as

Φ(h) = ξ + c1 h + c2 h2 + c3 h3 + · · ·

for some constants {cj}∞
j=1. (For example, c1 = Φ′(0).)

This expansion implies that taking Φ(h) as an approximation for ξ

incurs an O(h) error. Halving the parameter h should roughly halve
the error, according to the expansion

Φ(h/2) = ξ + c1
1
2 h + c2

1
4 h2 + c3

1
8 h3 + · · · .

Here comes the trick that is key to the whole lecture: Combine the
expansions for Φ(h) and Φ(h/2) in such a way that eliminates the
O(h) term. In particular, define

Ψ(h) := 2Φ(h/2)−Φ(h)

= 2
(

ξ + c1
1
2 h + c2

1
4 h2 + c3

1
8 h3 + · · ·

)
−
(

ξ + c1h + c2h2 + c3h3 + · · ·
)

= ξ − c2
1
2 h2 − c3

3
4 h3 + · · · .

Thus, Ψ(h) also approximates ξ = Ψ(0) = Φ(0), but with an O(h2)

error, rather than the O(h) error that pollutes Φ(h). For small h, this
O(h2) approximation will be considerably more accurate.

Why stop with Ψ(h)? Repeat the procedure, combining Ψ(h) and
Ψ(h/2) to eliminate the O(h2) term. Since

Ψ(h/2) = ξ − c2
1
8 h2 − c3

3
32 h3 + · · · ,

we have

Θ(h) :=
4Ψ(h/2)−Ψ(h)

3
= ξ + c3

1
8 h3 + · · · .

To compute Θ(h), we must have access to both Ψ(h) and Ψ(h/2).
These, in turn, require Φ(h), Φ(h/2), and Φ(h/4). In many cases,
Φ becomes increasingly expensive to compute as the parameter h is
reduced. Thus there is some practical limit to how small we can take
h when evaluating Φ(h).

One could continue this procedure repeatedly, each time improv-
ing the accuracy by one order, at the cost of one additional Φ com-
putation with a smaller h. To facilitate generalization and to avoid a
further tangle of Greek characters, we adopt a new notation: Define

R(j, 0) := Φ(h/2j), j ≥ 0;

R(j, k) :=
2kR(j, k− 1)− R(j− 1, k− 1)

2k − 1
, j ≥ k > 0.
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Thus: R(0, 0) = Φ(h), R(1, 0) = Φ(h/2), and R(1, 1) = Ψ(h). This
procedure is called Richardson extrapolation after the British applied
mathematician Lewis Fry Richardson, a pioneer of the numerical
solution of partial differential equations, weather modeling, and
mathematical models in political science. The numbers R(j, k) are
arranged in a triangular extrapolation table:

R(0, 0)

R(1, 0) R(1, 1)

R(2, 0) R(2, 1) R(2, 2)

R(3, 0) R(3, 1) R(3, 2) R(3, 3)

...
...

...
...

. . .

· · · · · · · · · · · · · · · ·

↑ ↑ ↑ ↑
O(h) O(h2) O(h3) O(h4)

To compute any given element in the table, one must first determine
entries above and to the left. Note that only the first column will
require significant work; the subsequent columns follow from easy
arithmetic. The theory suggests that the bottom-right element in
the table will be the most accurate approximation to ξ. Indeed this
bottom-right entry will generally be the most accurate, provided the
assumption that Φ is infinitely continuously differentiable holds.
When floating point roundoff errors spoil what otherwise would
have been an infinitely continuously differentiable procedure, the
bottom-right entry will suffer acutely from this pollution. Such errors
will be apparent in the forthcoming example.

Example 3.6 (Finite difference approximation of the first derivative).
We seek ξ = f ′(α) for some function continuously differentiable
function f . Recall from Section 1.7 the simple finite difference ap-
proximation to the first derivative that follows from differentiating
the linear interpolant to f through the points x = α and x = α + h:

f ′(α) ≈ f (α + h)− f (α)
h

.

In fact, in Theorem 1.6 we quantified the error to be O(h) as h→ 0:

f ′(α) =
f (α + h)− f (α)

h
+O(h).

Thus we define

Φ(h) =
f (α + h)− f (α)

h
.

As a simple test problem, take f (x) = ex. We will use Φ and Richard-
son extrapolation to approximate f ′(1) = e = 2.7182818284 . . . .

The simple finite difference method produces crude answers:
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h Φ(h) error
1 4.670774270 1.95249× 100

1/2 3.526814484 8.08533× 10−1

1/4 3.088244516 3.69963× 10−1

1/8 2.895480164 1.77198× 10−1

1/16 2.805025851 8.67440× 10−2

1/32 2.761200889 4.29191× 10−2

1/64 2.739629446 2.13476× 10−2

1/128 2.728927823 1.06460× 10−2

1/256 2.723597892 5.31606× 10−3

1/512 2.720938130 2.65630× 10−3

Even with h = 1/512 = 0.00195 . . . we fail to approximate f ′(1) to
even three correct digits. As we take h smaller and smaller, finite pre-
cision arithmetic eventually causes unacceptable errors; Figure 3.13

shows the error in Φ(h) as h → 0. (The red line shows what perfect
O(h) convergence would look like.)

10-1210-1010-810-610-410-2100
10-12

10-10

10-8

10-6

10-4

10-2

100

h

|f
′ (

1)
−

Φ
(h
)|

O(h)

Figure 3.13: Linear convergence of
the estimate Φ(h) to f ′(1) (blue line).
As h gets small, rounding errors spoil
the O(h) convergence (red line). An
accuracy of about 10−8 seems to be the
best we can do for this method and this
problem.

A few steps of Richardson extrapolation on the data in the table
above reveals greatly improved solutions, five correct digits in R(4, 4):

j R(j, 0) R(j, 1) R(j, 2) R(j, 3) R(j, 4)
0 4.67077427047160
1 3.52681448375804 2.38285469704447
2 3.08824451601118 2.64967454826433 2.73861449867095
3 2.89548016367188 2.70271581133258 2.72039623235534 2.71779362288168
4 2.80502585140344 2.71457153913500 2.71852344840247 2.71825590783778 2.71828672683485

The good performance of this method depends on f having suf-
ficiently many smooth derivatives. If higher derivatives are not
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Figure 3.14: The convergence of Φ(h)
(blue) along with its first two Richard-
son refinements, Ψ(h) (green) and Θ(h)
(black). The red lines show O(h), O(h2),
and O(h3) convergence. For these
values of h, rounding errors are not ap-
parent in the Φ(h) plot; however, they
lurk in the later digits of Φ(h), enough
to interfere with the Ψ(h) and Θ(h)
approximations. Before these errors
take hold, Θ(h) gives several additional
orders of magnitude accuracy than was
obtained by Φ(h) with much smaller h,
in Figure 3.13.

smooth, then Φ(h) will not have smooth derivatives, and the accu-
racy breaks down. The accuracy also eventually degrades because
of rounding errors that subtly pollute the initial column of data, as
shown in the Figure 3.14.

3.5.1 Extrapolation for higher order approximations

In many cases, the initial algorithm Φ(h) is better than O(h) accurate,
and in this case the formula for R(j, k) should be adjusted to take
advantage. Suppose that

Φ(h) = ξ + c1hr + c2h2r + c3h3r + · · ·

for some integer r ≥ 1. Then define

Notice that this structure is rather
special: for example, if r = 2, then the
Taylor series for Φ(h) must avoid all
odd-order terms.

R(j, 0) := Φ(h/2j) for j ≥ 0

R(j, k) :=
2rkR(j, k− 1)− R(j− 1, k− 1)

2rk − 1
for j ≥ k > 0.(3.9)

In this case, the R(:, k) column will be O(h(k+1)r) accurate.

3.5.2 Extrapolating the composite trapezoid rule: Romberg integration

Suppose f ∈ C∞[a, b], and we wish to approximate
∫ b

a f (x)dx with
the composite trapezoid rule,

T(h) =
h
2

[
f (a) + 2

n−1

∑
j=1

f (a + jh) + f (b)
]
.

Notice that T(h) only makes sense (as the composite trapezoid rule)
when h = (b − a)/n for some integer n. Notice that T((b − a)/n)

If you find this restriction on h distract-
ing, just define T(h) to be a sufficiently
smooth interpolation between the
values of T((b− a)/n) for n = 1, 2, . . . .
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requires n + 1 evaluations of the function f , and so increasing n
(decreasing h) increases the expense.

One can show that for any f ∈ C∞[a, b],

T(h) =
∫ b

a
f (x)dx + c1h2 + c2h4 + c3h6 + · · · .

Now perform the generalized Richardson extrapolation (3.9) on T(h)
with r = 2:

R(j, 0) = T(h/2j) for j ≥ 0

R(j, k) =
4kR(j, k− 1)− R(j− 1, k− 1)

4k − 1
for j ≥ k > 0.

This procedure is called Romberg integration.

In cases where f ∈ C∞[a, b] (or if f has many continuous deriva-
tives), the Romberg table will converge to high accuracy, though it
may be necessary to take h to be relatively small before this is ob-
served. When f does not have many continuous derivatives, each
column of the Romberg table will still converge to the true integral,
but not at the ever-improving clip we expect for smoother functions.

This procedure’s utility is best appreciated through an example.

Example 3.7. For purposes of demonstration, we should use an
integral we know exactly, say∫ π

0
sin(x)dx = 2.

Start the table with h = π to generate R(0, 0), requiring 2 evaluations
of f (x). To build out the table, compute the composite trapezoid ap-
proximation based on an increasing number of function evaluations
at each step. The final entry in the first column requires 129 function Ideally, one would exploit the fact that

some grid points used to compute T(h)
are also required for T(h/2), etc., thus
limiting the number of new function
evaluations required at each step.

evaluations, and has four digits correct. This may not seem partic-
ularly impressive, but after refining these computations through a
few steps of Romberg integration, we have an approximation that is
accurate to full precision.

j R(j, 0) R(j, 1) R(j, 2) R(j, 3) R(j, 4) R(j, 5) R(j, 6)
0 0.000000000000
1 1.570796326795 2.094395102393
2 1.896118897937 2.004559754984 1.998570731824
3 1.974231601946 2.000269169948 1.999983130946 2.000005549980
4 1.993570343772 2.000016591048 1.999999752455 2.000000016288 1.999999994587
5 1.998393360970 2.000001033369 1.999999996191 2.000000000060 1.999999999996 2.000000000001
6 1.999598388640 2.000000064530 1.999999999941 2.000000000000 2.000000000000 2.000000000000 2.000000000000

Be warned that Romberg results are not always as clean as this
example, but this procedure is important tool to have at hand when
high precision integrals are required. The general strategy of Richard-
son extrapolation can be applied to great effect in a wide variety of
numerical settings.
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Nonlinear Equations

lecture 27: Introduction to Nonlinear Equations
lecture 28: Bracketing Algorithms

The solution of nonlinear equations has been a motivating
challenge throughout the history of numerical analysis. We opened
these notes with mention of Kepler’s equation, M = E − e sin E,
where M and e are known, and E is sought. One can view this E as
the solution of the equation f (E) = 0, where

f (x) = M− x + e sin(x).

This is a simple equation in one variable, x ∈ IR, and it turns out that
it is not particularly difficult to solve. Other examples are compli-
cated by nastier nonlinearities, multiple solutions (in which case one
might like to find them all), ill-conditioned zeros (where f (x) ≈ 0 for
x far from the true zeros of f ), solutions in the complex plane, and
expensive f evaluations.

Optimization is closely allied to the solution of nonlinear equa-
tions, since one finds extrema of F : IR→ IR by solving

F′(x) = 0.

When F : IRn → IR, one seeks x ∈ IRn that solves

∇F(x) = 0,

a nonlinear system of n equations in n variables. Handling n > 1
variables leads to more sophisticated theory and algorithms. Opti-
mization problems become more difficult when additional constraints
are imposed upon x ∈ IRn,

min
x∈S

F(x),
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where S is the set of feasible solutions (e.g., vectors with nonnegative
entries). When F is linear in x and x is constrained by simple inequal-
ities, one has the important field of linear programming. When the set
S constrains x to take discrete values (e.g., integers), the optimization
problem becomes exceptionally difficult. Such combinatorial optimiza-
tion or integer programming problems connect closely to the study of
NP-hard problems in computer science.

In this course, we only have time to look at a few of the simplest
algorithms for solving nonlinear equations. These will give some
brief introduction to some of the over-arching themes in this impor-
tant field. Further study is highly recommended!

4.1 Bracketing Algorithms for Root Finding

Given a function f : IR → IR, we seek a point x∗ ∈ IR such that
f (x∗) = 0. This x∗ is called a root of the equation f (x) = 0, or simply
a zero of f . At first, we only require that f be continuous a interval
[a, b] of the real line, f ∈ C[a, b], and that this interval contains the
root of interest. The function f could have many different roots; we
will only look for one. In practice, f could be quite complicated (e.g., In some applications, like polynomial

root-finding, we know f has multiple
zeros, and we might want to find
all of them. This particular case is
complicated by the fact that the zeros
could be located in the complex plane,
x∗ ∈ C.

evaluation of a parameter-dependent integral or differential equation)
that is expensive to evaluate (e.g., requiring minutes, hours, . . . ), so
we seek algorithms that will produce a solution that is accurate to
high precision while keeping evaluations of f to a minimum.

The first algorithms we study require the user to specify a finite
interval [a0, b0], called a bracket, such that f (a0) and f (b0) differ in
sign, f (a0) f (b0) < 0. Since f is continuous, the intermediate value
theorem guarantees that f has at least one root x∗ in the bracket,
x∗ ∈ (a0, b0).

4.1.1 Bisection
Given a bracket [a, b] for which f takes opposite sign at a and b, the
simplest technique for finding x∗ is the bisection algorithm:

For k = 0, 1, 2, . . .

1. Compute f (ck) for ck =
1
2 (ak + bk).

2. If f (ck) = 0, exit; otherwise, repeat with

[ak+1, bk+1] :=

{
[ak, ck], if f (ak) f (ck) < 0;
[ck, bk], if f (ck) f (bk) < 0.

3. Stop when the interval bk+1 − ak+1 is sufficiently small,
or if f (ck) = 0.

How does this method converge? Not bad for such a simple idea. At
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the kth stage, there must be a root in the interval [ak, bk]. Take ck =
1
2 (ak + bk) as the next estimate to x∗, giving the error ek = ck − x∗.
The worst possible error would occur if x∗ was close to ak or bk, half
the bracket’s width away from ck, and hence |ek| = |ck − x∗| ≤
1
2 (bk − ak) = 2−k−1(b0 − a0).

Theorem 4.1. Given a bracket [a, b] ⊂ IR for which f (a) f (b) < 0,
there exists x∗ ∈ [a, b] such that f (x∗) = 0 and the bisection point ck

satisfies

|ck − x∗| ≤
b− a
2k+1 .

We say this iteration converges linearly (the log of the error is bounded
by a straight line when plotted against iteration count – see the next
example) with rate ρ = 1/2. Practically, this means that the error is
cut in half at each iteration, independent of the behavior of f . Reduction
of the initial bracket width by ten orders of magnitude would require
roughly log2 1010 ≈ 33 iterations. If f is fast to evaluate, this conver-
gence will be pretty quick; moreover, since the algorithm only relies
on our ability to compute the sign of f (x) accurately, the algorithm is
robust to strange behavior in f (such as local minima).

Example 4.1. Kepler’s equation is among the most historically impor-
tant nonlinear equations, playing a pivotal role in two-body celestial
mechanics. Given orbital parameters e ∈ [0, 1) (the eccentricity of the
elliptical orbit) and M ∈ [0, 2π] (the mean anomaly), find E ∈ [0, 2π]

(the eccentric anomaly) such that

M = E− e sin E.

Cast this as the root-finding problem f (E) = 0, where

f (E) = M− E + e sin E.

In this example we set e = 0.8 and M = 3π/4, yielding the function
shown in the margin. Judging from this plot, the desired root E∗

0 1 2 3 4 5 6
-4

-3

-2

-1

0

1

2

3

f (E)

E
falls in the interval [2, 3]. Using the initial bracket [a, b] = [2, 3], the
bisection method converges as steadily as expected, cutting the error
in half at every step. Figure 4.2 shows the convergence to the exact
root E∗ = 2.69889638445749738544 . . . .

4.1.2 Regula Falsi

A simple adjustment to bisection can often yield much quicker con-
vergence. The name of the resulting algorithm, regula falsi (literally
‘false rule’) hints at the technique. As with bisection, begin with an
interval [a0, b0] ⊂ IR such that f (a0) f (b0) < 0. The goal is to be
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Figure 4.1: The convergence of the
bisection method for solving Kepler’s
equation (Example 4.1) with initial
bracket [a, b] = [2, 3]. Use the midpoint
ck of the kth bracket as an estimate of
the root E∗. The dashed line shows the
error bound |ck − E∗| ≤ (b− a)/2k+1.

more sophisticated about the choice of the root estimate ck ∈ (ak, bk).
Instead of simply choosing the middle point of the bracket as in bi-
section, we approximate f with the line pk ∈ P1 that interpolates
(ak, f (ak)) and (bk, f (bk)), so that pk(ak) = f (ak) and p(bk) = f (bk).
This unique polynomial is given (in the Newton form) by

pk(x) = f (ak) +
f (bk)− f (ak)

bk − ak
(x− ak).

Now approximate the zero of f in [ak, bk] by the zero of the linear
model pk:

ck =
ak f (bk)− bk f (ak)

f (bk)− f (ak)
.

The algorithm then takes the following form:

For k = 0, 1, 2, . . .

1. Compute f (ck) for ck =
ak f (bk)− bk f (ak)

f (bk)− f (ak)
.

2. If f (ck) = 0, exit; otherwise, repeat with

[ak+1, bk+1] :=

{
[ak, ck], if f (ak) f (ck) < 0;
[ck, bk], if f (ck) f (bk) < 0.

3. Stop when f (ck) is sufficiently small, or the maximum
number of iterations is exceeded.

Note that only Step 3 differs significantly from the bisection method.
The former algorithm forces the bracket width bk − ak to zero as it
homes in on the root. In contrast, there is no mechanism in the regula
falsi algorithm to drive the bracket width to zero: it will still always
converge (in exact arithmetic) even though the bracket length does
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not typically decrease to zero. Analysis of regula falsi is more compli-
cated than the trivial bisection analysis; we give a convergence proof
only for a special case. We will use the opportunity to introduce the
notion of convex functions, a fundamental idea in optimization theory,
especially for problems in higher dimensions.

Definition 4.1. Let [a, b] be a finite interval of IR. Then a function
f ∈ C[a, b] is convex provided that for all x, y ∈ [a, b] and λ ∈ [0, 1],

f
(
λx + (1− λ)y

)
≤ λ f (x) + (1− λ) f (y).

At first sight convexity might seem to be an abstract concept.
However, an easy sufficient condition will be more familiar.

