
55

lecture 9: Introduction to Splines

1.11 Splines

Spline fitting, our next topic in interpolation theory, is an essential
tool for engineering design. As in the last lecture, we strive to inter-
polate data using low-degree polynomials between consecutive grid
points. The piecewise linear functions of Section 1.10 were simple,
but suffered from unsightly kinks at each interpolation point, reflect-
ing a discontinuity in the first derivative. By increasing the degree of
the polynomial used to model f on each subinterval, we can obtain
smoother functions. Long before numerical analysts got

their hands on them, ‘splines’ were
used in the woodworking, shipbuild-
ing, and aircraft industries. In such
work ‘splines’ refer to thin pieces of
wood that are bent between physical
constraints called ducks (apparently
these were also called dogs and rats in
some settings; modern versions are
sometimes called whales because of their
shape). The spline, a thin beam, bends
gracefully between the ducks to give
a graceful curve. For some discussion
of this history, see the brief ‘History of
Splines’ note by James Epperson in the
19 July 1998 NA Digest, linked from the
class website. For a beautiful derivation
of cubic splines from Euler’s beam
equation—that is, from the original
physical situation, see Gilbert Strang’s
Introduction to Applied Mathematics,
Wellesley Cambridge Press, 1986.

1.11.1 Cubic splines: first approach

Rather than setting S0(xj) to a particular value, suppose we simply
require S0 to be continuous throughout [x0, xn]. This added freedom
allows us to impose a further condition: require S00 to be continuous
on [x0, xn], too. The polynomials we construct are called cubic splines.
In spline parlance, the interpolation points {xj}n

j=0 are called knots.
These cubic spine requirements can be written as:

sj(xj�1) = f (xj�1), j = 1, . . . , n;

sj(xj) = f (xj), j = 1, . . . , n;

s0j(xj) = s0j+1(xj), j = 1, . . . , n � 1;

s00j (xj) = s00j+1(xj), j = 1, . . . , n � 1.

Compare these requirements to those imposed by piecewise cubic
Hermite interpolation. Add up all these new requirements:

n + n + (n � 1) + (n � 1) = 4n � 2 constraints

and compare to the total free variables available:

(n cubic polynomials)⇥(4 variables per cubic) = 4n variables.

So far, we thus have an underdetermined system, and there will be in-
finitely many choices for the function S(x) that satisfy the constraints.

There are several canonical ways to add two extra constraints that
uniquely define S:

• natural splines require S00(x0) = S00(xn) = 0;

• complete splines specify values for S0(x0) and S0(xn);

• not-a-knot splines require S000 to be continuous at x1 and xn�1. Since the third derivative of a cubic is
a constant, the not-a-knot requirement
forces s1 = s2 and sn�1 = sn. Hence,
while S(x) interpolates the data at x2
and xn�1, the derivative continuity
requirements are automatic at those
knots; hence the name “not-a-knot”.



56

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

8

10

12

14

x

f (x)

S(
x)

0 0.2 0.4 0.6 0.8 1
-20

-10

0

10

20

30

40

50

x

S0(x)

f 0(x)

0 0.2 0.4 0.6 0.8 1
-600

-400

-200

0

200

400

600

x

S00(x)

f 00(x)

Figure 1.20: Not-a-knot cubic spline
interpolant to f (x) = sin(20x) + e5x/2

at n = 5 uniformly spaced knots (top),
along with its first (middle) and second
(bottom) derivative. Note that S, S0, and
S00 are all continuous. Look closely at
the plot of S00: clearly this function will
have jump discontinuities at the interior
nodes x2 and x3, but the not-a-knot
condition forces S000 to be continuous at
the knots x1 and x4 = xn�1.



57

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

8

10

12

14

x

f (x)

S(
x)

0 0.2 0.4 0.6 0.8 1
-20

-10

0

10

20

30

40

50

x

S0(x)

f 0(x)

0 0.2 0.4 0.6 0.8 1
-600

-400

-200

0

200

400

600

x

S00(x)

f 00(x)

Figure 1.21: Complete cubic spline
interpolant to f (x) = sin(20x) + e5x/2

at n = 5 uniformly spaced knots (top),
along with its first (middle) and second
(bottom) derivative. Note that S, S0, and
S00 are all continuous. For a complete
cubic spline, one specifies the value
of S0(x0) and S0(xn); in this case we
have set S0(x0) = S0(xn) = 0, as you
can confirm in the middle plot. In the
bottom plot, see that S000(x) will have
jump discontinuities at all the interior
knots x1, . . . , xn�1, in contrast to the
not-a-knot spline shown in Figure 1.20.



58

Natural cubic splines are a popular choice for they can be shown,
in a precise sense, to minimize curvature over all the other possible
splines. They also model the physical origin of splines, where beams
of wood extend straight (i.e., zero second derivative) beyond the first
and final ‘ducks.’

Continuing with the example from the last section, Figure 1.20

shows a not-a-knot spline, where S000 is continuous at x1 and xn�1.
The cubic polynomials s1 for [x0, x1] and s2 for [x1, x2] must satisfy

s1(x1) = s2(x1)

s01(x1) = s02(x1)

s001 (x1) = s002 (x1)

s0001 (x1) = s0002 (x1)

Two cubics that match these four conditions must be the same:
s1(x) = s2(x), and hence x1 is ‘not a knot.’ (The same goes for xn�1.)
Notice this behavior in Figure 1.20. In contrast, Figure 1.21 shows the
complete cubic spline, where S0(x0) = S0(xn) = 0.

However we assign the two additional conditions, we get a system
of 4n equations (the various constraints) in 4n unknowns (the cubic
polynomial coefficients). These equations can be set up as a system
involving a banded coefficient matrix (zero everywhere except for a
limited number of diagonals on either side of the main diagonal). We

One can arrange Gaussian elimination
to solve an n ⇥ n tridiagonal system in
O(n) operations.

could derive this linear system by directly enforcing the continuity
conditions on the cubic polynomial that we have just described. In- Try constructing this matrix!

stead, we will develop a more general approach that expresses the
spline function S(x) as the linear combination of special basis func-
tions, which themselves are splines.