Lemma 4.1. If f ∈ C2[a, b] and f ′′(x) ≥ 0 for all x ∈ [a, b], then f is
convex.

Proof. (See Rockafeller, Convex Analysis, Theorem 4.4.)
First note that f ′ is monotonically increasing on [a, b]. To see this,

use the Fundamental Theorem of Calculus to write, for any ξ ∈ [a, b],

f ′(ξ)− f ′(a) =
∫ ξ

a
f ′′(s)ds.

The integrand on the right is nonnegative, so as ξ increases, the value
of the integral cannot decrease. Since f ′(a) is a constant,

f ′(ξ) = f ′(a) +
∫ ξ

a
f ′′(s)ds

is a monotonically increasing function of ξ ∈ [a, b].
Now fix λ ∈ [0, 1] and z := λx + (1− λ)y. Again use the Funda- Such a z is a convex combination

of x and y.mental Theorem of Calculus to write

f (z)− f (x) =
∫ z

x
f ′(s)ds.

Now use monotonicity of f ′ to get the upper bound

f (z) = f (x) +
∫ z

x
f ′(s)ds

≤ f (x) + f ′(z)(z− x).(4.1)

Another upper bound follows similarly. Write

f (y)− f (z) =
∫ z

y
f ′(s)ds

and again use monotonicity of the derivative (with z ≤ y) to obtain

f (z) = f (y)−
∫ y

z
f ′(s)ds

≤ f (y)− f ′(z)(y− z).(4.2)
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Now preumultiply (4.1) by λ and (4.2) by 1− λ and add to obtain:

f (z) = λ f (z) + (1− λ) f (z)

≤ λ f (x) + (1− λ) f (y) + λ f ′(z)(z− x)− (1− λ) f ′(z)(y− z).(4.3)

Notice that

λ(z− x)− (1− λ)(y− z) = −λx− (1− λ)y + z = 0,

and hence (4.3) reduces to

f (z) ≤ λ f (x) + (1− λ) f (y) + λ f ′(z)(z− x).

Thus f (x) ≥ 0 for all x ∈ [a, b] proves that f is convex.

Convexity implies that the linear interpolant will always be located
above the function, as sketched on the right. The linear interpolant to

a z b

f (b)

f (a)

f

pf at x = a and x = b is

p(x) = f (a) +
f (b)− f (a)

b− a
(x− a).

Any z ∈ [a, b] can be written as z = λa + (1− λ)b, so

p(z) = f (a) +
f (b)− f (a)

b− a
(
λa + (1− λ)b− a

)
= f (a) +

f (b)− f (a)
b− a

(1− λ)(b− a)

= λ f (a) + (1− λ) f (b)

≥ f
(
λa + (1− λ)b

)
= f (z),

where the inequality follows from convexity of f .
This observation plays a key role in the next proof, which guaran-

tees convergence of regula falsi for convex functions.

Theorem 4.2. Suppose f is a convex function on [a0, b0] with a0 < b0

and f (a0) < 0 < f (b0). Then regula falsi converges: either f (ck) = 0
for some k ≥ 0, or ck → x∗ ∈ [a0, b0] with f (x∗) = 0.

Proof. (See Stoer & Bulirsch, Introduction to Numerical Analysis, 2nd
ed., §5.9.)

0 c0 = a1 b0 = b1

f (b0)

f (a0)

fThe argument preceding the proof ensures that the linear inter-
polant p to f at a0 and b0 satisfies p(x) ≥ f (x) for all x ∈ [a0, b0].
Since c0 is selected so that p0(c0) = 0, it follows that f (c0) ≤ 0, so the
new bracket will be [a1, b1] = [c0, b0].
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Figure 4.2: The convergence of the
bisection and regula falsi methods for
solving Kepler’s equation (Example 4.1)
with initial bracket [a, b] = [2, 3]. The
root ck in regula falsi converges to E∗
much more rapidly than the midpoint
ck of the bisection brackets.

If f (c0) = 0, the method has exactly found a root, and stops;
otherwise,

f (a1) = f (c0) < 0 < f (b0) = f (b1).

Now use the convexity of f on the subinterval [a1, b1] to iterate this
argument, first showing that [a2, b2] = [c1, b1], and then, in general,

[ak+1, bk+1] = [ck, bk].

Notice that ck > ak = ck−1. If the algorithm never finds an exact root,
it forms a sequence of estimates {ck} that is monotonically increasing
and bounded above by b0. The monotone convergence theorem in For a proof, see Rudin, Principles of

Mathematical Analysis, Theorem 3.14.real analysis ensures that any bounded monotone sequence of real
numbers must converge to a limit. Thus, lim

k→∞
ck = γ with f (γ) ≤ 0,

and this γ must be a fixed point of the regula falsi iteration, i.e.,

γ =
γ f (b0)− b0 f (γ)

f (b0)− f (γ)
.

Rearrange this expression to get (γ− b0) f (γ) = 0. Since f (b0) > 0,
conclude that γ 6= b0, and hence f (γ) = 0. Thus, regula falsi converges
for convex functions.

Example 4.2. Now apply the regula falsi method to the same version
of Kepler’s equation we solved with bisection in Example 4.1. Fig-
ure ?? compares the convergence of regula falsi to bisection, both with
the same initial bracket [2, 3]. About 9 steps of regula falsi delivers the
same accuracy obtained by more than 40 steps of bisection. For nice
problems like this one, regula falsi is much more efficient.

Is regula falsi always superior to bisection? If f has a zero, one
can alway rig a bracket around it so that the zero x∗ is exactly at its
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midpoint, x∗ = 1
2 (a0 + b0), giving convergence of bisection in a

single iteration. For most such functions, the first regula falsi iterate
is different, and not a root of our function. Thus bisection can beat
regula falsi, but such examples seem contrived, depending essentially
on a lucky bracket. Can one construct more compelling examples?

Example 4.3. Lest Example 4.2 suggest that regula falsi is always su-
perior to bisection, we now consider a function for which regula falsi
converges very slowly. Sketch out a few sample functions. You will
soon see how to design an f such that the root ck of the linear ap-
proximation converges slowly toward x∗ as k increases. The function
should be relatively flat and small in magnitude in a large region
near the root. One such example is

f (x) = sign(tan−1(x))
∣∣∣∣ 2
π

tan−1(x)
∣∣∣∣1/20

+
19
20

,

which has a single root at x∗ ≈ −0.6312881 . . . . This function is illus-
trated in the margin. Figure 4.3 compares convergence of bisection
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f (x)

x
and regula falsi for this f with the initial bracket [−10, 10]. The small
value of f at the left end of the bracket ensures that [a1, b1] = [c0, b]
will be almost as large as the initial bracket [a, b].

4.1.3 Accuracy

Here we have assumed that we calculate f (x) to perfect accuracy,
an unrealistic expectation on a computer. If we attempt to compute
x∗ to very high accuracy, we will eventually experience errors due
to inaccuracies in our function f (x). For example, f (x) may come
from approximating the solution to a differential equation, were there
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Figure 4.3: The convergence of the
bisection and regula falsi methods for
the function in Example 4.3 with initial
bracket [a, b] = [−10, 10]. The root ck
in regula falsi converges very slowly to
the right as k increases, due to the small
value of f on the left end of the bracket.
In contrast, bisection merrily cuts the
error in half at each step, affected only
by the sign of f , not its magnitude.
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is some approximation error we must be concerned about; more
generally, the accuracy of f will be limited by the computer’s floating
point arithmetic. One must also be cautious of subtracting one like
quantity from another (as in construction of ck in both algorithms),
which can give rise to catastrophic cancellation.

4.1.4 Conditioning

When | f ′(x0)| � 0, the desired root is easy to pick out. In cases
where f ′(x0) ≈ 0, the root will be ill-conditioned, and it can be difficult
to locate. This is the case, for example, when x0 is a multiple root of
f . (You may find it strange that the more copies of a root you have,
the more difficult it can be to compute it!) In such cases bisection has
the advantage that it only depends on the sign of f .

A well-conditioned root.

An ill-conditioned root.

4.1.5 Deflation

What is one to do if multiple distinct roots are required? One ap-
proach is to choose a new initial bracket that omits all known roots.
Another technique, though numerically fragile, is to work with
f̂ (x) := f (x)/(x− x0), where x0 is the previously computed root.
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lecture 29: Newton’s Method
We have studied two bracketing methods for finding zeros of a func-
tion, bisection and regula falsi. These methods have certain virtues
(most importantly, they always converge), but some exploratory
evaluations of f might be necessary to determine an initial bracket.
Moreover, while these methods appear to converge fairly quickly,
when f is expensive to compute (e.g., requiring solution of a differen-
tial equation) or many systems must be solved (e.g., to evaluate

√
A

as a zero of f (x) = x2 − A for many values of A), every objective
function evaluation counts. The next few sections describe algorithms
that can converge more quickly that bracketing methods — provided
we have a sufficiently good initial estimate of the root.

4.2 Newton’s method

We begin with Newton’s method, the most celebrated root-finding
algorithm. The algorithm’s motivation resembles regula falsi: model
f with a line, and estimate the root of f by the root of that line. In
regula falsi, this line interpolated the function values at either end
of the root bracket. Newton’s method is based purely on local in-
formation at the current solution estimate, xk. Whereas the bracket-
ing methods only required that f be continuous, Newton’s method
needs f ∈ C1(IR); to analyze the algorithm, we will further require
f ∈ C2(IR). This latter condition means that f can be expanded in a
Taylor series centered at the approximate root xk:

(4.4) f (x∗) = f (xk) + f ′(xk)(x∗ − xk) +
1
2 f ′′(ξ)(x∗ − xk)

2,

where x∗ is the exact solution, f (x∗) = 0, and ξ is between xk and
x∗. Ignore the error term in this series, and you have a linear model
for f ; i.e., f ′(xk) is the slope of the line secant to f at the point xk.
Specifically,

x0
0 x1

f0 = f (x∗) ≈ f (xk) + f ′(xk)(x∗ − xk),

which implies

x∗ ≈ xk −
f (xk)

f ′(xk)
.

We get an iterative method by replacing x∗ in this formula with xk+1.

Newton’s method updates the approximate root xk via

(4.5) xk+1 := xk −
f (xk)

f ′(xk)
.
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Newton’s method is famous because it often converges very quickly,
but that excellent convergence comes at no small cost. For a bad
starting guess x0, it can diverge entirely. When it converges, the root
it finds can, in some circumstances, depend sensitively on the initial
guess: this is a famous source of beautiful fractals. However, for a

Newton’s method for finding zeros of
f (x) = x7 − 1 in the complex plane.
This function has seven zeros the
complex plane, the principal roots of
unity (shown as white dots in the plot).
The color encodes the convergence
of Newton’s method: for each point
x0 ∈ C, iterate Newton’s method until
convergence. The color corresponds
to which of the seven roots that x0
converged. In some regions, small
changes to x0 get attracted to vastly
different roots.

good x0, the convergence is usually lightning quick. Let ek = xk −
x∗ be the error at the kth step. Subtract x∗ from both sides of the
iteration (4.5) to obtain a recurrence for the error,

(4.6) ek+1 = ek −
f (xk)

f ′(xk)
.

The Taylor expansion of f (x∗) about the point xk given in (4.4) gives

0 = f (xk)− f ′(xk)ek +
1
2 f ′′(ξ)e2

k .

Solving this equation for f (xk) and substituting that formula into the
expression (4.6) for ek+1 gives

ek+1 = ek −
f ′(xk)ek +

1
2 f ′′(ξ)e2

k
f ′(xk)

= − f ′′(ξ)
2 f ′(xk)

e2
k .

When xk converges to x∗, ξ ∈ [x∗, xk] also converges to x∗. Suppos-
ing that x∗ is a simple root, so that f ′(x∗) 6= 0, the above analysis
suggests that when xk is near x∗,

|ek+1| ≤ C|ek|2

for constant

C =
| f ′′(x∗)|
2| f ′(x∗)|

independent of k. Thus we say that if f ′(?) 6= 0, then Newton’s
method converges quadratically, roughly meaning each iteration of
Newton’s method doubles the number of correct digits at each iteration.
Compare this to bisection, where

|ek+1| ≤ 1
2 |ek|,

meaning that the error was halved at each step. Significantly, New-
ton’s method will often exhibit a transient period of linear conver-
gence as xk is gradually improved; once xk gets close enough to x∗,
the behavior transitions to quadratic convergence and full machine
precision is attained in just a couple more iterations.

Example 4.4. One way to compute
√

2 is to find the zero of

f (x) = x2 − 2.
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Figure 4.4: The convergence of New-
ton’s method for f (x) = x2 − 2. If x0 is
sufficiently close to the zero x∗ =

√
2,

the method converges very rapidly. For
a poor x0, the convergence is slow until
xk is sufficiently close. (The situation
could be worse: in many cases, bad
initial guesses lead to the divergence of
Newton’s method.)

Figure 4.5 shows convergence in just a few steps for the realistic start-
ing guess x0 = 1.25. The plot also shows the convergence behavior
for the (entirely ridiculous) starting guess x0 = 1000, to illustrate a
linear phase of convergence as the iterate gradually approaches the
region of quadratic convergence. Once xk is sufficiently close to x∗,
convergence proceeds very quickly.

Table 4.1 shows the iterates for x0 = 1000, computed exact arith-
metic in Mathematica, and displayed here to more than eighty digits.
This is a bit excessive: in the floating point arithmetic we have used

k xk

0 1000.00000000000000000000000000000000000000000000000000000000000000000000000000000000000
1 500.00100000000000000000000000000000000000000000000000000000000000000000000000000000000
2 250.00249999600000799998400003199993600012799974400051199897600204799590400819198361603
3 125.00524995800046799458406305526512856598014823595622393441695800477446685799463896484
4 62.51062464301703314888691358403320464529759944325744566631164600631017391478309761341
5 31.27130960206219455596422358771700548374565801842332086536365236578278080406153827364
6 15.66763299486836640030755527100281652065100159710324459452581543767403479921834012248
7 7.89764234785635806719051360934236238116968365174167025116461034160777628217364960111
8 4.07544124051949892088798573387067133352991149961309267159333980191548308075360961862
9 2.28309282439255383986306690358177946144339233634377781606055538481637200759555376236

10 1.57954875240601536527547001727498935127463981776389016188975791363939586265860323251
11 1.42286657957866825091209683856309818309310929428763928162890934673847036238184992693
12 1.41423987359153062319364616441120035182529489347860126716395746896392690040774558375
13 1.41421356261784851265589000359174396632207628548968908242398944391615436335625360056
14 1.41421356237309504882286807775717118221418114729423116637254804377031332440406155716
15 1.41421356237309504880168872420969807856983046705949994860439640079460765093858305190
16 1.41421356237309504880168872420969807856967187537694807317667973799073247846210704774

exact 1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753 . . .

Table 4.1: Convergence of Newton’s
method for f (x) = x2 − 2 for a poor
initial guess. The first 9 iterations
each roughly cut he error in half; later
iterations then start to double the
correct digits (blue, underlined).
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all semester, we can only expect to get 15 or 16 digits of accuracy in
the best case. It is worth looking at all these digits to get a better ap-
preciation of the quadratic convergence. Once we are in the quadratic
regime, notice the characteristic doubling of the number of correct
digits (in blue and underlined) at each iteration.
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lecture 30: Convergence of Newton’s Method via Direct Iteration

4.3 Direct iteration

We have already performed a simple analysis of Newton’s method
to gain an appreciation for the quadratic convergence rate. For a
broader perspective, we shall now put Newton’s method into a more
general framework, so that the accompanying analysis would allow
us to understand simpler iterations like the ‘constant slope method:’

xk+1 = xk − α f (xk)

for some constant α (which could approximate 1/ f ′(x∗), for exam-
ple). We begin by formalizing the notion of the rate of convergence.

Definition 4.2. A root-finding algorithm is pth-order convergent if

|ek+1| ≤ C |ek|p

for some p ≥ 1 and positive constant C.

• If p = 1, then C < 1 is necessary for convergence, and C is called
the linear convergence rate.

• If p > 1, the constant C is called the asymptotic error constant.

In the last section, our analysis showed that, if f ′(x∗) 6= 0 and
x0 is sufficiently close to x∗, then Newton’s method is second-order
convergent with asymptotic error constant

C =
| f ′′(x∗)|
2| f ′(x∗)|

.

Earlier we saw that bisection is linearly convergent for f ∈ C[a0, b0]

with rate C = 1/2.
One can analyze Newton’s method and its variants through the

following general framework. Consider direct iterations of the form For further details on this standard
approach, see G. W. Stewart, Afternotes
on Numerical Analysis, §§2–4; J. Stoer
& R. Bulirsch, Introduction to Numerical
Analysis, 2nd ed., §5.2; L. W. Johnson
and R. D. Riess, Numerical Analysis,
second ed., §4.3.

xk+1 = Φ(xk),

for some iteration function Φ. This framework will include Newton’s
method, since we can take

Φ(x) = x− f (x)
f ′(x)

.

If the starting guess is an exact root, x0 = x∗, the method should be
smart enough to return x1 = x∗. Thus the root x∗ is a fixed point of Φ:

x∗ = Φ(x∗).
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We seek an expression for the error ek+1 = xk+1 − x∗ in terms of ek

and properties of Φ. Assume, for example, that Φ(x) ∈ C2(IR), so
that we can write the Taylor series for Φ expanded about x∗:

xk+1 = Φ(xk) = Φ(x∗) + (xk − x∗)Φ′(x∗) + 1
2 (xk − x∗)2Φ′′(ξ)

= x∗ + (xk − x∗)Φ′(x∗) + 1
2 (xk − x∗)2Φ′′(ξ)

for some ξ between xk and x∗. From this we obtain an expression for
the errors:

ek+1 = ekΦ′(x∗) + 1
2 e2

kΦ′′(ξ).

Convergence analysis is reduced to the study of Φ′(x∗), Φ′′(x∗), etc.
To analyze methods that converge faster than quadratic, one would
simply add extra terms in the Taylor series.

Example 4.5. For Newton’s method

Φ(x) = x− f (x)
f ′(x)

,

so the quotient rule gives

Φ′(x) = 1− f ′(x)2 − f (x) f ′′(x)
f ′(x)2 =

f (x) f ′′(x)
f ′(x)2 .

Provided x∗ is a simple root so that f ′(x∗) 6= 0 (and supposing
f ∈ C2(IR)), we have Φ′(x∗) = 0, and thus

ek+1 = 1
2 e2

k Φ′′(ξ),

and hence we again see quadratic convergence provided xk is suffi-
ciently close to x∗. The asymptotic error constant is thus

C =
|Φ′′(x∗)|

2
=
| f ′′(x∗)|
2| f ′(x∗)|

,

as expected.
What happens when f ′(x∗) = 0? The direct iteration framework

makes it straightforward to analyze this situation. If x∗ is a multiple
root, we might worry that Newton’s method might have trouble con-
verging, since we are dividing f (xk) by f ′(xk), and both quantities
are nearing zero as xk → x∗. To study convergence, we investigate

lim
x→x∗

Φ′(x) = lim
x→x∗

f (x) f ′′(x)
f ′(x)2 .

This limit has the indeterminate form 0/0. Assuming sufficient dif-
ferentiability, we can invoke l’Hôpital’s rule:

lim
x→x∗

f (x) f ′′(x)
f ′(x)2 = lim

x→x∗

f ′(x) f ′′(x) + f (x) f ′′′(x)
2 f ′(x) f ′′(x)

,



170

but this is also of the indeterminate form 0/0 when f ′(x∗) = 0.
Again using l’Hôpital’s rule and now assuming f ′′(x∗) 6= 0,

lim
x→x∗

f (x) f ′′(x)
f ′(x)2 = lim

x→x∗

f ′′(x)2 + 2 f ′(x) f ′′′(x) + f (x) f (iv)(x)
2( f ′(x) f ′′′(x) + f ′′(x)2)

= lim
x→x∗

f ′′(x)2

2 f ′′(x)2 =
1
2

.

Thus, Newton’s method converges locally to a double root according
to

ek+1 = 1
2 ek +O(e2

k).

This is linear convergence at the same rate as bisection! If x∗ has mul-
tiplicity exceeding two, then f ′′(x∗) = 0 and further analysis is
required. One would find that the rate remains linear, and gets even
slower. The slow convergence of Newton’s method for multiple roots
is exacerbated by the chronic ill-conditioning of such roots. Let us
summarize what might seem to be a paradoxical situation: the more
‘copies’ of root there are present, the more difficult that root is to
find!
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lecture 31: The Secant Method: Prototypical Quasi-Newton Method

Newton’s method is fast if one has a good initial guess x0. Even then,
it can be inconvenient and expensive to compute the derivatives
f ′(xk) at each iteration. The final root finding algorithm we consider
is the secant method, a kind of quasi-Newton method based on an ap-
proximation of f ′. It can be thought of as a hybrid between Newton’s
method and regula falsi.

4.4 The Secant Method

Throughout this semester, we have seen how derivatives can be ap-
proximated using finite differences, for example,

f ′(x) ≈ f (x + h)− f (x)
h

for some small h. (Recall that too-small h will give a bogus answer
due to rounding errors, so some caution is needed; see Section 3.5.)
What if we replace f ′(xk) in Newton’s method with this sort of ap-
proximation? The natural algorithm that emerges is the secant method,

xk+1 = xk − f (xk)
xk − xk−1

f (xk)− f (xk−1)
=

xk−1 f (xk)− xk f (xk−1)

f (xk)− f (xk−1)
.

Note the similarity between this formula and the regula falsi iteration:

x0 x1
0 x2

f

ck =
ak f (bk)− bk f (ak)

f (bk)− f (ak)
.

Both methods approximate f by a line that joins two points on the
graph of f , but the secant method requires no initial bracket for the
root. Instead, the user simply provides two starting points x0 and x1

with no stipulation about the signs of f (x0) and f (x1). As a conse-
quence, there is no guarantee that the method will converge: as in
Newton’s method, a poor initial guess can lead to divergence.

Do we recover the convergence behavior of Newton’s method?
Not quite – but it is still better than the linear convergence exhibited
by the bisection and regula falsi methods (provided it does converge).
The convergence theory brings in a new technique we have not see
before, where the error ek = xk − x∗ is presumed to reduce according
to a generic convergence behavior, ek+1 ≈ Mer

k, and this ansatz is used
to derive values of M and r. Begin by writing the linear interpolant See Dahlquist and Björck, Numerical

Methods, Section 6.4.3.to f at xk and xk−1 in the Newton form

(4.7) p(x) = f (xk) +
x− xk

xk−1 − xk

(
f (xk−1)− f (xk)

)
.
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Once again we can put the interpolation error formula (Theorem 1.3)
to good use. Assuming that f ∈ C2(IR), for any x ∈ IR one can write

f (x)− p(x) =
f ′′(ξ)

2
(x− xk)(x− xk−1),

where ξ falls within the extremes of x, xk, and xk−1. Since f (x∗) = 0,
we can thus write

0 = p(x∗) +
f ′′(ξ)

2
(x∗ − xk)(x∗ − xk−1).

Defining ej := xj − x∗ as usual, this last equation is

0 = p(x∗) +
f ′′(ξ)

2
ek ek−1.

Substituting formula (4.7) for p gives

(4.8) 0 = f (xk) +
x∗ − xk

xk−1 − xk

(
f (xk−1)− f (xk)

)
+

f ′′(ξ)
2

ek ek−1.

Now recall that, by design, the secant method picks xk+1 as the zero
of p, i.e.,

0 = p(xk+1)

= f (xk) +
xk+1 − xk
xk−1 − xk

(
f (xk−1)− f (xk)

)
.(4.9)

Subtract (4.8) from (4.9) to obtain

0 =
xk+1 − x∗
xk−1 − xk

(
f (xk−1)− f (xk)

)
− f ′′(ξ)

2
ek ek−1

= ek+1
f (xk−1)− f (xk)

xk−1 − xk
− f ′′(ξ)

2
ek ek−1.(4.10)

We can clean up this last formula by realizing that

f (xk−1)− f (xk)

xk−1 − xk

is the slope of the linear interpolant p. It is also a difference quotient
for f , and so, by the Mean Value Theorem, there exists η ∈ [xk, xk−1]

where the slope of f matches that of the interpolant:
x0 η

1.5
x1

f

p

f ′(η) =
f (xk−1)− f (xk)

xk−1 − xk
.

Substituting this formula into (4.10) gives

0 = f ′(η)ek+1 −
f ′′(ξ)

2
ek ek−1,
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which can be solved for

(4.11) ek+1 =
f ′′(ξ)

2 f ′(η)
ek ek−1.

As xk and xk−1 converge to x∗, the values for ξ and η must also

Contrast this formula with the error
recurrence for Newton’s method
in (4.7):

ek+1 = − f ′′(ξ)
2 f ′(xk)

e2
k .converge toward x∗, justifying the approximation

(4.12) ek+1 ≈ Cek ek−1

for asymptotic error constant

C =
f ′′(x∗)

2 f ′(x∗)
,

presuming, as usual, that x∗ is a simple root, so f ′(x∗) 6= 0.
It remains to convert the approximation (4.12) into some order

of convergence. As xk converges, we expect |ek−1| to be larger than
ek, so ekek−1 in the secant method is probably not as small as the e2

k
term that appeared in the analogous formula for Newton’s method.
Can we quantify how much smaller? Suppose the error obeys the
approximation

(4.13) ej+1 ≈ Mer
j

for some constants M and r. Then

ek ≈ Mer
k−1

implies that
ek−1 ≈ M−1/re1/r

k ,

and so the error approximation (4.12) suggests

(4.14) ek+1 ≈ C ek ek−1 ≈ C M−1/re1+1/r
k .

This equation must agree with the the error form (4.13) with j = k:

(4.15) ek+1 ≈ Mer
k.

Equating the approximations (4.14) and (4.15) gives

CM−1/re1+1/r
k = Mer

k.

Matching the constants then gives

M = Cr/(r+1),

while matching the rates gives 1 + 1/r = r, i.e.,

r2 − r− 1 = 0.
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Solve this quadratic to get

r =
1±
√

5
2

.

The negative sign choice gives r = (1 −
√

5)/2 = −0.6180 . . .,
which does not correspond to a convergent process. (If |ek| < 1,
then |e−0.6180...

k | > 1.) Thus, if the process converges according to
ek+1 ≤ Mer

k, the r must correspond to the positive root,

r =
1 +
√

5
2

:= ϕ = 1.6180 . . . ,

the golden ratio. It follows that

|ek+1| ≤ M|ek|ϕ

for a constant M > 0. Note that ϕ < 2, so, in the region of asymptotic
convergence (xk close to x∗), one step of the secant method will make
a bit less progress to the root than one step of Newton’s method.

Though you may regret that the secant method does not recover
the quadratic convergence of Newton’s method, take solace in the
fact that the secant method requires only one function evaluation Of course, for the secant method one

stores the f (xk−1) value computed
during the previous iteration.

f (xk) at each iteration, as opposed to Newton’s method, which re-
quires f (xk) and f ′(xk). Typically the derivative is more expensive to
compute than the function itself. Assuming that evaluating f (xk) and
f ′(xk) requires the same amount of effort, then we can compute two
steps of the secant method for roughly the same cost as a one step of
Newton’s method. These two steps of the secant method combine to
give an improved convergence rate:

|ek+2| ≤ M|ek+1|ϕ ≤ M
∣∣∣M|ek|ϕ

∣∣∣ϕ ≤ M1+ϕ|ek|ϕ
2
,

where ϕ2 = 1
2 (3 +

√
5) ≈ 2.62 > 2. Hence, in terms of computing

time, the secant method can actually be more efficient than Newton’s
method. This discussion is drawn from §3.3 of

Kincaid and Cheney, Numerical Analysis,
3rd ed.

Figure 4.5 compares the convergence of the secant method to New-
ton’s method for the function f (x) = x2 − 2, which we can use to
compute x∗ =

√
2 as in Figure 4.5. This example starts with the (bad)

initial guess x0 = 10. To ensure that the secant method is not ham-
pered by a bad value of x1, this experiments uses the same x1 value
computed using Newton’s method. After these two initial steps,
both methods steadily converge, but Newton’s method takes fewer
iterations, in agreement with the theory derived in this and the last
lecture. Table 4.2 shows the iterates xk and magnitude of the errors
|ek| for both methods.
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Figure 4.5: The convergence of New-
ton’s method and the secant method for
f (x) = x2 − 2. Both methods start with
x0 = 1, and the secant method uses the
same x1 that was generated by the first
step of Newton’s method.

k xk (Newton) |ek| (Newton) xk (secant) |ek| (secant)
0 10.000000000000 8.585786437627 10.000000000000 8.585786437627
1 5.100000000000 3.685786437627 5.100000000000 3.685786437627
2 2.746078431373 1.331864868999 3.509933774834 2.095720212461
3 1.737194874380 0.322981312007 2.311360664564 0.897147102191
4 1.444238094866 0.030024532493 1.737194874380 0.322981312007
5 1.414525655149 0.000312092776 1.485785199551 0.071571637178
6 1.414213596802 0.000000034429 1.421385900007 0.007172337634
7 1.414213562373 0.000000000000 1.414390138133 0.000176575760
8 1.414214008974 0.000000446601
9 1.414213562401 0.000000000028
10 1.414213562373 0.000000000000

Table 4.2: Comparison of iterates
from Newton’s method and the secant
method for finding a zero of f (x) =
x2 − 2.





5
Ordinary Differential Equations

lecture 32: Introduction to Numerical Integration

The final segment of the course addresses techniques for ap-
proximating the solution of an ordinary differential equation of the
general form

x′(t) = f (t, x(t)).

For the most part, we will consider initial value problems, where the
solution is determined by an initial condition

x(t0) = x0.

A wide variety of methods have been proposed to solve such equa-
tions, often derived from the techniques of interpolation, approxima-
tion, and quadrature studied earlier in the course.

Differential equations play the dominant role in applied math-
ematics. Their (approximate) solution is required in nearly every
corner of physics, chemistry, biology, engineering, finance, and be-
yond. For many practical problems involving nonlinearities, one
cannot write down a closed-form solution to a differential equation in
terms of familiar functions such as polynomials, trigonometric func-
tions, and exponentials. Thus the numerical solution of differential
equations is an enormous field. In this course we shall only be able
to focus on ordinary differential equations (ODEs). Partial differen-
tial equations (PDEs) are even more challenging, requiring several
additional semester-long courses to cover the basic methods.

The numerical solution of differential equations began in earnest
with Leonhard Euler and his contemporaries in the mid 1700s, with
especially important contributions following between 1880 and 1905.
The primary motivating application was celestial mechanics, where
the approximate integration of Newton’s differential equations of
motion was needed to predict the orbits of planets and comets. In-
deed celestial mechanics (more generally, Hamiltonian systems) con-
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tinues to motivate the field, leading to recent innovations in so-called
geometric or symplectic integrators.

5.1 Existence theory for ODEs

Before computing numerical solutions to ODE initial value problems,
we should address the variety of problems that arise, and the the-
oretical conditions under which one can guarantee that a solution
exists.

5.1.1 Scalar equations

A standard scalar initial value problem takes the form

Given: x′(t) = f (t, x(t)), with x(t0) = x0

Determine: x(t) for all t ≥ t0.

That is, we are given a formula for the derivative of some unknown
function x(t), together with a single value of the function at some
initial time, t0. The goal is to use this information to determine x(t) at
all points t beyond the initial time.

Differential equations are an inherently graphical subject, so we
should examine a few sample problems and plots of their solutions.

Example 5.1. First consider the simple, essential model problem

x′(t) = λx(t),

with exact solution x(t) = eλtc, where the constant c is determined by
the initial data (t0, x0). In the common case that t0 = 0,

x0 = x(0) = eλ·0c = c,

so the exact solution is
x(t) = eλtx0.

If λ > 0, the solution grows exponentially with t; λ < 0 yields
exponential decay. Because this linear equation is easy to solve, it

If λ = α + iβ ∈ C (with α, β ∈ IR), then

etλ = et(α+iβ) = etαeitβ.

Since itβ is purely imaginary, |eitβ| = 1,
so

|etλ| = etα.

Thus |etλ| → 0 as t → ∞ if Re λ < 0,
while |etλ| → ∞ as t→ ∞ if Re λ > 0.

provides a good test case for numerical algorithms. Moreover, it is
the prototypical linear ODE; from it, we gain insight into the local
behavior of nonlinear ODEs.

Applications typically give equations whose whose solutions
cannot be expressed as simply as the solution of this linear model
problem. Among the tools that improve our understanding of more
difficult problems is the direction field of the function f (t, x), a key
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Figure 5.1: Force field for the equation
x′(t) = x(t), for which f (t, x) = x.

technique from the sub-discipline of the qualitative analysis of ODEs.

For an elementary introduction to the
qualitative analysis of ODEs, see Hub-
bard and West, Differential Equations:
A Dynamical Systems Approach, Part I,
Springer-Verlag, 1991.

Here is the critical idea: The function f (t, x(t)) reveals the slope of the
solution x(t) going through any point in the (t, x(t)) plane. Hence
one can get a good impression about the behavior of a differential
equation by plotting these slopes throughout some interesting region
of the (t, x(t)) plane.

To plot the direction field, let the horizontal axis represent t, and
the vertical axis represent x. Then divide the (t, x) plane with reg-
ular grid points, {(tj, xk)}. Centered at each grid point, draw a line
segment whose slope is f (tj, xk). To get a rough impression of the
solution of the differential equation x′(t) = f (t, x) with x(t0) = x0,
begin at the point (t0, x0), and follow the direction of the slope lines.

Figure 5.1 shows the direction field for x′(t) = x(t), giving
f (t, x) = x. Since f does not depend directly on t, the differential
equation is autonomous. In the plot of the direction field, for a fixed
value of x, the arrows point in the same direction and have the same
magnitude for all t.

One only needs a few simple MATLAB commands to produce a
direction field like the one seen in Figure 5.1, thanks to the build-in
quiver routine.

f = inline(’x’,’t’,’x’); % x’ = f(t,x) = x

x = linspace(-3,3,15); t = linspace(0,6,15); % grid of points at which to plot the slope

[T,X] = meshgrid(t,x); % turn grid vectors into matrices

figure(1), clf

quiver(T,X,ones(size(T)),f(T,X)), hold on % produce a "quiver" plot

axis([min(t) max(t) min(x) max(x)]) % adjust the axes

Figure 5.2 repeats Figure 5.1, but now showing solution trajectories
for x(0) = 0.1 and x(0) = −0.01. Notice how these solutions follow
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Figure 5.2: Force field for the equation
x′(t) = x(t), now showing solutions for
x(0) = 0.1 (in blue) and x(0) = −0.01
(in red).

the arrows in the direction field.

Example 5.2. Next consider an equation that, for most x(0), lacks an
elementary solution that can be expressed in closed form,

x′(t) = sin(tx(t)).

The direction field for sin(xt) is shown below. Though we don’t have
access to the exact solution, it is a simple matter to compute accu-
rate approximations. Several solutions (for x(0) = 3, x(0) = 0, and
x(0) = −2) are superimposed on the direction field. These were
computed using a one-step method of the kind we will discuss mo-
mentarily. (Those areas where up and down arrows appear to cross
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Figure 5.3: Force field for the equation
x′(t) = sin(tx(t)), showing solutions for
x(0) = 3 (blue), x(0) = 0 (black) and
x(0) = −2 (red).
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are asymptotes of the solution: between the up and down arrow is a
point where the slope f (t, x) is zero.)

5.1.2 Systems of equations

In most applications we do not have a simple scalar equation, but
rather a system of equations describing the coupled dynamics of
several variables. Such situations give rise to vector-valued functions
x(t) ∈ IRn. In particular, the initial value problem becomes

Given: x′(t) = f(t, x(t)), with x(t0) = x0

Determine: x(t) for all t ≥ t0.

All the techniques for solving scalar initial value problems described
in this course can be applied to systems of this type.

5.1.3 Higher-order ODEs

Newton’s Second Law, F(t) = ma(t), leads to many important
second-order differential equations. Noting the acceleration a(t) is
the second derivative of the position x(t), we arrive at

x′′(t) = m−1F(t).

Thus, we are often interested in systems of higher-order ODEs.
To keep the notation simple, consider the scalar second-order

problem

Given: x′′(t) = f (t, x(t), x′(t)), with x(t0) = x0, x′(t0) = y0

Determine: x(t) for all t ≥ t0.

Note, in particular, that the initial conditions x(t0) and x′(t0) must
both be supplied. In some cases, one instead knows x(t)

at two distinct points, x(t0) = x0 and
x(tfinal) = xfinal, leading to an ODE
boundary value problem.

This second order equation (and higher-order ODE’s as well)
can always be written as a first order system of equations. Define
x1(t) = x(t), and let x2(t) = x′(t). Then

x′1(t) = x′(t) = x2(t)

x′2(t) = x′′(t) = f (t, x(t), x′(t)) = f (t, x1(t), x2(t)).

Writing this in vector form, x(t) = [x1(t) x2(t)]T, and the differential
equation becomes Fonts matter: x(t) denotes a scalar

quantity, while x(t) is a vector.
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x′(t) =

[
x′1(t)
x′2(t)

]
=

[
x2(t)

f (t, x1(t), x2(t))

]
= f(t, x(t)).

The initial value is given by

x0 =

[
x1(t0)

x2(t0)

]
=

[
x(t0)

x′(t0)

]
.

The most famous second-order differential equation,

x′′(t) = −x(t),

has the solution x(t) = α cos(t) + β sin(t), for constants α and β

depending upon the initial values. Write the second-order equation
as the system

x′(t) =

[
x′1(t)
x′2(t)

]
=

[
x2(t)
−x1(t)

]
.

Combining Newton’s inverse-square description of gravitational
force with his Second Law leads to the system of second order ODEs

x′′(t) =
−x(t)
‖x(t)‖3

2
,

where x ∈ IR3 is a vector in Euclidean space, and the 2-norm denotes
the usual (Euclidean) length of a vector,

‖x(t)‖2 = (x1(t)2 + x2(t)2 + x3(t)2)1/2.

Since x(t) ∈ IR3, this second order equation reduces to a system of six
first order equations.

5.1.4 Picard’s Theorem: Existence and Uniqueness of Solutions

Before constructing numerical solutions to these differential equa-
tions, it is important to understand when solutions exist at all. Pi-
card’s theorem establishes existence and uniqueness.

Theorem 5.1 (Picard’s Theorem). For a proof, see Süli and Mayers,
Section 12.1.Let f (t, x) be a continuous function on the rectangle

D = {(t, x) : t ∈ [t0, tfinal], x ∈ [x0 − c, x0 + c]}

for some fixed c > 0. Furthermore, suppose | f (t, x0)| ≤ K for all
t ∈ [t0, tfinal], and suppose there exists some Lipschitz constant L > 0
such that

| f (t, u)− f (t, v)| ≤ L |u− v|
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for all u, v ∈ [x0 − c, x0 + c] and all t ∈ [t0, tfinal]. Finally, suppose that

c ≥ K
L

(
eL(tfinal−t0) − 1

)
.

(That is, the box D must be sufficiently large to compensate for large
values of K and L.) Then there exists a unique x ∈ C1[t0, tfinal] such
that x(t0) = x0, x′(t) = f (t, x) for all t ∈ [t0, tfinal], and |x(t)− x0| ≤ c
for all t ∈ [t0, tfinal].

In simpler words, these hypotheses ensure the existence of a unique
C1 solution to the initial value problem, and this solution stays within
the rectangle D for all t ∈ [t0, tfinal], i.e., as t increases the solution
will ‘exit’ from the right-side of the rectangle, not the top or bottom.

5.2 One-step methods

We are prepared to discuss some numerical methods to approximate
the solution to all these ODEs. To simplify the notation, we present
our methods in the context of the scalar equation

x′(t) = f (t, x(t))

with the initial condition x(t0) = x0. All the algorithms generalize
trivially to systems: simply replace scalars with vectors.

When computing approximate solutions to the initial value prob-
lem, we will not obtain the solution for every value of t > t0, but
only on a discrete grid. In particular, we will generate approximate The field of asymptotic analysis delivers

approximations in terms of elementary
functions that can be highly accurate;
these are typically derived in a non-
numerical fashion, and often have
the virtue of accurately identifying
leading order behavior of complicated
solutions. For a beautiful introduc-
tion to this important area of applied
mathematics, see Carl M. Bender and
Seven A. Orszag, Advanced Mathematical
Methods for Scientists and Engineers;
McGraw-Hill, 1978; Springer, 1999.

solutions at some regular grid of time steps

tk = t0 + kh

for some constant step-size h. (The methods we consider in this sub-
section allow h to change with each step size, so one actually has
tk = tk−1 + hk. For simplicity of notation, we will assume for now
that the step-size is fixed.)

The approximation to x at the time tk is denoted by xk, so hope-
fully

xk ≈ x(tk).

Of course, the initial data is exact:

x0 = x(t0).

5.2.1 Euler’s method

We need some approximation that will advance from the exact point
on the solution curve, (t0, x0) to time t1. From basic calculus we
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know that

x′(t) = lim
h→0

x(t + h)− x(t)
h

.

This definition of the derivative inspires our first method. Apply it at
time t0 with a small but finite time step h > 0 to obtain

x′(t0) ≈
x(t0 + h)− x(t0)

h
.

Since x′(t0) = f (t0, x(t0)) = f (t0, x0), we know the quantity on
the left hand side of this approximation. The only quantity we don’t
know is x(t0 + h) = x(t1). Rearrange the above to put x(t1) on the
left hand side:

x(t1) ≈ x(t0) + hx′(t0) = x0 + h f (t0, x0).

This approximation is precisely the one suggested by the direction
field discussion in Section 5.1.1. There, to progress from the starting
point (t0, x0), we followed the line of slope f (t0, x0) some distance,
which in the present context is our step size, h. To progress from
the new point, (t1, x1), we follow a new slope, f (t1, x1), giving the
iteration

x2 = x1 + h f (t1, x1).

There is an important distinction here. Ideally, we would have de-
rived our value of x2 ≈ x(t2) from the formula

x(t2) ≈ x(t1) + h f (t1, x(t1)).

However, an error was made in the computation of x1 ≈ x(t1); we
do not know the exact value x(t1). Thus, we settle for computing
x2 from x1, a quantity we do know. This might seem like a minor
distinction, but in general the difference between the approximation
xk and the true solution x(tk) is vital. At each step, a local error is
made due to the approximation of the derivative by a line. These
local errors accumulate, giving a global error. Is a small local error
enough to ensure small global error? This question is the subject of
the next two lectures.

Given the approximation x2, repeat the same procedure to obtain
x3, and so on. Formally,

Euler’s Method: xk+1 = xk + h f (tk, xk).

The first step of Euler’s method is illustrated in the following
schematic.
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Example 5.3. Consider the performance of Euler’s method on
the two examples in Section 5.1.1. First, we examine the equation,
x′(t) = x(t), with initial condition x(0) = 1. We apply two step sizes:
h = 0.5 and h = 0.1. Naturally, we expect that decreasing h will
improve the local accuracy. But with h = 0.1, we require five times
as many approximations as with h = 0.5. How do the errors made
at these many steps accumulate? The plot below shows that both ap-
proximations underestimate the true solution, but as we expect, the
smaller step size yields the better approximation – but requires more
work to get to a fixed destination time.

Example 5.4. Next, consider the second example, x′(t) = sin(tx(t)),
this time with x(0) = 5. Since we do not know the exact solution, we
can only compare approximate answers, here obtained with h = 0.5
and h = 0.1. For t > 4, the solutions completely differ from one
another! Again, the smaller step size is the more accurate solution. In
the plot below, the direction field is shown together with the approx-
imate solutions. Note that f (t, x) = sin(tx) varies with x, so when
the h = 0.5 solution diverges from the h = 0.1 solution, very different
values of f are used to generate iterates. The h = 0.5 solution ‘jumps’
over the correct asymptote, and provides a very misleading answer.

Example 5.5. For a final example of Euler’s method, consider the
equation

x′(t) = 1 + x(t)2

with x(0) = 0. This equation looks innocuous enough; indeed, you This example is given in Kincaid and
Cheney, page 525.might notice that the exact solution is x(t) = tan(t). The true solu-

tion blows up in finite time, x(t) → ∞ as t → π/2. (Such blow-up
behavior is common in ODEs and PDEs where the formula for the
derivative of x involves higher powers of x.) It is reasonable to seek
an approximate solution to the differential equation for t ∈ [0, π/2),
but beyond t = π/2, the equation does not have a solution, and any
answer produced by our numerical method is, essentially, garbage.
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For any finite x, f (t, x) = 1 + x2 will always be finite. Thus Euler’s
method,

xk+1 = xk + h f (tk, xk)

= h + xk(1 + hxk)

will always produce some finite quantity; it will never give the infi-
nite answer at t = π/2. Still, as we see in the plots below, Euler’s
method captures the qualitative behavior well, with the iterates grow-
ing very large soon after t = π/2. (Notice that the vertical axis is
logarithmic, so by t = 2, the approximation with time step h = 0.05
exceeds 1010.)
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lecture 33: Local Analysis of One-Step Integrators

What can be said of the error between the computed solution xk at
time tk = t0 + kh and the exact solution x(tk)? In this lecture and the
next, we analyze this error, as a function of k, h, and properties of the
ODE, for an important class of algorithms that generalize the forward
Euler method.

5.2.2 Runge–Kutta Methods

To obtain increased accuracy in Euler’s method,

xk+1 = xk + h f (tk, xk),

one might naturally reduce the step-size, h. Since Euler’s method
derives from a first-order approximation to the derivative, we might
expect the error to decay linearly in h. Before making this rigorous,
first consider some better approaches: we are rarely satisfied with
order-h accuracy! By improving upon Euler’s method, we hope to
obtain an improved solution while still maintaining a large time-step.

First consider a modification that might not look like such a big
improvement: simply replace f (tk, xk) by f (tk+1, xk+1) to obtain

xk+1 = xk + h f (tk+1, xk+1),

called the backward Euler method. Because xk+1 depends on the value
f (tk+1, xk+1), this scheme is called an implicit method; to compute
xk+1, one needs to solve a (generally nonlinear) system of equations,
rather more involved than the simple update required for the for-
ward Euler method.

At each step, one must find a zero of the
function

G(xk+1) = xk+1 − xk − h f (tk+1, xk+1)

using, for example Newton’s method
or the secant method. If h is small and
f is not too wild, we might hope that
we could get an initial guess xk+1 ≈ xk ,
or xk+1 ≈ xk + h f (tk , xk). Note that
this nonlinear iteration could require
multiple evaluations of f to advance the
backward Euler method by one time
step.

One can improve on both Euler methods by averaging the updates
they make to xk:

(5.1) xk+1 = xk +
1
2 h
(

f (tk, xk) + f (tk+1, xk+1)
)

.

This method is the trapezoid method, for it can be derived by integrat-
ing the equation x′(t) = f (t, x(t)),∫ tk+1

tk

x′(t)dt =
∫ tk+1

tk

f (t, x)dt,

and approximating the integral on the right using the trapezoid rule.
The fundamental theorem of calculus gives the exact formula for the
integral on the left, x(tk+1)− x(tk). Together, this gives

(5.2) x(tk+1)− x(tk) ≈
tk+1 − tk

2

(
f
(
tk, x(tk)

)
+ f

(
tk+1, x(tk+1)

))
.
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Replacing the inaccessible exact values x(tk) and x(tk+1) with their
approximations xk and xk+1, and using the time-step h = tk+1 − tk,
equation (5.2) suggests

xk+1 − xk =
h
2
(

f (tk, xk) + f (tk+1, xk+1)
)
.

Rearranging this equation gives the trapezoid method (5.1) for xk+1.
Like the backward Euler method, the trapezoid rule is implicit,

due to the f (tk+1, xk+1) term. To obtain a similar explicit method,
replace xk+1 by its approximation from the explicit Euler method:

f (tk + h, xk+1) ≈ f (tk + h, xk + h f (tk, xk)).

The result is called Heun’s method or the improved Euler method:

xk+1 = xk +
1
2 h
(

f (tk, xk) + f (tk + h, xk + h f (tk, xk))
)

.

Note that this method can be implemented using only two evalua-
tions of the function f (t, x).

The modified Euler method takes a similar approach to Heun’s
method:

xk+1 = xk + h f
(
tk +

1
2 h, xk +

1
2 h f (tk, xk)

)
,

which also requires two f evaluations per step.
Additional function evaluations can deliver increasingly accurate

explicit one-step methods, an important family of which are known
as Runge–Kutta methods. In fact, the forward Euler and Heun meth-
ods are examples of one- and two-stage Runge–Kutta methods. The
four-stage Runge–Kutta method is among the most famous one-step
methods:

xk+1 = xk +
1
6 h
(

k1 + 2k2 + 2k3 + k4

)
,

where

One often encounters this method
implemented as a subroutine called RK4

in old FORTRAN codes.

k1 = f (tk, xk)

k2 = f (tk +
1
2 h, xk +

1
2 hk1)

k3 = f (tk +
1
2 h, xk +

1
2 hk2)

k4 = f (tk + h, xk + hk3).

We must address an important consideration: these more sophis-
ticated methods might potentially give better approximations of the
solution x(t), but they require more evaluations of the function f per
step than the forward Euler method. Many interesting applications
give functions f that are expensive to evaluate. One must make a
trade-off: methods with greater accuracy allow for larger time-step h,
but require more function evaluations per time step. To understand
the interplay between accuracy and computational expense, we re-
quire a more nuanced understanding of the convergence behavior of
these various methods.
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5.2.3 Truncation Error

All explicit one-step methods can be written in the general form

xk+1 = xk + hΦ(tk, xk; h).

Such methods incur two types of error:

1. The error due to the fact that even if the method was exact at tk,
the updated value xk+1 at tk+1 will not be exact. This is called
truncation error, or local error.

2. In practice, the value xk is not exact. How is this discrepancy,
the fault of previous steps, magnified by the current step? This
accumulated error is called global error.

Let us make these notions of error more precise. At every given
time tk, k = 1, 2, . . ., we have some approximation xk to the value
x(tk). Denote the global error by

ek := x(tk)− xk.

We seek to understand this error as a function of the step size h.
To analyze the global error ek, first consider the approxima-

tions made at each iteration. In the last lecture, we saw that Euler’s
method made an error by approximating the derivative x′(tk) by a
finite difference,

x(tk+1)− x(tk)

h
≈ x′(tk) = f (tk, x(tk)).

This type of error is made at every step. Generalize this error for all
explicit one-step methods.

Definition 5.1. The truncation error of an explicit one-step ODE inte-
grator is defined as

Tk =
x(tk+1)− x(tk)

h
−Φ(tk, x(tk); h).

If Tk → 0 as h → 0, the method is consistent. If Tk = O(hp), the
method has order-p truncation error.

The key to understanding truncation error is to note that Tk is essen-
tially just a rearranged version of the general one-step method, except
that the exact solutions x(tk) and x(tk+1) have replaced the approximations
xk and xk+1. Thus, the truncation error can be regarded as a measure
of the error the method would make in a single step if supplied with
perfect data, x(tk).
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Example 5.6. It is simple to compute Tk for the explicit Euler method:

Tk =
x(tk+1)− x(tk)

h
−Φ(tk, x(tk); h)

=
x(tk+1)− x(tk)

h
− f (tk, x(tk))

=
x(tk+1)− x(tk)

h
− x′(tk).

This last substitution, f (tk, x(tk)) = x′(tk), is valid because f is eval-
uated at the exact solution x(tk). (Recall that in general, f (tk, xk) 6=
x′(tk).) Assuming that x(t) ∈ C2[tk, tk+1], we can expand x(t) in a
Taylor series about t = tk to obtain

x(tk+1) = x(tk) + hx′(tk) +
1
2 h2x′′(ξ)

for some ξ ∈ [tk, tk+1]. Rearrange this to obtain a formula for x′(tk),
and substitute it into the formula for Tk, yielding

Tk =
x(tk+1)− x(tk)

h
− x′(tk)

=
x(tk+1)− x(tk)

h
− x(tk+1)− x(tk)

h
+ 1

2 hx′′(ξ)

= 1
2 hx′′(ξ).

Thus, the forward Euler method has truncation error Tk = O(h), so
Tk → 0 as h→ 0.

Similarly, one can find that Heun’s method and the modified Eu-
ler’s method both have O(h2) truncation error, while the error for the
four-stage Runge–Kutta method is O(h4). Extrapolating from this
data, one might expect that a method requiring m evaluations of f
can deliver O(hm) truncation error. Unfortunately, this is not true be-
yond m = 4, hence the fame of the four-stage Runge–Kutta method.
All Runge–Kutta methods with O(h5) truncation error require at least
six evaluations of f . As we will discuss later, the same

function evaluations for higher order
methods can be strategically combined
to give two methods with different
orders of accuracy. Comparing the
estimates from two methods of different
orders, one can estimate the error in the
integration. Such estimates then allow
one to adjust the time-step h on the fly
during an integration to control the
error.

Next we must address a fundamental question: Does Tk → 0 as
h→ 0 ensure global convergence, ek → 0, for each k = 1, 2, . . . ?
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lecture 34: Global Analysis of One-Step Integrators

5.3 Global error analysis for explicit one-step methods

The last lecture addressed the truncation error, Tk, of a one-step
method. Consistency (i.e., Tk → 0 as h → 0) is an obvious neces-
sary condition for the global error

ek = x(tk)− xk

to converge as h → 0. In this lecture, we wish to understand this key
question:

Is consistency sufficient for convergence of the global error as h→ 0?
As before, consider the general one step method

xk+1 = xk + hΦ(tk, xk; h)

where the choice of Φ(tk, xk; h) defines the specific algorithm. We can
rearrange the formula for truncation error,

Tk =
x(tk+1)− x(tk)

h
−Φ(tk, x(tk); h),

to obtain an expression for x(tk+1),

x(tk+1) = x(tk) + hΦ(tk, x(tk); h) + hTk.

This formula is comparable to the one-step method itself,

xk+1 = xk + hΦ(tk, xk; h).

Combining these expressions gives a formula for the global error,

ek+1 = x(tk+1)− xk+1

= x(tk)− xk + h
(

Φ(tk, x(tk); h)−Φ(tk, xk; h)
)
+ hTk

= ek + h
(

Φ(tk, x(tk); h)−Φ(tk, xk; h)
)
+ hTk.

Recall the example x′(t) = 1 + x2 from Section 5.1. That equation
blew up in finite time, while the iterates of Euler’s method were
always finite. This is disappointing: for some equations, we can es-
sentially have infinite global error! Thus, to get a useful error bound,
we must make an assumption that the ODE is well behaved. Suppose
we are integrating our equation from t0 to some fixed tfinal. Then
assume there exists a constant LΦ, depending on the equation, the time
interval, and the particular method (but not h), such that

|Φ(t, u; h)−Φ(t, v; h)| ≤ LΦ|u− v|
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for all t ∈ [t0, tfinal] and all u, v ∈ IR. This assumption is closely
related to the Lipschitz condition that plays an essential role in the the-
orem of existence of solutions given in Section 5.1. For ‘nice’ ODEs
and reasonable methods Φ, this condition is not difficult to satisfy. For example, for the forward Euler

method, LΦ = L, where L is the usual
Lipshitz constant for the ordinary
differential equation.

This assumption is precisely what we need to bound the difference
between Φ(tk, x(tk); h) and Φ(tk, xk; h) that appears in the formula for
ek. In particular, we now have

|ek+1| =
∣∣∣ek + h

(
Φ(tk, x(tk); h)−Φ(tk, xk; h)

)
+ hTk

∣∣∣
≤ |ek|+ h

∣∣∣Φ(tk, x(tk); h)−Φ(tk, xk; h)
∣∣∣+ h|Tk|

≤ |ek|+ hLΦ|x(tk)− xk|+ h|Tk|

= |ek|+ hLΦ|ek|+ h|Tk|

= |ek|(1 + hLΦ) + h|Tk|.

Suppose we are interested in all iterates from x0 up to xn for some n.
Then let T denote the magnitude of the maximum truncation error
over all those iterates:

T := max
0≤k≤n

|Tk|.

We now build up an expression for en iteratively:

|e0| = |x(t + 0)− x0| = 0

|e1| ≤ h|T0| ≤ hT

|e2| ≤ |e1|(1 + hLΦ) + h|T1| ≤ hT(1 + hLΦ) + hT

|e3| ≤ |e2|(1 + hLΦ) + h|T2| ≤ hT(1 + hLΦ)
2 + hT(1 + hLΦ) + hT

...

|en| ≤ hT
n−1

∑
k=0

(1 + hLΦ)
k.

Notice that this bound for |en| is a finite geometric series, and thus
we have the convenient formula

Recall that

eαx = 1 + αx + 1
2 (αx)2 + 1

3! (αx)3 + · · ·

and so, since hLΦ > 0,

1 + hLΦ < ehLΦ .

|en| ≤ hT
( (1 + hLΦ)

n − 1
(1 + hLΦ)− 1

)
=

T
LΦ

(
(1 + hLΦ)

n − 1
)

<
T

LΦ

(
enhLΦ − 1

)
.(5.3)

(This result and proof are given as Theorem 12.2 in the text by Süli
and Mayers.)

There are two key lessons to be learned from this bound on |en|.
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• Fix h. The bound suggests that |en| can grow exponentially as n
increases. As you continue your numerical integration indefinitely,
the error can be quite severe, even for well-behaved differential
equations.

• Focus attention on some fixed target time tfinal, and consider time
steps

h :=
tfinal − t0

n
,

so that xn ≈ x(tfinal). As n → ∞, note that h → 0, and in this case
nh = tfinal − t0 is fixed. Thus in the bound

|en| <
T

LΦ

(
enhLΦ − 1

)
Since LΦ is independent of the step size h, the term enhLΦ − 1 is a
constant, and |en| = O(T). Hence if the truncation error converges,
T → 0 as h → 0, then the global error at tfinal will also converge.
Moreover, if Tk = O(hp), then the global error at tfinal will also be
O(hp). Remember this beautiful, vital fact: the global error reduces at
the same rate as the truncation error for one-step methods!

The plots in Figure 5.4 confirm these observations. Again for the
model problem x′(t) = x(t) with (t0, x0) = (0, 1), the figure shows
the error for Euler’s method (Tk = O(h)), Heun’s method (Tk =

O(h2)), and the four-stage Runge–Kutta method (Tk = O(h4)) for
t ∈ [0, 10]. Note the logarithmic scale of the vertical axes in these
plots. As n increases, the error grows exponentially in all these cases.
However, as h is reduced, the error gets smaller at all fixed times. The
extent of this error reduction is what one would expect from the local
truncation errors. All of the plots start with h = 0.1 (black dots). The
other curves show the result of repeatedly cutting h in half, giving
h = 0.05 (blue), h = 0.025 (red), h = 0.0125 (cyan), and h = 0.00625
(magenta).

• If Tk is proportional to h (forward Euler), then cutting h in half
should scale Tk by 1/2.

• If Tk is proportional to h2 (Heun’s method), then cutting h in half
should scale Tk by 1/4.

• If Tk is proportional to h4 (four-stage Runge–Kutta), then cutting h
in half should scale Tk by 1/16.

5.4 Adaptive Time-Step Selection

One-step methods make it simple to change the time-step h at each
iteration. For complicated nonlinear problems, it is quite natural that
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Figure 5.4: Global errors for three
explicit one-step methods applied to
x′(t) = x(t): the forward Euler method
(first order), Heun’s method (second
order), and the four-stage Runge–Kutta
method (fourth order). Each plot shows
the evolution of the error for five values
of the time-step h. As k increases, the
error grows exponentially. At a fixed t,
the error reduces as h is reduced, at the
rate given by the truncation error.
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some regions (especially when x′ is large) will merit a small time-step
h, yet other regions, where there is less change in the solution, can
easily be handled with a large value of h.

In the 1960s, Erwin Fehlberg suggested a beautiful way in which
the step-size could be automatically adjusted at each step. There
exist Runge–Kutta methods of order 4 and order 5 that can both be
generated with the same six evaluations of f . (Recall that any fifth-
order Runge–Kutta method requires at least six function evaluations.)
First, we define the necessary f evaluations for this method:

k1 = f (tk, xk)

k2 = f (tk +
1
4 h, xk +

1
4 hk1)

k3 = f (tk +
3
8 h, xk +

3
32 hk1 +

9
32 hk2)

k4 = f (tk +
12
13 h, xk +

1932
2197 hk1 − 7200

2197 hk2 +
7296
2197 hk3)

k5 = f (tk + h, xk +
439
216 hk1 − 8hk2 +

3680
513 hk3 − 845

4104 hk4)

k6 = f (tk +
1
2 h, xk − 8

27 hk1 + 2hk2 − 3544
2565 hk3 +

1859
4104 hk4 − 11

40 hk5).

The following method has O(h5) truncation error:

xk+1 = xk + h
(

16
135 k1 +

6656
12825 k3 +

28561
56430 k4 − 9

50 k5 +
2

55 k6

)
.

The f evaluations used to compute these k j values can be combined
in a different manner to obtain the following approximation, which
only has O(h4) truncation error:

x̂k+1 = xk + h
(

25
216 k1 +

1408
2565 k3 +

2197
4104 k4 − 1

5 k5

)
.

Why would one be interested in an O(h4) method when an O(h5) ap-
proximation is available? By inspecting xk+1 − x̂k+1, we can see how
much the extra order of accuracy changes the solution. A significant
difference signals that the step size h may be too large; software will
react by reducing the step size before proceeding. This technology
is implemented in MATLAB’s ode45 routine. (The ode23 routine is
similar, but based on a pair of second and third order methods.)

Another popular fifth-order method, designed by Cash and Karp
(1990), uses six carefully chosen function evaluations that can be com-
bined to also provide O(h), O(h2), O(h3), and O(h4) approximations.
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lecture 35: Linear Multistep Methods: Truncation Error

5.5 Linear multistep methods: general form, local error

One-step methods construct an approximate solution xk+1 ≈ x(tk+1)

using only one previous approximation, xk. This approach enjoys
the virtue that the step size h can be changed at every iteration, if
desired, thus providing a mechanism for error control. This flexibility
comes at a price: For each order of accuracy in the truncation error,
each step must perform at least one new evaluation of the derivative
function f (t, x). This might not sound particularly onerous, but in
many practical problems, f evaluations are terribly time-consuming.
A classic example is the N-body problem, which arises in models
ranging from molecular dynamics to galactic evolution. Such models
give rise to N coupled second order nonlinear differential equations,
where the function f measures the forces between the N different
particles. An evaluation of f requires O(N2) arithmetic operations to
compute, costly indeed when N is in the millions. Every f evaluation
counts. A landmark improvement to this N2

approach, the fast multipole method, was
developed by Leslie Greengard and
Vladimir Rokhlin in the late 1980s.

One could potentially improve this situation by re-using f evalu-
ations from previous steps of the ODE integrator, rather than always
requiring f to be evaluated at multiple new (t, x) values at each step
(as is the case, for example, with higher order Runge–Kutta meth-
ods). Consider the method

xk+1 = xk + h
( 3

2 f (tk, xk)− 1
2 f (tk−1, xk−1)

)
,

where h is the step size, h = tk+1 − tk = tk − tk−1. Here xk+1 is de-
termined from the two previous values, xk and xk−1. Unlike Runge–
Kutta methods, f is not evaluated at points between tk and tk+1.
Rather, each step requires only one new f evaluation, since f (tk−1, xk−1)

would have been computed already at the previous step. Hence this
method has roughly the same computational requirements as Euler’s
method, though soon we will see that its truncation error is O(h2).
The Heun and midpoint rules attained this same truncation error, but
required two new f evaluations at each step.

Several drawbacks to this new scheme are evident: the step size
is fixed throughout the iteration, and values for both x0 and x1 are Step-size adjustment is possible, e.g.,

interpolating (tk−1, xk−1) and (tk , xk) to
get intermediate values, but step-size
adjustment still requires more care than
with one-step methods.

needed before starting the method. The former concern can be ad-
dressed in practice through interpolation techniques. To handle the
latter concern, initial data can be generated using a one-step method
with small step size h. In some applications, including some prob-
lems in celestial mechanics, an asymptotic series expansion of the
solution, accurate near t ≈ t0, can provide suitable initial data.
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5.5.1 General linear multistep methods

This section considers a general class of integrators known as linear
multistep methods. These notes on linear multistep meth-

ods draw heavily from the excellent
presentation in Süli and Mayers,
Numerical Analysis: An Introduction,
Cambridge University Press, 2003.

Definition 5.2. general m-step linear multistep method has the form

m

∑
j=0

αjxk+j = h
m

∑
j=0

β j f (tk+j, xk+j),

with αm 6= 0. If βm 6= 0, then the formula for xk+m involves xk+m on
the right hand side, so the method is implicit; otherwise, the method
is explicit. A final convention requires |α0| + |β0| 6= 0, for if α0 =

β0 = 0, then we actually have an m− 1 step method masquerading
as a m-step method. As f is only evaluated at (tj, xj), we adopt the
abbreviation

f j = f (tj, xj).

By this definition most Runge–Kutta methods, though one-step
methods, are not multistep methods. Euler’s method is an example of
a one-step method that also fits this multistep template. Here are a
few examples of linear multistep methods:

Euler’s method: xk+1 − xk = h fk α0 = −1, α1 = 1; β0 = 1, β1 = 0.

Trapezoid rule: xk+1 − xk =
h
2 ( fk + fk+1) α0 = −1, α1 = 1; β0 = 1

2 , β1 = 1
2 .

Adams–Bashforth: xk+2 − xk+1 = h
2 (3 fk+1 − fk) α0 = 0, α1 = −1, α2 = 1;

β0 = − 1
2 , β1 = 3

2 , β2 = 0.

The ‘Adams–Bashforth’ method presented above is the 2-step
example of a broader class of Adams–Bashforth formulas. The 4-step
Adams–Bashforth method takes the form

xk+4 = xk+3 +
h

24

(
55 fk+3 − 59 fk+2 + 37 fk+1 − 9 fk

)
for which

α0 = 0, α1 = 0, α2 = 0, α3 = −1, α4 = 1;

β0 = − 9
24 , β1 = 37

24 , β2 = − 59
24 , β3 = 55

24 , β4 = 0.

The Adams–Moulton methods are a parallel class of implicit formu-
las. The 3-step version of this method is

xk+3 = xk+2 +
h

24

(
9 fk+3 + 19 fk+2 − 5 fk+1 + fk

)
,

giving

α0 = 0, α1 = 0, α2 = −1, α4 = 1;

β0 = 1
24 , β1 = − 5

24 , β2 = 19
24 , β3 = 9

24 .
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5.5.2 Truncation error for linear multistep methods

Recall that the truncation error of one-step methods of the form
xk+1 = xk + hΦ(tk, xk; h) was given by

Tk =
x(tk+1)− x(tk)

h
−Φ(tk, xk; h).

With general linear multistep methods is associated an analogous
formula, based on substituting the exact solution x(tk) for the ap-
proximation xk, and rearranging terms.

Definition 5.3. The truncation error for the linear multistep method

m

∑
j=0

αjxk+j = h
m

∑
j=0

β j f (tk+j, xk+j)

is given by the formula

Tk =
∑m

j=0

[
αj x(tk+j)− h β j f (tk+j, x(tk+j))

]
h ∑m

j=0 β j
.

The ∑m
j=0 β j term in the denominator is a normalization term; were

it absent, multiplying the entire multistep formula by a constant
would alter the truncation error, but the not the iterates xk.

To get a simple form of the truncation error, we turn to Taylor
series:

x(tk+1) = x(tk + h) = x(tk) + hx′(tk) + h2

2! x′′(tk) + h3

3! x′′′(tk) + h4

4! x(4)(tk) + · · ·

x(tk+2) = x(tk + 2h) = x(tk) + 2hx′(tk) + 22h2

2! x′′(tk) + 23h3

3! x′′′(tk) + 24h4

4! x(4)(tk) + · · ·

x(tk+3) = x(tk + 3h) = x(tk) + 3hx′(tk) + 32h2

2! x′′(tk) + 33h3

3! x′′′(tk) + 34h4

4! x(4)(tk) + · · ·
...

x(tk+m) = x(tk + mh) = x(tk) + mhx′(tk) + m2h2

2! x′′(tk) + m3h3

3! x′′′(tk) + m4h4

4! x(4)(tk) + · · ·

and also

f (tk+1, x(tk+1)) = x′(tk + h) = x′(tk) + hx′′(tk) + h2

2! x′′′(tk) + h3

3! x(4)(tk) + · · ·

f (tk+2, x(tk+2)) = x′(tk + 2h) = x′(tk) + 2hx′′(tk) + 22h2

2! x′′′(tk) + 23h3

3! x(4)(tk) + · · ·

f (tk+3, x(tk+3)) = x′(tk + 3h) = x′(tk) + 3hx′′(tk) + 32h2

2! x′′′(tk) + 33h3

3! x(4)(tk) + · · ·
...

f (tk+m, x(tk+m)) = x′(tk + mh) = x′(tk) + mhx′′(tk) + m2h2

2! x′′′(tk) + m3h3

3! x(4)(tk) + · · · .

Substituting these expansions into the expression for Tk (eventually)
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yields a convenient formula:

( m

∑
j=0

β j

)
Tk =

∑m
j=0

[
αj x(tk+j)− h β j f (tk+j, x(tk+j))

]
h

= h−1
[ m

∑
j=0

αj

]
x(tk) +

∞

∑
`=0

h`
[ m

∑
j=0

(
αj

1
(`+ 1)!

j`+1 − β j
1
`!

j`
)

x(`+1)(tk)
]

=
1
h

[ m

∑
j=0

αj

]
x(tk) +

[ m

∑
j=0

jαj −
m

∑
j=0

β j

]
x′(tk)

+ h
[ m

∑
j=0

j2

2
αj −

m

∑
j=0

jβ j

]
x′′(tk)

+ h2
[ m

∑
j=0

j3

6
αj −

m

∑
j=0

j2

2
β j

]
x′′′(tk)

+ h3
[ m

∑
j=0

j4

24
αj −

m

∑
j=0

j3

6
β j

]
x(4)(tk) + · · · .

In particular, the coefficient of the h` term is simply

m

∑
j=0

j`+1

(`+ 1)!
αj −

m

∑
j=0

j`

` !
β j

for all nonnegative integers `.

Definition 5.4. A linear multistep method is consistent if Tk → 0 as
h→ 0.

The formula for Tk. gives an easy condition to check the consis-
tency of a method.

Theorem 5.2. An m-step linear multistep method of the form

m

∑
j=0

αjxk+j = h
m

∑
j=0

β j fk+j

is consistent if and only if

m

∑
j=0

αj = 0 and
m

∑
j=0

jαj =
m

∑
j=0

β j.

If one of the conditions in Theorem 5.2 are violated, then the formula
for the truncation error contains either a term that grows like 1/h or
remains constant as h→ 0. The Taylor analysis of the truncation error
yields even more information, though: inspecting the coefficients
multiplying h, h2, etc. reveals easy conditions for determining the
overall truncation error of a linear multistep method.
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Definition 5.5. A linear multistep method is order-p accurate if Tk =

O(hp) as h→ 0.

Theorem 5.3. An m-step linear multistep method is order-p accurate
if and only if it is consistent and

m

∑
j=0

j`+1

(`+ 1)!
αj =

m

∑
j=0

j`

` !
β j

for all ` = 1, . . . , p− 1.

The next few examples show this theorem in action, applying it to
some of the linear multistep methods discussed earlier.

Example 5.7 (Forward Euler method).

α0 = −1, α1 = 1; β0 = 1, β1 = 0.

Clearly α0 + α1 = −1 + 1 = 0 and (0α0 + 1α1)− (β0 + β1) = 0.
Thus the method is consistent.

When analyzed as a one-step method, the forward Euler method
had truncation error Tk = O(h). The same result should hold when
we analyze the algorithm as a linear multistep method. Indeed,(

1
2 02α0 +

1
2 12α1

)
−
(

0β0 + 1β1

)
= 1

2 6= 0.

Thus, Tk = O(h).

Example 5.8 (Trapezoid method).

α0 = −1, α1 = 1; β0 =
1
2

, β1 =
1
2

.

Again, consistency is easy to verify: α0 + α1 = −1 + 1 = 0 and
(0α0 + 1α1)− (β0 + β1) = 1− 1 = 0. Furthermore,(

1
2 02α0 +

1
2 12α1

)
− (0β0 + 1β1) =

1
2 −

1
2 = 0,

so Tk = O(h2), but(
1
6 03α0 +

1
6 13α1

)
−
(

1
2 02β0 +

1
2 12β1) =

1
6 −

1
4 6= 0,

so the trapezoid rule is not third order accurate: Tk = O(h2).

Example 5.9 (2-step Adams–Bashforth).

α0 = 0, α1 = −1, α2 = 1;

β0 = − 1
2 , β1 = 3

2 , β2 = 0.
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Does this explicit 2-step method deliver O(h2) accuracy, like the (im-
plicit) Trapezoid method? Consistency follows easily:

α0 + α1 + α2 = 0− 1 + 1 = 0

and
(0α0 + 1α1 + 2α2)− (β0 + β1) = 1− 1 = 0.

The second order condition is also satisfied,(
1
2 02α0 +

1
2 12α1 +

1
2 22α2

)
−
(

0β0 + 1β1

)
= 3

2 −
3
2 = 0,

but not the third order,(
1
6 03α0 +

1
6 13α1 +

1
6 23α2

)
−
(

1
2 02β0 +

1
2 12β1

)
= 7

6 −
3
4 6= 0.

Thus Tk = O(h2): the method is second order.

Example 5.10 (4-step Adams–Bashforth).

α0 = 0, α1 = 0, α2 = 0, α3 = −1, α4 = 1;

β0 = − 9
24 , β1 = 37

24 , β2 = − 59
24 , β3 = 55

24 , β4 = 0.

Consistency holds, since ∑ αj = −1 + 1 = 0 and

4

∑
j=0

jαj −
4

∑
j=0

β j =
(

3(−1) + 4(1)
)
−
(

9
24 + 37

24 −
47
24 + 55

24

)
= 1− 1 = 0.

The coefficients of h, h2, and h3 in the expansion for Tk all vanish:

4

∑
j=0

1
2 j2αj−∑4

j=0 jβ j =
(

32

2 (−1) + 42

2 (1)
)
−
(

0(− 9
24 ) + 1( 37

24 ) + 2(− 59
24 ) + 3( 55

24 )
)
= 7

2 −
84
24 = 0;

4

∑
j=0

1
6 j3αj−∑4

j=0
1
2 j2β j =

(
33

6 (−1) + 43

6 (1)
)
−
(

12

2 (
37
24 ) +

22

2 (−
59
24 ) +

32

2 (
55
24 )
)
= 37

6 −
148
24 = 0;

4

∑
j=0

1
24 j4αj−∑4

j=0
1
6 j3β j =

(
34

24 (−1) + 44

24 (1)
)
−
(

13

6 (
37
24 ) +

23

6 (−
59
24 ) +

33

6 (
55
24 )
)
= 175

24 −
1050
144 = 0.

However, the O(h4) term is not eliminated:

4

∑
j=0

1
120 j5αj−∑4

j=0
1

24 j4β j =
(

35

120 (−1) + 45

120 (1)
)
−
(

14

24 (
37
24 ) +

24

24 (−
59
24 ) +

34

24 (
55
24 )
)
= 1267

120 −
887
144 6= 0.

Thus Tk = O(h4): the method is fourth order.
A similar computation establishes fourth-order accuracy for the

4-step (implicit) Adams–Moulton formula

xk+3 = xk+2 +
1

24 h
(

9 fk+3 + 19 fk+2 − 5 fk+1 + fk

)
.
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In the last lecture, we proved that consistency implies convergence for
one-step methods. Essentially, provided the differential equation is
sufficiently well-behaved (in the sense of Picard’s Theorem), then the
numerical solution produced by a consistent one-step method on the
fixed interval [t0, tfinal] will converge to the true solution as h → 0.
Of course, this is a key property that we hope is shared by multistep
methods.

Whether this is true for general linear multistep methods is the
subject of the next lecture. For now, we merely present some compu-
tational evidence that, for certain methods, the global error at tfinal

behaves in the same manner as the truncation error.
Consider the model problem x′(t) = x(t) for t ∈ [0, 1] with

x(0) = x0 = 1, which has the exact solution is x(t) = et. We shall
approximate this solution using Euler’s method, the second-order
Adams–Bashforth formula, and the fourth-order Adams–Bashforth
formula. The latter two methods require data not only at t = 0, but
also at several additional values, t = h, t = 2h, and t = 3h. For
this simple experiment, we can use the value of the exact solution,
x1 = x(t1), x2 = x(t2), and x3 = x(t3).

We close by offering evidence that there is more to the analysis of
linear multistep methods than truncation error. Here are two explicit
methods that are both second order:

xk+2 − 3
2 xk+1 +

1
2 xk = h( 5

4 fk+1 − 3
4 fk)

xk+2 − 3xk+1 + 2xk = h( 1
2 fk+1 − 3

2 fk).

We apply these methods to the model problem x′(t) = x(t) with
x(0) = 1, with exact initial data x0 = 1 and x1 = eh. The results
of these two methods are shown below. The first method tracks the
exact solution x(t) = et very nicely. The second method, however,
shows a disturbing property: while it matches up quite well for the
initial steps, it soon starts to fall far from the solution. Why does this
second-order method do so poorly for such a simple problem? Does
this reveal a general problem with linear multistep methods? If not,
how do we identify such ill-mannered methods?
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lecture 36: Linear Multistep Mehods: Zero Stability

5.6 Linear multistep methods: zero stability

Does consistency imply convergence for linear multistep methods?
This is always the case for one-step methods, as proved in section 5.3,
but the example at the end of the last lecture suggests the issue is
less straightforward for multistep methods. By understanding the
subtleties, we will come to appreciate one of the most significant
themes in numerical analysis: stability of discretizations.

We are interested in the behavior of linear multistep methods as
h → 0. In this limit, the right hand side of the formula for the generic
multistep method,

m

∑
j=0

αjxk+j = h
m

∑
j=0

β j f (tk+j, xk+j),

makes a negligible contribution. This motivates our consideration of
the trivial model problem x′(t) = 0 with x(0) = 0. Does the linear
multistep method recover the exact solution, x(t) = 0?

When x′(t) = 0, clearly we have fk+j = 0 for all j. The condition
αm 6= 0 allows us to write

xm = − (α0x0 + α1x1 + · · ·+ αm−1xm−1)

αm

Hence if the method is started with exact data

x0 = x1 = · · · = xm−1 = 0,

then

xm = − (α0 · 0 + α1 · 0 + · · ·+ αm−1 · 0)
αm

= 0,

and this pattern will continue: xm+1 = 0, xm+2 = 0, . . . . Any lin-
ear multistep method with exact starting data produces the exact
solution for this special problem, regardless of the time-step.

Of course, for more complicated problems it is unusual to have
exact starting values x1, x2, . . . xm−1; typically, these values are only
approximate, obtained from some high-order one-step ODE solver
or from an asymptotic expansion of the solution that is accurate in
a neighborhood of t0. To discover how multistep methods behave,
we must first understand how these errors in the initial data pollute
future iterations of the linear multistep method.

Definition 5.6. Suppose the initial value problem x′(t) = f (t, x),
x(t0) = x0 satisfies the requirements of Picard’s Theorem over the
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interval [t0, tfinal]. For an m-step linear multistep method, consider
two sequences of starting values for a fixed time-step h

{x0, x1, . . . , xm−1} and {x̂0, x̂1, . . . , x̂m−1},

that generate the approximate solutions {xj}n
j=0 and {x̂j}n

j=0, where
tn = tfinal. The multistep method is zero-stable for this initial value
problem if for sufficiently small h there exists some constant M (inde-
pendent of h) such that

|xk − x̂k| ≤ M max
0≤j≤m−1

|xj − x̂j|

for all k with t0 ≤ tk ≤ tfinal. More plainly, a method is zero-stable for
a particular problem if errors in the starting values are not magnified
in an unbounded fashion.

Proving zero-stability directly from this definition would be a
chore. Fortunately, there is an easy way to check zero stability all
at once for all sufficiently ‘nice’ differential equations. To begin with,
consider a particular example.

Example 5.11 (A novel second order method). The truncation error
formulas from the last lecture can be used to derive a variety of linear
multistep methods that satisfy a given order of truncation error. You
can use those conditions to verify that the explicit two-step method

(5.4) xk+2 = 2xk − xk+1 + h( 1
2 fk +

5
2 fk+1)

is second order accurate. Now we will test the zero-stability of this
algorithm on the trivial model problem, x′(t) = 0 with x(0) = 0.
Since f (t, x) = 0 in this case, the method reduces to

xk+2 = 2xk − xk+1.

As seen above, this method produces the exact solution if given exact
initial data, x0 = x1 = 0. But what if x0 = 0 but x1 = ε for some small
ε > 0? This method produces the iterates

x2 = 2x0 − x1 = 2 · 0− ε = −ε

x3 = 2x1 − x2 = 2(ε)− (−ε) = 3ε

x4 = 2x2 − x3 = 2(−ε)− 3ε = −5ε

x5 = 2x3 − x4 = 2(3ε)− (−5ε) = 11ε

x6 = 2x4 − x5 = 2(−5ε)− (11ε) = −21ε

x7 = 2x5 − x6 = 2(11ε)− (−21ε) = 43ε

x8 = 2x6 − x7 = 2(−21ε)− (43ε) = 85ε.
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Figure 5.5: Approximate solutions to
x′(t) = 0 using the novel second-order
method (5.4) with initial data x0 = 0
and x1 = 0.01. As h gets smaller, the
method produces approximations to the
true solution x(t) = 0 of exponentially
degrading quality! (Note how the scale
of the vertical axis grows from plot to
plot.)

In just seven steps, the error has been multiplied 85-fold. The error is
roughly doubling at each step, and before long the approximate ‘so-
lution’ is complete garbage. Figure 5.5 shows this instability, plotting
xk for four different values of h and ε = 0.01.

This examples illustrates another quirk. When applied to this
particular model problem, the linear multistep method reduces to
∑m

j=0 αjxk+j = 0, and thus never incorporates the time-step, h. Hence
the error at some fixed time tfinal = hk gets worse as h gets smaller and k
grows accordingly! Figure 5.6 puts all four of solutions from Figure 5.5
together in one plot, dramatically illustrating how the solutions de-
grade as h gets smaller!

Though this method has second-order local (truncation) error, it
blows up if fed incorrect initial data for x1. Decreasing h can magnify
this effect, even if, for example, the error in x1 is proportional to h.
We can draw a larger lesson from this simple problem: For linear
multistep methods, consistency (i.e., Tk → 0 as h → 0) is not sufficient
to ensure convergence.

Let us analyze our unfortunate method a little more carefully. Set-
ting the starting values x0 and x1 aside for the moment, we want to
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Figure 5.6: All four solutions from
Figure 5.5 plotted together, to illustrate
how the approximate solutions from the
method (5.4) to x′(t) = 0 with x0 = 0
and x1 = ε degrade as h→ 0.

find all sequences {xj}∞
j=0 that satisfy the linear, constant-coefficient

recurrence relation
xk+2 = 2xk − xk+1.

Since the xk values grew exponentially in the example above, assume
that this recurrence has a solution of the form xk = γk for all k =

0, 1, . . ., where γ is some number that we will try to determine. Plug
this ansatz for xk into the recurrence relation to see if you can make it
work as a solution:

γk+2 = 2γk − γk+1.

Divide this equation through by γk to obtain the quadratic equation

γ2 = 2− γ.

If γ solves this quadratic, then the putative solution xk = γk indeed
satisfies the difference equation. Since

γ2 + γ− 2 = (γ + 2)(γ− 1)

the roots of this quadratic are simply γ = −2 and γ = 1. Thus we
expect solutions of the form xk = (−2)k and the less interesting
xk = 1k = 1.

If xk = γk
1 and xk = γk

2 are both solutions of the recurrence, then
xk = Aγk

1 + Bγk
2 is also a solution, for any real numbers A and B. To

see this, note that

γ2
1 + γ1 − 2 = γ2

2 + γ2 − 2 = 0,

and so
Aγk

1

(
γ2

1 + γ1 − 2
)
= Bγk

2

(
γ2

2 + γ2 − 2
)
= 0.
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Rearranging this equation,

Aγk+2
1 + Bγk+2

1 = 2(Aγk
1 + Bγk

1)− (Aγk+1
1 + Bγk+1

1 ),

which implies that xk = Aγk
1 + Bγk

2 is a solution to the recurrence.
In fact, this is the general form of a solution to our recurrence.

For any starting values x0 and x1, one can determine the associated
constants A and B. For example, with γ1 = −2 and γ2 = 1, the initial
conditions x0 = 0 and x1 = ε require that

A + B = 0

−2A + B = ε,

which implies
A = −ε/3, B = ε/3.

Indeed, the solution

(5.5) xk =
ε

3
− ε

3
(−2)k

generates the iterates x0 = 0, x1 = ε, x2 = −ε, x3 = 3ε, x4 =

−5ε, . . . computed previously. Notice that (5.5) reveals exponential
growth with k: this growth overwhelms algebraic improvements
in the estimate x1 that might occur as we reduce h. For example, if
ε = x1 − x(t0 + h) = chp for some constant c and p ≥ 1, then
xk = chp(1− (−2)k)/3 still grows exponentially in k.

5.6.1 The Root Condition

The real trouble with the previous method was that the formula
for xk involves the term (−2)k. Since |−2| > 1, this component of
xk grows exponentially in k. This term is simply an artifact of the
finite difference equation, and has nothing to do with the underlying
differential equation. As k increases, this (−2)k term swamps the
other term in the solution. It is called a parasitic solution.

Let us review how we determined the general form of the solution.
We assumed a solution of the form xk = γk, then plugged this solu-
tion into the recurrence xk+2 = 2xk − xk+1. The possible values for γ

were roots of the equation γ2 = 2− γ.
The process we just applied to one specific linear multistep method

can readily be extended to the general linear multistep method

(5.6)
m

∑
j=0

αjxk+j = h
m

∑
j=0

β j f (tk+j, xk+j).

by applying the method again to the trivial equation x′(t) = 0. For
this special equation, the method (5.6) reduces to

m

∑
j=0

αjxk+j = 0.
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Substituting xk = γk yields

m

∑
j=0

αjγ
k+j = 0.

Canceling γk,
m

∑
j=0

αjγ
j = 0.

Definition 5.7. The characteristic polynomial of an m-step linear multi-
step method is the degree-m polynomial

ρ(z) =
m

∑
j=0

αjzj.

For xk = γk to be a solution to the above recurrence, γ must be a
root of the characteristic polynomial, ρ(γ) = 0. Since the character-
istic polynomial has degree m, it will have m roots. If these roots are
distinct, call them γ1, γ2, . . . , γm, the general form of the solution of If some root, say γ1 is repeated p

times, then instead of contributing
the term c1γk

1 to the general solution,
it will contribute a term of the form
c1,1γk

1 + c1,2kγk
1 + · · ·+ c1,pkp−1γk

1.

m

∑
j=0

αjxk+j = 0

is
xk = c1γk

1 + c2γk
2 + · · · cmγk

m.

for constants c1, . . . , cm that are determined from the starting values
x0, . . . , xm.

To avoid parasitic solutions to a linear multistep method, all the
roots of the characteristic polynomial should be located within the
unit disk in the complex plane, i.e., |γj| ≤ 1 for all j = 1 . . . , m. Thus, Following on from the previous

marginal note, we note that if some
root, say γ1, is a repeated root on the
unit circle, |γ1| = 1, then the general
solution will have terms like kγk

1, so
|kγk

1| = k|γ1|k = k. While this term
will not grow exponentially in k, it does
grow algebraically, and errors will still
grow enough as h → 0 to violate zero
stability.

for the simple differential equation x′(t) = 0, we have found a way
to describe zero stability: Initial errors will not be magnified if the
characteristic polynomial has all its roots in the unit disk; any roots
on the unit disk should be simple (i.e., not multiple).

This analysis might seem too trivial: after all, the problem x′(t) =
0 is not particularly interesting. What is remarkable is that, in a
sense, if the linear multistep method is zero stable for x′(t) = 0, the
one can prove it is zero stable for all well-behaved differential equations!
This result was discovered in the late 1950s by Germund Dahlquist. An excellent discussion of this theoreti-

cal material is given in Süli and Mayers,
Numerical Analysis: An Introduction,
Cambridge University Press, 2003; these
notes follow, in part, their exposition.
See also E. Hairer, S. P. Nørsett, and G.
Wanner, Solving Ordinary Differential
Equations I: Nonstiff Problems, 2nd ed.,
Springer-Verlag, 1993.

Theorem 5.4. A linear multistep method is zero-stable for any ‘well-
behaved’ initial value problem provided it satisfies the root condition:

• all roots of ρ(γ) = 0 lie in the unit disk, i.e., |γ| ≤ 1;

• any roots on the unit circle (|γ| = 1) are simple (i.e., not multiple).
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One can see now where the term zero-stability comes from: it is
necessary and sufficient for the stability definition to hold for the
differential equation x′(t) = 0. In recognition of the discoverer of
this key result, zero-stability is sometimes called Dahlquist stability.
(Another synonymous term is root stability.) In addition to making
this beautiful characterization, Dahlquist also answered the question
about the conditions necessary for a multistep method to be conver-
gent.

Theorem 5.5 (Dahlquist Equivalence Theorem).
Suppose an m-step linear multistep method applied to a ‘well-
behaved’ initial value problem on [t0, tfinal] with consistent starting
values,

xk → x(tk) for tk = t0 + hk, k = 0, . . . , m− 1

as h→ 0. This method is convergent, i.e.,

xd(t−t0)/he → x(t) for all t ∈ [t0, tfinal].

as h→ 0 if and only if the method is consistent and zero-stable.
If the exact solution is sufficiently smooth, x(t) ∈ Cp+1[t0, tfinal]

and the multistep method is order-p accurate (Tk = O(hp)), then

x(tk)− xk = O(hp)

for all tk ∈ [t0, tfinal].

Dahlquist also characterized the maximal order of convergence for
a zero-stable m-step multistep method.

Theorem 5.6 (First Dahlquist Stability Barrier).
A zero-stable m-step linear multistep method has truncation error no
better than

• O(hm+1) if m is odd
• O(hm) if m is even.

Example 5.12 (A method on the brink of stability). We close this
lecture with an example of a method that, we might figuratively say,
is ‘on the brink of stability.’ That is, the method is zero-stable, but it
stretches that definition to its limit. Consider the method

(5.7) xk+2 = xk + 2h fk+1,
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Figure 5.7: The second-order zero-
stable method (5.7) applied to x′(t) =
−2x(t), started with initial condition
x0 = 1 and a 1% error in x1, i.e.,
x1 = 1.01e−2h (shown in red). The
method is ‘on the brink of stability’:
the systematic error in x1 prevents
the method from converging, but
the deviation from the true solution
x(t) = e−2t (in blue) is bounded. This
would not be the case if the method
violated the root condition.

which has O(h2) truncation error. The characteristic polynomial is
z2 − 1 = (z + 1)(z − 1), which has the two roots γ1 = −1 and
γ2 = 1. These are distinct roots on the unit circle, so the method is
zero-stable.

Apply this method to the model problem x′(t) = λx with x(0) =

1. Substituting f (tk, xk) = λxk into the method gives

xk+2 = xk + 2λhxk+1.

For a fixed λ and h, this is just another recurrence relation like we
have considered above. It has solutions of the form γk, where γ is a
root of the polynomial

γ2 − 2λhγ− 1 = 0.

In fact, those roots are simply

γ = λh±
√

λ2h2 + 1.

Since
√

λ2h2 + 1 ≥ 1 for any h > 0 and λ 6= 0, at least one of the
roots γ will always be greater than one in modulus, thus leading to
a solution xk that grows exponentially with k. Of course, the exact
solution to this equation is x(t) = eλt, so if λ < 0, then we have
x(t) → 0 as t → ∞. The numerical approximation will generally
diverge, giving the qualitatively opposite behavior!

How is this possible for a zero-stable method? The key is that
here, unlike our previous zero-unstable method, the exponential
growth rate depends upon the time-step h. Zero stability only re-
quires that on a fixed finite time interval t ∈ [t0, tfinal], the amount by
which errors in the initial data are magnified be bounded.

Figure 5.7 shosw what this means. Set λ = −2 and [t0, tfinal] =

[0, 2]. Start the method with x0 = 1 and x1 = 1.01 e−2h. That is,
the second data point has an initial error of 1%. The plot on the left
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Figure 5.8: Second-order Adams–
Bashforth method applied to x′(t) =
−2x(t), started with initial condition
x0 = 1 and a 10% error in x1, i.e.,
x1 = 1.01e−2h. Despite the systematic
error, the method still behaves like the
true solution, x(t) = e−2t.

shows the solution for h = 0.05, while the plot on the right uses
h = 0.01. In both cases, the solution oscillates wildly across the true
solution, and the amplitude of these oscillations grows with t. As
we reduce the step-size, the solution remains equally bad. (If the
method were not zero-stable, we would expect the error to magnify
as h shrinks.)

The solution does not blow up, but nor does it converge as h → 0.
So does this example contradict the Dahlquist Equivalence Theorem?
No! The hypotheses for that theorem require consistent starting
values. In this case, that means x1 → x(t0 + h) as h → 0. (We assume
that x0 = x(t0) is exact.) In the example shown above, we have kept
fixed x1 to have a 1% error as h→ 0, so it is not consistent.

Not all linear multistep methods behave as badly as this one in the
presence of imprecise starting data. Recall the second-order Adams–
Bashforth method from the previous lecture.

xk+2 − xk+1 =
h
2
(3 fk+1 − fk).

This method is zero stable, as ρ(z) = z2 − z = z(z − 1). Figure 5.8
repeats the exercise of Figure 5.7, with the same errors in x1, but
with the second-order Adams–Bashforth method. Though the initial
value error will throw off the solution slightly, we recover the correct
qualitative behavior.

Judging from the different manner in which our two second-order
methods handle this simple problem, it appears that there is still
more to understand about linear multistep methods. This is the sub-
ject of the next lecture.
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lecture 37: Linear Multistep Methods: Absolute Stability, Part I
lecture 38: Linear Multistep Methods: Absolute Stability, Part II

5.7 Linear multistep methods: absolute stability

At this point, it may well seem that we have a complete theory for
linear multistep methods. With an understanding of truncation er-
ror and zero stability, the convergence of any method can be easily
understood. However, one further wrinkle remains. (Perhaps you
expected this: thus far the β j coefficients have played no role in our
stability analysis!) Up to this point, our convergence theory addresses
the case where h → 0. Methods differ significantly in how small
h must be before one observes this convergent regime. For h too
large, exponential errors that resemble those seen for zero-unstable
methods can emerge for rather benign-looking problems—and for
some ODEs and methods, the restriction imposed on h to avoid such
behavior can be severe. To understand this problem, we need to con-
sider how the numerical method behaves on a less trivial canonical
model problem. For an elaboration of many details

described here, see Chapter 12 of Süli
and Mayers.

Now consider the model problem x′(t) = λx(t), x(0) = x0 for
some fixed λ ∈ C, which has the exact solution x(t) = etλx0. In those
cases where the real part of λ is negative (i.e., λ is in the open left
half of the complex plane), we have |x(t)| → 0 as t → ∞. For a fixed
step size h > 0, will a linear multistep method mimic this behavior?
The explicit Euler method applied to this equation takes the form

xk+1 = xk + h fk

= xk + hλxk

= (1 + hλ)xk.

Hence, this recursion has the general solution

xk = (1 + hλ)k x0.

Under what conditions will xk → 0? Clearly we need |1 + hλ| < 1;
this condition is more easily interpreted by writing |1 + hλ| = | −
1 − hλ|, where that latter expression is simply the distance of hλ

from −1 in the complex plane. Hence |1 + hλ| < 1 provided hλ is
located strictly in the interior of the disk of radius 1 in the complex
plane, centered at −1. This is the stability region for the explicit Euler
method, shown in the plot on the next page.

Now consider the backward (implicit) Euler method for this same
model problem:

xk+1 = xk + h fk+1

= xk + hλxk+1.
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Figure 5.9: Stability regions for the
forward and backward Euler method. If
hλ is contained within the blue region,
then the approximate solution {xk} to
x′(t) = λx(t) will converge, |xk | → 0, as
k→ ∞.

Solve this equation for xk+1 to obtain

xk+1 =
1

1− hλ
xk,

from which it follows that

xk = (1− hλ)−k x0.

Thus xk → 0 provided |1 − hλ| > 1, i.e., hλ must be more than a
distance of 1 away from 1 in the complex plane. As illustrated in the
plot on the next page, the backward Euler method has a much larger
stability region than the explicit Euler method. In fact, the entire left
half of the complex plane is contained in the stability region for the
implicit method. Since h > 0, for any value of λ with negative real
part, the backward Euler method will produce decaying solutions
that qualitatively mimic the exact solution.

If hλ falls within the stability region for a method, we say that the
method is absolutely stable for that value of hλ. Figure 5.9 shows the
stability regions for the forward and backward Euler methods. The
blue region shows values of λh in the complex plane for which the
method is absolutely stable. (For the backward Euler method, this
regions extends throughout the complex plane, beyond the range of
the plot.)

A general linear multistep method

m

∑
j=0

αjxk+j = h
m

∑
j=0

β j fk+j
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applied to x′(t) = λx, x(0) = x0 reduces to

m

∑
j=0

αjxk+j = hλ
m

∑
j=0

β jxk+j,

which can be rearranged as

m

∑
j=0

(αj − hλβ j)xk+j.

This expression closely resembles the formula we analyzed when
assessing the zero stability of linear multistep methods, except
that now we have the hλβ j terms. The new equation is also a lin-
ear constant-coefficient recurrence relation, so just as before we can
assume that it has solutions of the form xk = γk for constant γ. The
values of γ ∈ C for which such xk will be solutions to the recurrence
are the roots of the stability polynomial

m

∑
j=0

(αj − hλβ j)zj,

which can be written as

ρ(z)− hλσ(z) = 0,

where ρ is the characteristic polynomial,

ρ(z) =
m

∑
j=0

αjzj

and

σ(z) =
m

∑
j=0

β jzj.

Thus for a fixed hλ, there will be m solutions of the form γk
j for the

m roots γ1, . . . , γm of the stability polynomial. If these roots are all
distinct, then for any initial data x0, . . . , xm−1 we can find constants
c1, . . . , cm such that

xk =
m

∑
j=1

cjγ
k
j .

For a given value hλ, we have xk → 0 provided that |γj| < 1 for all
j = 1, . . . , m. If that condition is met, we say that the linear multistep
method is absolutely stable for that value of hλ.

In the next section, we will describe how linear systems of differ-
ential equations, x′(t) = Ax(t), can give rise, through an eigenvalue
decomposition of A, to the scalar problem x′(t) = λx(t) with com-
plex values of the eigenvalue λ (even if A is real). This explains our
interest in values of hλ ∈ C.
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We can now add a condition to our growing list of requirements to
look for when assessing the quality of a linear multistep method. We
seek linear multistep methods with the following properties:

• high order truncation error;

• zero stability;

• absolute stability region that contains as much of the left half of
the complex plane as possible.

Those methods for which the stability region contains the entire
left half plane are distinguished, as they will produce, for any value of
h, exponentially decaying numerical solutions to linear problems that
have exponentially decaying true solutions, i.e., when Re λ < 0.

Definition 5.8. A linear multistep method is A-stable provided that its
stability region contains the entire left half of the complex plane.

Figure 5.10 shows the stability regions for two Adams–Bashforth
and Adams–Moulton methods. Notice two trends in these plots:
(1) the implicit Adams–Moulton methods have a larger stability re-
gion than the explicit Adams–Bashforth methods of the same order;
(2) as the order of the method increases, the stability region gets
smaller.

Figure 5.11 shows the stability regions for a class of implicit in-
tegrators called backward difference methods. The 1-step backward
difference method is simply the trapezoid method described earlier.
All four of these methods have contain the entire negative axis within
their stability region, which will make these methods very effective
for important systems of differential equations we will discuss in the
next lecture.

How does one draw plots of the sort shown here? We take the
second order Adams–Bashforth method

xk+2 − xk+1 = h( 3
2 fk+1 − 1

2 fk)

as an example. Apply this rule to x′(t) = f (t, x(t)) = λx(t) to obtain

xk+2 − xk+1 = λh( 3
2 xk+1 − 1

2 xk),

with which we associate the stability polynomial

z2 − (1 + 3
2 λh)z + 1

2 λh = 0.

Any point λh ∈ C on the boundary of the stability region must be
one for which the stability polynomial has a root z with |z| = 1. We
can rearrange the stability polynomial to give

λh =
z2 − z
3
2 z− 1

.
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xk+4 − xk+3 = 1
24 h
(
55 fk+3 − 59 fk+2 + 37 fk+1 − 9 fk
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xk+3 − xk+2 = 1

24 h
(
9 fk+3 + 19 fk+2 − 5 fk+1 + fk

)
Figure 5.10: Stability regions for
the second-order and fourth-order
Adams–Bashforth (explicit) and
Adams–Moulton (implicit) methods. If
hλ is contained within the blue region,
then the approximate solution {xk} to
x′(t) = λx(t) will converge, |xk | → 0, as
k→ ∞.

For general methods, this expression takes the form

(5.8) λh =
∑m

j=0 αjzj

∑m
j=0 β jzj ,

To determine the boundary of the stability region, we sample this
formula for all z ∈ C with |z| = 1, i.e., we trace out the image for z =

eiθ , θ ∈ [0, 2π). This curve will divide the complex plane into stable
and unstable regions, which can be distinguished by testing the roots
of the stability polynomial for λh within each of those regions.

We illustrate this process for the fourth order Adams–Bashforth
scheme. The curve described in the last paragraph is shown in Fig-
ure 5.12; it divides the complex plane into regions where the stability
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1-Step Backward Difference Method (Trapezoid) 2-Step Backward Difference Method
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Figure 5.11: Stability regions for four
(implicit) backward difference methods.
If hλ is contained within the blue
region, then the approximate solution
{xk} to x′(t) = λx(t) will converge,
|xk | → 0, as k→ ∞.

polynomial has an equal numbers of roots larger than 1 in magni-
tude. As denoted by the numbers on the plot: outside the curve there
is one root larger than one; within the rightmost lobes of this curve,
two roots are larger than one; within the leftmost region, no roots are
larger than one in magnitude. The latter is the stable region, which is
colored blue in the bottom-left plot in Figure 5.10.
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Figure 5.12: The curve traced out by
∑m

j=0 ajejiθ/ ∑m
j=0 bjejiθ for θ ∈ [0, 2π).

The numbers reveal the number of
roots of the stability polynomial that
have magnitude larger than one. The
stability region is the region bounded
by this curve for which all the roots of
the stability polynomial are less than
one in magnitude.
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lecture 39: Systems of ODEs, Stiff differential equations

5.8 Systems of linear differential equations

Thus far we have mainly considered scalar ODEs. Both one-step
and linear multistep methods readily generalize to systems of ODEs,
where the scalar x(t) ∈ IR is replaced by a vector x(t) ∈ IRn. In these
notes, we shall focus upon linear systems of ODEs. Of course, many applications give rise

to nonlinear ODEs; understanding the
linear case is essential to understanding
the behavior of nonlinear systems in the
vicinity of a steady-state.

Consider the linear system of differential equations

x′(t) = Ax(t), x(0) = x0,

for A ∈ Cn×n and x(t) ∈ Cn. We wish to see how the scalar linear
stability theory discussed in the last lecture applies to such systems.
Suppose that the matrix A is diagonalizable, so that it can be written
A = VΛV−1 for the diagonal matrix Λ = diag(λ1, . . . , λn). Premulti-
plying the differential equation by V−1 yields

(5.9) V−1x′(t) = ΛV−1x(t), V−1x(0) = V−1x0.

Now let y(t) = V−1x(t), which represents x(t) in a transformed
coordinate system in which the eigenvectors form the new coordinate
axes. In these new coordinates, the matrix equation decouples into a
system of n independent scalar linear equations: the system (5.9) can
be written as

y′(t) = Λy(t), y(0) = V−1x0.

This system is equivalent to the n scalar problems

y′1(t) = λ1y1(t), y1(0) = [V−1x0]1,

...
...

y′n(t) = λnyn(t), yn(0) = [V−1x0]n,

each of which has a simple solution of the form

yj(t) = eλjtyj(0).

Now use the relationship x(t) = Vy(t) to transform back to the
original coordinates. Collect the exponentials eλjt into a diagonal
matrix,

eΛt :=


etλ1

. . .
etλn

 .



220

Then write

(5.10) x(t) = Vy(t) = VeΛty(0) = VeΛtV−1x0,

which motivates the definition of the matrix exponential,

eAt := VeΛtV−1,

giving the solution x(t) has the convenient form

x(t) = eAtx0.

For scalar equations, we considered when |x(t)| → 0. The analogy
for x(t) ∈ IRn is ‖x(t)‖2 → 0. What properties of A ensure this
convergence?

We can bound the solution using norm inequalities,

‖x(t)‖2 ≤ ‖V‖2 ‖eΛt‖2 ‖V−1‖2 ‖x0‖2.

Since eΛt is a diagonal matrix, its 2-norm is the largest magnitude of
its entries:

‖eΛt‖2 = max
1≤j≤n

|etλj |,

and hence

(5.11)
‖x(t)‖2

‖x0‖2
≤ ‖V‖2 ‖V−1‖2 max

1≤j≤n
|etλj |.

Thus the asymptotic decay rate of ‖x(t)‖2 is controlled by the right-
most eigenvalue of A in the complex plane. If all eigenvalues of A
have negative real part, then ‖x(t)‖2 → 0 as t → ∞ for all initial
conditions x(0). Such systems are called stable. When ‖V‖2‖V−1‖2 > 1, it is possible

that ‖x(t)‖2/‖x0‖2 > 1 for small t > 0,
even if this ratio must eventually decay
to zero as t → 0.The possibility of
this transient growth complicates the
analysis of dynamical systems with
non-symmetric coefficient matrices,
and turns out to be closely related the
sensitivity of the eigenvalues of A to
perturbations. This behavior is both
fascinating and physically important,
but regrettably beyond the scope of
these lectures.

Note that the definition etA = VetΛV−1 is consistent with the
more general definition obtained by substituting tA into the same
Taylor series that defines the scalar exponential:

etA = I + tA +
1
2!

t2A2 +
1
3!

t3A3 +
1
4!

t4A4 + · · · .

Setting x(t) = etAx0 with this series definition of etA,

x′(t) =
d
dt

(
etAx0

)
=

d
dt

(
I + tA +

t2

2!
A2 +

t3

3!
A3 + · · ·

)
x0

=
(

0 + A + tA2 +
t2

2!
A3 +

t3

3!
A4 + · · ·

)
x0

= A
(

I + tA +
t2

2!
A2 +

t3

3!
A3 + · · ·

)
x0

= AetAx0

= Ax(t).
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Hence x(t) = etAx0 solves the equation x′(t) = Ax(t), and satisfies
the initial condition x(0) = x0.

5.8.1 Linear multistep methods for linear systems

What can be said of the behavior of a linear multistep method ap-
plied to x′(t) = Ax(t)? Euler’s method, for example, takes the form

xk+1 = xk + hAxk

= (I + hA)xk.

Iterating from the initial condition,

x1 = (I + hA)x0

x2 = (I + hA)x1 = (I + hA)2x0

x3 = (I + hA)x2 = (I + hA)3x0

...

and, in general,
xk = (I + hA)kx0.

We can understand the asymptotic behavior of (I + hA)k by exam-
ining the eigenvalues of (I + hA)k: the quantity (I + hA)k → 0 if and Recall that Mk → 0 as k → ∞ if

and only if all eigenvalues of M have
magnitude strictly less than one.

only if all the eigenvalues of I + hA are less than one in magnitude.
The spectral mapping theorem ensures that if (λj, vj) is an eigenvalue-
eigenvector pair for A, then (1 + hλj, vj) is an eigenpair of I + hA.
This is easy to verify by a direct computation: If Avj = λjvj, then
(I + hA)vj = vj + hAvj = (1 + hλj)vj.

It follows that the numerical solution xk computed by Euler’s
method will decay to zero if |1 + hλj| < 1 for all eigenvalues λj

of A. In the language of the last lecture, this requires that hλj falls
in the absolute stability region for the forward Euler method for all
eigenvalues λj of A.

For a general linear multistep method, this criterion generalizes
to the requirement that hλj be located in the method’s absolute sta-
bility region for all eigenvalues λj of A. This phenomenon is illus-
trated in Figures 5.13 and 5.14. Here A is a 16× 16 matrix with all
its eigenvalues in the left half of the complex plane. We wish to solve
x′(t) = Ax(t) using the second-order Adams–Bashforth method,
whose stability region was plotted in the last lecture. The plots in
Figure 5.13 show hλj as crosses for the eigenvalues λ1, . . . , λ16 of A.
If any value of hλj is outside the stability region (shown in blue), then
the iteration will grow exponentially. If h is sufficiently small that hλj
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Figure 5.13: Values of hλj for all
eigenvalues of a 16× 16 matrix A. For
h = 1/4 many values of hλj fall outside
the stability region of the second-order
Adams–Bashforth method. For h = 1/8,
only one hλj is outside the stability
region, but that is enough to mean that
‖xk‖ → ∞ as k → ∞. For h = 1/10 and
h = 1/16, all values of hλj are in the
stability region, so ‖xk‖ → 0 as k→ ∞.

is in the stability region for all eigenvalues λj, then xk → 0 as k → ∞,
consistent with the behavior of the exact solution, x(t) → 0 as t → ∞.
Figure 5.13 shows ‖xk‖2 as a function of tk for three values of h (two
unstable and one stable).

This example deserves closer scrutiny. Suppose A is diagonaliz-
able, so we can write A = VΛV−1. Thus,

xk = (I + hA)kx0

= (I + hVΛV−1)kx0

= (VV−1 + hVΛV−1)kx0

= V(I + hΛ)kV−1x0.

Compare this last expression to the formula (5.10) for the true solu-
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Figure 5.14: The second-order Adams–
Bashforth method applied to x′(t) =
Ax(t) for the same matrix A used for
Figure 5.13. As seen in that figure, for
step-sizes h = 1/4 and h = 1/8 the
method is unstable, and ‖xk‖2 → ∞ as
k → ∞. When h = 1/10, hλj is in the
stability region for all eigenvalues λj of
A, and hence ‖xk‖2 → 0 as k→ ∞.

tion x(t) in terms of the matrix exponential. As we did in that case,
we can bound ‖xk‖2:

‖xk‖2 = ‖V(I + hΛ)kV−1x0‖2

= ‖V(I + hΛ)kV−1‖2‖x0‖2

= ‖V‖2‖V−1‖2‖(I + hΛ)k‖2‖x0‖2.

Since I + hΛ is a diagonal matrix,

(I + hΛ)k =


(1 + hλ1)

k

(1 + hλ2)
k

. . .
(1 + hλn)k

 ,

giving
‖(I + hΛ)k‖2 = max

1≤j≤n
|1 + hλj|k.

Thus, we arrive at the bound

‖xk‖2

‖x0‖2
≤ ‖V‖2‖V−1‖2 max

1≤j≤n
|1 + hλj|k,

which is analogous to the bound (5.11) for the exact solution.
We can glean just a bit more from our analysis of xk. Since A is

diagonalizable, its eigenvectors v1, . . . , vn for a basis for Cn. Expand
the initial condition x0 in this basis:

x0 =
n

∑
j=1

cjvj = Vc.
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Now, our earlier expression for xk gives

xk = V(I + hΛ)kV−1x0 = V(I + hΛ)kV−1Vc = V(I + hΛ)kc.

Since
(1 + hλ1)

k

(1 + hλ2)
k

. . .
(1 + hλn)k




c1

c2
...

cn

 =


(1 + hλ1)

kc1

(1 + hλ2)
kc2

...
(1 + hλn)kcn

 ,

we have
(5.12)

xk =
[

v1 v2 · · · vn

]


(1 + hλ1)
kc1

(1 + hλ2)
kc2

...
(1 + hλn)kcn

 =
n

∑
j=1

cj(1 + hλj)
kvj.

Thus as k → ∞, the approximate solution xk will start to look more
and more like (a scaled version of) the vector v`, where ` is the index
that maximizes |1 + hλj|:

|1 + hλ`| = max
1≤j≤n

|1 + hλj|.

5.8.2 Stiff differential equations

In the example in Figures 5.13 and 5.14 the step-size did not need to
be very small for all hλj to be contained within the stability region.
However, most practical examples in science and engineering yield
matrices A whose eigenvalues span multiple orders of magnitude
– and in this case, the stability requirement is far more difficult to
satisfy. First consider the following simple example. Let

A =

[
−199 −198

99 98

]

which has the diagonalization

A = VΛV−1 =

[
−1 2

1 −1

] [
−1 0
0 −100

] [
1 2
1 1

]
.

The eigenvalues are λ1 = −1 and λ2 = −100, and the exact solution
takes the form

x(t) = etAx0 = V

[
e−t 0
0 e−100t

]
V−1x0.
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Writing the initial condition as

x0 = V

[
c1

c2

]
= c1

[
−1

1

]
+ c2

[
2
−1

]
,

the solution is

Note that c = V−1x0.

x(t) = V

[
e−t 0
0 e−100t

]
V−1x0

= V

[
e−t 0
0 e−100t

] [
c1

c2

]
= c1e−t

[
−1

1

]
+ c2e−100t

[
2
−1

]
,
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Some snapshots of the exact solution
x(t) for the example with λ1 = −1
and λ2 = −100, using initial condition
x(0) = [1, 1]T . The solution decays,
‖x(t)‖2 → 0 as t → ∞, and as it does
so, the solution aligns in the direction
of the eigenvector associated with
λ1 = −1, v1 = [−1, 1]T .

and so x(t) → 0 as t → ∞. The eigenvalue λ2 = −100 corresponds to
a fast transient, a component of the solution that decays very rapidly;
the eigenvalue λ1 = −1 corresponds to a slow transient, a component
of the solution that decays much more slowly. Using this insight we
can describe the behavior of the system as t → 0 more precisely than
merely saying x(t) → 0. Since e−100t decays much more quickly than
e−t, the solution will be dominated by the λ1 term:

x(t) ∼ c1e−t

[
−1

1

]
, t→ ∞,

provided c1 6= 0. This means that the solution vector x(t) will quickly
align in the v1 direction as it converges toward zero.

Now apply the forward Euler method to this problem. From the
general expression (5.12), the iterate xk can be written in the basis of
eigenvectors as

xk = c1(1 + hλ1)
k

[
−1

1

]
+ c2(1 + hλ2)

k

[
2
−1

]

= c1(1− h)k

[
−1

1

]
+ c2(1− 100h)k

[
2
−1

]
.
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Some iterates xk of the forward Euler
method for the example with λ1 = −1
and λ2 = −100, using time-step
h = 0.021. This time-step is slightly
larger than the stability limit h < 0.02,
so ‖xk‖2 → ∞ as k increases. Moreover,
the solution aligns in the direction of
the the eigenvector associated with the
most unstable eigenvalue, v2 = [2,−1]T .

To obtain a numerical solution {xk} that mimics the asymptotic be-
havior of the true solution, x(t) → 0, one must choose h sufficiently
small that |1 + hλ1| = |1− h| < 1 and |1 + hλ2| = |1− 100h| < 1.
The first condition requires h ∈ (0, 2), while the second condition
is far more restrictive: h ∈ (0, 1/50). The more restrictive condition
describes the values of h that will give xk → 0 for all x0.

Take note of this phenomenon: the faster a component decays from the
true solution (like e−100t in our example), the smaller the time step must be
for the forward Euler method (and other explicit schemes).
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Problems for which A has eigenvalues with significantly different
magnitudes are called stiff differential equations. For such problems,
implicit methods – which generally have much larger stability re-
gions – are generally favored.

Thus far we have only sought xk → 0 as k → ∞. In some cases,
we merely wish for xk to be bounded. In this case, it is acceptable
to have an eigenvalue hλj on the boundary of the absolute stability
region of a method, provided it is not a repeated eigenvalue (more
precisely, provided it is associated with 1× 1 Jordan blocks, i.e., it is
not defective).

5.8.3 Closing example: heat equation

We can draw together many themes from this course in one elemen-
tary but vital example, the solution of the linear partial differential
equation

ut(x, t) = uxx(x, t)

posed on the domain x ∈ [0, 1] and t ≥ 0. This heat equation equa-
tion models the temperature in a long bar. The length of the bar is
spanned by the x variable; t refers to time, starting from t = 0 when
the state of the system is specified,

u(x, 0) = U0(x), x ∈ [0, 1].

Quenching both ends of this bar in an ice bath equates to the homoge-
neous Dirichlet boundary conditions

u(0, t) = u(1, t) = 0.

One common approach to numerically solving this equation is called
the method of lines. Here is the basic idea: discretize the continuum
x ∈ [0, 1] into a set of discrete points, then approximate uxx by a finite
difference approximation in the x variable. This discretization con-
verts the original partial differential equation into ordinary differential
equations, which can be readily solved using any of the techniques
discussed in this chapter.

Let us get more specific. Discretize [0, 1] into the points x0, . . . , xn+1,
uniformly spaced a distance

∆x =
1

n + 1

apart from one another,
xj = j∆x, j = 0, . . . , n + 1.

1. Recall from Section 1.7 that one can approximate derivatives by
differentiating interpolating polynomials. Indeed, in Section 1.7 we
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already saw how the second derivative can be approximated via
the difference

(5.13) uxx(xj, t) ≈
u(xj−1, t)− 2u(xj, t) + u(xj+1, t)

(∆x)2 ,

which is just an adaptation of equation (1.22). In making these
approximations, we shall no longer have access to the values of the
exact solution such as u(xj, t), so we will introduce a set of new
functions

uj(t) ≈ u(xj, t), j = 0, . . . , n + 1.

Then (5.13) becomes

(5.14) uxx(xj, t) ≈
uj−1(t)− 2uj(t) + uj+1(t)

(∆x)2 .

Notice that the boundary conditions from the differential equation,

u(0, t) = u(1, t) = 0, t ≥ 0,

directly imply that u0(t) = un+1(t) = 0 for all t ≥ 0. Now our goal
is to find uj(t) for j = 1, . . . , n.

This explains why this approach is
called the ‘method of lines’. It will
develop approximations uj(t) to the
solution u(x, t) on ‘lines’ of constant
x = xj values in the (x, t) plane.

2. Now recall the partial differential equation ut(x, t) = uxx(x, t).
Replacing uxx(x, t) with the finite difference approximation, the
differential equation suggests that we find uj(t) so that

∂

∂t
uj(t) =

uj−1(t)− 2uj(t) + uj+1(t)
(∆x)2 , j = 1, . . . , n.

These equations form a coupled linear system. Perhaps it helps to
write them out individually for a few values of j:

∂

∂t
u1(t) =

u0(t)− 2u1(t) + u2(t)
(∆x)2 =

−2u1(t) + u2(t)
(∆x)2

∂

∂t
u2(t) =

u1(t)− 2u2(t) + u3(t)
(∆x)2

...

∂

∂t
un−1(t) =

un−2(t)− 2un−1(t) + un(t)
(∆x)2

∂

∂t
un(t) =

un−1(t)− 2un(t) + un+1(t)
(∆x)2 =

un−1(t)− 2un(t)
(∆x)2 .
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Compile these equations into the matrix form

∂

∂t



u1(t)

u2(t)
...

un−1(t)

un(t)


=

1
(∆x)2



−2 1

1 −2
. . .

. . . . . . 1
1 −2 1

1 −2





u1(t)

u2(t)
...

un−1(t)

un(t)


,

which we summarize as

Note that A contains the leading
1/(∆x)2 factor.

u′(t) = Au(t),

a system of linear ordinary differential equations, with initial
condition derived from initial data U0(x) given for this problem:

u0 = u(0) =


u1(0)

...

un(0)

 =


U0(x1)

...

U0(xn)

 .

3. This approximation is called the semi-discretized form of the prob-
lem, since it is discretized in space, but time remains a continuous
variable. Now one could quickly express the solution using the
exponential of the matrix A, as discussed earlier in this section,

u(t) = etAu(0).

However, for large A computation of etA (e.g., using MATLAB’s Such large A arise when we have
partial differential equations in two
and three physical dimensions. The
one-dimensional example here is easy
by comparison.

expm command), is quite expensive, and so we wish to approxi-
mate the solution of the ordinary differential equation using one of the
techniques studied in this chapter.

For example, one could fix a time-step ∆t > 0 and seek an
approximation

uk ≈ u(tk).

The forward Euler method gives

uk+1 = uk + (∆t)Auk,

while the (implicit) backward Euler method

uk+1 = uk + (∆t)Auk+1

leads to the linear system of equations

(I− (∆t)A)uk+1 = uk

that must be solved (e.g., via Gaussian elimination) at each step to
find uk. If ∆t is fixed, then one would compute

a Cholesky or LU factorization of
I− ∆tA, thus expediting the solution
of this system at each step. If A is
banded, as it is in this example, such
factorizations are very fast.

The main question, then, is: given a choice of numerical integra-
tor (forward Euler, backward Euler, etc.), how large can the time
step ∆t be to maintain stability?
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4. To answer this question, diagonalize A to reveal its eigenvalues.
Thankfully, explicit formulas are available for these eigenvalues,

λj =
2 cos(jπ/(n + 1))− 2

(∆x)2 , j = 1, . . . , n;

the associated eigenvectors have a beautifully elegant formula:

vj =


sin
( jπ

n+1
)

sin
( 2jπ

n+1
)

...

sin
( njπ

n+1
)

 =


sin(jx1)

sin(jx2)

...

sin(jxn)

 , j = 1, . . . , n.

These eigenvalues are all real. The rightmost eigenvalue is

λ1 =
2 cos(π/(n + 1))− 2

(∆x)2 ≈ 2(1− π2/(2(n + 1)2))− 2
(∆x)2 = −π2,

while the leftmost eigenvalue is

Here we use the Taylor approximation
for cosine: as θ → 0,

cos(θ) = 1− 1
2

θ2 +O(θ)4.

λn =
2 cos(nπ/(n + 1))− 2

(∆x)2 ≈ −4
(∆x)2 = −4(n + 1)2.

Notice that the eigenvalues of A are all negative, so

u(t) = etAu(0)→ 0

as t → ∞. However, as n increases, the leftmost eigenvalue in-
creases in magnitude like O(n2).

n λ1 λn

16 −9.841548 . . . −1146.158 . . .

32 −9.862152 . . . −4346.137 . . .

64 −9.867683 . . . −16890.132 . . .

It will help our later discussion to visualize the eigenvectors of A.
Figure 5.15 shows all the eigenvectors for n = 16.

5. Consider the implications of these eigenvalues for the forward
Euler method: since λn > −4(n + 1)2,

λn =
2 cos(nπ/(n + 1))− 2

(∆x)2 > −4(n + 1)2,

the eigenvalues of A are contained in the interval

[−4(n + 1)2, 0].

To ensure stability of the method, choose the forward Euler time-
step ∆t so that for all λ ∈ [−4(n + 1)2, 0], λ∆t is in the stability
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Figure 5.15: Eigenvectors of the matrix
A from the method of lines discretiza-
tion of the heat equation, for n = 16.
The plot for λj shows the n entries
of the corresponding eigenvector vj.
(Lines are drawn between the entries in
each eigenvector to help you appreciate
that these eigenvectors approximate
continuous functions of x ∈ [0, 1] as
n → ∞.) Notice that as the eigenvalue
gets increasingly negative, the eigen-
vector increases in frequency (i.e., it
oscillates more rapidly).

region for the method. Since λ∆t ∈ IR, we need only consider the
intersection of the forward Euler stability region with the real axis,
i.e., (−2, 0). To get

λ∆t ∈ (−2, 0)

for all λ ∈ (−4(n + 1)2, 0), take

∆t ≤ 1
2(n + 1)2 =

(∆x)2

2
.

This is a crucial condition:

If you halve ∆x, you must quarter ∆t.
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Figure 5.16: Method of lines ap-
proximation to the heat equation,
discretized in space with n = 16 to get
u′(t) = Au(t), and solving this equa-
tion exactly in time. In the top plot,
each component uj(t) of the solution
vector u(t) is shown as a continuous
function of time. The bottom plots take
snapshots in time, connecting the dots
between all the values uj(tk) at a fixed
time tk . Notice as t → ∞, the solu-
tion looks increasingly like a multiple
of the eigenvector v1 associated with
the rightmost eigenvalue, shown in
Figure 5.15.

Thus, improving the spatial resolution of the discretization re-
quires extreme refinement in the time-step for forward Euler. This
requirement is known as the CFL condition for this problem, named
after its discovers Richard Courant, Kurt Otto Friedrichs, and Hans
Lewy (1928).

6. Figure 5.16 shows the solution of the heat equation with initial
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condition U0(x) = 10x2(1− x)(1.2 + sin(3πx)). The eigenvalues
and eigenvectors explain the behavior seen in these plots. From
our earlier discussion, recall that the exact solution of the semi-
discretized problem is

(5.15) u(t) = etAu(0) =
n

∑
j=1

cj e
tλj vj,

where the coefficients {cj} come from c = V−1u(0). As with
the two-dimensional example considered in Section 5.8.2, the
formula (5.15) explains how u(t) behaves as t → 0. As t increases,
the sum will be increasingly dominated by the term involving the
rightmost eigenvalue, λ1 ≈ −π2. Indeed, presuming c1 6= 0, we
expect

u(t) ∼ c1etλ1 v1,

so the solution should increasingly resemble the eigenvector v1 as
t increases. This is evident in Figure 5.16.

Now solve this same problem using the forward Euler method.
In the eigenvector basis, the forward Euler approximation is

(5.16) uk = (I + (∆t)A)ku0 =
n

∑
j=1

cj (1 + (∆t)λj)
kvj.

One gains a very rich insight by combining this formula with
some insight from analysis. A smooth initial condition U0(x) to
the original problem, which satisfies the boundary conditions
U0(0) = U0(1) = 0, can be approximated very well with a Fourier
sine series. Similarly, the discretized initial condition u0 on the There is a deep tie to the eigenfunctions

of the underlying differential operator
Lu = −u′′, defined on the domain of
twice differentiable functions satisfying
the homogeneous Dirichlet boundary
conditions.

spatial grid is approximated well by the leading eigenvectors of
A (which are samples of sine functions). You can intuitively ap-
preciate this fact by comparing the initial condition in Figure 5.16

(corresponding to tk = 0) with the eigenvectors shown in Fig-
ure 5.15. The initial condition much more closely resembles the
first few (smooth) eigenvectors than it does the highly oscillatory
eigenvectors corresponding to the most negative eigenvalues. Fig-
ure 5.17 shows the decay of the cj coefficients for n = 16 and
U0(x) = 10x2(1− x)(1.2 + sin(3πx)).

With n = 16, we previously noted that λn = −1146.158 . . . , so to
maintain stability the forward Euler method requires

∆t < 0.001744959 . . . .

Figure 5.18 shows the result of running forward Euler with a time-
step ∆t = 0.002 that is slightly too large. The computation proceeds
reasonably for the first ten time steps or so, but by k = 20 the
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forward Euler iterate uk begins to bear the fingerprint of a high-
frequency oscillation. By the time k = 70, that instability com-
pletely dominates the solution. (Notice the different vertical scales
in the k = 35 and k = 70 plots: the instability is growing fast!)
Compare the approximation u70 to the eigenvector v16 shown in
Figure 5.15. The close resemblance is no coincidence. In the eigen-
vector basis expansion (5.16) for uk, the dominant term will be

cn(1 + (∆t)λn)
kvn,

since |1 + (∆t)λn| is larger than any of the other |1 + (∆t)λj| val-
ues. Why does this term not start dominating right away? Because
the magnitude of cn is much smaller than other cj values, as seen
in Figure 5.17. Thus it takes a number of iterations before the
growth of (1 + (∆t)λn)k counteracts the small value of cn. When k
gets sufficiently large, this λn term completely takes over.

Lest we end the lecture on a negative note, Figure 5.19 shows
the result of running the forward Euler method with time-step
∆t = 0.0015, just within the stability condition. The solution uk, for
the same values of k as shown in Figure 5.18, looks much closer to
the solution from the matrix exponential shown in Figure 5.16.

An astute reader might notice one subtlety. This ∆t obeys the
stability condition,

|1 + (∆t)λj| < 1, j = 1, . . . , n,

but the term corresponding to λn is still the largest of these terms

|1 + (∆t)λn)| > |1 + (∆t)λj|, j = 1, . . . , n− 1.

Thus the (1 + (∆t)λn)k term decays most slowly in the sum (5.16).
Will it not eventually dominate, causing the solution to again

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10 -3

10 -2

10 -1

100

101

j

|cj|

Figure 5.17: The magnitude of the
coefficients cj for the initial condition u0
expanded in the basis of eigenvectors
of A, i.e., c = V−1u0. Notice that the
coefficients decrease rapidly as j in-
creases: the essence of a smooth initial
condition is captured by the eigen-
vectors associated with the rightmost
eigenvalues.
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Figure 5.18: Method of lines approxi-
mation to the heat equation, discretized
in space with n = 16 and discretized
in time with the forward Euler method.
The time-step ∆t = 0.0002 is slightly
larger than the stability limit. In the
top plot, each component (uk)j of the
solution vector uk is shown, connecting
values in time. The bottom plots take
snapshots in time, connecting the dots
between all the values (uk)j at a fixed
time tk . Notice as t → ∞, the solu-
tion looks increasingly like a multiple
of the eigenvector v1 associated with
the rightmost eigenvalue, shown in
Figure 5.15.

resemble the shape of vn as it decays to zero? Yes, indeed: but the
small value of cn delays this effect, often well beyond the span of
time we care about. Moreover, all the terms are getting smaller as
k increases. However, if you take enough steps and zoom in on the
small magnitude solution, you will indeed see vn emerge.
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Figure 5.19: Method of lines approxi-
mation to the heat equation, discretized
in space with n = 16 and discretized
in time with the forward Euler method.
The time-step ∆t = 0.00015 obeys
the stability condition, ensuring that
uk → 0 as k → ∞. Compare these
stable computations to the solution in
Figure 5.16, which solves the equation
exactly in time.
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I hope our investigations this semester have given you a taste of the beautiful
mathematics that empower numerical computations, the discrimination to
pick the right algorithm to suit your given problem, the insight to identify
those problems that are inherently ill-conditioned, and the tenacity to always
seek clever, efficient solutions.
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